151
|
Magnuson ME, Thompson GJ, Pan WJ, Keilholz SD. Effects of severing the corpus callosum on electrical and BOLD functional connectivity and spontaneous dynamic activity in the rat brain. Brain Connect 2014; 4:15-29. [PMID: 24117343 DOI: 10.1089/brain.2013.0167] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Functional networks, defined by synchronous spontaneous blood oxygenation level-dependent (BOLD) oscillations between spatially distinct brain regions, appear to be essential to brain function and have been implicated in disease states, cognitive capacity, and sensing and motor processes. While the topographical extent and behavioral function of these networks has been extensively investigated, the neural functions that create and maintain these synchronizations remain mysterious. In this work callosotomized rodents are examined, providing a unique platform for evaluating the influence of structural connectivity via the corpus callosum on bilateral resting state functional connectivity. Two experimental groups were assessed, a full callosotomy group, in which the corpus callosum was completely sectioned, and a sham callosotomy group, in which the gray matter was sectioned but the corpus callosum remained intact. Results indicated a significant reduction in interhemispheric connectivity in the full callosotomy group as compared with the sham group in primary somatosensory cortex and caudate-putamen regions. Similarly, electrophysiology revealed significantly reduced bilateral correlation in band limited power. Bilateral gamma Band-limited power connectivity was most strongly affected by the full callosotomy procedure. This work represents a robust finding indicating the corpus callosum's influence on maintaining integrity in bilateral functional networks; further, functional magnetic resonance imaging (fMRI) and electrophysiological connectivity share a similar decrease in connectivity as a result of the callosotomy, suggesting that fMRI-measured functional connectivity reflects underlying changes in large-scale coordinated electrical activity. Finally, spatiotemporal dynamic patterns were evaluated in both groups; the full callosotomy rodents displayed a striking loss of bilaterally synchronous propagating waves of cortical activity.
Collapse
Affiliation(s)
- Matthew E Magnuson
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia
| | | | | | | |
Collapse
|
152
|
Mercado III E, Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA. Relating Cortical Wave Dynamics to Learning and Remembering. AIMS Neurosci 2014. [DOI: 10.3934/neuroscience.2014.3.185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
153
|
Buzsáki G, Logothetis N, Singer W. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 2013; 80:751-64. [PMID: 24183025 DOI: 10.1016/j.neuron.2013.10.002] [Citation(s) in RCA: 570] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite the several-thousand-fold increase of brain volume during the course of mammalian evolution, the hierarchy of brain oscillations remains remarkably preserved, allowing for multiple-time-scale communication within and across neuronal networks at approximately the same speed, irrespective of brain size. Deployment of large-diameter axons of long-range neurons could be a key factor in the preserved time management in growing brains. We discuss the consequences of such preserved network constellation in mental disease, drug discovery, and interventional therapies.
Collapse
Affiliation(s)
- György Buzsáki
- The Neuroscience Institute, Center for Neural Science, School of Medicine, New York University, New York, NY 10016, USA.
| | | | | |
Collapse
|
154
|
Spontaneous and electrically modulated spatiotemporal dynamics of the neocortical slow oscillation and associated local fast activity. Neuroimage 2013; 83:782-94. [DOI: 10.1016/j.neuroimage.2013.07.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 11/23/2022] Open
|
155
|
de Zwart JA, van Gelderen P, Liu Z, Duyn JH. Independent sources of spontaneous BOLD fluctuation along the visual pathway. Brain Topogr 2013; 26:525-37. [PMID: 23660870 PMCID: PMC3815538 DOI: 10.1007/s10548-013-0290-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/20/2013] [Indexed: 12/11/2022]
Abstract
In resting-state functional magnetic resonance imaging (fMRI) experiments, correlation analysis can be used to identify clusters of cortical regions that may be functionally connected. Although such functional connectivity is often assumed to reflect cortico-cortical connections, a potential confound is the contribution of subcortical brain regions, many of which have strong anatomical connectivity to cortical regions and may also enable cortico-cortical interactions through trans-thalamic pathways. To investigate this, we performed resting state fMRI of the human visual system, including cortical regions and subcortical nuclei of the pulvinar and lateral geniculate. Regression analysis was used to investigate the dependence of the measured inter-regional correlations upon afferents from specific retinal, thalamic and cortical regions as well as systemic global signal fluctuation. A high level of inter-hemispheric correlation (cc = 0.95) was found in the visual cortex that could not be explained by activity in the subcortical nuclei investigated; in addition a relatively low level of inter-hemispheric correlation (cc = 0.39-0.42) was found in vision-related thalamic nuclei that could not be explained by direct anatomical connections or their cortical inputs. These findings suggest that spontaneous fMRI signal correlations within the human visual system originate from a mixture of independent signal sources that may be transmitted through thalamo-cortical, cortico-thalamic, and cortico-cortical connections either trans-callosal or trans-thalamic in origin. Our findings thus call for more cautious interpretation of resting state functional connectivity in terms of any single type of anatomical connectivity.
Collapse
Affiliation(s)
- Jacco A de Zwart
- Advanced MRI Section, LFMI, NINDS, National Institutes of Health, Bldg. 10, Rm. B1D-728, 9000 Rockville Pike, Bethesda, MD, 20892-1065, USA,
| | | | | | | |
Collapse
|
156
|
Detecting resting-state brain activity by spontaneous cerebral blood volume fluctuations using whole brain vascular space occupancy imaging. Neuroimage 2013; 84:575-84. [PMID: 24055705 DOI: 10.1016/j.neuroimage.2013.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 08/30/2013] [Accepted: 09/12/2013] [Indexed: 11/24/2022] Open
Abstract
Resting-state brain activity has been investigated extensively using BOLD contrast. However, BOLD signal represents the combined effects of multiple physiological processes and its spatial localization is less accurate than that of cerebral blood flow and volume (CBF and CBF, respectively). In this study, we demonstrate that resting-state brain activity can be reliably detected by spontaneous fluctuations of CBV-weighted signal using whole-brain gradient and spin echo (GRASE) based vascular space occupancy (VASO) imaging. Specifically, using independent component analysis, intrinsic brain networks, including default mode, salience, executive control, visual, auditory, and sensorimotor networks were revealed robustly by the VASO technique. We further demonstrate that task-evoked VASO signal aligned well with expected gray matter areas, while blood-oxygenation level dependent (BOLD) signal extended outside of these areas probably due to their different spatial specificity. The improved spatial localization of VASO is consistent with previous studies using animal models. Moreover, we showed that the 3D-GRASE VASO images had reduced susceptibility-induced signal voiding, compared to the BOLD technique. This is attributed to the fact that VASO does not require T2* weighting, thus the acquisition can use a shorter TE and can employ spin-echo scheme. Consequently VASO-based functional connectivity signals were well preserved in brain regions that tend to suffer from signal loss and geometric distortion in BOLD, such as orbital prefrontal cortex. Our study suggests that 3D-GRASE VASO imaging, with its improved spatial specificity and less sensitivity to susceptibility artifacts, may have advantages in resting-state fMRI studies.
Collapse
|
157
|
Leleu T, Aihara K. Spontaneous slow oscillations and sequential patterns due to short-term plasticity in a model of the cortex. Neural Comput 2013; 25:3131-82. [PMID: 24001341 DOI: 10.1162/neco_a_00513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We study a realistic model of a cortical column taking into account short-term plasticity between pyramidal cells and interneurons. The simulation of leaky integrate-and-fire neurons shows that low-frequency oscillations emerge spontaneously as a result of intrinsic network properties. These oscillations are composed of prolonged phases of high and low activity reminiscent of cortical up and down states, respectively. We simplify the description of the network activity by using a mean field approximation and reduce the system to two slow variables exhibiting some relaxation oscillations. We identify two types of slow oscillations. When the combination of dynamic synapses between pyramidal cells and those between interneurons accounts for the generation of these slow oscillations, the end of the up phase is characterized by asynchronous fluctuations of the membrane potentials. When the slow oscillations are mainly driven by the dynamic synapses between interneurons, the network exhibits fluctuations of membrane potentials, which are more synchronous at the end than at the beginning of the up phase. Additionally, finite size effect and slow synaptic currents can modify the irregularity and frequency, respectively, of these oscillations. Finally, we consider possible roles of a slow oscillatory input modeling long-range interactions in the brain. Spontaneous slow oscillations of local networks are modulated by the oscillatory input, which induces, notably, synchronization, subharmonic synchronization, and chaotic relaxation oscillations in the mean field approximation. In the case of forced oscillations, the slow population-averaged activity of leaky integrate-and-fire neurons can have both deterministic and stochastic temporal features. We discuss the possibility that long-range connectivity controls the emergence of slow sequential patterns in local populations due to the tendency of a cortical column to oscillate at low frequency.
Collapse
Affiliation(s)
- Timothée Leleu
- Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8505, Japan
| | | |
Collapse
|
158
|
Lu H, Stein EA. Resting state functional connectivity: its physiological basis and application in neuropharmacology. Neuropharmacology 2013; 84:79-89. [PMID: 24012656 DOI: 10.1016/j.neuropharm.2013.08.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 07/14/2013] [Accepted: 08/21/2013] [Indexed: 11/29/2022]
Abstract
Brain structures do not work in isolation; they work in concert to produce sensory perception, motivation and behavior. Systems-level network activity can be investigated by resting state magnetic resonance imaging (rsMRI), an emerging neuroimaging technique that assesses the synchrony of the brain's ongoing spontaneous activity. Converging evidence reveals that rsMRI is able to consistently identify distinct spatiotemporal patterns of large-scale brain networks. Dysregulation within and between these networks has been implicated in a number of neurodegenerative and neuropsychiatric disorders, including Alzheimer's disease and drug addiction. Despite wide application of this approach in systems neuroscience, the physiological basis of these fluctuations remains incompletely understood. Here we review physiological studies in electrical, metabolic and hemodynamic fluctuations that are most pertinent to the rsMRI signal. We also review recent applications to neuropharmacology - specifically drug effects on resting state fluctuations. We speculate that the mechanisms governing spontaneous fluctuations in regional oxygenation availability likely give rise to the observed rsMRI signal. We conclude by identifying several open questions surrounding this technique. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.
Collapse
Affiliation(s)
- Hanbing Lu
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, USA.
| | - Elliot A Stein
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, USA
| |
Collapse
|
159
|
Mohajerani MH, Chan AW, Mohsenvand M, LeDue J, Liu R, McVea DA, Boyd JD, Wang YT, Reimers M, Murphy TH. Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nat Neurosci 2013; 16:1426-35. [PMID: 23974708 DOI: 10.1038/nn.3499] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/17/2013] [Indexed: 12/20/2022]
Abstract
Using millisecond-timescale voltage-sensitive dye imaging in lightly anesthetized or awake adult mice, we show that a palette of sensory-evoked and hemisphere-wide activity motifs are represented in spontaneous activity. These motifs can reflect multiple modes of sensory processing, including vision, audition and touch. We found similar cortical networks with direct cortical activation using channelrhodopsin-2. Regional analysis of activity spread indicated modality-specific sources, such as primary sensory areas, a common posterior-medial cortical sink where sensory activity was extinguished within the parietal association area and a secondary anterior medial sink within the cingulate and secondary motor cortices for visual stimuli. Correlation analysis between functional circuits and intracortical axonal projections indicated a common framework corresponding to long-range monosynaptic connections between cortical regions. Maps of intracortical monosynaptic structural connections predicted hemisphere-wide patterns of spontaneous and sensory-evoked depolarization. We suggest that an intracortical monosynaptic connectome shapes the ebb and flow of spontaneous cortical activity.
Collapse
Affiliation(s)
- Majid H Mohajerani
- 1] Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada. [2] Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada. [3] [4]
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Wanger T, Takagaki K, Lippert MT, Goldschmidt J, Ohl FW. Wave propagation of cortical population activity under urethane anesthesia is state dependent. BMC Neurosci 2013; 14:78. [PMID: 23902414 PMCID: PMC3733618 DOI: 10.1186/1471-2202-14-78] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 07/03/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Propagating waves of excitation have been observed extensively in the neocortex, during both spontaneous and sensory-evoked activity, and they play a critical role in spatially organizing information processing. However, the state-dependence of these spatiotemporal propagation patterns is largely unexplored. In this report, we use voltage-sensitive dye imaging in the rat visual cortex to study the propagation of spontaneous population activity in two discrete cortical states induced by urethane anesthesia. RESULTS While laminar current source density patterns of spontaneous population events in these two states indicate a considerable degree of similarity in laminar networks, lateral propagation in the more active desynchronized state is approximately 20% faster than in the slower synchronized state. Furthermore, trajectories of wave propagation exhibit a strong anisotropy, but the preferred direction is different depending on cortical state. CONCLUSIONS Our results show that horizontal wave propagation of spontaneous neural activity is largely dependent on the global activity states of local cortical circuits.
Collapse
Affiliation(s)
- Tim Wanger
- Leibniz-Institute for Neurobiology, 39118 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
161
|
Vyazovskiy VV, Harris KD. Sleep and the single neuron: the role of global slow oscillations in individual cell rest. Nat Rev Neurosci 2013; 14:443-51. [PMID: 23635871 PMCID: PMC3972489 DOI: 10.1038/nrn3494] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sleep is universal in animals, but its specific functions remain elusive. We propose that sleep's primary function is to allow individual neurons to perform prophylactic cellular maintenance. Just as muscle cells must rest after strenuous exercise to prevent long-term damage, brain cells must rest after intense synaptic activity. We suggest that periods of reduced synaptic input ('off periods' or 'down states') are necessary for such maintenance. This in turn requires a state of globally synchronized neuronal activity, reduced sensory input and behavioural immobility - the well-known manifestations of sleep.
Collapse
Affiliation(s)
- Vladyslav V. Vyazovskiy
- University of Surrey, Faculty of Health and Medical Sciences, Department of Biochemistry and Physiology, Guildford, GU2 7XH, UK
| | - Kenneth D. Harris
- University College London (UCL) Institute of Neurology, UCL Department of Neuroscience, Physiology, and Pharmacology, London, WC1E 6DE, UK
| |
Collapse
|
162
|
Spatiotemporal coordination of slow-wave ongoing activity across auditory cortical areas. J Neurosci 2013; 33:3299-310. [PMID: 23426658 DOI: 10.1523/jneurosci.5079-12.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Natural acoustic stimuli contain slow temporal fluctuations, and the modulation of ongoing slow-wave activity by bottom-up and top-down factors plays essential roles in auditory cortical processing. However, the spatiotemporal pattern of intrinsic slow-wave activity across the auditory cortical modality is unknown. Using in vivo voltage-sensitive dye imaging in anesthetized guinea pigs, we measured spectral tuning to acoustic stimuli across several core and belt auditory cortical areas, and then recorded spontaneous activity across this defined network. We found that phase coherence in spontaneous slow-wave (delta-theta band) activity was highest between regions of core and belt areas that had similar frequency tuning, even if they were distant. Further, core and belt regions with high phase coherence were phase shifted. Interestingly, phase shifts observed during spontaneous activity paralleled latency differences for evoked activity. Our findings suggest that the circuits underlying this intrinsic source of slow-wave activity support coordinated changes in excitability between functionally matched but distributed regions of the auditory cortical network.
Collapse
|
163
|
Lim DH, Ledue J, Mohajerani MH, Vanni MP, Murphy TH. Optogenetic approaches for functional mouse brain mapping. Front Neurosci 2013; 7:54. [PMID: 23596383 PMCID: PMC3622058 DOI: 10.3389/fnins.2013.00054] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/24/2013] [Indexed: 12/20/2022] Open
Abstract
To better understand the connectivity of the brain, it is important to map both structural and functional connections between neurons and cortical regions. In recent years, a set of optogenetic tools have been developed that permit selective manipulation and investigation of neural systems. These tools have enabled the mapping of functional connections between stimulated cortical targets and other brain regions. Advantages of the approach include the ability to arbitrarily stimulate brain regions that express opsins, allowing for brain mapping independent of behavior or sensory processing. The ability of opsins to be rapidly and locally activated allows for investigation of connectivity with spatial resolution on the order of single neurons and temporal resolution on the order of milliseconds. Optogenetic methods for functional mapping have been applied in experiments ranging from in vitro investigation of microcircuits, to in vivo probing of inter-regional cortical connections, to examination of global connections within the whole brain. We review recently developed functional mapping methods that use optogenetic single-point stimulation in the rodent brain and employ cellular electrophysiology, evoked motor movements, voltage sensitive dyes (VSDs), calcium indicators, or functional magnetic resonance imaging (fMRI) to assess activity. In particular we highlight results using red-shifted organic VSDs that permit high temporal resolution imaging in a manner spectrally separated from Channelrhodopsin-2 (ChR2) activation. VSD maps stimulated by ChR2 were dependent on intracortical synaptic activity and were able to reflect circuits used for sensory processing. Although the methods reviewed are powerful, challenges remain with respect to finding approaches that permit selective high temporal resolution assessment of stimulated activity in animals that can be followed longitudinally.
Collapse
Affiliation(s)
- Diana H Lim
- Department of Psychiatry, University of British Columbia at Vancouver Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
164
|
Abstract
Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems.
Collapse
Affiliation(s)
- Björn Rasch
- Division of Biopsychology, Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
165
|
Abstract
The activity of neural populations is determined not only by sensory inputs but also by internally generated patterns. During quiet wakefulness, the brain produces spontaneous firing events that can spread over large areas of cortex and have been suggested to underlie processes such as memory recall and consolidation. Here we demonstrate a different role for spontaneous activity in sensory cortex: gating of sensory inputs. We show that population activity in rat auditory cortex is composed of transient 50-100 ms packets of spiking activity that occur irregularly during silence and sustained tone stimuli, but reliably at tone onset. Population activity within these packets had broadly consistent spatiotemporal structure, but the rate and also precise relative timing of action potentials varied between stimuli. Packet frequency varied with cortical state, with desynchronized state activity consistent with superposition of multiple overlapping packets. We suggest that such packets reflect the sporadic opening of a "gate" that allows auditory cortex to broadcast a representation of external sounds to other brain regions.
Collapse
|
166
|
Kuki T, Ohshiro T, Ito S, Ji ZG, Fukazawa Y, Matsuzaka Y, Yawo H, Mushiake H. Frequency-dependent entrainment of neocortical slow oscillation to repeated optogenetic stimulation in the anesthetized rat. Neurosci Res 2013; 75:35-45. [DOI: 10.1016/j.neures.2012.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 09/13/2012] [Accepted: 10/04/2012] [Indexed: 02/01/2023]
|
167
|
Voltage-sensitive dye imaging reveals dynamic spatiotemporal properties of cortical activity after spontaneous muscle twitches in the newborn rat. J Neurosci 2012; 32:10982-94. [PMID: 22875932 DOI: 10.1523/jneurosci.1322-12.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spontaneous activity in the developing brain contributes to its maturation, but how this activity is coordinated between distinct cortical regions and whether it might reflect developing sensory circuits is not well understood. Here, we address this question by imaging the spread and synchronization of cortical activity using voltage-sensitive dyes (VSDs) in the developing rat in vivo. In postnatal day 4-6 rats (n = 10), we collected spontaneous changes in VSD signal that reflect underlying membrane potential changes over a large craniotomy (50 mm2) that encompassed both the sensory and motor cortices of both hemispheres. Bursts of depolarization that occurred approximately once every 12 s were preceded by spontaneous twitches of the hindlimbs and/or tail. The close association with peripheral movements suggests that these bursts may represent a slow component of spindle bursts, a prominent form of activity in the developing somatosensory cortex. Twitch-associated cortical activity was synchronized between subregions of somatosensory cortex, which reflected the synchronized twitching of the limbs and tail. This activity also spread asymmetrically, toward the midline of the brain. We found that the spatial and temporal structure of such spontaneous cortical bursts closely matched that of sensory-evoked activity elicited via direct stimulation of the periphery. These data suggest that spontaneous cortical activity provides a recurring template of functional cortical circuits within the developing cortex and could contribute to the maturation of integrative connections between sensory and motor cortices.
Collapse
|
168
|
Long-range parallel processing and local recurrent activity in the visual cortex of the mouse. J Neurosci 2012; 32:11120-31. [PMID: 22875943 DOI: 10.1523/jneurosci.6304-11.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The transfer of visual information from the primary visual cortex (V1) to higher order visual cortices is an essential step in visual processing. However, the dynamics of activation of visual cortices is poorly understood. In mice, several extrastriate areas surrounding V1 have been described. Using voltage-sensitive dye imaging in vivo, we determined the spatiotemporal dynamics of the activity evoked in the visual cortex by simple stimuli. Independently of precise areal boundaries, we found that V1 activation is rapidly followed by the depolarization of three functional groups of higher order visual areas organized retinotopically. After this sequential activation, all four regions were simultaneously active for most of the response. Concomitantly with the parallel processing of the visual input, the activity initiated retinotopically and propagated quickly and isotropically within each region. The size of this activation by local recurrent activity, which extended beyond the initial retinotopic response, was dependent on the intensity of the stimulus. Moreover the difference in the spatiotemporal dynamic of the response to dark and bright stimuli suggested the dominance in the mouse of the ON pathway. Our results suggest that the cortex integrates visual information simultaneously through across-area parallel and within-area serial processing.
Collapse
|
169
|
Abstract
Electrode recordings and imaging studies have revealed that localized visual stimuli elicit waves of activity that travel across primary visual cortex. Traveling waves are present also during spontaneous activity, but they can be greatly reduced by widespread and intensive visual stimulation. In this Review, we summarize the evidence in favor of these traveling waves. We suggest that their substrate may lie in long-range horizontal connections and that their functional role may involve the integration of information over large regions of space.
Collapse
|
170
|
Chen S, Mohajerani MH, Xie Y, Murphy TH. Optogenetic analysis of neuronal excitability during global ischemia reveals selective deficits in sensory processing following reperfusion in mouse cortex. J Neurosci 2012; 32:13510-9. [PMID: 23015440 PMCID: PMC6621379 DOI: 10.1523/jneurosci.1439-12.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/26/2012] [Accepted: 07/21/2012] [Indexed: 12/30/2022] Open
Abstract
We have developed an approach to directly probe neuronal excitability during the period beginning with induction of global ischemia and extending after reperfusion using transgenic mice expressing channelrhodopsin-2 (ChR2) to activate deep layer cortical neurons independent of synaptic or sensory stimulation. Spontaneous, ChR2, or forepaw stimulation-evoked electroencephalogram (EEG) or local field potential (LFP) records were collected from the somatosensory cortex. Within 20 s of ischemia, a >90% depression of spontaneous 0.3-3 Hz EEG and LFP power was detected. Ischemic depolarization followed EEG depression with a ∼2 min delay. Surprisingly, neuronal excitability, as assessed by the ChR2-mediated EEG response, was intact during the period of strong spontaneous EEG suppression and actually increased before ischemic depolarization. In contrast, a decrease in the somatosensory-evoked potential (forepaw-evoked potential, reflecting cortical synaptic transmission) was coincident with the EEG suppression. After 5 min of ischemia, the animal was reperfused, and the ChR2-mediated response mostly recovered within 30 min (>80% of preischemia value). However, the recovery of the somatosensory-evoked potential was significantly delayed compared with the ChR2-mediated response (<40% of preischemia value at 60 min). By assessing intrinsic optical signals in combination with EEG, we found that neuronal excitability approached minimal values when the spreading ischemic depolarization wave propagated to the ChR2-stimulated cortex. Our results indicate that the ChR2-mediated EEG/LFP response recovers much faster than sensory-evoked EEG/LFP activity in vivo following ischemia and reperfusion, defining a period where excitable but synaptically silent neurons are present.
Collapse
Affiliation(s)
- Shangbin Chen
- Department of Psychiatry, Brain Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Majid H. Mohajerani
- Department of Psychiatry, Brain Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yicheng Xie
- Department of Psychiatry, Brain Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Timothy H. Murphy
- Department of Psychiatry, Brain Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
171
|
Knöpfel T. Genetically encoded optical indicators for the analysis of neuronal circuits. Nat Rev Neurosci 2012; 13:687-700. [PMID: 22931891 DOI: 10.1038/nrn3293] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a departure from previous top-down or bottom-up strategies used to understand neuronal circuits, many forward-looking research programs now place the circuit itself at their centre. This has led to an emphasis on the dissection and elucidation of neuronal circuit elements and mechanisms, and on studies that ask how these circuits generate behavioural outputs. This movement towards circuit-centric strategies is progressing rapidly as a result of technological advances that combine genetic manipulation with light-based methods. The core tools of these new approaches are genetically encoded optical indicators and actuators that enable non-destructive interrogation and manipulation of neuronal circuits in behaving animals with cellular-level precision. This Review examines genetically encoded reporters of neuronal function and assesses their value for circuit-oriented neuroscientific investigations.
Collapse
Affiliation(s)
- Thomas Knöpfel
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako City, Saitama 351-0198, Japan.
| |
Collapse
|
172
|
Akemann W, Mutoh H, Perron A, Park YK, Iwamoto Y, Knöpfel T. Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. J Neurophysiol 2012; 108:2323-37. [PMID: 22815406 DOI: 10.1152/jn.00452.2012] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Population signals from neuronal ensembles in cortex during behavior are commonly measured with EEG, local field potential (LFP), and voltage-sensitive dyes. A genetically encoded voltage indicator would be useful for detection of such signals in specific cell types. Here we describe how this goal can be achieved with Butterfly, a voltage-sensitive fluorescent protein (VSFP) with a subthreshold detection range and enhancements designed for voltage imaging from single neurons to brain in vivo. VSFP-Butterfly showed reliable membrane targeting, maximum response gain around standard neuronal resting membrane potential, fast kinetics for single-cell synaptic responses, and a high signal-to-noise ratio. Butterfly reports excitatory postsynaptic potentials (EPSPs) in cortical neurons, whisker-evoked responses in barrel cortex, 25-Hz gamma oscillations in hippocampal slices, and 2- to 12-Hz slow waves during brain state modulation in vivo. Our findings demonstrate that cell class-specific voltage imaging is practical with VSFP-Butterfly, and expand the genetic toolbox for the detection of neuronal population dynamics.
Collapse
|
173
|
Zou Q, Ross TJ, Gu H, Geng X, Zuo XN, Hong LE, Gao JH, Stein EA, Zang YF, Yang Y. Intrinsic resting-state activity predicts working memory brain activation and behavioral performance. Hum Brain Mapp 2012; 34:3204-15. [PMID: 22711376 DOI: 10.1002/hbm.22136] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/26/2012] [Accepted: 05/07/2012] [Indexed: 12/22/2022] Open
Abstract
Although resting-state brain activity has been demonstrated to correspond with task-evoked brain activation, the relationship between intrinsic and evoked brain activity has not been fully characterized. For example, it is unclear whether intrinsic activity can also predict task-evoked deactivation and whether the rest-task relationship is dependent on task load. In this study, we addressed these issues on 40 healthy control subjects using resting-state and task-driven [N-back working memory (WM) task] functional magnetic resonance imaging data collected in the same session. Using amplitude of low-frequency fluctuation (ALFF) as an index of intrinsic resting-state activity, we found that ALFF in the middle frontal gyrus and inferior/superior parietal lobules was positively correlated with WM task-evoked activation, while ALFF in the medial prefrontal cortex, posterior cingulate cortex, superior frontal gyrus, superior temporal gyrus, and fusiform gyrus was negatively correlated with WM task-evoked deactivation. Further, the relationship between the intrinsic resting-state activity and task-evoked activation in lateral/superior frontal gyri, inferior/superior parietal lobules, superior temporal gyrus, and midline regions was stronger at higher WM task loads. In addition, both resting-state activity and the task-evoked activation in the superior parietal lobule/precuneus were significantly correlated with the WM task behavioral performance, explaining similar portions of intersubject performance variance. Together, these findings suggest that intrinsic resting-state activity facilitates or is permissive of specific brain circuit engagement to perform a cognitive task, and that resting activity can predict subsequent task-evoked brain responses and behavioral performance.
Collapse
Affiliation(s)
- Qihong Zou
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland; MRI Research Center and Beijing City Key Lab for Medical Physics and Engineering, Peking University, Beijing, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Luczak A, Maclean JN. Default activity patterns at the neocortical microcircuit level. Front Integr Neurosci 2012; 6:30. [PMID: 22701405 PMCID: PMC3373160 DOI: 10.3389/fnint.2012.00030] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 05/24/2012] [Indexed: 11/17/2022] Open
Abstract
Even in absence of sensory stimuli cortical networks exhibit complex, self-organized activity patterns. While the function of those spontaneous patterns of activation remains poorly understood, recent studies both in vivo and in vitro have demonstrated that neocortical neurons activate in a surprisingly similar sequential order both spontaneously and following input into cortex. For example, neurons that tend to fire earlier within spontaneous bursts of activity also fire earlier than other neurons in response to sensory stimuli. These “default patterns” can last hundreds of milliseconds and are strongly conserved under a variety of conditions. In this paper, we will review recent evidence for these default patterns at the local cortical level. We speculate that cortical architecture imposes common constraints on spontaneous and evoked activity flow, which result in the similarity of the patterns.
Collapse
Affiliation(s)
- Artur Luczak
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | | |
Collapse
|
175
|
Abstract
Numerous studies have revealed traveling waves of activity in sensory cortex, both following sensory stimulation and during ongoing activity. We contributed to this body of work by measuring the spike-triggered average of the local field potential (stLFP) at multiple concurrent locations (Nauhaus et al., 2009) in the visual cortex of anesthetized cats and macaques. We found the stLFP to be progressively delayed at increasing distances from the site of the triggering spikes, and interpreted this as a traveling wave of depolarization originating from that site. Our results were criticized, however, on two grounds. First, a study using the same recording techniques in the visual cortex of awake macaques reported an apparent lack of traveling waves, and proposed that traveling waves could arise artifactually from excessive filtering of the field potentials (Ray and Maunsell, 2011). Second, the interpretability of the stLFP was questioned (Kenneth Miller, personal communication), as the stLFP must reflect not only interactions between spike trains and field potentials, but also correlations within and across the spike trains. Here, we show that our data and interpretation are not imperiled by these criticisms. We reanalyzed our field potentials to remove any possible artifact due to filtering and to discount the effects of correlations within and across the triggering spike trains. In both cases, we found that the traveling waves were still present. In fact, closer inspection of Ray and Maunsell's (2011) data from awake cortex shows that they do agree with ours, as they contain clear evidence for traveling waves.
Collapse
|
176
|
Lim DH, Mohajerani MH, Ledue J, Boyd J, Chen S, Murphy TH. In vivo Large-Scale Cortical Mapping Using Channelrhodopsin-2 Stimulation in Transgenic Mice Reveals Asymmetric and Reciprocal Relationships between Cortical Areas. Front Neural Circuits 2012; 6:11. [PMID: 22435052 PMCID: PMC3304170 DOI: 10.3389/fncir.2012.00011] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/24/2012] [Indexed: 12/27/2022] Open
Abstract
We have mapped intracortical activity in vivo independent of sensory input using arbitrary point channelrhodopsin-2 (ChR2) stimulation and regional voltage sensitive dye imaging in B6.Cg-Tg (Thy1-COP4/EYFP)18Gfng/J transgenic mice. Photostimulation of subsets of deep layer pyramidal neurons within forelimb, barrel, or visual primary sensory cortex led to downstream cortical maps that were dependent on synaptic transmission and were similar to peripheral sensory stimulation. ChR2-evoked maps confirmed homotopic connections between hemispheres and intracortical sensory and motor cortex connections. This ability of optogentically activated subpopulations of neurons to drive appropriate downstream maps suggests that mechanisms exist to allow prototypical cortical maps to self-assemble from the stimulation of neuronal subsets. Using this principle of map self-assembly, we employed ChR2 point stimulation to map connections between cortical areas that are not selectively activated by peripheral sensory stimulation or behavior. Representing the functional cortical regions as network nodes, we identified asymmetrical connection weights in individual nodes and identified the parietal association area as a network hub. Furthermore, we found that the strength of reciprocal intracortical connections between primary and secondary sensory areas are unequal, with connections from primary to secondary sensory areas being stronger than the reciprocal.
Collapse
Affiliation(s)
- Diana H Lim
- Department of Psychiatry, University of British Columbia Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
177
|
Botella-Soler V, Valderrama M, Crépon B, Navarro V, Le Van Quyen M. Large-scale cortical dynamics of sleep slow waves. PLoS One 2012; 7:e30757. [PMID: 22363484 PMCID: PMC3281874 DOI: 10.1371/journal.pone.0030757] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 12/28/2011] [Indexed: 12/03/2022] Open
Abstract
Slow waves constitute the main signature of sleep in the electroencephalogram (EEG). They reflect alternating periods of neuronal hyperpolarization and depolarization in cortical networks. While recent findings have demonstrated their functional role in shaping and strengthening neuronal networks, a large-scale characterization of these two processes remains elusive in the human brain. In this study, by using simultaneous scalp EEG and intracranial recordings in 10 epileptic subjects, we examined the dynamics of hyperpolarization and depolarization waves over a large extent of the human cortex. We report that both hyperpolarization and depolarization processes can occur with two different characteristic time durations which are consistent across all subjects. For both hyperpolarization and depolarization waves, their average speed over the cortex was estimated to be approximately 1 m/s. Finally, we characterized their propagation pathways by studying the preferential trajectories between most involved intracranial contacts. For both waves, although single events could begin in almost all investigated sites across the entire cortex, we found that the majority of the preferential starting locations were located in frontal regions of the brain while they had a tendency to end in posterior and temporal regions.
Collapse
Affiliation(s)
- Vicente Botella-Soler
- Departament de Física Teòrica and Instituto de Física Corpuscular (IFIC), Universitat de València - Consejo Superior de Investigaciones Científicas (CSIC), Burjassot, València, Spain
| | - Mario Valderrama
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 975, Université Pierre et Marie Curie (UPMC), Hôpital de la Pitié Salpêtrière, Paris, France
| | - Benoît Crépon
- Epilepsy Unit, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 975, Université Pierre et Marie Curie (UPMC), Hôpital de la Pitié Salpêtrière, Paris, France
| | - Vincent Navarro
- Epilepsy Unit, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 975, Université Pierre et Marie Curie (UPMC), Hôpital de la Pitié Salpêtrière, Paris, France
| | - Michel Le Van Quyen
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 975, Université Pierre et Marie Curie (UPMC), Hôpital de la Pitié Salpêtrière, Paris, France
- * E-mail:
| |
Collapse
|
178
|
Muller LE, Destexhe A. A model of propagating waves in cerebral cortex across network states. BMC Neurosci 2011. [PMCID: PMC3240536 DOI: 10.1186/1471-2202-12-s1-p67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
179
|
Toth A, Hajnik T, Detari L. Cholinergic modulation of slow cortical rhythm in urethane-anesthetized rats. Brain Res Bull 2011; 87:117-29. [PMID: 22033501 DOI: 10.1016/j.brainresbull.2011.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 09/20/2011] [Accepted: 10/14/2011] [Indexed: 02/04/2023]
Abstract
Slow cortical rhythm (SCR) is characterized by rhythmic cycling of active (UP) and silent (DOWN) states in cortical cells. In urethane anesthesia, SCR appears as alternation of almost isoelectrical EEG periods and low-frequency, high-amplitude large shifts with superimposed high-frequency activity in the local field potentials (LFPs). Dense cholinergic projection reaches the cortex from the basal forebrain (BF), and acetylcholine (ACh) has been demonstrated to play a crucial role in the regulation of cortical activity. In the present experiments, cholinergic drugs were administered topically to the cortical surface of urethane-anesthetized rats to examine the direct involvement of ACh and the BF cholinergic system in the SCR. SCR was recorded by a 16-pole vertical electrode array from the hindlimb area of the somatosensory cortex. Multiple unit activity (MUA) was recorded from layer V to VI in close proximity of the recording array. Neither a low dose (10 mM solution) of the muscarinic antagonist atropine or the nicotinic agonist nicotine (1 mM solution) had any effect on SCR. In contrast, the higher dose (100 mM solution) of atropine, the cholinergic agonist carbachol (32 mM solution), and the cholinesterase inhibitor physostigmine (13 mM solution) all decreased the number of UP states, delta power (0-3 Hz) and MUA. These results suggest that cholinergic system may influence SCR through muscarinic mechanisms during urethane anesthesia. Cholinergic activation obstructs the mechanisms responsible for local or global synchronization seen during SCR as this rhythm was disrupted or aborted. Muscarinic antagonism can evoke similar changes when high dose of atropine is applied.
Collapse
Affiliation(s)
- Attila Toth
- Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest 1117, Hungary.
| | | | | |
Collapse
|
180
|
Takagaki K, Zhang C, Wu JY, Ohl FW. Flow detection of propagating waves with temporospatial correlation of activity. J Neurosci Methods 2011; 200:207-18. [PMID: 21664934 PMCID: PMC3179389 DOI: 10.1016/j.jneumeth.2011.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 11/30/2022]
Abstract
Voltage-sensitive dye imaging (VSDI) allows population patterns of cortical activity to be recorded with high temporal resolution, and recent findings ascribe potential significance to these spatial propagation patterns--both for normal cortical processing and in pathologies such as epilepsy. However, analysis of these spatiotemporal patterns has been mostly qualitative to date. In this report, we describe an algorithm to quantify fast local flow patterns of cortical population activation, as measured with VSDI. The algorithm uses correlation of temporal features across space, and therefore differs from conventional optical flow algorithms which use correlation of spatial features over time. This alternative approach allows us to take advantage of the characteristics of fast optical imaging data, which have very high temporal resolution but less spatial resolution. We verify the method both on artificial and biological data, and demonstrate its use.
Collapse
Affiliation(s)
- Kentaroh Takagaki
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- School of Medicine, Georgetown University, USA
| | - Chuan Zhang
- School of Medicine, Georgetown University, USA
- Department of Mathematics, Colorado State University, USA
| | | | - Frank W. Ohl
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Otto-von-Guericke University Magdeburg, Germany
| |
Collapse
|
181
|
Abstract
The brain continuously adapts its processing machinery to behavioural demands. To achieve this, it rapidly modulates the operating mode of cortical circuits, controlling the way that information is transformed and routed. This article will focus on two experimental approaches by which the control of cortical information processing has been investigated: the study of state-dependent cortical processing in rodents and attention in the primate visual system. Both processes involve a modulation of low-frequency activity fluctuations and spiking correlation, and are mediated by common receptor systems. We suggest that selective attention involves processes that are similar to state change, and that operate at a local columnar level to enhance the representation of otherwise non-salient features while suppressing internally generated activity patterns.
Collapse
Affiliation(s)
- Kenneth D Harris
- Department of Bioengineering, Imperial College, London SW7 2AZ, UK. kenneth.harris@ imperial.ac.uk
| | | |
Collapse
|
182
|
Rattenborg NC, Martinez-Gonzalez D, Roth TC, Pravosudov VV. Hippocampal memory consolidation during sleep: a comparison of mammals and birds. Biol Rev Camb Philos Soc 2011; 86:658-91. [PMID: 21070585 PMCID: PMC3117012 DOI: 10.1111/j.1469-185x.2010.00165.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The transition from wakefulness to sleep is marked by pronounced changes in brain activity. The brain rhythms that characterize the two main types of mammalian sleep, slow-wave sleep (SWS) and rapid eye movement (REM) sleep, are thought to be involved in the functions of sleep. In particular, recent theories suggest that the synchronous slow-oscillation of neocortical neuronal membrane potentials, the defining feature of SWS, is involved in processing information acquired during wakefulness. According to the Standard Model of memory consolidation, during wakefulness the hippocampus receives input from neocortical regions involved in the initial encoding of an experience and binds this information into a coherent memory trace that is then transferred to the neocortex during SWS where it is stored and integrated within preexisting memory traces. Evidence suggests that this process selectively involves direct connections from the hippocampus to the prefrontal cortex (PFC), a multimodal, high-order association region implicated in coordinating the storage and recall of remote memories in the neocortex. The slow-oscillation is thought to orchestrate the transfer of information from the hippocampus by temporally coupling hippocampal sharp-wave/ripples (SWRs) and thalamocortical spindles. SWRs are synchronous bursts of hippocampal activity, during which waking neuronal firing patterns are reactivated in the hippocampus and neocortex in a coordinated manner. Thalamocortical spindles are brief 7-14 Hz oscillations that may facilitate the encoding of information reactivated during SWRs. By temporally coupling the readout of information from the hippocampus with conditions conducive to encoding in the neocortex, the slow-oscillation is thought to mediate the transfer of information from the hippocampus to the neocortex. Although several lines of evidence are consistent with this function for mammalian SWS, it is unclear whether SWS serves a similar function in birds, the only taxonomic group other than mammals to exhibit SWS and REM sleep. Based on our review of research on avian sleep, neuroanatomy, and memory, although involved in some forms of memory consolidation, avian sleep does not appear to be involved in transferring hippocampal memories to other brain regions. Despite exhibiting the slow-oscillation, SWRs and spindles have not been found in birds. Moreover, although birds independently evolved a brain region--the caudolateral nidopallium (NCL)--involved in performing high-order cognitive functions similar to those performed by the PFC, direct connections between the NCL and hippocampus have not been found in birds, and evidence for the transfer of information from the hippocampus to the NCL or other extra-hippocampal regions is lacking. Although based on the absence of evidence for various traits, collectively, these findings suggest that unlike mammalian SWS, avian SWS may not be involved in transferring memories from the hippocampus. Furthermore, it suggests that the slow-oscillation, the defining feature of mammalian and avian SWS, may serve a more general function independent of that related to coordinating the transfer of information from the hippocampus to the PFC in mammals. Given that SWS is homeostatically regulated (a process intimately related to the slow-oscillation) in mammals and birds, functional hypotheses linked to this process may apply to both taxonomic groups.
Collapse
Affiliation(s)
- Niels C Rattenborg
- Max Planck Institute for Ornithology, Sleep and Flight Group, Eberhard-Gwinner-Strasse, 82319, Seewiesen, Germany.
| | | | | | | |
Collapse
|
183
|
Hangya B, Tihanyi BT, Entz L, Fabó D, Erőss L, Wittner L, Jakus R, Varga V, Freund TF, Ulbert I. Complex propagation patterns characterize human cortical activity during slow-wave sleep. J Neurosci 2011; 31:8770-9. [PMID: 21677161 PMCID: PMC3145488 DOI: 10.1523/jneurosci.1498-11.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 11/21/2022] Open
Abstract
Cortical electrical activity during nonrapid eye movement (non-REM) sleep is dominated by slow-wave activity (SWA). At larger spatial scales (∼2-30 cm), investigated by scalp EEG recordings, SWA has been shown to propagate globally over wide cortical regions as traveling waves, which has been proposed to serve as a temporal framework for neural plasticity. However, whether SWA dynamics at finer spatial scales also reflects the orderly propagation has not previously been investigated in humans. To reveal the local, finer spatial scale (∼1-6 cm) patterns of SWA propagation during non-REM sleep, electrocorticographic (ECoG) recordings were conducted from subdurally implanted electrode grids and a nonlinear correlation technique [mutual information (MI)] was implemented. MI analysis revealed spatial maps of correlations between cortical areas demonstrating SWA propagation directions, speed, and association strength. Highest correlations, indicating significant coupling, were detected during the initial positive-going deflection of slow waves. SWA propagated predominantly between adjacent cortical areas, albeit spatial noncontinuities were also frequently observed. MI analysis further uncovered significant convergence and divergence patterns. Areas receiving the most convergent activity were similar to those with high divergence rate, while reciprocal and circular propagation of SWA was also frequent. We hypothesize that SWA is characterized by distinct attributes depending on the spatial scale observed. At larger spatial scales, the orderly SWA propagation dominates; at the finer scale of the ECoG recordings, non-REM sleep is characterized by complex SWA propagation patterns.
Collapse
Affiliation(s)
- Balázs Hangya
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes. Proc Natl Acad Sci U S A 2011; 108:E183-91. [PMID: 21576480 DOI: 10.1073/pnas.1101914108] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most processing of sensation involves the cortical hemisphere opposite (contralateral) to the stimulated limb. Stroke patients can exhibit changes in the interhemispheric balance of sensory signal processing. It is unclear whether these changes are the result of poststroke rewiring and experience, or whether they could result from the immediate effect of circuit loss. We evaluated the effect of mini-strokes over short timescales (<2 h) where cortical rewiring is unlikely by monitoring sensory-evoked activity throughout much of both cortical hemispheres using voltage-sensitive dye imaging. Blockade of a single pial arteriole within the C57BL6J mouse forelimb somatosensory cortex reduced the response evoked by stimulation of the limb contralateral to the stroke. However, after stroke, the ipsilateral (uncrossed) forelimb response within the unaffected hemisphere was spared and became independent of the contralateral forelimb cortex. Within the unaffected hemisphere, mini-strokes in the opposite hemisphere significantly enhanced sensory responses produced by stimulation of either contralateral or ipsilateral pathways within 30-50 min of stroke onset. Stroke-induced enhancement of responses within the spared hemisphere was not reproduced by inhibition of either cortex or thalamus using pharmacological agents in nonischemic animals. I/LnJ acallosal mice showed similar rapid interhemispheric redistribution of sensory processing after stroke, suggesting that subcortical connections and not transcallosal projections were mediating the novel activation patterns. Thalamic inactivation before stroke prevented the bilateral rearrangement of sensory responses. These findings suggest that acute stroke, and not merely loss of activity, activates unique pathways that can rapidly redistribute function within the spared cortical hemisphere.
Collapse
|
185
|
Nir Y, Staba RJ, Andrillon T, Vyazovskiy VV, Cirelli C, Fried I, Tononi G. Regional slow waves and spindles in human sleep. Neuron 2011; 70:153-69. [PMID: 21482364 PMCID: PMC3108825 DOI: 10.1016/j.neuron.2011.02.043] [Citation(s) in RCA: 666] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2011] [Indexed: 11/20/2022]
Abstract
The most prominent EEG events in sleep are slow waves, reflecting a slow (<1 Hz) oscillation between up and down states in cortical neurons. It is unknown whether slow oscillations are synchronous across the majority or the minority of brain regions--are they a global or local phenomenon? To examine this, we recorded simultaneously scalp EEG, intracerebral EEG, and unit firing in multiple brain regions of neurosurgical patients. We find that most sleep slow waves and the underlying active and inactive neuronal states occur locally. Thus, especially in late sleep, some regions can be active while others are silent. We also find that slow waves can propagate, usually from medial prefrontal cortex to the medial temporal lobe and hippocampus. Sleep spindles, the other hallmark of NREM sleep EEG, are likewise predominantly local. Thus, intracerebral communication during sleep is constrained because slow and spindle oscillations often occur out-of-phase in different brain regions.
Collapse
Affiliation(s)
- Yuval Nir
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Richard J. Staba
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas Andrillon
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Department of Cognitive Studies, Ecole Normale Superieure, 75005 Paris, France
| | | | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Itzhak Fried
- Department of Neurosurgery and Semel Institute for Behavioral Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Functional Neurosurgery Unit, Tel Aviv Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv 64239, Israel
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| |
Collapse
|
186
|
Abstract
Identifying similar spike-train patterns is a key element in understanding neural coding and computation. For single neurons, similar spike patterns evoked by stimuli are evidence of common coding. Across multiple neurons, similar spike trains indicate potential cell assemblies. As recording technology advances, so does the urgent need for grouping methods to make sense of large-scale datasets of spike trains. Existing methods require specifying the number of groups in advance, limiting their use in exploratory analyses. I derive a new method from network theory that solves this key difficulty: it self-determines the maximum number of groups in any set of spike trains, and groups them to maximize intragroup similarity. This method brings us revealing new insights into the encoding of aversive stimuli by dopaminergic neurons, and the organization of spontaneous neural activity in cortex. I show that the characteristic pause response of a rat's dopaminergic neuron depends on the state of the superior colliculus: when it is inactive, aversive stimuli invoke a single pattern of dopaminergic neuron spiking; when active, multiple patterns occur, yet the spike timing in each is reliable. In spontaneous multineuron activity from the cortex of anesthetized cat, I show the existence of neural ensembles that evolve in membership and characteristic timescale of organization during global slow oscillations. I validate these findings by showing that the method both is remarkably reliable at detecting known groups and can detect large-scale organization of dynamics in a model of the striatum.
Collapse
|
187
|
Riedner BA, Hulse BK, Murphy MJ, Ferrarelli F, Tononi G. Temporal dynamics of cortical sources underlying spontaneous and peripherally evoked slow waves. PROGRESS IN BRAIN RESEARCH 2011; 193:201-18. [PMID: 21854964 PMCID: PMC3160723 DOI: 10.1016/b978-0-444-53839-0.00013-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Slow waves are the most prominent electroencephalographic feature of non-rapid eye movement (NREM) sleep. During NREM sleep, cortical neurons oscillate approximately once every second between a depolarized upstate, when cortical neurons are actively firing, and a hyperpolarized downstate, when cortical neurons are virtually silent (Destexhe et al., 1999; Steriade et al., 1993a, 2001). Intracellular recordings indicate that the origins of the slow oscillation are cortical and that corticocortical connections are necessary for their synchronization (Amzica and Steriade, 1995; Steriade et al., 1993b; Timofeev and Steriade, 1996; Timofeev et al., 2000). The currents produced by the near-synchronous slow oscillation of large populations of neurons appear on the scalp as electroencephalogram (EEG) slow waves (Amzica and Steriade, 1997). Despite this cellular understanding, questions remain about the role of specific cortical structures in individual slow waves. Early EEG studies of slow waves in humans were limited by the small number of derivations employed and by the difficulty of relating scalp potentials to underlying brain activity (Brazier, 1949; Roth et al., 1956). Functional neuroimaging methods offer exceptional spatial resolution, but lack the temporal resolution to track individual slow waves (Dang-Vu et al., 2008; Maquet, 2000). Intracranial recordings in patient populations are limited by the availability of medically necessary electrode placements and can be confounded by pathology and medications (Cash et al., 2009; Nir et al., 2011; Wenneberg 2010). Source modeling of high-density EEG recordings offers a unique opportunity for neuroimaging sleep slow waves. So far, the results have challenged several of the influential topographic observations about slow waves that had persisted since the original EEG recordings of sleep. These recent analyses revealed that individual slow waves are idiosyncratic cortical events and that the negative peak of the EEG slow wave often involves cortical structures not necessarily apparent from the scalp, like the inferior frontal gyrus, anterior cingulate, posterior cingulate, and precuneus (Murphy et al., 2009). In addition, not only do slow waves travel (Massimini et al., 2004), but they often do so preferentially through the areas comprising the major connectional backbone of the human cortex (Hagmann et al., 2008). In this chapter, we will review the cellular, intracranial recording, and neuroimaging results concerning EEG slow waves. We will also confront a long held belief about peripherally evoked slow waves, also known as K-complexes, namely that they are modality independent and do not involve cortical sensory pathways. The analysis included here is the first to directly compare K-complexes evoked with three different stimulation modalities within the same subject on the same night using high-density EEG.
Collapse
Affiliation(s)
- Brady A Riedner
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | | | |
Collapse
|
188
|
Gerashchenko D, Wisor JP, Kilduff TS. Sleep-active cells in the cerebral cortex and their role in slow-wave activity. Sleep Biol Rhythms 2011; 9:71-77. [PMID: 21625335 PMCID: PMC3103062 DOI: 10.1111/j.1479-8425.2010.00461.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We recently identified neurons in the cerebral cortex that become activated during sleep episodes with high slow-wave activity (SWA). The distinctive properties of these neurons are the ability to produce nitric oxide and their long-range projections within the cortex. In this review, we discuss how these characteristics of sleep-active cells could be relevant to SWA production in the cortex. We also discuss possible models of the role of nNOS cells in SWA production.
Collapse
Affiliation(s)
| | | | - Thomas S. Kilduff
- Center for Neuroscience Biosciences Division, SRI International, Menlo Park, CA 94025 USA
| |
Collapse
|
189
|
Abstract
Resting-state low frequency oscillations have been detected in many functional magnetic resonance imaging (MRI) studies and appear to be synchronized between functionally related areas. Converging evidence from MRI and other imaging modalities suggest that this activity has an intrinsic neuronal origin. Multiple consistent networks have been found in large populations, and have been shown to be stable over time. Further, these patterns of functional connectivity have been shown to be altered in healthy controls under various physiological challenges. This review will present the biophysical characterization of functional connectivity, and examine the effects of physical state manipulations (such as anesthesia, fatigue, and aging) in healthy controls.
Collapse
Affiliation(s)
- Scott J Peltier
- Functional MRI Laboratory, University of Michigan, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
190
|
Abstract
Functional magnetic resonance imaging (fMRI) studies performed during both waking rest and sleep show that the brain is continually active in distinct patterns that appear to reflect its underlying functional connectivity. In this review, potential sources that contribute to spontaneous fMRI activity will be discussed.
Collapse
Affiliation(s)
- Jeff Duyn
- Section for Advanced MRI, LFMI, NINDS, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
191
|
Bosshard SC, Baltes C, Wyss MT, Mueggler T, Weber B, Rudin M. Assessment of brain responses to innocuous and noxious electrical forepaw stimulation in mice using BOLD fMRI. Pain 2010; 151:655-663. [PMID: 20851520 DOI: 10.1016/j.pain.2010.08.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 08/04/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
Functional magnetic resonance imaging (fMRI) using the blood oxygen level-dependent (BOLD) contrast was used to study sensory processing in the brain of isoflurane-anesthetized mice. The use of a cryogenic surface coil in a small animal 9.4T system provided the sensitivity required for detection and quantitative analysis of hemodynamic changes caused by neural activity in the mouse brain in response to electrical forepaw stimulation at different amplitudes. A gradient echo-echo planar imaging (GE-EPI) sequence was used to acquire five coronal brain slices of 0.5mm thickness. BOLD signal changes were observed in primary and secondary somatosensory cortices, the thalamus and the insular cortex, important regions involved in sensory and nociceptive processing. Activation was observed consistently bilateral despite unilateral stimulation of the forepaw. The temporal BOLD profile was segregated into two signal components with different temporal characteristics. The maximum BOLD amplitude of both signal components correlated strongly with the stimulation amplitude. Analysis of the dynamic behavior of the somatosensory 'fast' BOLD component revealed a decreasing signal decay rate constant k(off) with increasing maximum BOLD amplitude (and stimulation amplitude). This study demonstrates the feasibility of a robust BOLD fMRI protocol to study nociceptive processing in isoflurane-anesthetized mice. The reliability of the method allows for detailed analysis of the temporal BOLD profile and for investigation of somatosensory and noxious signal processing in the brain, which is attractive for characterizing genetically engineered mouse models.
Collapse
Affiliation(s)
- Simone C Bosshard
- Institute for Biomedical Engineering, University and ETH Zurich, Switzerland Institute of Pharmacology and Toxicology, University of Zurich, Switzerland PET Center, Department of Nuclear Medicine, University Hospital Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
192
|
Halassa MM, Dal Maschio M, Beltramo R, Haydon PG, Benfenati F, Fellin T. Integrated brain circuits: neuron-astrocyte interaction in sleep-related rhythmogenesis. ScientificWorldJournal 2010; 10:1634-45. [PMID: 20730381 PMCID: PMC3097528 DOI: 10.1100/tsw.2010.130] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/02/2010] [Accepted: 06/04/2010] [Indexed: 12/27/2022] Open
Abstract
Although astrocytes are increasingly recognized as important modulators of neuronal excitability and information transfer at the synapse, whether these cells regulate neuronal network activity has only recently started to be investigated. In this article, we highlight the role of astrocytes in the modulation of circuit function with particular focus on sleep-related rhythmogenesis. We discuss recent data showing that these glial cells regulate slow oscillations, a specific thalamocortical activity that characterizes non-REM sleep, and sleep-associated behaviors. Based on these findings, we predict that our understanding of the genesis and tuning of thalamocortical rhythms will necessarily go through an integrated view of brain circuits in which non-neuronal cells can play important neuromodulatory roles.
Collapse
Affiliation(s)
- Michael M. Halassa
- Department of Psychiatry,
Massachusetts General Hospital,
Boston, MA,
USA
- Department of Psychiatry,
McLean Hospital,
Belmont, MA,
USA
- Department of Brain and Cognitive Science,
Massachusetts Institute of Technology,
Cambridge,
USA
| | - Marco Dal Maschio
- Department of Neuroscience and Brain Technologies,
Italian Institute of Technology (IIT),
Genova,
Italy
| | - Riccardo Beltramo
- Department of Neuroscience and Brain Technologies,
Italian Institute of Technology (IIT),
Genova,
Italy
| | | | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies,
Italian Institute of Technology (IIT),
Genova,
Italy
| | - Tommaso Fellin
- Department of Neuroscience and Brain Technologies,
Italian Institute of Technology (IIT),
Genova,
Italy
| |
Collapse
|
193
|
Csercsa R, Dombovári B, Fabó D, Wittner L, Eross L, Entz L, Sólyom A, Rásonyi G, Szucs A, Kelemen A, Jakus R, Juhos V, Grand L, Magony A, Halász P, Freund TF, Maglóczky Z, Cash SS, Papp L, Karmos G, Halgren E, Ulbert I. Laminar analysis of slow wave activity in humans. ACTA ACUST UNITED AC 2010; 133:2814-29. [PMID: 20656697 DOI: 10.1093/brain/awq169] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Brain electrical activity is largely composed of oscillations at characteristic frequencies. These rhythms are hierarchically organized and are thought to perform important pathological and physiological functions. The slow wave is a fundamental cortical rhythm that emerges in deep non-rapid eye movement sleep. In animals, the slow wave modulates delta, theta, spindle, alpha, beta, gamma and ripple oscillations, thus orchestrating brain electrical rhythms in sleep. While slow wave activity can enhance epileptic manifestations, it is also thought to underlie essential restorative processes and facilitate the consolidation of declarative memories. Animal studies show that slow wave activity is composed of rhythmically recurring phases of widespread, increased cortical cellular and synaptic activity, referred to as active- or up-state, followed by cellular and synaptic inactivation, referred to as silent- or down-state. However, its neural mechanisms in humans are poorly understood, since the traditional intracellular techniques used in animals are inappropriate for investigating the cellular and synaptic/transmembrane events in humans. To elucidate the intracortical neuronal mechanisms of slow wave activity in humans, novel, laminar multichannel microelectrodes were chronically implanted into the cortex of patients with drug-resistant focal epilepsy undergoing cortical mapping for seizure focus localization. Intracortical laminar local field potential gradient, multiple-unit and single-unit activities were recorded during slow wave sleep, related to simultaneous electrocorticography, and analysed with current source density and spectral methods. We found that slow wave activity in humans reflects a rhythmic oscillation between widespread cortical activation and silence. Cortical activation was demonstrated as increased wideband (0.3-200 Hz) spectral power including virtually all bands of cortical oscillations, increased multiple- and single-unit activity and powerful inward transmembrane currents, mainly localized to the supragranular layers. Neuronal firing in the up-state was sparse and the average discharge rate of single cells was less than expected from animal studies. Action potentials at up-state onset were synchronized within +/-10 ms across all cortical layers, suggesting that any layer could initiate firing at up-state onset. These findings provide strong direct experimental evidence that slow wave activity in humans is characterized by hyperpolarizing currents associated with suppressed cell firing, alternating with high levels of oscillatory synaptic/transmembrane activity associated with increased cell firing. Our results emphasize the major involvement of supragranular layers in the genesis of slow wave activity.
Collapse
Affiliation(s)
- Richárd Csercsa
- Institute for Psychology, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Aguilar J, Humanes-Valera D, Alonso-Calviño E, Yague JG, Moxon KA, Oliviero A, Foffani G. Spinal cord injury immediately changes the state of the brain. J Neurosci 2010; 30:7528-37. [PMID: 20519527 PMCID: PMC3842476 DOI: 10.1523/jneurosci.0379-10.2010] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/16/2010] [Accepted: 04/14/2010] [Indexed: 01/09/2023] Open
Abstract
Spinal cord injury can produce extensive long-term reorganization of the cerebral cortex. Little is known, however, about the sequence of cortical events starting immediately after the lesion. Here we show that a complete thoracic transection of the spinal cord produces immediate functional reorganization in the primary somatosensory cortex of anesthetized rats. Besides the obvious loss of cortical responses to hindpaw stimuli (below the level of the lesion), cortical responses evoked by forepaw stimuli (above the level of the lesion) markedly increase. Importantly, these increased responses correlate with a slower and overall more silent cortical spontaneous activity, representing a switch to a network state of slow-wave activity similar to that observed during slow-wave sleep. The same immediate cortical changes are observed after reversible pharmacological block of spinal cord conduction, but not after sham. We conclude that the deafferentation due to spinal cord injury can immediately (within minutes) change the state of large cortical networks, and that this state change plays a critical role in the early cortical reorganization after spinal cord injury.
Collapse
Affiliation(s)
- Juan Aguilar
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla–La Mancha, 45071 Toledo, Spain, and
| | - Desiré Humanes-Valera
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla–La Mancha, 45071 Toledo, Spain, and
| | - Elena Alonso-Calviño
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla–La Mancha, 45071 Toledo, Spain, and
| | - Josué G. Yague
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla–La Mancha, 45071 Toledo, Spain, and
| | - Karen A. Moxon
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Antonio Oliviero
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla–La Mancha, 45071 Toledo, Spain, and
| | - Guglielmo Foffani
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla–La Mancha, 45071 Toledo, Spain, and
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| |
Collapse
|