151
|
Abstract
Glioblastoma (GBM) is a highly malignant CNS tumor with very poor survival despite intervention with conventional therapeutic strategies. Although the CNS is separated from the immune system by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier, emerging evidence of immune surveillance and the selective infiltration of GBMs by immune suppressive cells indicates that there is breakdown or compromise of these physical barriers. This in turn offers hope that immunotherapy can be applied to specifically target and reduce tumor burden. One of the major setbacks in translating immunotherapy strategies is the hostile microenvironment of the tumor that inhibits trafficking of effector immune cells such as cytotoxic T lymphocytes into the CNS. Incorporating important findings from autoimmune disorders such as multiple sclerosis to understand and thereby enhance cytotoxic lymphocyte infiltration into GBM could augment immunotherapy strategies to treat this disease. However, although these therapies are designed to evoke a potent immune response, limited space in the brain and cranial vault reduces tolerance for immune therapy-induced inflammation and resultant brain edema. Therefore, successful immunotherapy requires that a delicate balance be maintained between activating and retaining lasting antitumor immunity.
Collapse
Affiliation(s)
- Nivedita M Ratnam
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Amber J Giles
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
152
|
Nursing Guide to Management of Major Symptoms in Patients with Malignant Glioma. Semin Oncol Nurs 2018; 34:513-527. [DOI: 10.1016/j.soncn.2018.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
153
|
Branter J, Basu S, Smith S. Tumour treating fields in a combinational therapeutic approach. Oncotarget 2018; 9:36631-36644. [PMID: 30564303 PMCID: PMC6290966 DOI: 10.18632/oncotarget.26344] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 10/24/2018] [Indexed: 12/15/2022] Open
Abstract
The standard of care for patients with newly diagnosed Glioblastoma multiforme (GBM) has remained unchanged since 2005, with patients undergoing maximal surgical resection, followed by radiotherapy plus concomitant and maintenance Temozolomide. More recently, Tumour treating fields (TTFields) therapy has become FDA approved for adult recurrent and adult newly-diagnosed GBM following the EF-11 and EF-14 trials, respectively. TTFields is a non-invasive anticancer treatment which utilizes medium frequency alternating electric fields to target actively dividing cancerous cells. TTFields selectively targets cells within mitosis through interacting with key mitotic proteins to cause mitotic arrest and cell death. TTFields therapy presents itself as a candidate for the combinational therapy route due to the lack of overlapping toxicities associated with electric fields. Here we review current literature pertaining to TTFields in combination with alkylating agents, radiation, anti-angiogenics, mitotic inhibitors, immunotherapies, and also with novel agents. This review highlights the observed synergistic and additive effects of combining TTFields with various other therapies, as well highlighting the strategies relating to combinations with electric fields.
Collapse
Affiliation(s)
- Joshua Branter
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Surajit Basu
- Queen's Medical Centre, Department of Neurosurgery, Nottingham, UK
| | - Stuart Smith
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
154
|
Cornelison RC, Brennan CE, Kingsmore KM, Munson JM. Convective forces increase CXCR4-dependent glioblastoma cell invasion in GL261 murine model. Sci Rep 2018; 8:17057. [PMID: 30451884 PMCID: PMC6242861 DOI: 10.1038/s41598-018-35141-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/26/2018] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma is the most common and malignant form of brain cancer. Its invasive nature limits treatment efficacy and promotes inevitable recurrence. Previous in vitro studies showed that interstitial fluid flow, a factor characteristically increased in cancer, increases glioma cell invasion through CXCR4-CXCL12 signaling. It is currently unknown if these effects translate in vivo. We used the therapeutic technique of convection enhanced delivery (CED) to test if convective flow alters glioma invasion in a syngeneic GL261 mouse model of glioblastoma. The GL261 cell line was flow responsive in vitro, dependent upon CXCR4 and CXCL12. Additionally, transplanting GL261 intracranially increased the populations of CXCR4+ and double positive cells versus 3D culture. We showed that inducing convective flow within implanted tumors indeed increased invasion over untreated controls, and administering the CXCR4 antagonist AMD3100 (5 mg/kg) effectively eliminated this response. These data confirm that glioma invasion is stimulated by convective flow in vivo and depends on CXCR4 signaling. We also showed that expression of CXCR4 and CXCL12 is increased in patients having received standard therapy, when CED might be elected. Hence, targeting flow-stimulated invasion may prove beneficial as a second line of therapy, particularly in patients chosen to receive treatment by convection enhanced delivery.
Collapse
Affiliation(s)
- R Chase Cornelison
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Caroline E Brennan
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kathryn M Kingsmore
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jennifer M Munson
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
155
|
Barbagallo M, Albatly AA, Schreiner S, Hayward-Könnecke HK, Buck A, Kollias SS, Huellner MW. Value of 18F-FET PET in Patients With Suspected Tumefactive Demyelinating Disease-Preliminary Experience From a Retrospective Analysis. Clin Nucl Med 2018; 43:e385-e391. [PMID: 30153143 DOI: 10.1097/rlu.0000000000002244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE To investigate the diagnostic value of F-fluoroethyl-L-tyrosine (FET) positron emission tomography (PET) in patients with suspected tumefactive demyelinating disease. METHODS We retrospectively examined FET-PET and MR imaging of 21 patients (12 female, 9 male) with known demyelinating disease and newly diagnosed tumefactive lesions. The maximum standardized uptake value (SUVmax), time activity curves (TAC) and lesion-to-background ratio (TBR) of these lesions were calculated. The standard of reference consisted of biopsy and/or follow-up imaging. FET parameters of true neoplastic lesions and tumefactive demyelinating lesions were compared using Mann-Whitney U-test and receiver operating characteristic (ROC) analysis. RESULTS Nine patients (42.9%) had neoplastic lesions, 12 patients (57.1%) had tumefactive demyelinating lesions. TBRmax, SUVmax and TAC were significantly different between demyelinating lesions and neoplastic lesions: Tumors had a higher TBRmax (3.53 ± 1.09 vs. 1.48 ± 0.31, respectively; P < 0.001) and SUVmax (3.95 ± 1.59 vs. 1.86 ± 0.50, respectively; P < 0.001) than tumefactive demyelinating lesions. The TAC of tumors was significantly higher compared to tumefactive demyelinating lesions at all time points (P < 0.05). ROC analysis revealed that a TBRmax threshold of 2.2 and a SUVmax threshold of 2.5 could reliably differentiate tumor and tumefactive demyelination (area under the curve, 1.000 and 0.958, respectively). CONCLUSION In patients with demyelinating disease, FET-PET parameters TBRmax (cut-off 2.2) and SUVmax (cut-off 2.5) are able to distinguish tumefactive demyelinations from true neoplastic lesions.
Collapse
Affiliation(s)
| | | | - Simon Schreiner
- Neurology Clinic, University Hospital Zurich/University of Zurich, Frauenklinikstrasse
| | | | | | - Spyros S Kollias
- Department of Neuroradiology, University Hospital Zurich/University of Zurich, Rämistrasse, Zürich, Switzerland
| | | |
Collapse
|
156
|
Afseth J, Neubeck L, Karatzias T, Grant R. Holistic needs assessment in brain cancer patients: A systematic review of available tools. Eur J Cancer Care (Engl) 2018; 28:e12931. [DOI: 10.1111/ecc.12931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/16/2018] [Accepted: 08/19/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Janyne Afseth
- School of Health and Social Care Edinburgh Napier University Edinburgh UK
| | - Lis Neubeck
- School of Health and Social Care Edinburgh Napier University Edinburgh UK
| | - Thanos Karatzias
- School of Health and Social Care Edinburgh Napier University Edinburgh UK
| | - Robin Grant
- Department of Clinical Neurosciences Western General Hospital Edinburgh UK
| |
Collapse
|
157
|
Ravindra VM, Gozal YM, Palmer C, Couldwell WT. Hemorrhagic Atypical Planum Sphenoidale Meningioma with Intermittent Vision Loss-Rare Presentation of Apoplexy. World Neurosurg 2018; 121:71-76. [PMID: 30292661 DOI: 10.1016/j.wneu.2018.09.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Symptoms that mimic pituitary apoplexy may be encountered with other neoplastic or infectious lesions. CASE DESCRIPTION This 38-year-old man presented with severe sudden-onset headache and relapsing and remitting vision loss. Radiographic imaging studies demonstrated radiographic features of a hyperdense, hemorrhagic mass in the sellar region. Magnetic resonance imaging (MRI) revealed a 4-cm mass abutting the optic chiasm and compressing the pituitary. After 4-week follow-up, surveillance MRI demonstrated near-complete resolution of the previously identified planum sphenoidale and suprasellar mass. The patient re-presented 13 months later with recurrent symptoms. MRI demonstrated recurrence of the mass. Given the broad differential diagnosis, an endoscopic endonasal biopsy was obtained; the findings were suggestive of a high-grade meningioma. The patient underwent elective resection of the extraaxial lesion via a frontotemporal approach. The lesion was identified as a hemorrhagic suprasellar atypical planum sphenoidale meningioma. Postoperatively, the patient's headaches improved significantly and his right-sided visual changes resolved. After adjuvant radiotherapy (5400 cGy in 30 fractions) to the surgical cavity 3 months later, at last follow-up 5 months postoperatively, the patient was at his neurologic baseline and denied any headaches or visual sequelae. CONCLUSIONS As the most common benign intracranial tumors, meningiomas should remain in the differential for patients presenting with apoplectiform symptoms.
Collapse
Affiliation(s)
- Vijay M Ravindra
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA
| | - Yair M Gozal
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA
| | - Cheryl Palmer
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - William T Couldwell
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
158
|
Predictors of unprovoked seizures in surgically treated pyogenic brain abscess: Does perioperative adjunctive use of steroids has any protective effect? Clin Neurol Neurosurg 2018; 173:46-51. [DOI: 10.1016/j.clineuro.2018.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 01/04/2023]
|
159
|
Chahal KK, Parle M, Abagyan R. Dexamethasone and Fludrocortisone Inhibit Hedgehog Signaling in Embryonic Cells. ACS OMEGA 2018; 3:12019-12025. [PMID: 31459282 PMCID: PMC6645496 DOI: 10.1021/acsomega.8b01864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/07/2018] [Indexed: 05/09/2023]
Abstract
The hedgehog (Hh) pathway plays a central role in the development and repair of our bodies. Therefore, dysregulation of the Hh pathway is responsible for many developmental diseases and cancers. Basal cell carcinoma and medulloblastoma have well-established links to the Hh pathway, as well as many other cancers with Hh-dysregulated subtypes. A smoothened (SMO) receptor plays a central role in regulating the Hh signaling in the cells. However, the complexities of the receptor structural mechanism of action and other pathway members make it difficult to find Hh pathway inhibitors efficient in a wide range. Recent crystal structure of SMO with cholesterol indicates that it may be a natural ligand for SMO activation. Structural similarity of fluorinated corticosterone derivatives to cholesterol motivated us to study the effect of dexamethasone, fludrocortisone, and corticosterone on the Hh pathway activity. We identified an inhibitory effect of these three drugs on the Hh pathway using a functional assay in NIH3T3 glioma response element cells. Studies using BODIPY-cyclopamine and 20(S)-hydroxy cholesterol [20(S)-OHC] as competitors for the transmembrane (TM) and extracellular cysteine-rich domain (CRD) binding sites showed a non-competitive effect and suggested an alternative or allosteric binding site for the three drugs. Furthermore, the three steroids showed an additive effect on Hh pathway inhibition when tested in combination with cyclopamine. Our study reports the antagonistic effect of dexamethasone, fludrocortisone, and corticosterone on the Hh pathway using functional assay and confirmed that they do not bind to the CRD or adjacent TM binding cavities of SMO. The study also suggests that dexamethasone could be additionally beneficial as the adjuvant therapy for cancer patients with an established link to the dysregulated Hh pathway.
Collapse
Affiliation(s)
- Kirti Kandhwal Chahal
- Department
of Pharmaceutical Sciences, G. J. University
of Science and Technology, Hisar 125001, India
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92037, United States
- E-mail: (K.K.C.)
| | - Milind Parle
- Department
of Pharmaceutical Sciences, G. J. University
of Science and Technology, Hisar 125001, India
| | - Ruben Abagyan
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92037, United States
- E-mail: (R.A.)
| |
Collapse
|
160
|
Sakai H, Kimura M, Tsukimura Y, Yabe S, Isa Y, Kai Y, Sato F, Kon R, Ikarashi N, Narita M, Chiba Y, Kamei J. Dexamethasone exacerbates cisplatin‐induced muscle atrophy. Clin Exp Pharmacol Physiol 2018; 46:19-28. [DOI: 10.1111/1440-1681.13024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/27/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Hiroyasu Sakai
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Minami Kimura
- Department of Analytical PathophysiologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Yuka Tsukimura
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Saori Yabe
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Yosuke Isa
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Yuki Kai
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Fumiaki Sato
- Department of Analytical PathophysiologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Risako Kon
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Nobutomo Ikarashi
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Minoru Narita
- Department of PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Yoshihiko Chiba
- Department of Physiology and Molecular SciencesSchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| | - Junzo Kamei
- Department of Biomolecular PharmacologySchool of PharmacyHoshi University Shinagawa‐ku, Tokyo Japan
| |
Collapse
|
161
|
Bosma EK, van Noorden CJF, Schlingemann RO, Klaassen I. The role of plasmalemma vesicle-associated protein in pathological breakdown of blood-brain and blood-retinal barriers: potential novel therapeutic target for cerebral edema and diabetic macular edema. Fluids Barriers CNS 2018; 15:24. [PMID: 30231925 PMCID: PMC6146740 DOI: 10.1186/s12987-018-0109-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022] Open
Abstract
Breakdown of the blood–brain barrier (BBB) or inner blood–retinal barrier (BRB), induced by pathologically elevated levels of vascular endothelial growth factor (VEGF) or other mediators, can lead to vasogenic edema and significant clinical problems such as neuronal morbidity and mortality, or vision loss. Restoration of the barrier function with corticosteroids in the brain, or by blocking VEGF in the eye are currently the predominant treatment options for brain edema and diabetic macular edema, respectively. However, corticosteroids have side effects, and VEGF has important neuroprotective, vascular protective and wound healing functions, implying that long-term anti-VEGF therapy may also induce adverse effects. We postulate that targeting downstream effector proteins of VEGF and other mediators that are directly involved in the regulation of BBB and BRB integrity provide more attractive and safer treatment options for vasogenic cerebral edema and diabetic macular edema. The endothelial cell-specific protein plasmalemma vesicle-associated protein (PLVAP), a protein associated with trans-endothelial transport, emerges as candidate for this approach. PLVAP is expressed in a subset of endothelial cells throughout the body where it forms the diaphragms of caveolae, fenestrae and trans-endothelial channels. However, PLVAP expression in brain and eye barrier endothelia only occurs in pathological conditions associated with a compromised barrier function such as cancer, ischemic stroke and diabetic retinopathy. Here, we discuss the current understanding of PLVAP as a structural component of endothelial cells and regulator of vascular permeability in health and central nervous system disease. Besides providing a perspective on PLVAP identification, structure and function, and the regulatory processes involved, we also explore its potential as a novel therapeutic target for vasogenic cerebral edema and retinal macular edema.
Collapse
Affiliation(s)
- Esmeralda K Bosma
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands. .,Ocular Angiogenesis Group, Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, Room L3-154, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
162
|
Manley PE, Trippett T, Smith AA, Macy ME, Leary SES, Boklan J, Cohen KJ, Goldman S, Kilburn LB, Dhall G, Devin J, Herzog CE, Partap S, Fauchet F, Badreddine E, Bernard JP, Chi SN. A phase 1/2 dose-finding, safety, and activity study of cabazitaxel in pediatric patients with refractory solid tumors including tumors of the central nervous system. Pediatr Blood Cancer 2018; 65:e27217. [PMID: 29750396 DOI: 10.1002/pbc.27217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 11/06/2022]
Abstract
BACKGROUND This phase 1/2 study (NCT01751308) evaluated cabazitaxel in pediatric patients. Phase 1 determined the maximum tolerated dose (MTD) in patients with recurrent/refractory solid tumors, including central nervous system (CNS) tumors. Phase 2 evaluated activity in pediatric recurrent high-grade glioma (HGG) or diffuse intrinsic pontine glioma (DIPG). PROCEDURE In phase 1, a 3 + 3 dose-escalation study design was followed. Cabazitaxel was administered at a starting dose of 20 mg/m2 . Dose-limiting toxicities (DLTs) during cycle 1 were assessed to determine the MTD. Tumor response and cabazitaxel pharmacokinetics were also assessed. In phase 2, patients received cabazitaxel at the MTD determined in phase 1. Tumor responses were assessed every 9 weeks (modified Response Assessment in Neuro-oncology criteria). Progression-free survival and cabazitaxel pharmacokinetics were evaluated, and overall survival was estimated. RESULTS In phase 1, 23 patients were treated, including 19 with CNS tumors. One patient had a partial response; five had stable disease for >3 cycles. Common adverse events included fatigue, diarrhea, nausea and vomiting, febrile neutropenia, and hypersensitivity reactions. Two of three DLTs (febrile neutropenia) occurred with a dose of 35 mg/m2 ; the MTD was 30 mg/m2 . Slightly higher cabazitaxel clearance was observed compared with adult trials. In phase 2, 16 patients (eight HGG and eight DIPG) were enrolled; 11 were evaluable for response and five withdrew (three due to anaphylaxis). All 11 patients progressed within four cycles. No responses were observed; the study was stopped due to futility. CONCLUSIONS The safety profile of cabazitaxel was consistent with previous studies. The MTD (30 mg/m2 ) was higher than the adult MTD. Cabazitaxel did not demonstrate activity in recurrent/refractory HGG or DIPG.
Collapse
Affiliation(s)
- Peter E Manley
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tanya Trippett
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York City, New York
| | - Amy A Smith
- Department of Pediatric Hematology-Oncology, Arnold Palmer Hospital, Orlando, Florida
| | - Margaret E Macy
- Department of Pediatric Hematology, Oncology & Bone Marrow Transplantation, Children's Hospital Colorado, Aurora, Colorado
| | - Sarah E S Leary
- Department of Hematology/Oncology, Seattle Children's Hospital, Seattle, Washington
| | - Jessica Boklan
- Department of Hematology/Oncology, Phoenix Children's Hospital, Phoenix, Arizona
| | - Kenneth J Cohen
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Stewart Goldman
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Lindsay B Kilburn
- Center for Cancer and Blood Disorders, Children's National Medical Center, Washington, District of Columbia
| | - Girish Dhall
- Department of Pediatric Neuro-Oncology, Children's Hospital Los Angeles, Los Angeles, California
| | | | - Cynthia E Herzog
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sonia Partap
- Department of Pediatric Neurology, Lucile Packard Children's Hospital at Stanford, Palo Alto, California
| | | | | | | | - Susan N Chi
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
163
|
Yamamoto J, Kakeda S, Shimajiri S, Nakano Y, Saito T, Ide S, Moriya J, Korogi Y, Nishizawa S. Evaluation of Peritumoral Brain Parenchyma Using Contrast-Enhanced 3D Fast Imaging Employing Steady-State Acquisition at 3T for Differentiating Metastatic Brain Tumors and Glioblastomas. World Neurosurg 2018; 120:e719-e729. [PMID: 30165229 DOI: 10.1016/j.wneu.2018.08.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Metastatic brain tumors and glioblastomas are the 2 of the most common brain neoplasms in adults. However, distinguishing solitary metastatic brain tumors from glioblastomas on conventional magnetic resonance imaging remains particularly challenging. Thus, we aimed to retrospectively assess the role of contrast-enhanced fast imaging employing steady-state acquisition (CE-FIESTA) imaging in distinguishing between metastatic brain tumors and glioblastomas. MATERIALS AND METHODS Forty-three patients with metastatic brain tumors and 14 patients with glioblastomas underwent conventional magnetic resonance imaging and CE-FIESTA before surgery. First, 1 neuroradiologist and 1 neurosurgeon classified the CE-FIESTA findings for the peritumoral brain parenchyma by consensus. Next, the 2 neuroradiologists performed an observer performance study comparing tumor shape classification (smooth or irregular margins), a classic imaging finding, with the CE-FIESTA classification of the peritumoral brain parenchyma. RESULTS The CE-FIESTA findings for the peritumoral brain parenchyma were classified as follows: type A, no hyperintense rim; type B, partial hyperintense rim; and type C, extended hyperintense rim. With regard to the diagnosis of metastatic brain tumors, the observer performance study demonstrated that the mean sensitivity, specificity, and accuracy of an extended hyperintense rim classification (type C) on CE-FIESTA images were 95.3%, 85.7%, and 93.0%, respectively. The accuracy of the CE-FIESTA classification was significantly higher than that of the tumor shape classification. CONCLUSIONS CE-FIESTA images may provide useful information for distinguishing metastatic brain tumors from glioblastomas, especially when focusing on differences in the peritumoral brain parenchyma.
Collapse
Affiliation(s)
- Junkoh Yamamoto
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | - Shingo Kakeda
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shohei Shimajiri
- Department of Surgical Pathology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiteru Nakano
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takeshi Saito
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Satoru Ide
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Junji Moriya
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yukunori Korogi
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shigeru Nishizawa
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
164
|
Padma K, Nanaware S, Pande N, Ransing R, Kulkarni K. Radiation-Induced Neuropsychiatric Manifestations in a Patient with Brain Metastasis: A Diagnostic and Therapeutic Challenges for Consultation-Liaison Psychiatrist. Indian J Palliat Care 2018; 24:369-371. [PMID: 30111955 PMCID: PMC6069615 DOI: 10.4103/ijpc.ijpc_210_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this case report is to highlight diagnostic and therapeutic challenges for consultation-liaison psychiatrist in the case of radiation-induced neuropsychiatric syndrome. We report the case of a 61-year-old man presented with neurological and psychiatric manifestations following the radiation therapy for non-small cell lung carcinoma with brain metastasis. We have briefly reviewed and discussed the risk factors, clinical features, diagnostic, therapeutic, and preventive aspect of radiation-induced neuropsychiatric manifestations.
Collapse
Affiliation(s)
- Kumari Padma
- Department of Psychiatry, B.K.L. Walawalkar Rural Medical College, Maharashtra, India
| | - Sagar Nanaware
- Department of Medicine, B.K.L. Walawalkar Rural Medical College, Maharashtra, India
| | - Nikhil Pande
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Ramdas Ransing
- Department of Psychiatry, B.K.L. Walawalkar Rural Medical College, Maharashtra, India
| | | |
Collapse
|
165
|
Liu Z, Poiret T, Meng Q, Rao M, von Landenberg A, Schoutrop E, Valentini D, Dodoo E, Peredo-Harvey I, Maeurer M. Epstein-Barr virus- and cytomegalovirus-specific immune response in patients with brain cancer. J Transl Med 2018; 16:182. [PMID: 29970101 PMCID: PMC6029420 DOI: 10.1186/s12967-018-1557-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/23/2018] [Indexed: 02/08/2023] Open
Abstract
Background Patients with brain tumor or pancreatic cancer exhibit the poorest prognosis, while immune fitness and cellular immune exhaustion impacts their survival immensely. This work identifies differences in the immune reactivity to the common human pathogens cytomegalovirus (CMV) and Epstein–Barr virus (EBV) between patients with brain tumor in comparison to those with pancreatic cancer and healthy individuals. Methods We characterized the humoral and cellular immune responses of patients with brain tumor or pancreatic cancer to cytomegalovirus structural protein pp65 (CMV-pp65) as well as Epstein–Barr nuclear antigen-1 (EBNA-1) by whole-blood assay and ELISA. Results Anti-CMV-pp65 plasma immunoglobulin gamma (IgG) titers were significantly lower in patients with brain tumor compared to healthy donors and patients with pancreatic cancer. Among the responding patients with GBM, those with a weak anti-CMV IgG response also had a decreased median overall survival (p = 0.017, 667 vs 419 days) while patients with brain tumor showed a generally suppressed anti-CMV immune-reactivity. Patients with brain tumor exhibited a significantly lower interferon gamma (IFNγ) response to EBNA-1 and CMV-pp65 compared to patients with pancreatic cancer or healthy donors. This antigen-specific response was further amplified in patients with brain tumor upon conditioning of whole blood with IL-2/IL-15/IL-21. Exclusively in this setting, among the responding patients with GBM, those exhibiting a EBV-specific cellular immune response above the median also displayed an increased median overall survival pattern compared to weak responders (753 vs 370 days, p < 0.001). Conclusions This report provides (i) a fast and easy assay using common viral antigens and cytokine stimulation to screen for immune fitness/exhaustion of patients with brain tumor in comparison to pancreatic cancer and healthy individuals and (ii) EBV/CMV-induced IFNγ production as a potential marker of survival in patients with brain tumor. Electronic supplementary material The online version of this article (10.1186/s12967-018-1557-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenjiang Liu
- Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Thomas Poiret
- Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden. .,Therapeutic Immunology, Karolinska University Hospital Huddinge, F79, LabMed, Hälsovägen, 14186, Huddinge, Sweden.
| | - Qingda Meng
- Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Martin Rao
- Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Anna von Landenberg
- Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Esther Schoutrop
- Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Davide Valentini
- Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | | | | | - Markus Maeurer
- Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
166
|
Zhenjiang L, Rao M, Luo X, Valentini D, von Landenberg A, Meng Q, Sinclair G, Hoffmann N, Karbach J, Altmannsberger HM, Jäger E, Peredo IH, Dodoo E, Maeurer M. Cytokine Networks and Survivin Peptide-Specific Cellular Immune Responses Predict Improved Survival in Patients With Glioblastoma Multiforme. EBioMedicine 2018; 33:49-56. [PMID: 30049387 PMCID: PMC6085502 DOI: 10.1016/j.ebiom.2018.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/03/2018] [Accepted: 06/12/2018] [Indexed: 01/08/2023] Open
Abstract
PURPOSE We investigated serum cytokine and T-cell responses directed against tumour-associated antigens (TAAs) in association with survival of patients with glioblastoma multiforme (GBM). PATIENTS AND METHODS Peripheral blood from 205 treatment-naïve patients with glioma (GBM = 145; non-GBM = 60) was obtained on the day of surgery to measure (i) circulating T-cells reacting to viral antigens and TAAs, in the presence or absence of cytokine conditioning with IL-2/IL-15/IL-21 or IL-2/IL-7, and (ii) serum cytokine levels (IL-4, IL-5, IL-6, TNF-α, IFN-γ and IL-17A). Patients were followed-up for at least 1000 days post-surgery. Survivin protein and gene expression in resected GBM tumour tissue were confirmed by immunohistochemistry and real-time polymerase chain reaction, respectively. Antigen-specific T-cell responses were gauged by ICS (intracellular cytokine production). Associations between patient survival and immunological reactivity patterns were analysed using univariate and multivariate statistics. RESULTS Approximately 2% of patients with GBM and 18% of patients with non-GBM glioma, were alive beyond 1000 days of surgery. Univariate analysis indicated that the combination of three cytokines (IL-4/IL-5/IL-6, p = .0022; IFN-γ/TNF-α/IL-17A, p = .0083) but not a 'partial' combination of these cytokines, the IFN-γ immune response to EBV-EBNA-1 (p < .0001) as well as T-cell responses to the survivin97-111 peptide (p = .0152) correlated with longer survival among patients with GBM. Multivariate analysis identified survivin97-111-directed IFN-γ production with IL-2/IL-15/IL-21 conditioning (p = .024), and the combined presence of serum IFN-γ/TNF-α/IL-17a (p = .003) as independent predictors of survival. CONCLUSION Serum cytokine patterns and lymphocyte reactivity to survivin97-111, particularly with IL-2, IL-15 and IL-21 conditioning may be instrumental in predicting survival among patients with GBM. This has implications for clinical follow-up of patients with GBM and the targeted development of immunotherapy for patients with CNS tumours.
Collapse
Affiliation(s)
- Liu Zhenjiang
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Rao
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xiaohua Luo
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Davide Valentini
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for allogeneic stem cell transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden
| | - Anna von Landenberg
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Qingda Meng
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georges Sinclair
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Nina Hoffmann
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Julia Karbach
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt/Main, Germany
| | | | - Elke Jäger
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt/Main, Germany
| | - Inti Harvey Peredo
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Ernest Dodoo
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Markus Maeurer
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for allogeneic stem cell transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
167
|
Arvold ND, Armstrong TS, Warren KE, Chang SM, DeAngelis LM, Blakeley J, Chamberlain MC, Dunbar E, Loong HH, Macdonald DR, Reardon DA, Vogelbaum MA, Yuan Y, Weller M, van den Bent M, Wen PY. Corticosteroid use endpoints in neuro-oncology: Response Assessment in Neuro-Oncology Working Group. Neuro Oncol 2018; 20:897-906. [PMID: 29788429 PMCID: PMC6007454 DOI: 10.1093/neuonc/noy056] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Corticosteroids are the mainstay of treatment for peritumor edema but are often associated with significant side effects. Therapies that can reduce corticosteroid use would potentially be of significant benefit to patients. However, currently there are no standardized endpoints evaluating corticosteroid use in neuro-oncology clinical trials. Methods The Response Assessment in Neuro-Oncology (RANO) Working Group has developed consensus recommendations for endpoints evaluating corticosteroid use in clinical trials in both adults and children with brain tumors. Results Responders are defined as patients with a 50% reduction in total daily corticosteroid dose compared with baseline or reduction of the total daily dose to ≤2 mg of dexamethasone (or equivalent dose of other corticosteroid); baseline dose must be at least 4 mg of dexamethasone daily (or equivalent dose of other corticosteroids) for at least one week. Patients must have stable or improved Neurologic Assessment in Neuro-Oncology (NANO) score or Karnofsky performance status score or Eastern Cooperative Oncology Group (ECOG) (Lansky score for children age <16 y), and an improved score on a relevant clinical outcome assessment tool. These criteria must be sustained for at least 4 weeks after baseline assessment to be considered a response, and are confirmed 4 weeks after that (ie, 8 wk after baseline assessment) to be considered a sustained response. Conclusions This RANO proposal for corticosteroid use endpoints in neuro-oncology clinical trials may need to be refined and will require prospective validation in clinical studies.
Collapse
Affiliation(s)
- Nils D Arvold
- St Luke’s Radiation Oncology Associates, St Luke’s Cancer Center, University of Minnesota, Duluth, Minnesota, USA
| | - Terri S Armstrong
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Katherine E Warren
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Susan M Chang
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Lisa M DeAngelis
- Department of Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jaishri Blakeley
- Department of Neurology, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | | | - Erin Dunbar
- Piedmont Brain Tumor Center, Atlanta, Georgia, USA
| | - Herbert H Loong
- Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - David R Macdonald
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michael A Vogelbaum
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Martin van den Bent
- Brain Tumor Institute at Erasmus University Medical Center, Rotterdam, Netherlands
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
168
|
Calluaud G, Terrier LM, Mathon B, Destrieux C, Velut S, François P, Zemmoura I, Amelot A. Peritumoral Edema/Tumor Volume Ratio: A Strong Survival Predictor for Posterior Fossa Metastases. Neurosurgery 2018; 85:117-125. [DOI: 10.1093/neuros/nyy222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/04/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
| | - Louis-Marie Terrier
- CHRU de Tours, Department of Neurosurgery, Tours, France
- Université François-Rabelais de Tours, Inserm, iBrain, UMR U1253, Tours, France
| | - Bertrand Mathon
- CHU La Pitié-Salpétrière, Department of Neurosurgery, Paris, France
| | - Christophe Destrieux
- CHRU de Tours, Department of Neurosurgery, Tours, France
- Université François-Rabelais de Tours, Inserm, iBrain, UMR U1253, Tours, France
| | - Stéphane Velut
- CHRU de Tours, Department of Neurosurgery, Tours, France
- Université François-Rabelais de Tours, Inserm, iBrain, UMR U1253, Tours, France
| | | | - Ilyess Zemmoura
- CHRU de Tours, Department of Neurosurgery, Tours, France
- Université François-Rabelais de Tours, Inserm, iBrain, UMR U1253, Tours, France
| | - Aymeric Amelot
- CHRU de Tours, Department of Neurosurgery, Tours, France
- CHU La Pitié-Salpétrière, Department of Neurosurgery, Paris, France
| |
Collapse
|
169
|
Abstract
Patients with brain tumor exhibit wide-ranging prognoses and functional implications of their disease and treatments. In general, the supportive care needs of patients with brain tumor, including disabling effects, have been recognized to be high. This review (1) briefly summarizes brain tumor types, treatments, and prognostic information for the rehabilitation clinician; (2) reviews evidence for rehabilitation, including acute inpatient rehabilitation and cognitive rehabilitation, and the approaches to selected common symptom and medical management issues; and (3) examines emerging data about survivorship, such as employment, community integration, and fitness.
Collapse
Affiliation(s)
- Mary M Vargo
- Physical Medicine and Rehabilitation, MetroHealth Medical Center, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA.
| |
Collapse
|
170
|
He B, Jabouille A, Steri V, Johansson-Percival A, Michael IP, Kotamraju VR, Junckerstorff R, Nowak AK, Hamzah J, Lee G, Bergers G, Ganss R. Vascular targeting of LIGHT normalizes blood vessels in primary brain cancer and induces intratumoural high endothelial venules. J Pathol 2018; 245:209-221. [PMID: 29603739 DOI: 10.1002/path.5080] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/21/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022]
Abstract
High-grade brain cancer such as glioblastoma (GBM) remains an incurable disease. A common feature of GBM is the angiogenic vasculature, which can be targeted with selected peptides for payload delivery. We assessed the ability of micelle-tagged, vascular homing peptides RGR, CGKRK and NGR to specifically bind to blood vessels in syngeneic orthotopic GBM models. By using the peptide CGKRK to deliver the tumour necrosis factor (TNF) superfamily member LIGHT (also known as TNF superfamily member 14; TNFSF14) to angiogenic tumour vessels, we have generated a reagent that normalizes the brain cancer vasculature by inducing pericyte contractility and re-establishing endothelial barrier integrity. LIGHT-mediated vascular remodelling also activates endothelia and induces intratumoural high endothelial venules (HEVs), which are specialized blood vessels for lymphocyte infiltration. Combining CGKRK-LIGHT with anti-vascular endothelial growth factor and checkpoint blockade amplified HEV frequency and T-cell accumulation in GBM, which is often sparsely infiltrated by immune effector cells, and reduced tumour burden. Furthermore, CGKRK and RGR peptides strongly bound to blood vessels in freshly resected human GBM, demonstrating shared peptide-binding activities in mouse and human primary brain tumour vessels. Thus, peptide-mediated LIGHT targeting is a highly translatable approach in primary brain cancer to reduce vascular leakiness and enhance immunotherapy. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Bo He
- The Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Australia
| | - Arnaud Jabouille
- Department of Neurological Surgery, Brain Tumour Research Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Veronica Steri
- Department of Neurological Surgery, Brain Tumour Research Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Anna Johansson-Percival
- The Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Australia
| | - Iacovos P Michael
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | | | - Reimar Junckerstorff
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Australia.,PathWest Neuropathology, Royal Perth Hospital, Perth, Australia
| | - Anna K Nowak
- School of Medicine, University of Western Australia, Nedlands, Australia
| | - Juliana Hamzah
- The Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Australia
| | - Gabriel Lee
- School of Surgery, University of Western Australia, Nedlands, Australia.,St John of God Subiaco Hospital, Subiaco, Australia
| | - Gabriele Bergers
- Department of Neurological Surgery, Brain Tumour Research Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,VIB Centre for Cancer Biology Vesalius and Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ruth Ganss
- The Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Australia
| |
Collapse
|
171
|
Maurice-Dror C, Perets R, Bar-Sela G. Glucocorticoids as an adjunct to oncologic treatment in solid malignancies - Not an innocent bystander. Crit Rev Oncol Hematol 2018; 126:37-44. [PMID: 29759565 DOI: 10.1016/j.critrevonc.2018.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/02/2018] [Accepted: 03/21/2018] [Indexed: 11/30/2022] Open
Abstract
Glucocorticoids are steroidal hormones which exert their action via genomic and non-genomic mechanisms. In the clinical setting, glucocorticoids are utilized for their anti-inflammatory, anti-allergenic and immunomodulatory effects and for their well-established, pro-apoptotic effects on hematological malignancies. In the treatment of solid tumors, glucocorticoids serve primarily for alleviation of tumor- and treatment-related symptoms and in most cases are not considered to have a direct effect on tumor growth and spread. However, significant pre-clinical data suggest that glucocorticoids have diverse effects on tumor progression, both pro- and anti- tumorigenic. In contrast, the clinical data regarding the pro- and anti-tumorigenic effects of glucocorticoids on solid tumors is scarce, and summarized in this review. The following review presents the suggested glucocorticoids mechanism of action and the effects of glucocorticoids on tumor cells, on the tumor microenvironment and on tumor response to cytotoxic therapy, in the pre-clinical and clinical settings.
Collapse
Affiliation(s)
| | - Ruth Perets
- Division of Oncology, Rambam Health Care Campus, Israel; Technion-Israel Institute of Technology, Haifa, Israel
| | - Gil Bar-Sela
- Division of Oncology, Rambam Health Care Campus, Israel; Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
172
|
Stolyarov Y, Mirocha J, Mamelak AN, Ben-Shlomo A. Consensus-driven in-hospital cortisol assessment after ACTH-secreting pituitary adenoma resection. Pituitary 2018; 21:41-49. [PMID: 29143885 DOI: 10.1007/s11102-017-0845-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Remission from Cushing disease (CD) after pituitary adenoma resection may be predicted by a postoperative reduction in serum cortisol level. A 2008 consensus statement recommends assessing morning cortisol levels during the first postoperative week, and replacing glucocorticoid (GC) if cortisol nadir of < 2 or < 5 µg/dL is achieved. We sought to evaluate adherence to consensus recommendations following adrenocorticotropic hormone (ACTH)-secreting pituitary adenoma resection at our tertiary medical center, and assess time to cortisol nadir to better define the window for assessment and intervention. METHODS We retrospectively analyzed data extracted from in-hospital electronic medical records for CD surgeries between January 1991 and September 2015. We compared cortisol levels and collection times, ACTH measurement, and postoperative and discharge GC treatment before and after consensus statement publication in July 2008. RESULTS 107 surgeries were performed in 92 patients with CD. After 2008, more surgeries had at least one cortisol value assessed (67.9% before vs. 91.3% after, p = 0.033), with median initial cortisol measurement at 14 h post-surgery. However, ACTH measurement remained unchanged (42.9% vs. 43.5%; p > 0.99). Cortisol collection during GC treatment tended to increase (32.7% vs. 57.1%; p = 0.068). Of surgeries performed without prior GC treatment, 31.7 and 55.0% had a cortisol nadir of < 2 and < 5 µg/dL, respectively, within 72 h postoperative. CONCLUSIONS Our physicians were more diligent in measuring in-hospital postoperative cortisol levels consistent with 2008 consensus recommendations. Better management of cortisol measurements and their timing is an opportunity for improvement.
Collapse
Affiliation(s)
- Yana Stolyarov
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - James Mirocha
- Biostatistics Core, Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Adam N Mamelak
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anat Ben-Shlomo
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Pituitary Center, Division of Endocrinology, Diabetes & Metabolism, Cedars-Sinai Medical Center, Davis Building, Room 3021, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA.
| |
Collapse
|
173
|
Clifton D, Ross M, O'Callaghan C. Psychiatric sequelae of corticosteroid use in hematology in Australia: A qualitative study. Nurs Health Sci 2018; 20:125-131. [PMID: 29345096 DOI: 10.1111/nhs.12395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/01/2017] [Accepted: 09/24/2017] [Indexed: 11/30/2022]
Abstract
Despite widespread steroid usage for treating hematological conditions, minimal attention focuses on associated psychiatric side-effects. In the present study, we examined hematology patients' experiences of high-dose steroid treatment. This was undertaken by the use of a qualitative, descriptive design, which included convenience sampling and the inductive, cyclic, and constant comparative thematic analysis of interview transcripts. Eighteen patients participated, who were diagnosed with lymphoma, myeloma, leukemia, or idiopathic thrombocytopenia purpura. Four themes emerged: side-effects, misattribution of cause, self-management, and fragmented information. The study results revealed that hematology patients administered steroids can experience negligible to extensive erratic side-effects, with severe adverse repercussions. Psychological reactions to steroids are often misattributed. Patients mostly self-manage adverse effects experienced and receive only fragmented preparatory information, often not understanding steroid side-effects. Nurses could provide helpful "in the moment" education for inpatients who misunderstood steroid-related adverse effects, such as aggressive urges. Adverse repercussions for family were occasionally evident. Education, support, and ongoing care for patients experiencing adverse steroid side-effects are inadequate. Health professionals need to develop patient- and family-centered educational resources for potential, unpredictable, and usually adverse steroid side-effects.
Collapse
Affiliation(s)
- Dianne Clifton
- Department of Psychosocial Cancer Care, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Margaret Ross
- Department of Psychosocial Cancer Care, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Clare O'Callaghan
- Department of Psychosocial Cancer Care, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
174
|
Lieberman NAP, Vitanza NA, Crane CA. Immunotherapy for brain tumors: understanding early successes and limitations. Expert Rev Neurother 2018; 18:251-259. [DOI: 10.1080/14737175.2018.1425617] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nicole A. P. Lieberman
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Nicholas A. Vitanza
- Division of Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Courtney A. Crane
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
175
|
Noh T, Walbert T. Brain metastasis: clinical manifestations, symptom management, and palliative care. HANDBOOK OF CLINICAL NEUROLOGY 2018; 149:75-88. [PMID: 29307363 DOI: 10.1016/b978-0-12-811161-1.00006-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Patients who have brain metastases can suffer from a medley of symptoms, including headaches, seizures, cognitive impairment, fatigue, and focal deficits. As therapies have evolved, so has the management of these symptoms as patients survive longer. This chapter focuses on the clinical presentation of brain metastases, the treatment of those symptoms, and palliation in end-of-life management. Brain metastases are the most common cerebral malignancy. They can present with various symptoms, which can have significant impact on patients' quality of life throughout the course of their disease. Most of these symptoms are related to direct brain compression from the tumor or from edema. The location of the metastases will determine the focal deficits incurred and most patients will be on a course of steroids tapered according to their clinical status. The chapter includes a list of potential side-effects and considerations for management. Palliative care is an essential and important part of approaching patients with metastases. Early and clear communication about end-of-life decision making is encouraged with multiple easily accessible tools. For patients near the end of life, comfort is the ultimate goal in providing a good quality of life.
Collapse
Affiliation(s)
- Thomas Noh
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | - Tobias Walbert
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States; Department of Neurology, Henry Ford Health System, Detroit, MI, United States.
| |
Collapse
|
176
|
Trajectories of Symptom Clusters, Performance Status, and Quality of Life During Concurrent Chemoradiotherapy in Patients With High-Grade Brain Cancers. Cancer Nurs 2018; 41:E38-E47. [DOI: 10.1097/ncc.0000000000000435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
177
|
Kostopoulou ON, Mohammad AA, Bartek J, Winter J, Jung M, Stragliotto G, Söderberg-Nauclér C, Landázuri N. Glucocorticoids promote a glioma stem cell-like phenotype and resistance to chemotherapy in human glioblastoma primary cells: Biological and prognostic significance. Int J Cancer 2017; 142:1266-1276. [PMID: 29067692 DOI: 10.1002/ijc.31132] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/24/2017] [Accepted: 10/12/2017] [Indexed: 12/28/2022]
Abstract
Glioma stem cells (GSCs) are glioblastoma (GBM) cells that are resistant to therapy and can give rise to recurrent tumors. The identification of patient-related factors that support GSCs is thus necessary to design effective therapies for GBM patients. Glucocorticoids (GCs) are used to treat GBM-associated edema. However, glucocorticoids participate in the physiological response to psychosocial stress, which has been linked to poor cancer prognosis. This raises concern that glucocorticoids affect the tumor and GSCs. Here, we treated primary human GBM cells with dexamethasone and evaluated GC-driven changes in cell morphology, proliferation, migration, gene expression, secretory activity and growth as neurospheres. Dexamethasone treatment of GBM cells appeared to promote the development of a GSC-like phenotype and conferred resistance to physiological stress and chemotherapy. We also analyzed a potential correlation between GC treatment and tumor recurrence after surgical excision in a population-based consecutive cohort of 48 GBM patients, adjusted for differences in known prognostic factors concerning baseline and treatment characteristics. In this cohort, we found a negative correlation between GC intake and progression-free survival, regardless of the MGMT methylation status. In conclusion, our findings raise concern that treatment of GBM with GCs may compromise the efficacy of chemotherapy and may support a GSC population, which could contribute to tumor recurrence and the poor prognosis of the disease.
Collapse
Affiliation(s)
- Ourania N Kostopoulou
- Department of Medicine, Center for Molecular Medicine, Microbial Pathogenesis, Karolinska Institute, Stockholm, Sweden
| | - Abdul-Aleem Mohammad
- Department of Medicine, Center for Molecular Medicine, Microbial Pathogenesis, Karolinska Institute, Stockholm, Sweden
| | - Jiri Bartek
- Department of Medicine, Center for Molecular Medicine, Microbial Pathogenesis, Karolinska Institute, Stockholm, Sweden.,Department of Neurology and Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Julia Winter
- Department of Medicine, Center for Molecular Medicine, Microbial Pathogenesis, Karolinska Institute, Stockholm, Sweden
| | - Masany Jung
- Department of Medicine, Center for Molecular Medicine, Microbial Pathogenesis, Karolinska Institute, Stockholm, Sweden
| | - Giuseppe Stragliotto
- Department of Neurology and Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Center for Molecular Medicine, Microbial Pathogenesis, Karolinska Institute, Stockholm, Sweden.,Department of Neurology and Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia Landázuri
- Department of Medicine, Center for Molecular Medicine, Microbial Pathogenesis, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
178
|
Murovic J, Ding V, Han SS, Adler JR, Chang SD. Impact of CyberKnife Radiosurgery on Overall Survival and Various Parameters of Patients with 1-3 versus ≥ 4 Brain Metastases. Cureus 2017; 9:e1798. [PMID: 29282442 PMCID: PMC5741273 DOI: 10.7759/cureus.1798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Introduction This study’s objective is to compare the overall survivals (OSs) and various parameters of patients with 1-3 versus ≥ 4 brain metastases post-CyberKnife radiosurgery (CKRS) (Accuray, Sunnyvale, California) alone. Methods Charts of 150 patients, from 2009-2014, treated with only CKRS for brain metastases were reviewed retrospectively for overall survival (OS) and patient, tumor, and imaging characteristics. Parameters included demographics, Eastern Cooperative Oncology Group (ECOG) performance scores, number and control of extracranial disease (ECD) sites, cause of death (COD), histology, tumor volume (TV), and post-CKRS whole brain radiotherapy (WBRT). The imaging characteristics assessed were time of complete response (CR), partial response (PR), stable imaging or local failure (LF), and distal brain failure (DBF). Patients and their data were divided into those with 1-3 (group 1) versus ≥ 4 brain metastases (group 2). For each CR and LF patient, absolute neutrophil count (ANC), absolute lymphocyte count (ALC)), and ANC/ALC ratio (NLR) were obtained, when available, at the time of CKRS. Results Both group 1 and group 2 had a median OS of 13 months. The patient median age for the 115 group 1 patients versus the 35 group 2 patients was 62 versus 56 years. Group 1 had slightly more males and group 2, females. The predominant ECOG score for each group was 1 and the number of ECD sites was one and two, respectively. Uncontrolled ECD occurred in the majority of both group 1 and group 2 patients. The main COD was ECD in both groups. The prevalent tumor histology for groups 1 and 2 was non-small cell lung carcinoma. Median TVs were 1.08 cc versus 1.42 cc for groups 1 and 2, respectively. The majority of patients in both groups did not undergo post-CKRS WBRT. Imaging outcomes were LC (CR, PR, or stable imaging) in 93 (80.9%) and 26 (74.3%) group 1 and 2 patients, of whom 32 (27.8%) and six (17.1%) had CR; 38 (33.0%) and 18 (51.4%), PR and 23 (20.0%) and two (5.7%), stable imaging; LF was the outcome in 22 (19.1%) and nine (25.7%) patients, and DBF occurred in 62 (53.9%) and 21 (60.0%), respectively. Uni- and multivariable analyses showed the independent parameters of a lower ECOG score, a greater number of ECD sites and uncontrolled ECD were significantly associated with greater mortality risk with and without accounting for other covariates. At CKRS, 19 group 1 and 2 CR patients had a mean ANC of 5.88 K/µL and a mean ALC of 1.31 K/µL and 13 (68%) of 19 had NLRs ≤ five, while 11 with LFs had a mean ANC of 5.22 K/µL and a mean ALC of 0.93 K/µL and seven (64%) had NLRs > five. An NLR ≤ five and high ALC was associated with a CR and an NLR > five and a low ALC with an LF. Conclusions Median OS post-CKRS was 13 months for both patients with 1-3 brain metastases and with ≥ 4. This is the only study in the literature to evaluate OS in patients with 1-3 and ≥ 4 brain metastases who were treated with CKRS alone. For groups 1 and 2 patients combined, 119 (79.3%) had LC and 38 (25.3%) had CR. The ANC, ALC, and NLR values are likely predictive of CR and LF outcomes
Collapse
Affiliation(s)
- Judith Murovic
- Department of Neurosurgery, Stanford University School of Medicine
| | - Victoria Ding
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine
| | - Summer S Han
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine
| | - John R Adler
- Department of Neurosurgery, Stanford University School of Medicine
| | - Steven D Chang
- Department of Neurosurgery, Stanford University School of Medicine
| |
Collapse
|
179
|
Abstract
BACKGROUND Corticosteroids are commonly used in the management of primary central nervous system (CNS) tumors and CNS metastases to treat cancer- and treatment-related cerebral edema and improve neurologic function. However, they are also associated with significant morbidity and mortality, given their wide range of adverse effects. PURPOSE OF REVIEW To review the mechanism of action, pharmacology, and toxicity profile of corticosteroids and to critically appraise the evidence that supports their use in neuro-oncologic practice based on the latest scientific and clinical data. RECENT FINDINGS Recent data suggest that corticosteroids may negatively impact survival in glioma patients. In addition, corticosteroids should be incorporated as a standard criterion to assess a patient's clinical and radiographic response to treatment. Corticosteroids should be used judiciously in neuro-oncologic patients, given the potential deleterious effects on clinical outcome and patient survival. Anti-angiogenic agents, which lack these adverse effects, may be a reasonable alternative to corticosteroids.
Collapse
Affiliation(s)
- K Ina Ly
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA.
| |
Collapse
|
180
|
Brown CE, Aguilar B, Starr R, Yang X, Chang WC, Weng L, Chang B, Sarkissian A, Brito A, Sanchez JF, Ostberg JR, D'Apuzzo M, Badie B, Barish ME, Forman SJ. Optimization of IL13Rα2-Targeted Chimeric Antigen Receptor T Cells for Improved Anti-tumor Efficacy against Glioblastoma. Mol Ther 2017; 26:31-44. [PMID: 29103912 DOI: 10.1016/j.ymthe.2017.10.002] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 12/27/2022] Open
Abstract
T cell immunotherapy is emerging as a powerful strategy to treat cancer and may improve outcomes for patients with glioblastoma (GBM). We have developed a chimeric antigen receptor (CAR) T cell immunotherapy targeting IL-13 receptor α2 (IL13Rα2) for the treatment of GBM. Here, we describe the optimization of IL13Rα2-targeted CAR T cells, including the design of a 4-1BB (CD137) co-stimulatory CAR (IL13BBζ) and a manufacturing platform using enriched central memory T cells. Utilizing orthotopic human GBM models with patient-derived tumor sphere lines in NSG mice, we found that IL13BBζ-CAR T cells improved anti-tumor activity and T cell persistence as compared to first-generation IL13ζ-CAR CD8+ T cells that had shown evidence for bioactivity in patients. Investigating the impact of corticosteroids, given their frequent use in the clinical management of GBM, we demonstrate that low-dose dexamethasone does not diminish CAR T cell anti-tumor activity in vivo. Furthermore, we found that local intracranial delivery of CAR T cells elicits superior anti-tumor efficacy as compared to intravenous administration, with intraventricular infusions exhibiting possible benefit over intracranial tumor infusions in a multifocal disease model. Overall, these findings help define parameters for the clinical translation of CAR T cell therapy for the treatment of brain tumors.
Collapse
Affiliation(s)
- Christine E Brown
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA.
| | - Brenda Aguilar
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Renate Starr
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Xin Yang
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Wen-Chung Chang
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Lihong Weng
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Brenda Chang
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Aniee Sarkissian
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Alfonso Brito
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - James F Sanchez
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Julie R Ostberg
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Massimo D'Apuzzo
- Department of Pathology, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Behnam Badie
- Department of Neurosurgery, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Michael E Barish
- Department of Developmental and Stem Cell Biology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Stephen J Forman
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
181
|
Baudry S, Motta G, Botter A, Duchateau J, Minetto MA. Neural Correlates to the Increase in Maximal Force after Dexamethasone Administration. Med Sci Sports Exerc 2017; 50:218-224. [PMID: 28930864 DOI: 10.1249/mss.0000000000001425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study investigated the effects of short-term glucocorticoid administration on voluntary activation and intracortical inhibitory and facilitatory circuits. METHODS Seventeen healthy men participated in a pseudorandomized double-blind study to receive either dexamethasone (8 mg·d, n = 9 subjects) or placebo (n = 8 subjects) for 7 d. The ankle dorsiflexion torque, corresponding EMG of the tibialis anterior, and voluntary activation assessed by the interpolated twitch method using transcranial magnetic stimulation (TMS) were measured during a maximal voluntary contraction (MVC). Short-latency intracortical inhibition (SICI) and intracortical facilitation (ICF) were assessed at rest and during submaximal contraction (50% MVC torque) by paired-pulse TMS with the conditioning stimulus set at 0.8× of motor threshold and delivered 2 ms (SICI) and 13 ms (ICF) before the test stimulus (1.2× motor threshold). RESULTS The MVC torque (+14%), tibialis anterior EMG (+31%), and voluntary activation (+3%) increased after glucocorticoid treatment (P < 0.05). The increase in voluntary activation was associated with the gain in MVC torque (r = 0.56; P = 0.032). The level of SICI and the duration of the EMG silent period that followed the test TMS decreased (-18.6% and -13.5%, respectively) during the 50% MVC after treatment (P < 0.05), whereas no significant change was observed for ICF. Neither SICI nor ICF changed after treatment when assessed at rest. CONCLUSIONS Short-term dexamethasone treatment induced specific decrease in the excitability of intracortical inhibitory circuits that likely contributed to the increase in the voluntary activation and associated MVC torque.
Collapse
Affiliation(s)
- Stéphane Baudry
- Laboratory of Applied Biology and Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, BELGIUM
| | - Giovanna Motta
- Laboratory of Applied Biology and Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, BELGIUM
| | - Alberto Botter
- Laboratory of Applied Biology and Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, BELGIUM
| | - Jacques Duchateau
- Laboratory of Applied Biology and Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, BELGIUM
| | - Marco A Minetto
- Laboratory of Applied Biology and Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, BELGIUM.,Laboratory of Applied Biology and Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, BELGIUM
| |
Collapse
|
182
|
Phosphatases and solid tumors: focus on glioblastoma initiation, progression and recurrences. Biochem J 2017; 474:2903-2924. [PMID: 28801478 DOI: 10.1042/bcj20170112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022]
Abstract
Phosphatases and cancer have been related for many years now, as these enzymes regulate key cellular functions, including cell survival, migration, differentiation and proliferation. Dysfunctions or mutations affecting these enzymes have been demonstrated to be key factors for oncogenesis. The aim of this review is to shed light on the role of four different phosphatases (PTEN, PP2A, CDC25 and DUSP1) in five different solid tumors (breast cancer, lung cancer, pancreatic cancer, prostate cancer and ovarian cancer), in order to better understand the most frequent and aggressive primary cancer of the central nervous system, glioblastoma.
Collapse
|
183
|
Chitadze G, Flüh C, Quabius ES, Freitag-Wolf S, Peters C, Lettau M, Bhat J, Wesch D, Oberg HH, Luecke S, Janssen O, Synowitz M, Held-Feindt J, Kabelitz D. In-depth immunophenotyping of patients with glioblastoma multiforme: Impact of steroid treatment. Oncoimmunology 2017; 6:e1358839. [PMID: 29147621 DOI: 10.1080/2162402x.2017.1358839] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023] Open
Abstract
Despite aggressive treatment regimens based on surgery and radiochemotherapy, the prognosis of patients with grade IV glioblastoma multiforme (GBM) remains extremely poor, calling for alternative options such as immunotherapy. Immunological mechanisms including the Natural Killer Group 2 member D (NKG2D) receptor-ligand system play an important role in tumor immune surveillance and targeting the NKG2D system might be beneficial. However, before considering any kind of immunotherapy, a precise characterization of the immune system is important, particularly in GBM patients where conventional therapies with impact on the immune system are frequently co-administered. Here we performed an in-depth immunophenotyping of GBM patients and age-matched healthy controls and analyzed NKG2D ligand expression on primary GBM cells ex vivo. We report that GBM patients have a compromised innate immune system irrespective of steroid (dexamethasone) medication. However, dexamethasone drastically reduced the number of immune cells in the blood of GBM patients. Moreover, higher counts of immune cells influenced by dexamethasone like CD45+ lymphocytes and non-Vδ2 γδ T cells were associated with better overall survival. Higher levels of NKG2D ligands on primary GBM tumor cells were observed in patients who received radiochemotherapy, pointing towards increased immunogenic potential of GBM cells following standard radiochemotherapy. This study sheds light on how steroids and radiochemotherapy affect immune cell parameters of GBM patients, a pre-requisite for the development of new therapeutic strategies targeting the immune system in these patients.
Collapse
Affiliation(s)
- Guranda Chitadze
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Charlotte Flüh
- Dept. of Neurosurgery, UKSH Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Elgar Susanne Quabius
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany.,Dept. of Oto-Rhino-Laryngology, UKSH Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Schleswig-Hostein, Germany
| | - Christian Peters
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Marcus Lettau
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Jaydeep Bhat
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Stefanie Luecke
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Ottmar Janssen
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Michael Synowitz
- Dept. of Neurosurgery, UKSH Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Janka Held-Feindt
- Dept. of Neurosurgery, UKSH Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| |
Collapse
|
184
|
Abstract
Glioblastoma is the most frequent malignant brain tumor and is characterized by poor prognosis, increased invasiveness, and high recurrence rates. Standard treatment for glioblastoma includes maximal safe surgical resection, radiation, and chemotherapy with temozolomide. Despite treatment advances, only 15-20% of glioblastoma patients survive to 5 years, and no therapies have demonstrated a durable survival benefit in recurrent disease. In the last 10 years, significant advances in knowledge of the biology and molecular pathology of the malignancy have opened the way to new treatment options. Clinical management of patients (pseudo-progressions, side effects of therapies, best supportive care, centralization in expertise care centers) has improved. In brain tumors, such as in other solid tumors, we have entered an era of immune-oncology. Immunotherapy seems to have an acceptable safety and tolerability profile in the recurrent setting and is under investigation in clinical trials in newly diagnosed glioblastoma patients. This review focuses on novel targeted therapies recently developed for the management of newly diagnosed and recurrent glioblastomas.
Collapse
|
185
|
Karatzanis A, Chatzidakis A, Milioni A, Vlaminck S, Kawauchi H, Velegrakis S, Prokopakis E. Contemporary Use of Corticosteroids in Rhinology. Curr Allergy Asthma Rep 2017; 17:11. [PMID: 28233155 DOI: 10.1007/s11882-017-0679-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE OF REVIEW Exogenously administered corticosteroids are widely used today in the field of rhinology. Allergic rhinitis (AR), non-allergic rhinitis (NAR), acute rhinosinusitis (ARS), chronic rhinosinusitis with (CRSwNP) and without (CRSsNP) nasal polyps, and autoimmune disorders with nasal manifestations are common diseases treated effectively with intranasal and oral glucocorticoids. We focus on physiological pathways, therapeutic benefits, indications, contra-indications, and side effects of glucocorticoid utilization in the treatment of rhinologic disorders such as AR, NAR, ARS, CRSsNP, and CRSwNP. RECENT FINDINGS Second-generation intranasal steroid (INS) agents have pharmacokinetic characteristics that minimize their systemic bioavailability, resulting in minimum risk for systemic adverse events. Several studies have demonstrated the symptomatic efficacy of both intranasal and oral corticosteroids in ARS. Moreover, intranasal and systemic steroid administration has been repeatedly proven beneficial in the conservative and perioperative management of CRSwNP. For patients with AR, there is no need for oral steroids, with the exception of severe cases, as there is lack of superiority to INS. SCUAD patients challenge currently available treatment schemes, underlining the importance of research in the field. Corticosteroids' effectiveness in the treatment of various rhinologic disorders is indisputable. However, their characteristics, and potential side effects, make a clear consensus for utilization difficult.
Collapse
Affiliation(s)
- Alexander Karatzanis
- Department of Otorhinolaryngology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Alkiviadis Chatzidakis
- Department of Otorhinolaryngology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Athanasia Milioni
- Department of Otorhinolaryngology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Stephan Vlaminck
- Department of Otorhinolaryngology, St. Jan General Hospital, Bruges, Belgium
| | - Hideyuki Kawauchi
- Department of Otorhinolaryngology, School of Medicine, University of Shimane, Shimane, Japan
| | - Stylianos Velegrakis
- Department of Otorhinolaryngology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Emmanuel Prokopakis
- Department of Otorhinolaryngology, School of Medicine, University of Crete, Heraklion, Crete, Greece. .,Department of Otorhinolaryngology, University Hospital of Crete, University avenue, A Building 3rd Floor, 71110, Heraklion, Crete, Greece.
| |
Collapse
|
186
|
Parikh NS, Schweitzer AD, Young RJ, Giambrone AE, Lyo J, Karimi S, Knobel A, Gupta A, Navi BB. Corticosteroid therapy and severity of vasogenic edema in posterior reversible encephalopathy syndrome. J Neurol Sci 2017; 380:11-15. [PMID: 28870548 DOI: 10.1016/j.jns.2017.06.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Posterior reversible encephalopathy syndrome (PRES) is a variable cerebrovascular syndrome associated with hypertension and autoregulatory failure. Steroids have been reported to both precipitate and treat PRES. We sought to determine the prevalence of steroid therapy at the time of PRES and to assess the relationship between steroid therapy and extent of vasogenic edema. METHODS We performed a retrospective review of radiology reports between 2008 and 2014 from two academic medical centers to identify cases of PRES. Clinical and radiographic data were collected. Descriptive statistics were used to determine the prevalence of corticosteroid therapy at the time of PRES onset and the latency from steroid initiation to PRES onset. The association between steroid therapy and extent of vasogenic edema was assessed in multiple regression models. RESULTS We identified 99 cases of PRES in 96 patients. The median age was 55years (IQR 30-65) and 74% were women. Steroid therapy at time of PRES onset was identified in 44 of 99 cases. Excluding patients on chronic therapy, the median duration of steroid exposure before PRES onset was 6 (IQR, 3-10) days. Steroid therapy was not associated with extent of vasogenic edema in unadjusted or linear and logistic regression models adjusted for age, sex, and maximum systolic blood pressure on day of onset. CONCLUSION Corticosteroid therapy, often of brief duration, frequently preceded the onset of PRES and was not associated with severity of vasogenic edema.
Collapse
Affiliation(s)
- Neal S Parikh
- Department of Neurology, Weill Cornell Medical College, New York, NY, USA.
| | | | - Robert J Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashley E Giambrone
- Department of Healthcare Policy and Research, Weill Cornell Medical College, New York, NY, USA
| | - John Lyo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sasan Karimi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna Knobel
- Department of Radiology, Lenox Hill Hospital, New York, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Babak B Navi
- Department of Neurology, Weill Cornell Medical College, New York, NY, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
187
|
Edlmann E, Giorgi-Coll S, Whitfield PC, Carpenter KLH, Hutchinson PJ. Pathophysiology of chronic subdural haematoma: inflammation, angiogenesis and implications for pharmacotherapy. J Neuroinflammation 2017; 14:108. [PMID: 28558815 PMCID: PMC5450087 DOI: 10.1186/s12974-017-0881-y] [Citation(s) in RCA: 395] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/15/2017] [Indexed: 02/08/2023] Open
Abstract
Chronic subdural haematoma (CSDH) is an encapsulated collection of blood and fluid on the surface of the brain. Historically considered a result of head trauma, recent evidence suggests there are more complex processes involved. Trauma may be absent or very minor and does not explain the progressive, chronic course of the condition. This review focuses on several key processes involved in CSDH development: angiogenesis, fibrinolysis and inflammation. The characteristic membrane surrounding the CSDH has been identified as a source of fluid exudation and haemorrhage. Angiogenic stimuli lead to the creation of fragile blood vessels within membrane walls, whilst fibrinolytic processes prevent clot formation resulting in continued haemorrhage. An abundance of inflammatory cells and markers have been identified within the membranes and subdural fluid and are likely to contribute to propagating an inflammatory response which stimulates ongoing membrane growth and fluid accumulation. Currently, the mainstay of treatment for CSDH is surgical drainage, which has associated risks of recurrence requiring repeat surgery. Understanding of the underlying pathophysiological processes has been applied to developing potential drug treatments. Ongoing research is needed to identify if these therapies are successful in controlling the inflammatory and angiogenic disease processes leading to control and resolution of CSDH.
Collapse
Affiliation(s)
- Ellie Edlmann
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
| | - Susan Giorgi-Coll
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
| | - Peter C. Whitfield
- Southwest Neurosurgical Centre, Plymouth Hospitals NHS Trust, Plymouth, PL6 8DH UK
| | - Keri L. H. Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
| | - Peter J. Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
| |
Collapse
|
188
|
Hendrix P, Hans E, Griessenauer CJ, Simgen A, Oertel J, Karbach J. Neurocognitive status in patients with newly-diagnosed brain tumors in good neurological condition: The impact of tumor type, volume, and location. Clin Neurol Neurosurg 2017; 156:55-62. [DOI: 10.1016/j.clineuro.2017.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/07/2017] [Accepted: 03/15/2017] [Indexed: 01/16/2023]
|
189
|
Aharon MA, Prittie JE, Buriko K. A review of associated controversies surrounding glucocorticoid use in veterinary emergency and critical care. J Vet Emerg Crit Care (San Antonio) 2017; 27:267-277. [PMID: 28449321 DOI: 10.1111/vec.12603] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/19/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To review the literature in human and veterinary medicine regarding the indications for, efficacy of, and controversies surrounding glucocorticoid (GC) administration in the emergency and critical care (ECC) setting, and to provide an overview of the most commonly used synthetic GC formulations. MEDICATIONS Synthetic GCs vary in GC and mineralocorticoid potency, hypothalamic pituitary axis suppression, duration of action, route of administration, and clinical indication for use. Some of the GC compounds commonly used in human and veterinary ECC include hydrocortisone, prednisone, methylprednisolone, and dexamethasone. INDICATIONS FOR USE GCs are used in human and veterinary ECC for a variety of disorders including anaphylaxis, acute lung injury/acute respiratory distress syndrome, septic shock, and spinal cord injury. Evidence for morbidity or mortality benefit with administration of GC within these populations exists; however, data are sparse and often conflicting. ADVERSE EFFECTS AND CONTRAINDICATIONS Routine use of GC in some conditions such as trauma, hemorrhagic shock, and traumatic brain injury is likely contraindicated. GC use has been associated with hyperglycemia, pneumonia, urinary tract infection, gastrointestinal ulceration, or increased mortality in some populations.
Collapse
Affiliation(s)
- Maya A Aharon
- Department of Emergency and Critical Care, Animal Medical Center, New York, NY, 10065
| | - Jennifer E Prittie
- Department of Emergency and Critical Care, Animal Medical Center, New York, NY, 10065
| | - Kate Buriko
- Department of Emergency and Critical Care, Animal Medical Center, New York, NY, 10065
| |
Collapse
|
190
|
Svolos P, Reddick WE, Edwards A, Sykes A, Li Y, Glass JO, Patay Z. Measurable Supratentorial White Matter Volume Changes in Patients with Diffuse Intrinsic Pontine Glioma Treated with an Anti-Vascular Endothelial Growth Factor Agent, Steroids, and Radiation. AJNR Am J Neuroradiol 2017; 38:1235-1241. [PMID: 28428205 DOI: 10.3174/ajnr.a5159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/26/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Assessing the response to treatment in infiltrative brain tumors by using lesion volume-based response criteria is challenging. We hypothesized that in such tumors, volume measurements alone may not accurately capture changes in actual tumor burden during treatment. We longitudinally evaluated volume changes in both normal-appearing supratentorial white matter and the brain stem lesions in patients treated for diffuse intrinsic pontine glioma to determine to what extent adjuvant systemic therapies may skew the accuracy of tumor response assessments based on volumetric analysis. MATERIALS AND METHODS The anatomic MR imaging and diffusion tensor imaging data of 26 patients with diffuse intrinsic pontine glioma were retrospectively analyzed. Treatment included conformal radiation therapy in conjunction with vandetanib and dexamethasone. Volumetric and diffusion data were analyzed with time, and differences between time points were evaluated statistically. RESULTS Normalized brain stem lesion volume decreased during combined treatment (slope = -0.222, P < .001) and increased shortly after completion of radiation therapy (slope = 0.422, P < .001). Supratentorial white matter volume steadily and significantly decreased with time (slope = -0.057, P < .001). CONCLUSIONS Longitudinal changes in brain stem lesion volume are robust; less pronounced but measurable changes occur in the supratentorial white matter. Volume changes in nonirradiated supratentorial white matter during the disease course reflect the effects of systemic medication on the water homeostasis of normal parenchyma. Our data suggest that adjuvant nontumor-targeted therapies may have a more substantial effect on lesion volume changes than previously thought; hence, an apparent volume decrease in infiltrative tumors receiving combined therapies may lead to overestimation of the actual response and tumor control.
Collapse
Affiliation(s)
- P Svolos
- From the Departments of Diagnostic Imaging (P.S., W.E.R., A.E., J.O.G., Z.P.)
| | - W E Reddick
- From the Departments of Diagnostic Imaging (P.S., W.E.R., A.E., J.O.G., Z.P.)
| | - A Edwards
- From the Departments of Diagnostic Imaging (P.S., W.E.R., A.E., J.O.G., Z.P.)
| | - A Sykes
- Biostatistics (A.S., Y.L.), St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Y Li
- Biostatistics (A.S., Y.L.), St. Jude Children's Research Hospital, Memphis, Tennessee
| | - J O Glass
- From the Departments of Diagnostic Imaging (P.S., W.E.R., A.E., J.O.G., Z.P.)
| | - Z Patay
- From the Departments of Diagnostic Imaging (P.S., W.E.R., A.E., J.O.G., Z.P.)
| |
Collapse
|
191
|
Role of ketogenic metabolic therapy in malignant glioma: A systematic review. Crit Rev Oncol Hematol 2017; 112:41-58. [DOI: 10.1016/j.critrevonc.2017.02.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/30/2017] [Accepted: 02/14/2017] [Indexed: 12/22/2022] Open
|
192
|
The Process and Regulatory Components of Inflammation in Brain Oncogenesis. Biomolecules 2017; 7:biom7020034. [PMID: 28346397 PMCID: PMC5485723 DOI: 10.3390/biom7020034] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/09/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Central nervous system tumors comprising the primary cancers and brain metastases remain the most lethal neoplasms and challenging to treat. Substantial evidence points to a paramount role for inflammation in the pathology leading to gliomagenesis, malignant progression and tumor aggressiveness in the central nervous system (CNS) microenvironment. This review summarizes the salient contributions of oxidative stress, interleukins, tumor necrosis factor-α(TNF-α), cyclooxygenases, and transcription factors such as signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and the associated cross-talks to the inflammatory signaling in CNS cancers. The roles of reactive astrocytes, tumor associated microglia and macrophages, metabolic alterations, microsatellite instability, O6-methylguanine DNA methyltransferase (MGMT) DNA repair and epigenetic alterations mediated by the isocitrate dehydrogenase 1 (IDH1) mutations have been discussed. The inflammatory pathways with relevance to the brain cancer treatments have been highlighted.
Collapse
|
193
|
Hessen ED, van Buuren LD, Nijkamp JA, de Vries KC, Kong Mok W, Dewit L, van Mourik AM, Berlin A, van der Heide UA, Borst GR. Significant tumor shift in patients treated with stereotactic radiosurgery for brain metastasis. Clin Transl Radiat Oncol 2017; 2:23-28. [PMID: 29657996 PMCID: PMC5893526 DOI: 10.1016/j.ctro.2016.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 11/25/2022] Open
Abstract
Introduction Linac-based stereotactic radiosurgery (SRS) for brain metastases may be influenced by the time interval between treatment preparation and delivery, related to risk of anatomical changes. We studied tumor position shifts and its relations to peritumoral volume edema changes over time, as seen on MRI. Methods Twenty-six patients who underwent SRS for brain metastases in our institution were included. We evaluated the occurrence of a tumor shift between the diagnostic MRI and radiotherapy planning MRI. For 42 brain metastases the tumor and peritumoral edema were delineated on the contrast enhanced T1weighted and FLAIR images of both the diagnostic MRI and planning MRI examinations. Centre of Mass (CoM) shifts and tumor borders were evaluated. We evaluated the influence of steroids on peritumoral edema and tumor volume and the correlation with CoM and tumor border changes. Results The median values of the CoM shifts and of the maximum distances between the tumor borders obtained from the diagnostic MRI and radiotherapy planning MRI were 1.3 mm (maximum shift of 5.0 mm) and 1.9 mm (maximum distance of 7.4 mm), respectively. We found significant correlations between the absolute change in edema volume and the tumor shift of the CoM (p < 0.001) and tumor border (p = 0.040). Patients who received steroids did not only had a decrease in peritumoral edema, but also had a median decrease in tumor volume of 0.02 cc while patients who did not receive steroids had a median increase of 0.06 cc in tumor volume (p = 0.035). Conclusion Our results show that large tumor shifts of brain metastases can occur over time. Because shifts may have a significant impact on the local dose coverage, we recommend minimizing the time between treatment preparation and delivery for Linac based SRS.
Collapse
Affiliation(s)
- Eline D Hessen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Laurens D van Buuren
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jasper A Nijkamp
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kim C de Vries
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wai Kong Mok
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Luc Dewit
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anke M van Mourik
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alejandro Berlin
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Uulke A van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gerben R Borst
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
194
|
Piazza M, Munasinghe J, Murayi R, Edwards N, Montgomery B, Walbridge S, Merrill M, Chittiboina P. Simulating vasogenic brain edema using chronic VEGF infusion. J Neurosurg 2017; 127:905-916. [PMID: 28059647 DOI: 10.3171/2016.9.jns1627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To study peritumoral brain edema (PTBE), it is necessary to create a model that accurately simulates vasogenic brain edema (VBE) without introducing a complicated tumor environment. PTBE associated with brain tumors is predominantly a result of vascular endothelial growth factor (VEGF) secreted by brain tumors, and VEGF infusion alone can lead to histological blood-brain barrier (BBB) breakdown in the absence of tumor. VBE is intimately linked to BBB breakdown. The authors sought to establish a model for VBE with chronic infusion of VEGF that can be validated by serial in-vivo MRI and histological findings. METHODS Male Fischer rats (n = 182) underwent stereotactic striatal implantation of MRI-safe brain cannulas for chronic infusion of VEGF (2-20 µg/ml). Following a preinfusion phase (4-6 days), the rats were exposed to VEGF or control rat serum albumin (1.5 µl/hr) for as long as 144 hours. Serial MRI was performed during infusion on a high-field (9.4-T) machine at 12-24, 24-36, 48-72, and 120-144 hours. Rat brains were then collected and histological analysis was performed. RESULTS Control animals and animals infused with 2 µg/ml of VEGF experienced no neurological deficits, seizure activity, or abnormal behavior. Animals treated with VEGF demonstrated a significantly larger volume (42.90 ± 3.842 mm3) of T2 hyper-attenuation at 144 hours when compared with the volume (8.585 ± 1.664 mm3) in control animals (mean difference 34.31 ± 4.187 mm3, p < 0.0001, 95% CI 25.74-42.89 mm3). Postcontrast T1 enhancement in the juxtacanalicular region indicating BBB breakdown was observed in rats undergoing infusion with VEGF. At the later time periods (120-144 hrs) the volume of T1 enhancement (34.97 ± 8.99 mm3) was significantly less compared with the region of edema (p < 0.0001). Histologically, no evidence of necrosis or inflammation was observed with VEGF or control infusion. Immunohistochemical analysis demonstrated astrocyte activation, vascular remodeling, and increased claudin-5 expression in juxtacanalicular regions. Aquaporin-4 expression was increased in both control and VEGF animals in the juxtacanalicular regions. CONCLUSIONS The results of this study show that chronic brain infusion of VEGF creates a reliable model of VBE. This model lacks necrosis and inflammation that are characteristic of previous models of VBE. The model allows for a precise investigation into the mechanism of VBE formation. The authors also anticipate that this model will allow for investigation into the mechanism of glucocorticoid action in abrogating VBE, and to test novel therapeutic strategies targeting PTBE.
Collapse
Affiliation(s)
- Martin Piazza
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, and
| | | | - Roger Murayi
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, and
| | - Nancy Edwards
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, and
| | - Blake Montgomery
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, and
| | - Stuart Walbridge
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, and
| | - Marsha Merrill
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, and
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, and
| |
Collapse
|
195
|
Murayi R, Chittiboina P. Glucocorticoids in the management of peritumoral brain edema: a review of molecular mechanisms. Childs Nerv Syst 2016; 32:2293-2302. [PMID: 27613642 PMCID: PMC5136308 DOI: 10.1007/s00381-016-3240-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 12/15/2022]
Abstract
Peritumoral brain edema (PTBE) is mediated by blood-brain barrier breakdown. PTBE results from interstitial vasogenic brain edema due to vascular endothelial growth factor and other inflammatory products of brain tumors. Glucocorticoids (GCs) are the mainstay for treatment of PTBE despite significant systemic side effects. GCs are thought to affect multiple cell types in the edematous brain. Here, we review preclinical studies of GC effects on edematous brain and review mechanisms underlying GC action on tumor cells, endothelial cells, and astrocytes. GCs may reduce tumor cell viability and suppress vascular endothelial growth factor (VEGF) production in tumor cells. Modulation of expression and distribution of tight junction proteins occludin, claudin-5, and ZO-1 in endothelial cells likely plays a central role in GC action on endothelial cells. GCs may also have an effect on astrocyte angiopoietin production and limited effect on astrocyte aquaporin. A better understanding of these molecular mechanisms may lead to the development of novel therapeutics for management of PTBE with a better side effect profile.
Collapse
Affiliation(s)
- Roger Murayi
- Surgical Neurology Branch, Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Diseases and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD, 20892-1414, USA
| | - Prashant Chittiboina
- Surgical Neurology Branch, Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Diseases and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD, 20892-1414, USA.
| |
Collapse
|
196
|
Catford S, Wang YY, Wong R. Pituitary stalk lesions: systematic review and clinical guidance. Clin Endocrinol (Oxf) 2016; 85:507-21. [PMID: 26950774 DOI: 10.1111/cen.13058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 03/01/2016] [Accepted: 03/04/2016] [Indexed: 12/15/2022]
Abstract
The spectrum of pituitary stalk (PS) pathology is vast, presenting a diagnostic challenge. Published large series of PS lesions demonstrate neoplastic conditions are most frequent, followed by inflammatory, infectious and congenital diseases. Inflammatory pathologies however, account for the majority of PS lesions in published small case series and case reports. Physicians must be familiar with the major differential diagnoses and necessary investigations. A comprehensive history and thorough clinical examination is critical. Although magnetic resonance imaging of the PS in disease is nonspecific, associated intracranial features may narrow the differential diagnosis. Initial investigations include basic pathology and computer tomography imaging of the neck, chest, abdomen and pelvis. Further investigations should be guided by the clinical context. PS biopsy should be considered when a diagnosis is regarded essential in centres where an experienced neurosurgeon is available. Treatment is dependent on the underlying disease process and may necessitate pituitary hormone replacement.
Collapse
Affiliation(s)
- Sarah Catford
- Department of Endocrinology and Diabetes, Western Health, Melbourne, Vic., Australia.
| | - Yi Yuen Wang
- Department of Neurosurgery and Surgery, The University of Melbourne, St Vincent's Hospital, Melbourne, Vic., Australia
| | - Rosemary Wong
- Department of Endocrinology and Diabetes, Western Health, Melbourne, Vic., Australia
| |
Collapse
|
197
|
Lee EQ, Wen PY. Corticosteroids for peritumoral edema: time to overcome our addiction? Neuro Oncol 2016; 18:1191-2. [PMID: 27530501 DOI: 10.1093/neuonc/now167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Eudocia Q Lee
- Center for Neuro-Oncology, Dana-Farber / Brigham and Women's Cancer Center, Boston, MA (E.Q.L., P.Y.W.); Harvard Medical School, Boston, MA (E.Q.L., P.Y.W.)
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber / Brigham and Women's Cancer Center, Boston, MA (E.Q.L., P.Y.W.); Harvard Medical School, Boston, MA (E.Q.L., P.Y.W.)
| |
Collapse
|
198
|
Sundahl N, Clarisse D, Bracke M, Offner F, Berghe WV, Beck IM. Selective glucocorticoid receptor-activating adjuvant therapy in cancer treatments. Oncoscience 2016; 3:188-202. [PMID: 27713909 PMCID: PMC5043069 DOI: 10.18632/oncoscience.315] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/08/2016] [Indexed: 02/07/2023] Open
Abstract
Although adverse effects and glucocorticoid resistance cripple their chronic use, glucocorticoids form the mainstay therapy for acute and chronic inflammatory disorders, and play an important role in treatment protocols of both lymphoid malignancies and as adjuvant to stimulate therapy tolerability in various solid tumors. Glucocorticoid binding to their designate glucocorticoid receptor (GR), sets off a plethora of cell-specific events including therapeutically desirable effects, such as cell death, as well as undesirable effects, including chemotherapy resistance, systemic side effects and glucocorticoid resistance. In this context, selective GR agonists and modulators (SEGRAMs) with a more restricted GR activity profile have been developed, holding promise for further clinical development in anti-inflammatory and potentially in cancer therapies. Thus far, the research into the prospective benefits of selective GR modulators in cancer therapy limped behind. Our review discusses how selective GR agonists and modulators could improve the therapy regimens for lymphoid malignancies, prostate or breast cancer. We summarize our current knowledge and look forward to where the field should move to in the future. Altogether, our review clarifies novel therapeutic perspectives in cancer modulation via selective GR targeting.
Collapse
Affiliation(s)
- Nora Sundahl
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Dorien Clarisse
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Receptor Research Laboratories, Nuclear Receptor Lab (NRL), VIB Medical Biotechnology Center, Ghent University, Ghent, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Fritz Offner
- Hematology, Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ilse M Beck
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
199
|
Discrepant longitudinal volumetric and metabolic evolution of diffuse intrinsic Pontine gliomas during treatment: implications for current response assessment strategies. Neuroradiology 2016; 58:1027-1034. [PMID: 27438806 DOI: 10.1007/s00234-016-1724-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Based on clinical observations, we hypothesized that in infiltrative high-grade brainstem neoplasms, such as diffuse intrinsic pontine glioma (DIPG), longitudinal metabolic evaluation of the tumor by magnetic resonance spectroscopy (MRS) may be more accurate than volumetric data for monitoring the tumor's biological evolution during standard treatment. METHODS We evaluated longitudinal MRS data and corresponding tumor volumes of 31 children with DIPG. We statistically analyzed correlations between tumor volume and ratios of Cho/NAA, Cho/Cr, and NAA/Cr at key time points during the course of the disease through the end of the progression-free survival period. RESULTS By the end of RT, tumor volume had significantly decreased from the baseline (P < .0001) and remained decreased through the last available follow-up magnetic resonance imaging study (P = .007632). However, the metabolic profile of the tumor tissue (Cho/Cr, NAA/Cr, and Cho/NAA ratios) did not change significantly over time. CONCLUSION Our data show that longitudinal tumor volume and metabolic profile changes are dissociated in patients with DIPG during progression-free survival. Volume changes, therefore, may not accurately reflect treatment-related changes in tumor burden. This study adds to the existing body of evidence that the value of conventional MRI metrics, including volumetric data, needs to be reevaluated critically and, in infiltrative tumors in particular, may not be useful as study end-points in clinical trials. We submit that advanced quantitative MRI data, including robust, MRS-based metabolic ratios and diffusion and perfusion metrics, may be better surrogate markers of key end-points in clinical trials.
Collapse
|
200
|
Abstract
Neurologic complications of cancer are common and are frequently life-threatening events. Certain neurologic emergencies occur more frequently in the cancer population, specifically elevated intracranial pressure, epidural cord compression, status epilepticus, ischemic and hemorrhagic stroke, central nervous system infection, and treatment-associated neurologic dysfunction. These emergencies require early diagnosis and prompt treatment to ensure the best possible outcome and are best managed in the intensive care unit. This article reviews the presentation, pathophysiology, and management of the most common causes of acute neurologic decompensation in the patient with cancer.
Collapse
Affiliation(s)
- Andrew L Lin
- 1 Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edward K Avila
- 1 Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|