151
|
Hawbaker TJ, Radeloff VC, Stewart SI, Hammer RB, Keuler NS, Clayton MK. Human and biophysical influences on fire occurrence in the United States. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2013; 23:565-582. [PMID: 23734486 DOI: 10.1890/12-1816.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
National-scale analyses of fire occurrence are needed to prioritize fire policy and management activities across the United States. However, the drivers of national-scale patterns of fire occurrence are not well understood, and how the relative importance of human or biophysical factors varies across the country is unclear. Our research goal was to model the drivers of fire occurrence within ecoregions across the conterminous United States. We used generalized linear models to compare the relative influence of human, vegetation, climate, and topographic variables on fire occurrence in the United States, as measured by MODIS active fire detections collected between 2000 and 2006. We constructed models for all fires and for large fires only and generated predictive maps to quantify fire occurrence probabilities. Areas with high fire occurrence probabilities were widespread in the Southeast, and localized in the Mountain West, particularly in southern California, Arizona, and New Mexico. Probabilities for large-fire occurrence were generally lower, but hot spots existed in the western and south-central United States The probability of fire occurrence is a critical component of fire risk assessments, in addition to vegetation type, fire behavior, and the values at risk. Many of the hot spots we identified have extensive development in the wildland--urban interface and are near large metropolitan areas. Our results demonstrated that human variables were important predictors of both all fires and large fires and frequently exhibited nonlinear relationships. However, vegetation, climate, and topography were also significant variables in most ecoregions. If recent housing growth trends and fire occurrence patterns continue, these areas will continue to challenge policies and management efforts seeking to balance the risks generated by wildfires with the ecological benefits of fire.
Collapse
Affiliation(s)
- Todd J Hawbaker
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
152
|
Spatial Characterization of Wildfire Orientation Patterns in California. FORESTS 2013. [DOI: 10.3390/f4010197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
153
|
Syphard AD, Regan HM, Franklin J, Swab RM, Bonebrake TC. Does functional type vulnerability to multiple threats depend on spatial context in Mediterranean-climate regions? DIVERS DISTRIB 2013. [DOI: 10.1111/ddi.12076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
| | - Helen M. Regan
- Department of Biology; University of California; Riverside; CA; 92521; USA
| | - Janet Franklin
- School of Geographical Sciences and Urban Planning; Arizona State University; Tempe; AZ; 85287-5302; USA
| | - Rebecca M. Swab
- Department of Biology; University of California; Riverside; CA; 92521; USA
| | | |
Collapse
|
154
|
Curt T, Borgniet L, Bouillon C. Wildfire frequency varies with the size and shape of fuel types in southeastern France: implications for environmental management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 117:150-161. [PMID: 23369835 DOI: 10.1016/j.jenvman.2012.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 11/28/2012] [Accepted: 12/07/2012] [Indexed: 06/01/2023]
Abstract
Characterizing time intervals between successive fires in the recent history is of main interest for fire hazard prevention and sustainable environmental management as it indicates what the typical fire return interval for each type of ecosystem is. We tested the extent to which fire return intervals (FRIs) depend on fuel type and age, and we compared FRI values between two fire-prone areas of south-eastern France (Provence). These areas had similar weather and roughly similar fuel types but fuels occurred in patches with different sizes and shapes in the landscape. We built a fire database (1960-2010) and we fitted Weibull distributions of FRI in order to compute the probability density function and the hazard of burning. Our results indicate maximal probability of burning again for shrublands (garrigues and maquis), and minimal values for mixed broadleaf-conifer forests and broadleaved forests. Most fuel types of Provence showed no effect of fuel age on the probability of burning again. Only the unmanaged maquis showed a linear increase of fire hazard in time due to a rapid postfire fuel build up. Rather long fire-free intervals and low age-dependency for most forest fuels of Provence suggest that reducing their biomass may not be sufficient to reduce fire risk. In contrast, the flammable shrublands have rather short fire return intervals and represent a high fire hazard for the whole study area. The two areas had statistically significant difference of fire return intervals for a same fuel type (e.g. 18-22 years for shrublands, 20-24 years for pine forests, and 24-27 years for oak forests). This suggested that size, shape and connectivity of fuels play a major role in the probability of burning again and should be taken into account for fire management. The present policy of fire prevention puts efforts into public information and prevention, and preferential management of fuels at risk in the vicinity of roads and wildland-urban interfaces where fires occur preferentially. However, fire suppression may also take advantage of favouring low-flammable fuels with low age-dependency on strategic places in the landscape.
Collapse
Affiliation(s)
- Thomas Curt
- Irstea, UR EMAX Ecosystèmes méditerranéens et risques, 3275 route Cézanne, CS 40061, 13182 Aix-en-Provence cedex 5, France.
| | | | | |
Collapse
|
155
|
Ganteaume A, Camia A, Jappiot M, San-Miguel-Ayanz J, Long-Fournel M, Lampin C. A review of the main driving factors of forest fire ignition over Europe. ENVIRONMENTAL MANAGEMENT 2013; 51:651-662. [PMID: 23086400 DOI: 10.1007/s00267-012-9961-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/26/2012] [Indexed: 06/01/2023]
Abstract
Knowledge of the causes of forest fires, and of the main driving factors of ignition, is an indispensable step towards effective fire prevention policies. This study analyses the factors driving forest fire ignition in the Mediterranean region including the most common human and environmental factors used for modelling in the European context. Fire ignition factors are compared to spatial and temporal variations of fire occurrence in the region, then are compared to results obtained in other areas of the world, with a special focus on North America (US and Canada) where a significant number of studies has been carried out on this topic. The causes of forest fires are varied and their distribution differs among countries, but may also differ spatially and temporally within the same country. In Europe, and especially in the Mediterranean basin, fires are mostly human-caused mainly due arson. The distance to transport networks and the distance to urban or recreation areas are among the most frequently used human factors in modelling exercises and the Wildland-Urban Interface is increasingly taken into account in the modelling of fire occurrence. Depending on the socio-economic context of the region concerned, factors such as the unemployment rate or variables linked to agricultural activity can explain the ignition of intentional and unintentional fires. Regarding environmental factors, those related to weather, fuel and topography are the most significant drivers of ignition of forest fires, especially in Mediterranean-type regions. For both human and lightning-caused fires, there is a geographical gradient of fire ignition, mainly due to variations in climate and fuel composition but also to population density for instance. The timing of fires depends on their causes. In populated areas, the timing of human-caused fires is closely linked to human activities and peaks in the afternoon whereas, in remote areas, the timing of lightning-caused fires is more linked to weather conditions and the season, with most such fires occurring in summer.
Collapse
Affiliation(s)
- Anne Ganteaume
- IRSTEA, UR EMAX, CS 40061, 13182, Aix-en-Provence, France.
| | | | | | | | | | | |
Collapse
|
156
|
Conlisk E, Syphard AD, Franklin J, Flint L, Flint A, Regan H. Uncertainty in assessing the impacts of global change with coupled dynamic species distribution and population models. GLOBAL CHANGE BIOLOGY 2013; 19:858-869. [PMID: 23504842 DOI: 10.1111/gcb.12090] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/07/2012] [Accepted: 10/15/2012] [Indexed: 06/01/2023]
Abstract
Concern over rapid global changes and the potential for interactions among multiple threats are prompting scientists to combine multiple modelling approaches to understand impacts on biodiversity. A relatively recent development is the combination of species distribution models, land-use change predictions, and dynamic population models to predict the relative and combined impacts of climate change, land-use change, and altered disturbance regimes on species' extinction risk. Each modelling component introduces its own source of uncertainty through different parameters and assumptions, which, when combined, can result in compounded uncertainty that can have major implications for management. Although some uncertainty analyses have been conducted separately on various model components - such as climate predictions, species distribution models, land-use change predictions, and population models - a unified sensitivity analysis comparing various sources of uncertainty in combined modelling approaches is needed to identify the most influential and problematic assumptions. We estimated the sensitivities of long-run population predictions to different ecological assumptions and parameter settings for a rare and endangered annual plant species (Acanthomintha ilicifolia, or San Diego thornmint). Uncertainty about habitat suitability predictions, due to the choice of species distribution model, contributed most to variation in predictions about long-run populations.
Collapse
Affiliation(s)
- Erin Conlisk
- Department of Biology, Center for Conservation Biology, University of California, 900 University Ave, Riverside, CA 92521, USA.
| | | | | | | | | | | |
Collapse
|
157
|
Stein ED, Brown JS, Hogue TS, Burke MP, Kinoshita A. Stormwater contaminant loading following southern California wildfires. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:2625-38. [PMID: 22927117 DOI: 10.1002/etc.1994] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 05/16/2012] [Accepted: 07/29/2012] [Indexed: 05/21/2023]
Abstract
Contaminant loading associated with stormwater runoff from recently burned areas is poorly understood, despite the fact that it has the potential to affect downstream water quality. The goal of the present study is to assess regional patterns of runoff and contaminant loading from wildfires in urban fringe areas of southern California. Postfire stormwater runoff was sampled from five wildfires that each burned between 115 and 658 km(2) of natural open space between 2003 and 2009. Between two and five storm events were sampled per site over the first one to two years following the fires for basic constituents, metals, nutrients, total suspended solids, and polycyclic aromatic hydrocarbons (PAHs). Results were compared to data from 16 unburned natural areas and six developed sites. Mean copper, lead, and zinc flux (kg/km(2)) were between 112- and 736-fold higher from burned catchments and total phosphorus was up to 921-fold higher compared to unburned natural areas. Polycyclic aromatic hydrocarbon flux was four times greater from burned areas than from adjacent urban areas. Ash fallout on nearby unburned watersheds also resulted in a threefold increase in metals and PAHs. Attenuation of elevated concentration and flux values appears to be driven mainly by rainfall magnitude. Contaminant loading from burned landscapes has the potential to be a substantial contribution to the total annual load to downstream areas in the first several years following fires.
Collapse
Affiliation(s)
- Eric D Stein
- Biology Department, Southern California Coastal Water Research Project, Costa Mesa, CA, USA.
| | | | | | | | | |
Collapse
|
158
|
Geospatial Analysis Application to Forecast Wildfire Occurrences in South Carolina. FORESTS 2012. [DOI: 10.3390/f3020265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
159
|
Conlisk E, Lawson D, Syphard AD, Franklin J, Flint L, Flint A, Regan HM. The roles of dispersal, fecundity, and predation in the population persistence of an oak (Quercus engelmannii) under global change. PLoS One 2012; 7:e36391. [PMID: 22623955 PMCID: PMC3356376 DOI: 10.1371/journal.pone.0036391] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/06/2012] [Indexed: 11/19/2022] Open
Abstract
A species' response to climate change depends on the interaction of biotic and abiotic factors that define future habitat suitability and species' ability to migrate or adapt. The interactive effects of processes such as fire, dispersal, and predation have not been thoroughly addressed in the climate change literature. Our objective was to examine how life history traits, short-term global change perturbations, and long-term climate change interact to affect the likely persistence of an oak species--Quercus engelmannii (Engelmann oak). Specifically, we combined dynamic species distribution models, which predict suitable habitat, with stochastic, stage-based metapopulation models, which project population trajectories, to evaluate the effects of three global change factors--climate change, land use change, and altered fire frequency--emphasizing the roles of dispersal and seed predation. Our model predicted dramatic reduction in Q. engelmannii abundance, especially under drier climates and increased fire frequency. When masting lowers seed predation rates, decreased masting frequency leads to large abundance decreases. Current rates of dispersal are not likely to prevent these effects, although increased dispersal could mitigate population declines. The results suggest that habitat suitability predictions by themselves may under-estimate the impact of climate change for other species and locations.
Collapse
Affiliation(s)
- Erin Conlisk
- Department of Biology, Center for Conservation Biology, University of California Riverside, Riverside, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
160
|
de Torres Curth M, Biscayart C, Ghermandi L, Pfister G. Wildland-urban interface fires and socioeconomic conditions: a case study of a northwestern Patagonia city. ENVIRONMENTAL MANAGEMENT 2012; 49:876-891. [PMID: 22392286 DOI: 10.1007/s00267-012-9825-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 02/14/2012] [Indexed: 05/31/2023]
Abstract
In many regions of the world, fires are primarily of anthropogenic origin. In northwestern Patagonia, the number of fires is not correlated with meteorological variables, but is concentrated in urban areas. This study was conducted in the wildland-urban interface (WUI) area of San Carlos de Bariloche (Patagonia, Argentina), within the Nahuel Huapi National Park. WUI fires are particularly problematic because, besides people and goods, they represent a danger to protected areas. We studied the relationship between fire records and socioeconomic indicators within the WUI of San Carlos de Bariloche. We conducted a Multiple Correspondence Factorial Analysis and an Ascendant Hierarchical Classification of the city neighborhoods. The results show that the neighborhoods in Bariloche can be divided into three classes: High Socioeconomic Fire Risk neighborhoods, including neighborhoods with the highest fire rates, where people have low instruction level, high levels of unsatisfied basic needs and high unemployment levels; Low Socioeconomic Fire Risk neighborhoods, that groups neighborhoods which present the opposite characterization, and Moderate Socioeconomic Fire Risk neighborhoods, which are more heterogeneous. Once neighborhoods were classified, a Socioeconomic Fire Risk map was generated, supplementing the existing WUI Fire Danger map. Our results emphasize the relevance of socioeconomic variables to fire policies.
Collapse
Affiliation(s)
- Monica de Torres Curth
- Laboratorio Ecotono, INIBIOMA-Universidad Nacional del Comahue, Quintral, 1250, 8400, San Carlos de Bariloche, Rio Negro, Argentina.
| | | | | | | |
Collapse
|
161
|
Housing arrangement and location determine the likelihood of housing loss due to wildfire. PLoS One 2012; 7:e33954. [PMID: 22470499 PMCID: PMC3314688 DOI: 10.1371/journal.pone.0033954] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 02/20/2012] [Indexed: 12/05/2022] Open
Abstract
Surging wildfires across the globe are contributing to escalating residential losses and have major social, economic, and ecological consequences. The highest losses in the U.S. occur in southern California, where nearly 1000 homes per year have been destroyed by wildfires since 2000. Wildfire risk reduction efforts focus primarily on fuel reduction and, to a lesser degree, on house characteristics and homeowner responsibility. However, the extent to which land use planning could alleviate wildfire risk has been largely missing from the debate despite large numbers of homes being placed in the most hazardous parts of the landscape. Our goal was to examine how housing location and arrangement affects the likelihood that a home will be lost when a wildfire occurs. We developed an extensive geographic dataset of structure locations, including more than 5500 structures that were destroyed or damaged by wildfire since 2001, and identified the main contributors to property loss in two extensive, fire-prone regions in southern California. The arrangement and location of structures strongly affected their susceptibility to wildfire, with property loss most likely at low to intermediate structure densities and in areas with a history of frequent fire. Rates of structure loss were higher when structures were surrounded by wildland vegetation, but were generally higher in herbaceous fuel types than in higher fuel-volume woody types. Empirically based maps developed using housing pattern and location performed better in distinguishing hazardous from non-hazardous areas than maps based on fuel distribution. The strong importance of housing arrangement and location indicate that land use planning may be a critical tool for reducing fire risk, but it will require reliable delineations of the most hazardous locations.
Collapse
|
162
|
Bowman DMJS, Balch J, Artaxo P, Bond WJ, Cochrane MA, D'Antonio CM, DeFries R, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Mack M, Moritz MA, Pyne S, Roos CI, Scott AC, Sodhi NS, Swetnam TW, Whittaker R. The human dimension of fire regimes on Earth. JOURNAL OF BIOGEOGRAPHY 2011; 38:2223-2236. [PMID: 22279247 PMCID: PMC3263421 DOI: 10.1111/j.1365-2699.2011.02595.x] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Humans and their ancestors are unique in being a fire-making species, but 'natural' (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from 'natural' background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding of the development and diversification of fire regimes, covering the pre-human period, human domestication of fire, and the subsequent transition from subsistence agriculture to industrial economies. All of these phases still occur on Earth, providing opportunities for comparative research.
Collapse
Affiliation(s)
- David M J S Bowman
- School of Plant Science, Private Bag 55, University of TasmaniaHobart, Tas., Australia
| | - Jennifer Balch
- NCEAS735 State Street, Suite 300University of Santa BarbaraSanta Barbara, CA, USA
| | - Paulo Artaxo
- Instituto de Física, Universidade de São Paulo 1516Rua do Matão, Travessa R, 187, São Paulo, SP, Brazil
| | - William J Bond
- Botany Department, University of Cape TownRondebosch, South Africa
| | - Mark A Cochrane
- Geographic Information Science Center of Excellence (GIScCE) South Dakota State UniversityBrookings, SD, USA
| | - Carla M D'Antonio
- Environmental Studies Program and Department of Ecology, Evolution and Marine Biology, University of CaliforniaSanta Barbara, CA, USA
| | - Ruth DeFries
- Ecology, Evolution & Environmental Biology, Columbia UniversityNew York, NY, USA
| | - Fay H Johnston
- Menzies Research Institute, University of TasmaniaPrivate Bag 23, Hobart, Tas., Australia
| | - Jon E Keeley
- US Geological Survey, Western Ecological Research Center, Sequoia-Kings Canyon Field StationThree Rivers, CA, USA
- Department of Ecology and Evolutionary Biology, University of CaliforniaLos Angeles, CA, USA
| | - Meg A Krawchuk
- Department of Environmental Science, Policy and Management, University of CaliforniaBerkeley, CA, USA
| | - Christian A Kull
- School of Geography and Environmental Science, Monash UniversityMelbourne, Vic., Australia
| | - Michelle Mack
- Department of Biology, University of FloridaGainesville, FL, USA
| | - Max A Moritz
- Environmental Science, Policy, and Management Department, University of CaliforniaBerkeley, CA, USA
| | - Stephen Pyne
- School of Life Sciences, Arizona State UniversityTempe, AZ, USA
| | - Christopher I Roos
- Department of Anthropology, Southern Methodist UniversityDallas, TX, USA
| | - Andrew C Scott
- Department of Earth Sciences, Royal Holloway University of LondonEgham, UK
| | - Navjot S Sodhi
- Department of Biological Sciences, Faculty of Science, National University of SingaporeSingapore
| | - Thomas W Swetnam
- Laboratory of Tree-Ring Research, The University of ArizonaTucson, AZ, USA
| | - Robert Whittaker
- Laboratory of Tree-Ring Research, The University of ArizonaTucson, AZ, USA
| |
Collapse
|
163
|
Syphard AD, Clarke KC, Franklin J, Regan HM, McGinnis M. Forecasts of habitat loss and fragmentation due to urban growth are sensitive to source of input data. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2011; 92:1882-1893. [PMID: 21477919 DOI: 10.1016/j.jenvman.2011.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 01/10/2011] [Accepted: 03/11/2011] [Indexed: 05/30/2023]
Abstract
The conversion of natural habitat to urban settlements is a primary driver of biodiversity loss, and species' persistence is threatened by the extent, location, and spatial pattern of development. Urban growth models are widely used to anticipate future development and to inform conservation management, but the source of spatial input to these models may contribute to uncertainty in their predictions. We compared two sources of historic urban maps, used as input for model calibration, to determine how differences in definition and scale of urban extent affect the resulting spatial predictions from a widely used urban growth model for San Diego County, CA under three conservation scenarios. The results showed that rate, extent, and spatial pattern of predicted urban development, and associated habitat loss, may vary substantially depending on the source of input data, regardless of how much land is excluded from development. Although the datasets we compared both represented urban land, different types of land use/land cover included in the definition of urban land and different minimum mapping units contributed to the discrepancies. Varying temporal resolution of the input datasets also contributed to differences in projected rates of development. Differential predicted impacts to vegetation types illustrate how the choice of spatial input data may lead to different conclusions relative to conservation. Although the study cannot reveal whether one dataset is better than another, modelers should carefully consider that geographical reality can be represented differently, and should carefully choose the definition and scale of their data to fit their research objectives.
Collapse
Affiliation(s)
- Alexandra D Syphard
- Conservation Biology Institute, 10423 Sierra Vista Avenue, La Mesa, CA 91941, USA.
| | | | | | | | | |
Collapse
|
164
|
Anderson RG, Goulden ML. Relationships between climate, vegetation, and energy exchange across a montane gradient. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jg001476] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
165
|
Sleeter BM, Wilson TS, Soulard CE, Liu J. Estimation of late twentieth century land-cover change in California. ENVIRONMENTAL MONITORING AND ASSESSMENT 2011; 173:251-66. [PMID: 20217217 DOI: 10.1007/s10661-010-1385-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 02/11/2010] [Indexed: 05/21/2023]
Abstract
We present the first comprehensive multi-temporal analysis of land-cover change for California across its major ecological regions and primary land-cover types. Recently completed satellite-based estimates of land-cover and land-use change information for large portions of the United States allow for consistent measurement and comparison across heterogeneous landscapes. Landsat data were employed within a pure-panel stratified one-stage cluster sample to estimate and characterize land-cover change for 1973-2000. Results indicate anthropogenic and natural disturbances, such as forest cutting and fire, were the dominant changes, followed by large fluctuations between agriculture and rangelands. Contrary to common perception, agriculture remained relatively stable over the 27-year period with an estimated loss of 1.0% of agricultural land. The largest net declines occurred in the grasslands/shrubs class at 5,131 km2 and forest class at 4,722 km2. Developed lands increased by 37.6%, composing an estimated 4.2% of the state's land cover by 2000.
Collapse
Affiliation(s)
- Benjamin M Sleeter
- United States Geological Survey, Western Geographic Science Center, Menlo Park, CA 94025, USA.
| | | | | | | |
Collapse
|
166
|
Driscoll DA, Lindenmayer DB, Bennett AF, Bode M, Bradstock RA, Cary GJ, Clarke MF, Dexter N, Fensham R, Friend G, Gill M, James S, Kay G, Keith DA, MacGregor C, Possingham HP, Russel-Smith J, Salt D, Watson JEM, Williams D, York A. Resolving conflicts in fire management using decision theory: asset-protection versus biodiversity conservation. Conserv Lett 2010. [DOI: 10.1111/j.1755-263x.2010.00115.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
167
|
Pautasso M, Dehnen-Schmutz K, Holdenrieder O, Pietravalle S, Salama N, Jeger MJ, Lange E, Hehl-Lange S. Plant health and global change - some implications for landscape management. Biol Rev Camb Philos Soc 2010; 85:729-55. [DOI: 10.1111/j.1469-185x.2010.00123.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
168
|
Radeloff VC, Stewart SI, Hawbaker TJ, Gimmi U, Pidgeon AM, Flather CH, Hammer RB, Helmers DP. Housing growth in and near United States protected areas limits their conservation value. Proc Natl Acad Sci U S A 2010; 107:940-5. [PMID: 20080780 PMCID: PMC2818924 DOI: 10.1073/pnas.0911131107] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protected areas are crucial for biodiversity conservation because they provide safe havens for species threatened by land-use change and resulting habitat loss. However, protected areas are only effective when they stop habitat loss within their boundaries, and are connected via corridors to other wild areas. The effectiveness of protected areas is threatened by development; however, the extent of this threat is unknown. We compiled spatially-detailed housing growth data from 1940 to 2030, and quantified growth for each wilderness area, national park, and national forest in the conterminous United States. Our findings show that housing development in the United States may severely limit the ability of protected areas to function as a modern "Noah's Ark." Between 1940 and 2000, 28 million housing units were built within 50 km of protected areas, and 940,000 were built within national forests. Housing growth rates during the 1990s within 1 km of protected areas (20% per decade) outpaced the national average (13%). If long-term trends continue, another 17 million housing units will be built within 50 km of protected areas by 2030 (1 million within 1 km), greatly diminishing their conservation value. US protected areas are increasingly isolated, housing development in their surroundings is decreasing their effective size, and national forests are even threatened by habitat loss within their administrative boundaries. Protected areas in the United States are thus threatened similarly to those in developing countries. However, housing growth poses the main threat to protected areas in the United States whereas deforestation is the main threat in developing countries.
Collapse
Affiliation(s)
- Volker C Radeloff
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Lampin-Maillet C, Jappiot M, Long M, Bouillon C, Morge D, Ferrier JP. Mapping wildland-urban interfaces at large scales integrating housing density and vegetation aggregation for fire prevention in the South of France. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2010; 91:732-741. [PMID: 19879685 DOI: 10.1016/j.jenvman.2009.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 07/22/2009] [Accepted: 10/05/2009] [Indexed: 05/28/2023]
Abstract
Every year, more than 50,000 wildland fires affect about 500,000ha of vegetation in southern European countries, particularly in wildland-urban interfaces (WUI). This paper presents a method to characterize and map WUIs at large scales and over large areas for wildland fire prevention in the South of France. Based on the combination of four types of building configuration and three classes of vegetation structure, 12 interface types were classified. Through spatial analysis, fire ignition density and burned area ratio were linked with the different types of WUI. Among WUI types, isolated WUIs with the lowest housing density represent the highest level of fire risk.
Collapse
|
170
|
Spatial modelling of socioeconomic data to understand patterns of human-caused wildfire ignition risk in the SW of Madrid (central Spain). Ecol Modell 2010. [DOI: 10.1016/j.ecolmodel.2009.08.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
171
|
Hammer RB, Stewart SI, Hawbaker TJ, Radeloff VC. Housing growth, forests, and public lands in Northern Wisconsin from 1940 to 2000. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2009; 90:2690-2698. [PMID: 19329243 DOI: 10.1016/j.jenvman.2009.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 01/09/2009] [Accepted: 02/08/2009] [Indexed: 05/27/2023]
Abstract
Rural, forested areas throughout the United States are experiencing strong housing growth with potentially detrimental impacts on the environment. In this paper, we quantify housing growth in Northern Wisconsin over the last sixty years to determine if growth rates were higher near public lands, which may represent an important recreational amenity. We used data from the U.S. Census to produce decadal housing density estimates, "backcasts," from 1940 to 2000 for northern Wisconsin to examine "rural sprawl" in northern Wisconsin and its relationship to forested areas and public lands. We integrated housing density estimates with the 1992/1993 National Land Cover Dataset to examine the relationship between rural sprawl and land cover, especially forests. Between 1940 and 2000, private land with <2 housing units/km(2) decreased from 47% to 21% of the total landscape. Most importantly, housing growth was concentrated along the boundaries of public lands. In 14 of the 19 counties that we studied, housing growth rates within 1 km of a public land boundary exceeded growth rates in the remainder of the county, and three of the five counties that did not exhibit this pattern, were the ones with the least amount of public land. Future growth can be expected in areas with abundant natural amenities, highlighting the critical need for additional research and effective natural resource management and regional planning to address these challenges.
Collapse
Affiliation(s)
- Roger B Hammer
- Department of Sociology, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | |
Collapse
|
172
|
Syphard AD, Radeloff VC, Hawbaker TJ, Stewart SI. Conservation threats due to human-caused increases in fire frequency in Mediterranean-climate ecosystems. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2009; 23:758-69. [PMID: 22748094 DOI: 10.1111/j.1523-1739.2009.01223.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Periodic wildfire is an important natural process in Mediterranean-climate ecosystems, but increasing fire recurrence threatens the fragile ecology of these regions. Because most fires are human-caused, we investigated how human population patterns affect fire frequency. Prior research in California suggests the relationship between population density and fire frequency is not linear. There are few human ignitions in areas with low population density, so fire frequency is low. As population density increases, human ignitions and fire frequency also increase, but beyond a density threshold, the relationship becomes negative as fuels become sparser and fire suppression resources are concentrated. We tested whether this hypothesis also applies to the other Mediterranean-climate ecosystems of the world. We used global satellite databases of population, fire activity, and land cover to evaluate the spatial relationship between humans and fire in the world's five Mediterranean-climate ecosystems. Both the mean and median population densities were consistently and substantially higher in areas with than without fire, but fire again peaked at intermediate population densities, which suggests that the spatial relationship is complex and nonlinear. Some land-cover types burned more frequently than expected, but no systematic differences were observed across the five regions. The consistent association between higher population densities and fire suggests that regardless of differences between land-cover types, natural fire regimes, or overall population, the presence of people in Mediterranean-climate regions strongly affects the frequency of fires; thus, population growth in areas now sparsely settled presents a conservation concern. Considering the sensitivity of plant species to repeated burning and the global conservation significance of Mediterranean-climate ecosystems, conservation planning needs to consider the human influence on fire frequency. Fine-scale spatial analysis of relationships between people and fire may help identify areas where increases in fire frequency will threaten ecologically valuable areas.
Collapse
Affiliation(s)
- Alexandra D Syphard
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
173
|
Parisien MA, Moritz MA. Environmental controls on the distribution of wildfire at multiple spatial scales. ECOL MONOGR 2009. [DOI: 10.1890/07-1289.1] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
174
|
Yang J, He HS, Shifley SR. Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2008; 18:1212-1225. [PMID: 18686582 DOI: 10.1890/07-0825.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of biotic, abiotic, and anthropogenic constraints on the spatial pattern of fire occurrence with that on burn probability (i.e., the probability that fire will spread to a particular location). Spatial point pattern analysis and landscape succession fire model (LANDIS) were used to create maps to show the contrast. We quantified spatial controls on both fire occurrence and fire spread in the Midwest Ozark Highlands region, USA. This area exhibits a typical anthropogenic surface fire regime. We found that (1) human accessibility and land ownership were primary limiting factors in shaping clustered fire origin locations; (2) vegetation and topography had a negligible influence on fire occurrence in this anthropogenic regime; (3) burn probability was higher in grassland and open woodland than in closed-canopy forest, even though fire occurrence density was less in these vegetation types; and (4) biotic and abiotic factors were secondary descriptive ingredients for determining the spatial patterns of burn probability. This study demonstrates how fire occurrence and spread interact with landscape patterns to affect the spatial distribution of wildfire risk. The application of spatial point pattern data analysis would also be valuable to researchers working on landscape forest fire models to integrate historical ignition location patterns in fire simulation.
Collapse
Affiliation(s)
- Jian Yang
- School of Natural Resources, University of Missouri, 203 ABNR Building, Columbia, Missouri 65211, USA.
| | | | | |
Collapse
|
175
|
Leu M, Hanser SE, Knick ST. The human footprint in the west: a large-scale analysis of anthropogenic impacts. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2008; 18:1119-39. [PMID: 18686576 DOI: 10.1890/07-0480.1] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Anthropogenic features such as urbanization, roads, and power lines, are increasing in western United States landscapes in response to rapidly growing human populations. However, their spatial effects have not been evaluated. Our goal was to model the human footprint across the western United States. We first delineated the actual area occupied by anthropogenic features, the physical effect area. Next, we developed the human footprint model based on the ecological effect area, the zone influenced by features beyond their physical presence, by combining seven input models: three models quantified top-down anthropogenic influences of synanthropic predators (avian predators, domestic dog and cat presence risk), and four models quantified bottom-up anthropogenic influences on habitat (invasion of exotic plants, human-caused fires, energy extraction, and anthropogenic wildland fragmentation). Using independent bird population data, we found bird abundance of four synanthropic species to correlate positively with human footprint intensity and negatively for three of the six species influenced by habitat fragmentation. We then evaluated the extent of the human footprint in relation to terrestrial (ecoregions) and aquatic systems (major rivers and lakes), regional management and conservation status, physical environment, and temporal changes in human actions. The physical effect area of anthropogenic features covered 13% of the western United States with agricultural land (9.8%) being most dominant. High-intensity human footprint areas (class 8-10) overlapped highly productive low-elevation private landholdings and covered 7% of the western United States compared to 48% for low-intensity areas (class 1-3), which were confined to low-productivity high-elevation federal landholdings. Areas within 1 km of rivers were more affected by the human footprint compared to lakes. Percentage human population growth was higher in low-intensity human footprint areas. The disproportional regional effects of the human footprint on landscapes in the western United States create a challenge to management of ecosystems and wildlife populations. Using footprint models, managers can plan land use actions, develop restoration scenarios, and identify areas of high conservation value at local landscapes within a regional context. Moreover, human footprint models serve as a tool to stratify landscapes for studies investigating floral and faunal response to human disturbance intensity gradients.
Collapse
Affiliation(s)
- Matthias Leu
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Snake River Field Station, 970 Lusk Street, Boise, Idaho 83706, USA.
| | | | | |
Collapse
|