151
|
Abstract
As women enter menopause, the concentration of estrogen and other female hormones declines. This hormonal decrease has been associated with a number of negative outcomes, including a greater incidence of injury as well as a delay in recovery from these injuries. Over the past two decades, our understanding of the protective effects of estrogen against various types of injury and disease states has grown immensely. In skeletal muscle, studies with animals have demonstrated that sex and estrogen may potentially influence muscle contractile properties and attenuate indices of post-exercise muscle damage, including the release of creatine kinase into the bloodstream and activity of the intramuscular lysosomal acid hydrolase, beta-glucuronidase. Furthermore, numerous studies have revealed an estrogen-mediated attenuation of infiltration of inflammatory cells such as neutrophils and macrophages into the skeletal muscles of rats following exercise or injury. Estrogen has also been shown to play a significant role in stimulating muscle repair and regenerative processes, including the activation and proliferation of satellite cells. Although the mechanisms by which estrogen exerts its influence upon indices of skeletal muscle damage, inflammation and repair have not been fully elucidated, it is thought that estrogen may potentially exert its protective effects by: (i) acting as an antioxidant, thus limiting oxidative damage; (ii) acting as a membrane stabilizer by intercalating within membrane phospholipids; and (iii) binding to estrogen receptors, thus governing the regulation of a number of downstream genes and molecular targets. In contrast to animal studies, studies with humans have not as clearly delineated an effect of estrogen on muscle contractile function or on indices of post-exercise muscle damage and inflammation. These inconsistencies have been attributed to a number of factors, including age and fitness level of subjects, the type and intensity of exercise protocols, and a focus on sex differences that typically involve factors and hormones in addition to estrogen. In recent years, hormone replacement therapy (HRT) or estrogen combined with exercise have been proposed as potentially therapeutic agents for postmenopausal women, as these agents may potentially limit muscle damage and inflammation and stimulate repair in this population. While the benefits and potential health risks of long-term HRT use have been widely debated, controlled studies using short-term HRT or other estrogen agonists may provide future new and valuable insights into understanding the effects of estrogen on skeletal muscle, and greatly benefit the aging female population. Recent studies with older females have begun to demonstrate their benefits.
Collapse
Affiliation(s)
- Deborah L Enns
- Department of Kinesiology and Physical Education, Faculty of Science, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | | |
Collapse
|
152
|
Skeletal muscle injury versus adaptation with aging: novel insights on perplexing paradigms. Exerc Sport Sci Rev 2010; 38:10-6. [PMID: 20016294 DOI: 10.1097/jes.0b013e3181c5cd7c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A growing body of data supports a view that skeletal muscle's response after mechanical loading does not always result in the classically reported "injury response." Furthermore, current evidence supports a model of muscle adaptation and/or maladaptation, distinct from overt injury, in which myofiber degeneration and inflammation do not contribute as significantly as once reported even in aged populations.
Collapse
|
153
|
Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, Kaul A, Kinnett K, McDonald C, Pandya S, Poysky J, Shapiro F, Tomezsko J, Constantin C. Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care. Lancet Neurol 2010; 9:177-89. [PMID: 19945914 DOI: 10.1016/s1474-4422(09)70272-8] [Citation(s) in RCA: 729] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Optimum management of Duchenne muscular dystrophy (DMD) requires a multidisciplinary approach that focuses on anticipatory and preventive measures as well as active interventions to address the primary and secondary aspects of the disorder. Implementing comprehensive management strategies can favourably alter the natural history of the disease and improve function, quality of life, and longevity. Standardised care can also facilitate planning for multicentre trials and help with the identification of areas in which care can be improved. Here, we present a comprehensive set of DMD care recommendations for management of rehabilitation, orthopaedic, respiratory, cardiovascular, gastroenterology/nutrition, and pain issues, as well as general surgical and emergency-room precautions. Together with part 1 of this Review, which focuses on diagnosis, pharmacological treatment, and psychosocial care, these recommendations allow diagnosis and management to occur in a coordinated multidisciplinary fashion.
Collapse
Affiliation(s)
- Katharine Bushby
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Abad CCC, Ito LT, Barroso R, Ugrinowitsch C, Tricoli V. Efeito da massagem clássica na percepção subjetiva de dor, edema, amplitude articular e força máxima após dor muscular tardia induzida pelo exercício. REV BRAS MED ESPORTE 2010. [DOI: 10.1590/s1517-86922010000100007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
O treino de força com cargas elevadas tem induzido indivíduos a apresentarem sintomas de dano muscular que incluem a dor muscular tardia. Na tentativa de diminuir sintomas e desconforto da DOMS, estratégias têm sido utilizadas, entre elas, a massagem. O objetivo do presente estudo foi verificar os efeitos da massagem clássica na percepção subjetiva de dor (DOMS), circunferência do braço (CIR), amplitude de movimento (ADM) e força máxima (1RM) após protocolo para indução de DOMS. Para isso, 18 adultos jovens saudáveis do gênero masculino foram divididos em três grupos (G1 = massagem; G2 = protocolo; G3 = protocolo + massagem) equalizados pelo teste de uma força máxima de flexão de cotovelo no banco Scott. O protocolo de indução de DOMS consistiu de 30 ações excêntricas musculares supramáximas (seis séries de cinco repetições a 110% de 1RM). A massagem foi realizada no grupo G3 imediatamente após o protocolo durante seis minutos. As variáveis dependentes (DOMS, CIR, ADM) foram avaliadas 24, 48, 72 e 96 horas após o protocolo, enquanto a força máxima, apenas após 48 e 96 horas. Os resultados indicaram aumento na DOMS e diminuição na ADM e 1RM, similar aos de outros estudos que utilizaram protocolos semelhantes. No entanto, não houve diferenças entre os grupos G2 e G3 em nenhuma das variáveis analisadas. Pode-se concluir que com esse design experimental o protocolo utilizado foi eficaz para provocar as alterações nas variáveis analisadas e a massagem não causou nenhum benefício na recuperação das funções musculares nem na percepção subjetiva de dor.
Collapse
|
155
|
A Double-Blind Randomized Placebo Controlled Parallel Group Study Evaluating the Effects of Ibuprofen and Glucosamine Sulfate on Exercise Induced Muscle Soreness. ACTA ACUST UNITED AC 2010. [DOI: 10.1300/j094v15n01_04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
156
|
Silva LA, Pinho CA, Silveira PCL, Tuon T, De Souza CT, Dal-Pizzol F, Pinho RA. Vitamin E supplementation decreases muscular and oxidative damage but not inflammatory response induced by eccentric contraction. J Physiol Sci 2010; 60:51-7. [PMID: 19859781 PMCID: PMC10717099 DOI: 10.1007/s12576-009-0065-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to investigate the effects of vitamin E supplementation on muscular and oxidative damage, as well as the inflammatory response induced by eccentric exercise (EE) in humans. Twenty-one participants with a mean age of 22.5 +/- 4 years, weight of 68.2 +/- 4.9 kg, and height of 173 +/- 4.3 cm were selected and divided randomly into two groups: supplemented (S) (n = 11) and placebo (P) (n = 10). Fourteen days after starting supplementation, subjects performed EE (three sets until exhaustion with elbow flexion and extension on the Scott bench, 80% 1 RM). Blood samples were collected on days 0, 2, 4, and 7 after EE. Muscle soreness (MS), lactate dehydrogenase (LDH) activity, lipid peroxidation, protein carbonylation, tumor necrosis factor-alpha (TNF-alpha), and interleukin 10 (IL-10) levels were determined. We measured a significant increase in MS, LDH, lipid peroxidation, and carbonylation in both groups on days 2, 4, and 7 after eccentric contractions (EC). Values of the supplement group were lower than those of the placebo group at 4 and 7 days after EC in all parameters. Both groups showed significantly increased TNF-alpha on the second day and IL-10 concentration on the fourth and seventh days after EE. The results suggest that vitamin E supplementation represents an important factor in the defense against oxidative stress and muscle damage but not against the inflammatory response in humans.
Collapse
Affiliation(s)
- Luciano A. Silva
- Exercise Biochemistry and Physiology Laboratory, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC Brazil
| | - Cleber A. Pinho
- Exercise Biochemistry and Physiology Laboratory, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC Brazil
| | - Paulo C. L. Silveira
- Exercise Biochemistry and Physiology Laboratory, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC Brazil
| | - Talita Tuon
- Exercise Biochemistry and Physiology Laboratory, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC Brazil
| | - Claudio T. De Souza
- Exercise Biochemistry and Physiology Laboratory, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC Brazil
| | - Felipe Dal-Pizzol
- Physiopathology Laboratory, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC Brazil
| | - Ricardo A. Pinho
- Exercise Biochemistry and Physiology Laboratory, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC Brazil
| |
Collapse
|
157
|
Vinciguerra M, Musaro A, Rosenthal N. Regulation of Muscle Atrophy in Aging and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 694:211-33. [DOI: 10.1007/978-1-4419-7002-2_15] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
158
|
CRASSOUS BRIGITTE, RICHARD-BULTEAU HÉLÈNE, DELDICQUE LOUISE, SERRURIER BERNARD, PASDELOUP MARIELLE, FRANCAUX MARC, BIGARD XAVIER, KOULMANN NATHALIE. Lack of Effects of Creatine on the Regeneration of Soleus Muscle after Injury in Rats. Med Sci Sports Exerc 2009; 41:1761-9. [DOI: 10.1249/mss.0b013e31819f75cb] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
159
|
Jönhagen S, Ackermann P, Saartok T. Forward lunge: a training study of eccentric exercises of the lower limbs. J Strength Cond Res 2009; 23:972-8. [PMID: 19387378 DOI: 10.1519/jsc.0b013e3181a00d98] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A few studies have shown that eccentric exercise is effective for prevention and treatment of muscle injuries. Most earlier studies on eccentric exercises have used training with advanced equipment. Forward lunges are considered eccentric exercises, and they may be performed without any equipment. These exercises are commonly used by sprint runners. We performed a prospective, randomized, 6-week training study comparing the effects of walking or jumping forward lunges on hamstring and quadriceps strength and function. Thirty-two soccer players were included in the study. The forward lunge training was done as an addition to ordinary soccer training twice a week for 6 weeks. The outcome was measured by the maximal hamstring and quadriceps strength tests and by functional tests with 1-leg hop tests and 30-m sprint runs. Overall muscle pain was evaluated using a visual analogue scale score, and local pain was estimated with an algometer. Whereas the walking lunge improved hamstring strength, the jumping lunge resulted in sprint running improvements. Algometer testing showed a general increase in the pain detection thresholds of all subjects, including the controls. Thus, precautions should be taken when algometers are used for temporal studies of pain. Walking and jumping forward lunges can be used for improving hamstring strength and running speed in young soccer player. The findings may have relevance when designing protocols for prevention and rehabilitation of muscle injuries.
Collapse
Affiliation(s)
- Sven Jönhagen
- Department of Orthopaedics, Stockholm Söder Hospital, Stockholm, Sweden.
| | | | | |
Collapse
|
160
|
Cutlip RG, Baker BA, Hollander M, Ensey J. Injury and adaptive mechanisms in skeletal muscle. J Electromyogr Kinesiol 2009; 19:358-72. [DOI: 10.1016/j.jelekin.2008.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/23/2008] [Accepted: 06/23/2008] [Indexed: 11/29/2022] Open
|
161
|
Bottas R, Nicol C, Komi PV, Linnamo V. Adaptive changes in motor control of rhythmic movement after maximal eccentric actions. J Electromyogr Kinesiol 2009; 19:347-56. [DOI: 10.1016/j.jelekin.2007.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 08/31/2007] [Accepted: 09/04/2007] [Indexed: 11/16/2022] Open
|
162
|
Abstract
Skeletal muscle breakdown occurs normally with exercise, followed by muscle repair and physiologic adaptation. Strenuous, unaccustomed, prolonged, and repetitive exercise, particularly when associated with other risk factors such as hot and humid climate or sickle cell trait can cause clinically significant exertional rhabdomyolysis (ER). Although most cases are asymptomatic and resolve without sequelae, ER is the most common cause of exercise-related myoglobinuric acute renal injury and acute renal failure in athletes. Exercise-related muscle pain, elevated serum creatine kinase (CK), and "cola-colored" urine have been described as a classic presentation of ER. The exact mechanism of ER has not been clearly elucidated. Most studies suggest a cascade of events that include depletion of adenosine triphosphate (ATP), impaired function of the Na+- K+ ATPase system, intracellular excess calcium accumulation, sarcolemma damage, and release of intracellular proteins and other substances into blood. Excess myoglobin that is filtered at the glomerulus can lead to myoglobinuric acute renal injury. Cessation of physical activity, relative rest during clinical recovery, and early aggressive fluid replacement are mainstays of treatment. Return to play after recovery from ER is influenced by associated risk factors that may predispose the athlete to recurrence and is guided by signs, symptoms, and CK levels. This article reviews the definitions, pathophysiology, diagnosis, and management of ER with specific relevance to acute kidney injury.
Collapse
Affiliation(s)
- Dilip R Patel
- Primary Care Sports Medicine Program, Michigan State University, Kalamazoo, MI 49008, USA.
| | | | | |
Collapse
|
163
|
Garg A, Kapellusch JM. Applications of biomechanics for prevention of work-related musculoskeletal disorders. ERGONOMICS 2009; 52:36-59. [PMID: 19308818 DOI: 10.1080/00140130802480794] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This paper summarises applications of biomechanical principles and models in industry to control musculoskeletal disorders of the low back and upper extremity. Applications of 2-D and 3-D biomechanical models to estimate compressive force on the low back, the strength requirements of jobs, application of guidelines for overhead work and application of strain index and threshold limit value to address distal upper extremity musculoskeletal disorders are presented. Several case studies applied in the railroad industry, manufacturing, healthcare and warehousing are presented. Finally, future developments needed for improved biomechanical applications in industry are discussed. The information presented will be of value to practising ergonomists to recognise how biomechanics has played a significant role in identifying causes of musculoskeletal disorders and controlling them in the workplace. In particular, the information presented will help practising ergonomists with how physical stresses can be objectively quantified.
Collapse
Affiliation(s)
- Arun Garg
- Industrial Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | | |
Collapse
|
164
|
Park SY, Youm JH, Jung KC, Sohn UD. Inhibitory effect of hypochlorous acid on lower esophageal sphincter tone relaxation by vasoactive intestinal peptide. Arch Pharm Res 2008; 31:1552-8. [PMID: 19099223 DOI: 10.1007/s12272-001-2150-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 11/27/2008] [Accepted: 11/27/2008] [Indexed: 11/30/2022]
Abstract
Under physiological conditions, hypochlorous acid (HOCl) is the major product of myeloperoxidase, a ferric heme enzyme released in inflammatory diseases. In the present study, we investigated the effect of HOCl compared to hydrogen peroxide (H2O2) on the vasoactive intestinal polypeptide (VIP)-induced relaxation of feline lower esophageal sphincter (LES) strips. Isometric tension on LES strips was measured using a force transducer. VIP induced the relaxation of basal LES tone in a concentration-dependent manner. Pretreatment with HOCl (10(-4) M) significantly reduced the VIP-induced relaxation at smaller concentrations than H2O2 (10(-3) M). VIP-induced relaxation is mediated via the Gi/o protein, since pretreatment with Pertussis Toxin (PTX) showed an inhibitory effect on the relaxation. HOCl showed an additional inhibitory effect on the reduced relaxation by PTX, indicating that HOCl might affect another G protein as well as Gi/o. However, HOCl did not affect SNP-, SIN-1-, and 8-br-cGMP-induced relaxation. Nor did HOCl modify the relaxation induced by either forskolin or db-cAMP in LES muscle strips. These results suggest that during short-term treatment, HOCl may damage the upstream events including G protein level, and result in alteration of LES tone in the feline esophagus, similar to the inhibitory effects of H2O2.
Collapse
Affiliation(s)
- Sun Young Park
- Department of Pharmacology, College of Pharmacy, University of Chung-Ang, Seoul, 156-756, Korea
| | | | | | | |
Collapse
|
165
|
Itoh K, Ochi H, Kitakoji H. Effects of tender point acupuncture on delayed onset muscle soreness (DOMS)--a pragmatic trial. Chin Med 2008; 3:14. [PMID: 19032777 PMCID: PMC2607277 DOI: 10.1186/1749-8546-3-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Accepted: 11/25/2008] [Indexed: 11/14/2022] Open
Abstract
Background Acupuncture is used to reduce inflammation and decrease pain in delayed onset muscle soreness (DOMS). This study investigates the efficacy of acupuncture on the symptoms of DOMS. Methods Thirty subjects were assigned randomly to there groups, namely the control, non-tender point and tender point groups. Measurement of pain with full elbow flexion was used as indices of efficacy. Measurements were taken before and after exercise, immediately after treatment and seven days after treatment. Results Significant differences in visual analog scores for pain were found between the control group and tender point group immediately after treatment and three days after exercise (P < 0.05, Dunnetts multiple test). Conclusion The results show that tender point acupuncture relieves muscle pain of DOMS.
Collapse
Affiliation(s)
- Kazunori Itoh
- Department of Clinical Acupuncture and Moxibustion, Meiji University of Integrative Medicine, Nantan, Kyoto, Japan.
| | | | | |
Collapse
|
166
|
Abstract
Exercise-induced muscle damage (EIMD) can be caused by novel or unaccustomed exercise and results in a temporary decrease in muscle force production, a rise in passive tension, increased muscle soreness and swelling, and an increase in intramuscular proteins in blood. Consequently, EIMD can have a profound effect on the ability to perform subsequent bouts of exercise and therefore adhere to an exercise training programme. A variety of interventions have been used prophylactically and/or therapeutically in an attempt to reduce the negative effects associated with EIMD. This article focuses on some of the most commonly used strategies, including nutritional and pharmacological strategies, electrical and manual therapies and exercise. Long-term supplementation with antioxidants or beta-hydroxy-beta-methylbutyrate appears to provide a prophylactic effect in reducing EIMD, as does the ingestion of protein before and following exercise. Although the administration of high-dose NSAIDs may reduce EIMD and muscle soreness, it also attenuates the adaptive processes and should therefore not be prescribed for long-term treatment of EIMD. Whilst there is some evidence that stretching and massage may reduce muscle soreness, there is little evidence indicating any performance benefits. Electrical therapies and cryotherapy offer limited effect in the treatment of EIMD; however, inconsistencies in the dose and frequency of these and other interventions may account for the lack of consensus regarding their efficacy. Both as a cause and a consequence of this, there are very few evidence-based guidelines for the application of many of these interventions. Conversely, there is unequivocal evidence that prior bouts of eccentric exercise provide a protective effect against subsequent bouts of potentially damaging exercise. Further research is warranted to elucidate the most appropriate dose and frequency of interventions to attenuate EIMD and if these interventions attenuate the adaptation process. This will both clarify the efficacy of such strategies and provide guidelines for evidence-based practice.
Collapse
Affiliation(s)
- Glyn Howatson
- School of Human Sciences, St Mary's University College, Twickenham, UK.
| | | |
Collapse
|
167
|
Vassilis P, Vassilios B, Vassilis M, Athanasios JZ, Vassilis T, Christina K, Yiannis K. Isokinetic eccentric exercise of quadriceps femoris does not affect running economy. J Strength Cond Res 2008; 22:1222-7. [PMID: 18545185 DOI: 10.1519/jsc.0b013e318173da21] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to investigate whether running economy is affected by isokinetic eccentric exercise designed to cause muscle damage. Twenty-four young healthy men performed 120 maximal voluntary eccentric actions at each thigh's quadriceps muscle at an angular velocity of 60 degrees .s. The participants were then randomly divided into 2 equal groups, 1 of which exercised 24 hours later, while the other group rested. Muscle damage indicators (i.e., serum creatine kinase, delayed onset muscle soreness, and eccentric, concentric, and isometric peak torque) and running economy indicators (i.e., oxygen consumption, pulmonary ventilation, respiratory exchange ratio, respiratory rate, and heart rate during treadmill running at 2.2 and 3.3 m.s) were assessed prior to and 48 hours following the eccentric exercise. All muscle damage indicators changed significantly in both groups (p < 0.05) in a way suggestive of considerable muscle damage. Running economy indicators of the exercise group demonstrated only an elevation of respiratory rate at 48 hours (p < 0.05) and a tendency to lower economy compared to the resting group. It can be concluded that isokinetic eccentric exercise applied to the quadriceps femoris muscles did not affect running economy 48 hours later and that resting during this period tended to result in more economical running compared to exercising at 24 hours.
Collapse
Affiliation(s)
- Paschalis Vassilis
- Institute of Human Performance and Rehabilitation, Center for Research and Technology of Thessaly, Trikala, Greece.
| | | | | | | | | | | | | |
Collapse
|
168
|
Fredsted A, Clausen T, Overgaard K. Effects of step exercise on muscle damage and muscle Ca2+ content in men and women. J Strength Cond Res 2008; 22:1136-46. [PMID: 18545196 DOI: 10.1519/jsc.0b013e318173db9b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Eccentric exercise often produces severe muscle damage, whereas concentric exercise of a similar load elicits a minor degree of muscle damage. The cellular events initiating muscle damage are thought to include an increase in cytosolic Ca. It was hypothesized that eccentric muscle activity in humans would lead to a larger degree of cell damage and increased intracellular Ca accumulation in skeletal muscle than concentric activity would. Furthermore, possible differences between men and women in muscle damage were investigated following step exercise. Thirty-three healthy subjects (18 men and 15 women) participated in a 30-minute step exercise protocol involving concentric contractions with 1 leg and eccentric contractions with the other leg. Muscle Ca content, maximal voluntary contraction (MVC), and muscle enzymes in the plasma were measured. In a subgroup of the subjects, T2 relaxation time was measured by magnetic resonance imaging. No significant changes were found in muscle Ca content in vastus lateralis biopsy specimens in women or in men. Following step exercise, MVC decreased in both legs of both genders. The women had a significantly larger strength decrease in the eccentric leg than the men had on postexercise day 2 (p < 0.01). Plasma creatine kinase increased following step exercise, with a sevenfold higher response in women than in men on day 3 (p < 0.001). The women, but not the men, had an increase in T2 relaxation time in the eccentrically working adductor magnus muscle, peaking on day 3 (75%) (p < 0.001). In conclusion, step exercise does not lead to Ca accumulation in the vastus lateralis but does induce muscle damage preferentially in the eccentrically working muscles, considerably more in women than in men. This indicates that gender-specific step training programs may be warranted to avoid excessive muscle damage.
Collapse
Affiliation(s)
- Anne Fredsted
- Department of Physiology, University of Aarhus, Aarhus, Denmark.
| | | | | |
Collapse
|
169
|
Enns DL, Iqbal S, Tiidus PM. Oestrogen receptors mediate oestrogen-induced increases in post-exercise rat skeletal muscle satellite cells. Acta Physiol (Oxf) 2008; 194:81-93. [PMID: 18397384 DOI: 10.1111/j.1748-1716.2008.01861.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Our laboratory recently demonstrated that increases in post-exercise muscle satellite cell numbers are augmented by oestrogen. We investigated whether muscle oestrogen receptors (ORs) mediate this effect through administration of an OR antagonist, ICI 182,780. METHODS Ovariectomized female rats were divided into three groups: sham, oestrogen (0.25 mg pellet) and oestrogen plus OR blocker (ICI 182,780). Each group was divided into control and exercised groups. ICI 182,780 (5 mg kg(-1) sc) was administered 1 day prior to and 6 days following oestrogen pellet implantation. After 8 days of oestrogen exposure, animals ran downhill for 90 min (17 m min(-1), -13.5 degrees grade) on a treadmill. Soleus and white vastus muscles were removed 24 and 72 h post-exercise and immunostained for total (Pax7), activated (MyoD) and proliferating (BrdU) satellite cells. Muscle damage was indirectly assessed by measuring beta-glucuronidase activity. Two markers (His48 and ED1) of leucocyte infiltration were also examined. RESULTS beta-Glucuronidase activities and His48+ and ED1+ leucocytes increased post-exercise, and these increases were attenuated with oestrogen. ICI 182,780 did not influence the attenuating effect of oestrogen on leucocyte infiltration or beta-glucuronidase activities in muscle. Total (Pax7+), activated (MyoD+) and proliferating (BrdU+) satellite cells increased post-exercise, and these increases were augmented with oestrogen. Interestingly, ICI 182,780 abolished both exercise- and oestrogen-mediated increases in these satellite cell markers. CONCLUSION Oestrogen may augment increases in muscle satellite cells following exercise through OR-mediated mechanisms; furthermore, the attenuation of post-exercise muscle damage and leucocyte infiltration by oestrogen appears to be a non-OR-mediated process.
Collapse
Affiliation(s)
- D L Enns
- Department of Kinesiology & Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada
| | | | | |
Collapse
|
170
|
FRENCH DUNCANN, THOMPSON KEVING, GARLAND STEPHENW, BARNES CHRISTOPHERA, PORTAS MATTHEWD, HOOD PETERE, WILKES GRAEME. The Effects of Contrast Bathing and Compression Therapy on Muscular Performance. Med Sci Sports Exerc 2008; 40:1297-306. [DOI: 10.1249/mss.0b013e31816b10d5] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
171
|
Zorbas YG, Kakuris KK, Deogenov VA, Neophitos EA. Effect of Hypokinesia on Calcium Loss in Calcium-supplemented and -unsupplemented Rats. Arch Med Res 2008; 39:496-502. [DOI: 10.1016/j.arcmed.2008.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 04/02/2008] [Indexed: 11/15/2022]
|
172
|
Abstract
Exercise-induced muscle damage (EIMD) is commonly experienced following either a bout of unaccustomed physical activity or following physical activity of greater than normal duration or intensity. The mechanistic factor responsible for the initiation of EIMD is not known; however, it is hypothesised to be either mechanical or metabolic in nature. The mechanical stress hypothesis states that EIMD is the result of physical stress upon the muscle fibre. In contrast, the metabolic stress model predicts that EIMD is the result of metabolic deficiencies, possibly through the decreased action of Ca(2+)-adenosine triphosphatase. Irrespective of the cause of the damage, EIMD has a number of profound metabolic effects. The most notable metabolic effects of EIMD are decreased insulin sensitivity, prolonged glycogen depletion and an increase in metabolic rate both at rest and during exercise. Based on current knowledge regarding the effects that various types of damaging exercise have on muscle metabolism, a new model for the initiation of EIMD is proposed. This model states that damage initiation may be either metabolic or mechanical, or a combination of both, depending on the mode, intensity and duration of exercise and the training status of the individual.
Collapse
Affiliation(s)
- Jason C Tee
- MRC/UCT Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | | | | |
Collapse
|
173
|
Sonobe T, Inagaki T, Poole DC, Kano Y. Intracellular calcium accumulation following eccentric contractions in rat skeletal muscle in vivo: role of stretch-activated channels. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1329-37. [DOI: 10.1152/ajpregu.00815.2007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the accumulation of intracellular calcium ions ([Ca2+]i) is associated with muscle damage, little is known regarding the temporal profile of muscle [Ca2+]iunder in vivo conditions, and, specifically, the effects of different contraction types [e.g., isometric (ISO); eccentric (ECC)] on [Ca2+]iremain to be determined. The following hypotheses were tested. 1) For 90 min at rest, an in vivo vs. in vitro preparation would better maintain initial [Ca2+]i. 2) Compared with ISO, ECC contractions (50 contractions, 10 sets, 5-min interval) would lead to a greater increase of [Ca2+]i. 3) Elevated [Ca2+]iduring ECC would be reduced or prevented by the stretch-activated ion channel blockers streptomycin and gadolinium (Gd3+). Spinotrapezius muscles of Wistar rats were exteriorized (in vivo) or excised (in vitro). [Ca2+]iwas evaluated by loading the muscle with fura 2-AM using fluorescence imaging. [Ca2+]irose progressively beyond 40 min at rest under in vitro but not in vivo conditions during the 90-min protocol. In vivo [Ca2+]iincreased more rapidly during ECC (first set) than ISO (fifth set) ( P < 0.05 vs. precontraction values). The peak level of [Ca2+]iwas increased by 21.5% (ISO) and 42.8% (ECC) after 10 sets (both P < 0.01). Streptomycin and Gd3+abolished the majority of [Ca2+]iincrease during ECC (69 and 86% reduction, respectively; P < 0.01 from peak [Ca2+]iof ECC). In conclusion, in vivo quantitative analyses demonstrated that ECC contractions elevate [Ca2+]isignificantly more than ISO contractions and that stretch-activated channels may play a permissive role in this response.
Collapse
|
174
|
Zorbas YG, Kakuris KK, Deogenov VA, Yerullis KB. Inadequacy of calcium supplements to normalize muscle calcium deficiency in healthy subjects during prolonged hypokinesia. Nutrition 2008; 24:217-23. [DOI: 10.1016/j.nut.2007.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/26/2007] [Accepted: 11/26/2007] [Indexed: 11/16/2022]
|
175
|
Enns DL, Tiidus PM. Estrogen influences satellite cell activation and proliferation following downhill running in rats. J Appl Physiol (1985) 2007; 104:347-53. [PMID: 18096757 DOI: 10.1152/japplphysiol.00128.2007] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate the influence of estrogen on postexercise muscle repair processes, we examined the effects of estrogen supplementation (0.25-mg pellet) on numbers of myofibers positive for markers of total, activated, and proliferating satellite cells in rat skeletal muscles 72 h following downhill running. Ovariectomized female rats (n = 44) were divided into four groups (n = 11 per group): sham (no estrogen) controls (SC); sham, exercised (SE); estrogen-supplemented controls (EC); and estrogen-supplemented, exercised (EE). After 8 days of estrogen exposure, animals were exposed to 90 min of treadmill running at 17 m/min (-13.5 degrees ). Seventy-two hours later, soleus and white vastus muscles were removed and immunostained for total [paired box homeotic gene 7 (Pax7)], [activated myogenic differentiation factor D (MyoD)], and proliferating [5-bromo-2'-deoxyuridine (BrdU)] satellite cells. beta-Glucuronidase activity was increased (P < 0.05) in both muscles following exercise; however, the postexercise elevations in enzyme activity were attenuated in the EE group compared with the SE group in the soleus (P < 0.05). Immunohistochemical analysis revealed that exercised groups displayed increased numbers of myofibers containing total, activated, and proliferating satellite cells compared with control groups (P < 0.05). Furthermore, greater numbers of fibers positive for markers of total, activated, and proliferating satellite cells were observed postexercise in EE animals compared with SE animals for both muscles (P < 0.05). The results demonstrate that estrogen may potentially influence post-damage repair of skeletal muscle through activation of satellite cells.
Collapse
Affiliation(s)
- Deborah L Enns
- Dept. of Kinesiology and Physical Education, Wilfrid Laurier Univ., Rm. 517, Bricker Academic Bldg., Waterloo, Ontario, Canada N2L 3C5
| | | |
Collapse
|
176
|
Brancaccio P, Limongelli FM, D'Aponte A, Narici M, Maffulli N. Changes in skeletal muscle architecture following a cycloergometer test to exhaustion in athletes. J Sci Med Sport 2007; 11:538-41. [PMID: 17905658 DOI: 10.1016/j.jsams.2007.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Revised: 05/19/2007] [Accepted: 05/26/2007] [Indexed: 11/29/2022]
Abstract
We determined whether a short-term exhaustive dynamic exercise (cycling) for about 18min induces changes in the intramuscular architecture of the quadriceps in trained athletes. Thirty-five male athletes (age 28.8+/-9.8 years; height: 175.4.+/-5.5cm; weight: 74+/-11.5kg; average years spent training: 11.1+/-8.4 years; mean weekly duration of training: 10.4+/-3.20h) underwent an incremental cycloergometer test to exhaustion. Muscle thickness of the right quadriceps femoris (rectus femoris + vastus intermedius), and the angle of pennation of the right vastus lateralis on the quadriceps tendon were determined by high-resolution real time ultrasonography. Quadriceps thickness increased from 32.1+/-3.3mm at rest to 34.9+/-3.0mm after the test (p=0.001). The pennation angles were significantly greater after exercise (12.8+/-2.1 degrees at rest; 14.4+/-2.5 degrees after the test (p=0.001)). There are marked changes in intramuscular architecture of the quadriceps following a bout of cycloergometer exercise to exhaustion, with significant increase of quadriceps thickness and pennation angle. Ultrasonography allows to evaluate the changes of muscle architecture following exercise.
Collapse
Affiliation(s)
- Paola Brancaccio
- Seconda Università di Napoli, Servizio di Medicina dello Sport, Napoli, Italy
| | | | | | | | | |
Collapse
|
177
|
Roig Pull M, Ranson C. Eccentric muscle actions: Implications for injury prevention and rehabilitation. Phys Ther Sport 2007. [DOI: 10.1016/j.ptsp.2006.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
178
|
Enns DL, Raastad T, Ugelstad I, Belcastro AN. Calpain/calpastatin activities and substrate depletion patterns during hindlimb unweighting and reweighting in skeletal muscle. Eur J Appl Physiol 2007; 100:445-55. [PMID: 17429681 DOI: 10.1007/s00421-007-0445-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2007] [Indexed: 11/29/2022]
Abstract
Unloading of skeletal muscle by hindlimb unweighting (HU) is characterized by atrophy, protein loss, and an elevation in intracellular Ca(2+) levels that may be sufficient to activate Ca(2+)-dependent proteases (calpains). In this study, we investigated the time course of calpain activation and the depletion pattern of a specific structural protein (desmin) with unloading and subsequent reweighting. Rats underwent 12 h, 24 h, 72 h or 9 days of HU, followed by reweighting for either 0, 12 or 24 h. Total calpain-like activity was elevated with HU in skeletal muscle (P < 0.05) and was further enhanced with reweighting (P < 0.05). The increases in calpain-like activity were associated with a proportional increase in activity of the particulate fraction (P < 0.05). Activity of the mu-calpain isoform was elevated with 12 and 24 h of HU (P < 0.05) and returned to control levels thereafter. With reweighting, activities of mu-calpain were elevated above control levels for all HU groups except 9 days (P < 0.05). In contrast, minimal changes in m-calpain and calpastatin activity were observed with HU and reweighting. Although desmin depletion levels did not reach statistical significance, a significant inverse relationship was found between the mu-calpain/calpastatin ratio and the amount of desmin in isolated myofibrils (R = -0.83, P < 0.001). The results suggest that calpain activation is an early event during unloading in skeletal muscle, and that the majority of the increase in calpain activity can be attributed to the micro-isoform.
Collapse
Affiliation(s)
- Deborah L Enns
- School of Kinesiology, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | | | | | | |
Collapse
|
179
|
Takashima W, Ishii K, Takizawa K, Yamaguchi T, Nosaka K. Muscle damage and soreness following a 50-km cross-country ski race. Eur J Sport Sci 2007. [DOI: 10.1080/17461390701197833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
180
|
Fredsted A, Gissel H, Madsen K, Clausen T. Causes of excitation-induced muscle cell damage in isometric contractions: mechanical stress or calcium overload? Am J Physiol Regul Integr Comp Physiol 2007; 292:R2249-58. [PMID: 17332163 DOI: 10.1152/ajpregu.00415.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prolonged or unaccustomed exercise leads to muscle cell membrane damage, detectable as release of the intracellular enzyme lactic acid dehydrogenase (LDH). This is correlated to excitation-induced influx of Ca2+, but it cannot be excluded that mechanical stress contributes to the damage. We here explore this question using N-benzyl-p-toluene sulfonamide (BTS), which specifically blocks muscle contraction. Extensor digitorum longus muscles were prepared from 4-wk-old rats and mounted on holders for isometric contractions. Muscles were stimulated intermittently at 40 Hz for 15-60 min or exposed to the Ca2+ ionophore A23187. Electrical stimulation increased 45Ca influx 3-5 fold. This was followed by a progressive release of LDH, which was correlated to the influx of Ca2+. BTS (50 microM) caused a 90% inhibition of contractile force but had no effect on the excitation-induced 45Ca influx. After stimulation, ATP and creatine phosphate levels were higher in BTS-treated muscles, most likely due to the cessation of ATP-utilization for cross-bridge cycling, indicating a better energy status of these muscles. No release of LDH was observed in BTS-treated muscles. However, when exposed to anoxia, electrical stimulation caused a marked increase in LDH release that was not suppressed by BTS but associated with a decrease in the content of ATP. Dynamic passive stretching caused no increase in muscle Ca2+ content and only a minor release of LDH, whereas treatment with A23187 markedly increased LDH release both in control and BTS-treated muscles. In conclusion, after isometric contractions, muscle cell membrane damage depends on Ca2+ influx and energy status and not on mechanical stress.
Collapse
Affiliation(s)
- Anne Fredsted
- Department of Physiology and Biophysics, University of Aarhus, Denmark.
| | | | | | | |
Collapse
|
181
|
Abstract
Competitive soccer engages many of the body's systems to a major extent. The musculoskeletal, nervous, immune and metabolic systems are stressed to a point where recovery strategies post-exercise become influential in preparing for the next match. Intense activity at a 7-day training camp causes participants to experience lowered concentrations of non-killer cells and T-helper cells. Two consecutive games in 24 h produce disturbances in the testosterone-cortisol ratio. When competitive schedules are congested, the recovery process should be optimized for performance capabilities to be restored to normal as soon as possible. There is evidence that glycogen stores are reduced near to depletion at the end of a soccer game and that a diet high in carbohydrates can aid recovery. Water alone is not the best means of restoring body fluids, since carbohydrate-electrolyte drinks display better intestinal absorption and reduce urine output. Some relief from muscle soreness may be achieved by means of a warm-down. Deep-water running regimens can replace conventional physical training in the days after competition. Massage, cryotherapy and alternative therapies have not been shown to be consistently effective. It is concluded that optimizing recovery post-exercise depends on a combination of factors that incorporate a consideration of individual differences and lifestyle factors. The procedures to facilitate recovery processes should start immediately the game or training finishes. Match administrators and tournament planners should consider the stressful consequences for players in periods of congested fixtures and alleviate the physiological strain as far as possible by allowing 72 h between competitive games. This frequency of competition is unlikely to be sustainable in the long term.
Collapse
Affiliation(s)
- Thomas Reilly
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.
| | | |
Collapse
|
182
|
Deogenes KG, Kakuris KK, Deogenov VA, Yerullis KB. Electrolyte homeostasis in trained and untrained healthy subjects during prolonged hypokinesia. Clin Biochem 2007; 40:536-44. [PMID: 17359957 DOI: 10.1016/j.clinbiochem.2007.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 01/18/2007] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This study aimed to show that during hypokinesia (HK) electrolyte imbalance increases more in trained than untrained subjects and that electrolyte loss increases more with higher than lower electrolyte imbalance in trained than untrained subjects. METHODS Studies were conducted during 364-day HK. Subjects were equally divided in four groups: trained ambulatory control subjects (TACS), trained hypokinetic subjects (THKS), untrained ambulatory control subjects (UACS) and untrained hypokinetic subjects (UHKS). THKS and UHKS were limited to average walking distances of 0.5+/-0.1 km day(-1). TACS were running average distances of 9.8+/-1.3 and UACS were walking average distances of 1.8+/-0.2 km day(-1). RESULTS Plasma potassium (K(+)), calcium (Ca(+2)) and magnesium (Mg(+2)) levels, urine and fecal electrolyte excretion, electrolyte imbalance, plasma aldosterone (PA) and plasma rennin activity (PRA) increased significantly (p<0.05), while electrolyte absorption, plasma intact parathyroid hormone (iPTH) and dihydroxyvitamin D (1,25 (OH)(2) D(3)) levels decreased significantly (p<0.05) in THKS and UHKS compared with their pre-HK values and their respective controls (TACS and UACS). Electrolyte imbalance, plasma electrolyte levels, urine and fecal electrolyte excretion, PA and PRA levels increased more significantly (p<0.05), while electrolyte absorption, plasma iPTH and 1, 25 (OH)(2) D(3) levels decreased more significantly (p<0.05) in THKS than in UHKS. CONCLUSION The higher electrolyte imbalance in trained as compared to untrained subjects shows that the risk of higher electrolyte imbalance is inversely related to the magnitude of physical conditioning. The higher electrolyte loss with higher than lower electrolyte imbalance shows that the risk of higher electrolyte loss is inversely related to the magnitude of electrolyte imbalance. In conclusion electrolyte imbalance increases more in trained than untrained subjects and that electrolyte loss increase more with higher than lower electrolyte imbalance indicating that during prolonged HK the use of electrolytes decreases more with higher than lower physical conditioning.
Collapse
|
183
|
Maruhashi Y, Kitaoka K, Yoshiki Y, Nakamura R, Okano A, Nakamura K, Tsuyama T, Shima Y, Tomita K. ROS Scavenging Activity and Muscle Damage Prevention in Eccentric Exercise in Rats. J Physiol Sci 2007; 57:211-6. [PMID: 17594755 DOI: 10.2170/physiolsci.rp013006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 06/26/2007] [Indexed: 11/05/2022]
Abstract
Depending on intensity, eccentric exercise is experimentally and clinically documented to have opposing dual effects on skeletal muscle; intense eccentric exercise damages muscle, but daily low-load eccentric exercise prevents damage. To clarify the mechanisms of this dual effect, microscopic damage and oxidative stress were studied in rat quadriceps muscle. Oxidative stress was estimated from an immunostaining of advanced glycation end-products (AGE) and a measurement of muscle tissue preparations, the ability to scavenge reactive oxygen species (ROS). Intense eccentric downhill running (IEE) induced muscle damage that was, microscopically apparent 3 days later. Since AGE-positive cells and decreased ROS scavenging activity were observed earlier (on the day after IEE), cellular damage may be related to ROS production. Intense concentric uphill running (ICE) induced an immediate but transient decrease in ROS scavenging activity, which recovered within a day. Neither AGE-positive cells nor microscopic damage was observed after ICE. Since each contracting muscle fiber develops greater tension during eccentric rather than concentric exercise, the initial trigger of IEE-induced muscle damage may be damage to muscle fibers and connective tissues at the subcellular level. Daily low-load training of eccentric downhill running (LET), but not concentric uphill running, efficiently prevented muscle damage after subsequent IEE. No evident elevation of ROS scavenging activity was evident after LET. We concluded that LET prevents IEE-induced muscle damage not through elevated ROS scavenging activity, but through a suppression of initial subcellular damage that triggers subsequent ROS-producing processes, resulting in cellular delayed damage.
Collapse
Affiliation(s)
- Yoshinobu Maruhashi
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Paschalis V, Nikolaidis MG, Giakas G, Jamurtas AZ, Pappas A, Koutedakis Y. The effect of eccentric exercise on position sense and joint reaction angle of the lower limbs. Muscle Nerve 2007; 35:496-503. [PMID: 17221879 DOI: 10.1002/mus.20723] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Impaired position sense and impaired joint reaction angle of the lower limbs after muscle-damaging activities is a serious functional limitation that may lead to an increased risk of injury, particularly in older populations. The purpose of the present study was to examine whether position sense and joint reaction angle to release can be affected by eccentric exercise-induced muscle damage. Twelve women underwent an isokinetic exercise session of the lower limb. Isometric peak torque, delayed-onset muscle soreness, serum creatine kinase, position sense, and knee joint reaction angle to release were examined before, immediately after, and 24, 48, and 72 h post-exercise. Due to the effect of eccentric exercise, subjects persistently placed their lower limb at a more extended position, representing a shorter knee extensor muscle. Eccentric exercise increased the knee reaction angle of the lower limb after release from 0 degrees and 15 degrees but not from 30 degrees and 45 degrees . Position sense and joint reaction to release were similarly affected by eccentric exercise and independently of visual feedback. Position sense was impaired only immediately post-exercise (probably due to muscle fatigue), whereas impairment of the reaction angle to release persisted up to 3 days post-exercise (probably due to muscle damage). Attenuation of position sense and joint reaction angle of the lower limbs after damaging activities is a serious functional limitation that may lead to an increase risk of injury, particularly in older populations.
Collapse
Affiliation(s)
- V Paschalis
- Department of Physical Education and Sports Sciences, Thessaly University, Karies, 42100 Trikala, Greece.
| | | | | | | | | | | |
Collapse
|
185
|
Sasaki A, Aizawa T, Tomiya A, Matsubara Y, Kokubun S, Itoi E. Effect of resting interval for muscle regeneration in mice. Ups J Med Sci 2007; 112:175-81. [PMID: 17578817 DOI: 10.3109/2000-1967-191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Muscle tissue has an exceptional ability to regenerate, however, unresting damage to the muscles by intense and frequent exercises occasionally causes prolonged muscle fatigue, soreness, and underperformance in sports. Taking rest is generally considered to be crucial for regular training to avoid the accumulation of muscle damage. We hypothesized that differences in the resting intervals between two periods of exercise may result in histological differences in muscle regeneration. METHOD An eccentric contraction model of mouse gastrocnemius muscle was made using percutaneus electrical stimulation. The mice received eccentric exercises twice with resting intervals of 0, 12, 24 hours, 2, and 3 days. The authors investigated the ratio of myofibers with central nuclei to whole myofibers histologically (the centronuclear cell ratio; CNCR) at 14 days after the second exercise as an index of the muscle regeneration. RESULTS The CNCR of the group that exercised one-time was 29.5%. In the groups exercised twice, it increased from 31.8% with an interval of 0 hours to a peak of 43.9% with 24 hours, then decreased to 32.8% with an interval of 3 days. The ratios of the groups with intervals of 12 and 24 hours were higher than those with one-time exercise and those with the intervals of 0 hours, 2 days, and 3 days. CONCLUSIONS The resting interval between two periods of eccentric exercises affected the histology of muscle regeneration. The amount of muscle damage and/or the recovery process of damaged muscles should vary depending on the length of resting interval between strenuous exercises. An appropriate interval for rest must be necessary in order to avoid further muscle damage.
Collapse
Affiliation(s)
- Aizawa Sasaki
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Seiryomachi, Aobaku, Sendai, Japan.
| | | | | | | | | | | |
Collapse
|
186
|
Plant DR, Colarossi FE, Lynch GS. Notexin causes greater myotoxic damage and slower functional repair in mouse skeletal muscles than bupivacaine. Muscle Nerve 2006; 34:577-85. [PMID: 16881061 DOI: 10.1002/mus.20616] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although the myotoxins bupivacaine and notexin are employed for studying processes that regulate muscle regeneration after injury, no studies have compared their efficacy in causing muscle damage or assessing functional regeneration in mouse skeletal muscles. Bupivacaine causes extensive injury in rat muscles but its effects on mouse muscles are variable. We compared functional and morphological properties of regenerating mouse extensor digitorum longus (EDL) muscles after notexin or bupivacaine injection and tested the hypothesis that muscle damage would be more extensive and functional repair less complete after notexin injection. Bupivacaine caused degeneration of 45% of fibers and reduced maximum force (Po) to 42% of control after 3 days. In contrast, notexin caused complete fiber breakdown and loss of functional capacity after 3 days (P < 0.05). At 7 and 10 days after bupivacaine, Po was restored to 65% and 71% of control, respectively, whereas Po of notexin-injected muscles was only 10% and 39% of control at these time-points, respectively (P < 0.05). At 7 and 10 days after bupivacaine, approximately 30% of fibers were centrally nucleated (regenerating), whereas notexin-injected muscles were comprised entirely of regenerating fibers (P < 0.05). The results demonstrate that notexin causes a more extensive and complete injury than bupivacaine, and is a useful model for studying muscle regeneration in mice.
Collapse
Affiliation(s)
- David R Plant
- Basic and Clinical Myology Laboratory, Department of Physiology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
187
|
Abstract
Phosphatidylserine (PtdSer) is a ubiquitous phospholipid species that is normally located within the inner leaflet of the cell membrane. PtdSer has been implicated in a myriad of membrane-related functions. As a cofactor for a variety of enzymes, PtdSer is thought to be important in cell excitability and communication. PtdSer has also been shown to regulate a variety of neuroendocrine responses that include the release of acetylcholine, dopamine and noradrenaline. Additionally, PtdSer has been extensively demonstrated to influence tissue responses to inflammation. Finally, PtdSer has the potential to act as an effective antioxidant, especially in response to iron-mediated oxidation. The majority of the available research that has investigated the effects of PtdSer supplementation on humans has concentrated on memory and cognitive function; patients experiencing some degree of cognitive decline have traditionally been the main focus of investigation. Although investigators have administered PtdSer through intravenous and oral routes, oral supplementation has wider appeal. Indeed, PtdSer is commercially available as an oral supplement intended to improve cognitive function, with recommended doses usually ranging from 100 to 500 mg/day. The main sources that have been used to derive PtdSer for supplements are bovine-cortex (BC-PtdSer) and soy (S-PtdSer); however, due to the possibility of transferring infection through the consumption of prion contaminated brain, S-PtdSer is the preferred supplement for use in humans. Although the pharmacokinetics of PtdSer have not been fully elucidated, it is likely that oral supplementation leads to small but quantifiable increases in the PtdSer content within the cell membrane.A small number of peer-reviewed full articles exist that investigate the effects of PtdSer supplementation in the exercising human. Early research indicated that oral supplementation with BC-PtdSer 800 mg/day moderated exercise-induced changes to the hypothalamo-pituitary-adrenal axis in untrained participants. Subsequently, this finding was extended to suggest that S-PtdSer 800 mg/day reduced the cortisol response to overtraining during weight training while improving feeling of well-being and decreasing perceived muscle soreness. However, equivocal findings from our laboratory might suggest that the dose required to undertake this neuroendocrine action may vary between participants.Interestingly, recent findings demonstrating that short-term supplementation with S-PtdSer 750 mg/day improved exercise capacity during high-intensity cycling and tended to increase performance during intermittent running might suggest an innovative application for this supplement. With the findings from the existing body of literature in mind, this article focuses on the potential effects of PtdSer supplementation in humans during and following exercise.
Collapse
Affiliation(s)
- Michael Kingsley
- Department of Sports Science, University of Wales Swansea, Singleton Park, Swansea, UK.
| |
Collapse
|
188
|
Enns DL, Belcastro AN. Early activation and redistribution of calpain activity in skeletal muscle during hindlimb unweighting and reweighting. Can J Physiol Pharmacol 2006; 84:601-9. [PMID: 16900244 DOI: 10.1139/y06-013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aims of this study were the following: (i) to determine whether activation of the Ca2+-activated protease, calpain, is an early event during hindlimb unweighting (HU) in skeletal muscle; and (ii) to assess whether calpain activity is greater during reweighting compared with HU alone. Rats were exposed to 12, 24, and 72 h, or 9 d of HU, followed by reweighting for 0, 12, or 24 h. Calpain activities were assayed for total, soluble, and particulate fractions. Total calpain activity was increased in the soleus at all HU time points, whereas activities were elevated in the gastrocnemius only after 9 d of HU. With reweighting, calpain activity remained elevated at all time points for both muscles. In general, reweighting the gastrocnemius increased its calpain activity more than during HU only, whereas reweighting the soleus did not produce additional increases in its calpain activity. The increases in calpain activity were associated with a proportional increase in activity of the particulate (membrane- and protein-associated) fraction. The results suggest that calpain activation is an early event during HU in the soleus, and that the increases in calpain activity in both muscles are associated with a redistribution of activity from cytosolic to particulate fractions.
Collapse
Affiliation(s)
- Deborah L Enns
- School of Kinesiology, The University of Western ON, London, ON, N6A 3K7, Canada.
| | | |
Collapse
|
189
|
Skurvydas A, Sipaviciene S, Krutulyte G, Gailiuniene A, Stasiulis A, Mamkus G, Stanislovaitis A. Dynamics of indirect symptoms of skeletal muscle damage after stretch-shortening exercise. J Electromyogr Kinesiol 2006; 16:629-36. [PMID: 16377212 DOI: 10.1016/j.jelekin.2005.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/15/2005] [Accepted: 11/07/2005] [Indexed: 11/21/2022] Open
Abstract
Healthy untrained men (age 20.4+/-1.7 years, n=20) volunteered to participate in an experiment in order to establish dynamics of indirect symptoms of skeletal muscle damage (ISMD) (decrease in maximal isometric voluntary contraction torque (MVCT) and torque evoked by electrostimulation at different frequencies and at different quadriceps muscle length, height (H) of drop jump (DJ), muscle soreness and creatine kinase (CK) activity in the blood) after 100 DJs from 0.75 m height performed with maximal intensity with an interval of 20s between the jumps (stretch-shortening exercise, SSE). All ISMDs remained even 72 h after SSE (P<0.01-0.001). The muscle experienced greater decrease (P<0.01) in torque evoked by electrostimulation (at low stimulation frequencies and at short muscle length in particular) after SSE than neuromuscular performance (MVCT and H of DJ) which demonstrated secondary decrease (P<0.01) in neuromuscular performance during the first 48 h after SSE. Within 24-72 h after the SSE the subjects felt an acute muscle pain (5-7 points approximately) and the CK activity in the blood was significantly increased up to 1200 IU/L (P<0.001). A significant correlation between decrease in MVCT and H of DJ 24-48 h after SSE on the one hand and muscle soreness registered within 24-48 h after SSE on the other was observed, whereas correlation between the other indirect symptoms of skeletal muscle damage was not significant.
Collapse
Affiliation(s)
- Albertas Skurvydas
- Laboratory of Human Motorics, Lithuanian Academy of Physical Education, Sporto 6, LT 44221 Kaunas, Lithuania.
| | | | | | | | | | | | | |
Collapse
|
190
|
Chen W, Ruell PA, Ghoddusi M, Kee A, Hardeman EC, Hoffman KM, Thompson MW. Ultrastructural changes and sarcoplasmic reticulum Ca2+ regulation in red vastus muscle following eccentric exercise in the rat. Exp Physiol 2006; 92:437-47. [PMID: 17138618 DOI: 10.1113/expphysiol.2006.036442] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study examined the effects of a bout of low-intensity, prolonged downhill exercise on sarcoplasmic reticulum (SR) Ca(2+)-ATPase activity, Ca(2+) uptake and release in rat red vastus muscle. Ionophore stimulation was determined to assess vesicle integrity by measuring the ratio of Ca(2+)-ATPase activities in the presence and absence of A23187. Observations of the muscle ultrastructure were made to evaluate muscle damage at the level of the myofibrils and SR. Adult male Sprague-Dawley rats (weight, 395 +/- 5.9 g) were either assigned as non-exercise controls or subjected to 90 min of downhill treadmill exercise (-16 deg; 15 m min(-1)), and then killed immediately, 4, 24, 48, 72 or 144 h after exercise (n = 7). Calcium uptake was significantly lower (P < 0.05) compared with control values (19.25 +/- 1.38 nmol min(-1) (mg protein)(-1)), by 29 and 36% immediately and 4 h postexercise, respectively, and remained depressed (P < 0.05) 24 h postexercise. Calcium release was also significantly lower (P < 0.05) compared with control values (31.06 +/- 2.36 nmol min(-1) (mg protein)(-1)), by 37 and 39% immediately and 4 h postexercise, respectively, and remained depressed (P < 0.05) 24 h postexercise. Ca(2+)-ATPase activity measured with ionophore was 31% lower (P < 0.05) 4 h postexercise, and remained lower (P < 0.05) 24 h postexercise. The ratio of Ca(2+)-ATPase activities in the presence and absence of A23187 was not significantly changed after exercise, indicating that membrane integrity was not altered by the exercise. Focal dilatations of the SR were observed immediately and 4 h following exercise, implying that SR may be susceptible to damage in the localized regions of overstretched sarcomeres. The results demonstrate that a bout of low-intensity, prolonged downhill exercise results in a long-lasting depression of SR function that is not fully restored after 2 days of recovery, which may underlie some functional impairments induced by eccentric exercise.
Collapse
Affiliation(s)
- Wan Chen
- School of Exercise & Sport Science, The University of Sydney, Sydney, NSW 1825, Australia
| | | | | | | | | | | | | |
Collapse
|
191
|
Fehrenbach E, Schneider ME. Trauma-induced systemic inflammatory response versus exercise-induced immunomodulatory effects. Sports Med 2006; 36:373-84. [PMID: 16646626 DOI: 10.2165/00007256-200636050-00001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Accidental trauma and heavy endurance exercise, both induce a kind of systemic inflammatory response, also called systemic inflammatory response syndrome (SIRS). Exercise-related SIRS is conditioned by hyperthermia and concomitant heat shock responses, whereas trauma-induced SIRS manifests concomitantly with tissue necrosis and immune activation, secondarily followed by fever. Inflammatory cytokines are common denominators in both trauma and exercise, although there are marked quantitative differences. Different anti-inflammatory cytokines may be involved in the control of inflammation in trauma- and exercise-induced stress. Exercise leads to a balanced equilibrium between inflammatory and anti-inflammatory responses. Intermittent states of rest, as well as anti-oxidant capacity, are lacking or minor in trauma but are high in exercising individuals. Regular training may enhance immune competence, whereas trauma-induced SIRS often paves the way for infectious complications, such as sepsis.
Collapse
Affiliation(s)
- Elvira Fehrenbach
- Institute of Clinical and Experimental Transfusion Medicine, University of Tuebingen, Tuebingen, Germany.
| | | |
Collapse
|
192
|
Nosaka K, Chapman D, Newton M, Sacco P. Is isometric strength loss immediately after eccentric exercise related to changes in indirect markers of muscle damage? Appl Physiol Nutr Metab 2006; 31:313-9. [PMID: 16770360 DOI: 10.1139/h06-005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study tested the hypothesis that the magnitude of maximal isometric strength (MVC) loss immediately following eccentric exercise (MVC-post) would relate to changes in other indirect markers of muscle damage following exercise. Eighty-nine men were recruited from the same student population and performed 24 maximal eccentric actions of the elbow flexors. Commonly used markers of muscle damage such as relaxed and flexed elbow joint angles, range of motion (ROM), upper-arm circumference, muscle soreness, and plasma creatine kinase (CK) activity were measured before, immediately after, and 1-4 d after exercise. Pearson's product-moment correlation coefficients (r) between change in MVC-post and other markers of muscle damage, as well as MVC during recovery days, were calculated. Changes in MVC-post ranged from -72.8% to -17.6%, and correlated significantly (p < 0.01) with MVC at 1 (r = 0.59), 2 (0.63), 3 (0.61), and 4 (0.62) d after exercise. Reduction in MVC-post also correlated significantly (p < 0.05) with changes in relaxed (r = 0.50) and flexed elbow joint angles (-0.40), ROM (0.55), arm circumference (-0.45), peak palpation (-0.34) and extension muscle soreness (-0.48), and peak CK activity (-0.59). However, the r values were not necessarily high, and MVC-post poorly reflected the distribution of some measures, such as peak CK activity (124 - 50 440 IU x L(-1). These results suggest that MVC-post is not a strong correlate of the changes in markers of muscle damage following eccentric exercise of the elbow flexors.
Collapse
Affiliation(s)
- Kazunori Nosaka
- School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, Australia.
| | | | | | | |
Collapse
|
193
|
Toigo M, Boutellier U. New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol 2006; 97:643-63. [PMID: 16845551 DOI: 10.1007/s00421-006-0238-1] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2006] [Indexed: 12/27/2022]
Abstract
Abstract Physical activity relies on muscular force. In adult skeletal muscle, force results from the contraction of postmitotic, multinucleated myofibres of different contractile and metabolic properties. Myofibres can adapt to (patho-)physiological conditions of altered functional demand by radial growth, longitudinal growth, and regulation of fibre type functional gene modules. The adaptation's specificity depends on the distinct molecular and cellular events triggered by unique combinations of conditional cues. In order to derive effective and tailored exercise prescriptions, it must be determined (1) which mechano-biological condition leads to what molecular/cellular response, and (2) how this molecular/cellular response relates to the structural, contractile, and metabolic adaptation. It follows that a thorough mechano-biological description of the loading condition is imperative. Unfortunately, the definition of (resistance) exercise conditions in the past and present literature is insufficient. It is classically limited to load magnitude, number of repetitions and sets, rest in-between sets, number of interventions/week, and training period. In this review, we show why the current description is insufficient, and identify new determinants of quantitative and/or qualitative effects on skeletal muscle with respect to resistance exercise in healthy, adult humans. These new mandatory determinants comprise the fractional and temporal distribution of the contraction modes per repetition, duration of one repetition, rest in-between repetitions, time under tension, muscular failure, range of motion, recovery time, and anatomical definition. We strongly recommend to standardise the design and description of all future resistance exercise investigations by using the herein proposed set of 13 mechano-biological determinants (classical and new ones).
Collapse
Affiliation(s)
- Marco Toigo
- Institute of Human Movement Sciences, and Institute of Physiology, ETH Zurich, and University of Zurich, Y23 K 12, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | |
Collapse
|
194
|
Camargo Filho JCS, Vanderlei LCM, Camargo RCT, Francischeti FA, Belangero WD, Pai VD. Efeitos do esteróide anabólico nandrolona sobre o músculo sóleo de ratos submetidos a treinamento físico através de natação: estudo histológico, histoquímico e morfométrico. REV BRAS MED ESPORTE 2006. [DOI: 10.1590/s1517-86922006000500004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Este estudo teve por objetivo analisar as alterações histológicas, histoquímicas e morfométricas das fibras do músculo sóleo de ratos submetidos a um programa de natação, associado ou não à administração do esteróide anabólico decanoato de nandrolona. Foram utilizados 22 ratos Wistar machos, 12 dos quais receberam injeção intramuscular do esteróide (5mg/kg) e 10, óleo mineral (5mg/kg), duas vezes por semana. Os animais foram submetidos a 42 sessões de natação por nove semanas (de segunda a sexta-feira), com aumento progressivo de carga por meio do tempo de natação. Após o sacrifício, o músculo sóleo esquerdo foi retirado, imerso em n-hexana e acondicionado em nitrogênio líquido. Cortes do terço médio desse músculo foram feitos em micrótomo criostato (-20ºC) e corados pela técnica HE e pelo método histoquímico NADH-TR. Os animais submetidos a treinamento físico e a esteróide (TA) ou óleo mineral (TO) apresentaram fibras musculares com maior diâmetro, quando comparados com os animais-controle (NTA e NTO). Não houve diferença significativa entre as medidas das médias dos diâmetros das fibras dos grupos NTA e NTO e entre TA e TO. Nos grupos TA e NTA notou-se acentuado processo de fagocitose, arredondamento e hialinização das fibras musculares. Já nos grupos TA, TO e NTA observou-se perda da atividade enzimática oxidativa. Os resultados sugerem que a natação produz hipertrofia muscular de forma semelhante, tanto no grupo que recebeu esteróide como no que recebeu óleo mineral. No entanto, o grupo que recebeu esteróide apresentou sinais claros de maior degeneração muscular.
Collapse
|
195
|
Gissel H, Despa F, Collins J, Mustafi D, Rojahn K, Karczmar G, Lee R. Magnetic resonance imaging of changes in muscle tissues after membrane trauma. Ann N Y Acad Sci 2006; 1066:272-85. [PMID: 16533931 DOI: 10.1196/annals.1363.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A pure electroporation injury leads to cell membrane disruption and subsequent osmotic swelling of the tissue. The state of water in the injured area of a tissue is changed and differs from a healthy tissue. Magnetic resonance imaging (MRI), which is very sensitive to the quality of the interaction between mobile (water) protons and a restricted (protein) proton pool, is therefore a useful tool to characterize this injury. Here, we present a protocol designed to measure the difference between the values of the transverse magnetic relaxation time (T2) in MRIs of healthy and electrically injured tissue. In addition, we present a method to evaluate the two main contributions to the MRI contrast, the degree of structural alteration of the cellular components (including a major contribution from membrane pores), and edema. The approach is useful in assessing the level of damage that electric shocks produce in muscle tissues, in that edema will resolve in time whereas structural changes require active repair mechanisms.
Collapse
Affiliation(s)
- Hanne Gissel
- Electrical Trauma Research Program, Department of Surgery, MC 6035, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
196
|
Tourville TW, Connolly DAJ, Reed BV. Effects of sensory-level high-volt pulsed electrical current ondelayed-onset muscle soreness. J Sports Sci 2006; 24:941-9. [PMID: 16882628 DOI: 10.1080/02640410500357226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Ten healthy males and ten healthy females aged 21.5 +/- 3.2 years (mean +/- s) participated in the study, which was designed to evaluate the effectiveness of sensory level-high volt pulsed electrical current (HVPC) on delayed-onset muscle soreness (DOMS). Arm discomfort, elbow extension range of motion and isometric elbow flexion strength were obtained as baseline measurements. Delayed-onset muscle soreness was induced in the participants' dominant or non-dominant arm using two sets of 20 maximal eccentric elbow flexion contractions. After the induction of DOMS, the participants were randomly divided into an experimental condition (HVPC) or a placebo condition. The experimental condition consisted of 20 min of HVPC immediately after the induction of DOMS, and 20 min every 24 h for three consecutive days thereafter. The participants in the placebo condition received an intervention similar in design; however, no electrical current was administered. Baseline measurements were reevaluated at 24, 48, 72 and 96 h after the induction of DOMS. Three weeks later, the participants returned and the protocol was repeated on the contralateral limb, using the opposite intervention (HVPC or placebo). Repeated-measures analysis of variance revealed a significant increase in overall arm discomfort, decrease in elbow extension and decrease in isometric strength for both conditions over time. No significant main effect of treatment, or time-by-treatment interaction, was found for the HVPC condition when compared with the placebo condition for any variable. Sensory-level HVPC, as utilized in our application, was ineffective in reducing the measured variables associated with DOMS.
Collapse
Affiliation(s)
- Timothy W Tourville
- Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
197
|
Heap SJ, Fulgenzi GL, Hudlicka O. Microcirculation in rat soleus muscle after eccentric exercise: the effect of nifedipine. Eur J Appl Physiol 2006; 97:687-94. [PMID: 16770565 DOI: 10.1007/s00421-006-0239-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2006] [Indexed: 11/29/2022]
Abstract
This paper explores the role of the calcium entry blocker nifedipine in the explanation of eccentric exercise-induced fibre damage by changes in skeletal muscle microcirculation. Eccentric exercise (EE) was induced by indirect stimulation of rat soleus muscle in its lengthening phase during cycling. Muscle damage was assessed by histology, electron microscopy and muscle tension 48 h later. Diameters of arterioles and venules, their response to dilator and constrictor stimuli and pattern of capillary flow were measured in epiiluminated muscles using intravital microscopy. Tetanic tension developed by EE muscles was lower (8.60 +/- 1.02, means +/- SEM, n = 8 N g(-1) wet weight compared to 12.25 +/- 0.56 in controls, P < 0.01). Electron microscopy showed changes similar to those in muscles exposed to EE by downhill running (Z line streaming, disruption of sarcolemma, swollen tubules). A total of 16% of muscle fibres were damaged, and fibre areas and interstitial space were enlarged. Capillary red blood cell flow showed tendency to a greater intermittency. Large venules were narrower, but arterioles and smaller venules had diameters similar to control muscles. Vessel dilatation to topically applied 10(-4) M adenosine was attenuated. Daily administration of calcium entry blocker nifedipine by gavage (2 mg/kg/day in two equal doses) removed the narrowing of venules, restored the dilator response of all vessels to adenosine and increased capillary:fibre ratio. The percentage of damaged fibres decreased to 4.7 and the size of the interstitial space and fibre areas was normalized. Thus muscle damage caused by eccentric exercise was attenuated by nifedipine due to its beneficial effect on muscle microcirculation, which was impaired by eccentric exercise.
Collapse
Affiliation(s)
- S J Heap
- Department of Physiology, Division of Medicine, University of Birmingham Medical School, Birmingham, B15 2TT, UK
| | | | | |
Collapse
|
198
|
Brito MKMD, Camargo Filho JCS, Vanderlei LCM, Tarumoto MH, Dal Pai V, Giacometti JA. Dimensões geométricas das fibras do músculo sóleo de ratos exercitados em esteira rolante: a importância da análise por meio de imagens digitalizadas. REV BRAS MED ESPORTE 2006. [DOI: 10.1590/s1517-86922006000200010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023] Open
Abstract
O objetivo deste trabalho foi avaliar uma nova metodologia para análise de imagens digitalizadas de cortes transversais de fibras musculares esqueléticas de ratos submetidos ao exercício físico em esteira rolante. Foram utilizados segmentos do músculo sóleo de ratos obtidos de cortes histológicos e corados com hematoxilina e eosina (HE). Foram avaliadas 100 fibras musculares para cada animal e medidos o perímetro, a área e os diâmetros máximo, médio e mínimo por meio do processo de segmentação de imagens digitalizadas das seções das fibras usando o programa computacional Image-Pro-Plus. As dimensões geométricas como a área, perímetro e os diâmetros mínimos, médios das seções transversais das fibras musculares revelaram-se adequados para a análise do efeito do treinamento dos ratos. A análise revelou a existência de interação entre os grupos de ratos e a duração do exercício físico. O coeficiente de correlação de Pearson foi maior entre diâmetro médio e a área das fibras (0,97) seguida pela correlação entre os diâmetros máximo e médio com o perímetro (0,93). Concluiu-se que a mensuração do grau de hipertrofia das fibras musculares pode ser feita através da determinação do diâmetro médio ou da área da seção transversal da fibra, constituindo uma metodologia adequada e eficiente especialmente para as fibras musculares com acentuado polimorfismo.
Collapse
|
199
|
Howatson G, Gaze D, van Someren KA. The efficacy of ice massage in the treatment of exercise-induced muscle damage. Scand J Med Sci Sports 2006; 15:416-22. [PMID: 16293154 DOI: 10.1111/j.1600-0838.2005.00437.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purpose of this investigation was to, firstly, examine the effects of repeated applications of ice massage on the indirect markers associated with muscle damage using a within-subjects cross-over design and secondly, to examine how ice massage affects muscle function in both static and dynamic contractions following unaccustomed eccentric exercise. Twelve males performed damaging exercise on two separate occasions. The protocol consisted of three sets of 10 maximal eccentric repetitions of the elbow flexors using isokinetic dynamometry. Subjects were randomly assigned to an ice massage group or placebo group and received treatments immediately post-exercise, 24 and 48 h post-exercise. Muscle function (maximal isometric, slow and fast isokinetic contractions), creatine kinase, myoglobin, muscle soreness, limb girth and range of motion were measured pre, immediately post, 24, 48, 72 and 96 h post-exercise. Significant time effects were observed for all dependent variables (P<0.05). There were no significant differences between treatments. Ice massage is ineffective in reducing the indirect markers associated with exercise-induced muscle damage and enhancing recovery of muscle function in male exercisers unaccustomed to eccentric biased exercise.
Collapse
Affiliation(s)
- G Howatson
- School of Life Sciences, Kingston University, Kingston-upon-Thames, UK.
| | | | | |
Collapse
|
200
|
Ohtani M, Sugita M, Maruyama K. Amino acid mixture improves training efficiency in athletes. J Nutr 2006; 136:538S-543S. [PMID: 16424143 DOI: 10.1093/jn/136.2.538s] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This review discusses some of the beneficial effects of a dietary amino acid supplement on muscle function, fatigue, and recovery in exercising athletes. The supplement, a mixture of amino acids that included the branched-chain amino acids, arginine and glutamine, was studied chronically at several daily dose levels for extended periods of time (10, 30, and 90 d). Outcome variables included physical measures of muscle strength, fatigue and damage, and blood indices of muscle damage and oxygen-carrying capacity. One beneficial effect of the amino acid supplement was a quicker recovery from the muscle fatigue that followed eccentric exercise training. A dose-response study of the amino acid mixture at 2.2, 4.4, and 6.6 g/d for 1 mo showed that at the highest dose, indices of blood oxygen-carrying capacity were increased and those of muscle damage were decreased at the end of the trial. When the amino acid mixture was given for 90 d to elite rugby players during training at a dose of 7.2 g/d, a blood-component analysis indicated improvements in the oxygen-carrying capacity of the blood. Together, the studies suggest that the amino acid supplement contributed to an improvement in training efficiency through positive effects on muscle integrity and hematopoiesis.
Collapse
Affiliation(s)
- Masaru Ohtani
- Department of Environmental Studies, Graduate School of Frontier Sciences, the University of Tokyo, Chiba, Japan.
| | | | | |
Collapse
|