151
|
Kawamura T, Suzuki K, Takahashi M, Tomari M, Hara R, Gando Y, Muraoka I. Involvement of Neutrophil Dynamics and Function in Exercise-Induced Muscle Damage and Delayed-Onset Muscle Soreness: Effect of Hydrogen Bath. Antioxidants (Basel) 2018; 7:antiox7100127. [PMID: 30257503 PMCID: PMC6210335 DOI: 10.3390/antiox7100127] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/18/2018] [Accepted: 09/22/2018] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to investigate the involvement of neutrophil dynamics and function in exercise-induced muscle damage (EIMD) and delayed-onset muscle soreness (DOMS), and the effect of molecular hydrogen (H2) intake on these parameters. Nine healthy and active young men performed H2 and placebo bath trial in a crossover design. They carried out downhill running (−8% slope) for 30 min at a speed corresponding to 75~85% of peak oxygen uptake (VO2peak). Subsequently, they repeated bathing for 20 min per day for one week. Degree of muscle soreness (visual analogue scale: VAS), peripheral leukocyte counts, neutrophil dynamics and function, muscle damage, and inflammation markers were measured. Plasma interleukin (IL)-6 concentration was significantly correlated with peripheral neutrophil count, VAS, and serum creatine kinase activity, respectively, after downhill running. Peripheral neutrophil count and serum myoglobin concentration were also significantly correlated. Conversely, there were no effects of H2 bath. These results suggest that IL-6 may be involved in the mobilization of neutrophils into the peripheral blood and subsequent EIMD and DOMS after downhill running; however, it is not likely that H2 bath is effective for the inflammatory process that is centered on neutrophils after downhill running.
Collapse
Affiliation(s)
- Takuji Kawamura
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan.
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan.
| | - Masaki Takahashi
- Waseda Bioscience Research Institute in Singapore, Waseda University, Singapore 138667, Singapore.
| | - Miki Tomari
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan.
| | - Reira Hara
- College of Sports Sciences, Nihon University, 3-34-1 Simouma, Setagaya, Tokyo 154-8513, Japan.
| | - Yuko Gando
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku, Tokyo 162-8636, Japan.
| | - Isao Muraoka
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan.
| |
Collapse
|
152
|
Lundberg TR, Howatson G. Analgesic and anti-inflammatory drugs in sports: Implications for exercise performance and training adaptations. Scand J Med Sci Sports 2018; 28:2252-2262. [PMID: 30102811 DOI: 10.1111/sms.13275] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022]
Abstract
Over-the-counter analgesics, such as anti-inflammatory drugs (NSAIDs) and paracetamol, are widely consumed by athletes worldwide to increase pain tolerance, or dampen pain and reduce inflammation from injuries. Given that these drugs also can modulate tissue protein turnover, it is important to scrutinize the implications of acute and chronic use of these drugs in relation to exercise performance and the development of long-term training adaptations. In this review, we aim to provide an overview of the studies investigating the effects of analgesic drugs on exercise performance and training adaptations relevant for athletic development. There is emerging evidence that paracetamol might acutely improve important endurance parameters as well as aspects of neuromuscular performance, possibly through increased pain tolerance. Both NSAIDs and paracetamol have been demonstrated to inhibit cyclooxygenase (COX) activity, which might explain the reduced anabolic response to acute exercise bouts. Consistent with this, NSAIDs have been reported to interfere with muscle hypertrophy and strength gains in response to chronic resistance training in young individuals. Although it remains to be established whether any of these observations also translate into detriments in sport-specific performance or reduced training adaptations in elite athletes, the extensive use of these drugs certainly raises practical, ethical, and important safety concerns that need to be addressed. Overall, we encourage greater awareness among athletes, coaches, and support staff on the potential adverse effects of these drugs. A risk-benefit analysis and professional guidance are strongly advised before the athlete considers analgesic medicine for training or competition.
Collapse
Affiliation(s)
- Tommy R Lundberg
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK.,Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
| |
Collapse
|
153
|
Impact-Induced Muscle Damage and Contact Sports: Etiology, Effects on Neuromuscular Function and Recovery, and the Modulating Effects of Adaptation and Recovery Strategies. Int J Sports Physiol Perform 2018; 13:962-969. [DOI: 10.1123/ijspp.2017-0268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Athletes involved in contact sports are habitually exposed to skeletal-muscle damage in their training and performance environments. This often leads to exercise-induced muscle damage (EIMD) resulting from repeated eccentric and/or high-intensity exercise and to impact-induced muscle damage (IIMD) resulting from collisions with opponents and the playing surface. While EIMD has been an area of extensive investigation, IIMD has received comparatively little research, with the magnitude and time frame of alterations following IIMD not presently well understood. It is currently thought that EIMD results from an overload of mechanical stress that causes ultrastructural damage to the cellular membrane constituents. Damage leads to compromised ability to produce force, which manifests immediately and persists for up to 14 d following exercise exposure. IIMD has been implicated in attenuated neuromuscular performance and recovery and in inflammatory processes, although the underlying course over time remains unclear. Exposure to EIMD leads to an adaptation to subsequent exposures, a phenomenon known as the repeated-bout effect. An analogous adaptation has been suggested to occur following IIMD; however, to date, this contention remains equivocal. While a considerable body of research has explored the efficacy of recovery strategies following EIMD, strategies promoting recovery from IIMD are limited to investigations using animal contusion models. Strategies such as cryotherapy and antioxidant supplementation that focus on attenuating the secondary inflammatory response may provide additional benefit in IIMD and are explored herein. Further research is required to first establish a model of generating IIMD and then explore broader areas around IIMD in athletic populations.
Collapse
|
154
|
Owens DJ, Twist C, Cobley JN, Howatson G, Close GL. Exercise-induced muscle damage: What is it, what causes it and what are the nutritional solutions? Eur J Sport Sci 2018; 19:71-85. [PMID: 30110239 DOI: 10.1080/17461391.2018.1505957] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Exercise-induced muscle damage (EIMD) is characterized by symptoms that present both immediately and for up to 14 days after the initial exercise bout. The main consequence of EIMD for the athlete is the loss of skeletal muscle function and soreness. As such, numerous nutrients and functional foods have been examined for their potential to ameliorate the effects of EIMD and accelerate recovery, which is the purpose of many nutritional strategies for the athlete. However, the trade-off between recovery and adaptation is rarely considered. For example, many nutritional interventions described in this review target oxidative stress and inflammation, both thought to contribute to EIMD but are also crucial for the recovery and adaptation process. This calls into question whether long term administration of supplements and functional foods used to target EIMD is indeed best practice. This rapidly growing area of sports nutrition will benefit from careful consideration of the potential hormetic effect of long term use of nutritional aids that ameliorate muscle damage. This review provides a concise overview of what EIMD is, its causes and consequences and critically evaluates potential nutritional strategies to ameliorate EIMD. We present a pragmatic practical summary that can be adopted by practitioners and direct future research, with the purpose of pushing the field to better consider the fine balance between recovery and adaptation and the potential that nutritional interventions have in modulating this balance.
Collapse
Affiliation(s)
- Daniel J Owens
- a Research Institute for Sport and Exercise Science , Liverpool John Moores University , Liverpool , UK
| | - Craig Twist
- b Department of Sport and Exercise Sciences , University of Chester , Chester , UK
| | - James N Cobley
- c Department of Diabetes and Cardiovascular Disease, Center of Health Sciences , University of the Highlands and Islands , Inverness , UK
| | - Glyn Howatson
- d Department of Sport, Exercise & Rehabilitation , Northumbria University , Newcastle upon Tyne , UK.,e Water Research Group , North West University , Potchefstroom , South Africa
| | - Graeme L Close
- a Research Institute for Sport and Exercise Science , Liverpool John Moores University , Liverpool , UK
| |
Collapse
|
155
|
Pincheira PA, Hoffman BW, Cresswell AG, Carroll TJ, Brown NAT, Lichtwark GA. The repeated bout effect can occur without mechanical and neuromuscular changes after a bout of eccentric exercise. Scand J Med Sci Sports 2018; 28:2123-2134. [PMID: 29790207 DOI: 10.1111/sms.13222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 11/29/2022]
Abstract
Changes in muscle fascicle mechanics have been postulated to underpin the repeated bout effect (RBE) observed following exercise-induced muscle damage (EIMD). However, in the medial gastrocnemius (MG), mixed evidence exists on whether fascicle stretch amplitude influences the level of EIMD, thus questioning whether changes in fascicle mechanics underpin the RBE. An alternative hypothesis is that neural adaptations contribute to the RBE in this muscle. The aim of this study was to investigate the neuromechanical adaptations during and after repeated bouts of a highly controlled muscle lengthening exercise that aimed to maximize EIMD in MG. In all, 20 subjects performed two bouts of 500 active lengthening contractions (70% of maximal activation) of the triceps surae, separated by 7 days. Ultrasound constructed fascicle length-torque (L-T) curves of MG, surface electromyography (EMG), maximum torque production, and muscle soreness were assessed before, 2 hours and 2 days after each exercise bout. The drop in maximum torque (4%) and the increase in muscle soreness (24%) following the repeated bout were significantly less than following the initial bout (8% and 59%, respectively), indicating a RBE. However, neither shift in the L-T curve nor changes in EMG parameters were present. Furthermore, muscle properties during the exercise were not related to the EIMD or RBE. Our results show that there are no global changes in gastrocnemius mechanical behavior or neural activation that could explain the observed RBE in this muscle. We suggest that adaptations in the non-contractile elements of the muscle are likely to explain the RBE in the triceps surae.
Collapse
Affiliation(s)
- P A Pincheira
- School of Human Movement and Nutrition Sciences, Centre for Sensorimotor Performance, The University of Queensland, Brisbane, Queensland, Australia
| | - B W Hoffman
- School of Health and Wellbeing, University of Southern Queensland, Brisbane, Queensland, Australia
| | - A G Cresswell
- School of Human Movement and Nutrition Sciences, Centre for Sensorimotor Performance, The University of Queensland, Brisbane, Queensland, Australia
| | - T J Carroll
- School of Human Movement and Nutrition Sciences, Centre for Sensorimotor Performance, The University of Queensland, Brisbane, Queensland, Australia
| | - N A T Brown
- Australian Institute of Sport, Canberra, ACT, Australia
| | - G A Lichtwark
- School of Human Movement and Nutrition Sciences, Centre for Sensorimotor Performance, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
156
|
Waldron M, Ralph C, Jeffries O, Tallent J, Theis N, Patterson SD. The effects of acute leucine or leucine-glutamine co-ingestion on recovery from eccentrically biased exercise. Amino Acids 2018; 50:831-839. [PMID: 29770871 DOI: 10.1007/s00726-018-2565-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/30/2018] [Indexed: 11/28/2022]
Abstract
This study investigated the effects of leucine or leucine + glutamine supplementation on recovery from eccentric exercise. In a double-blind independent groups design, 23 men were randomly assigned to a leucine (0.087 g/kg; n = 8), leucine + glutamine (0.087 g/kg + glutamine 0.3 g/kg; n = 8) or placebo (0.3 g/kg maltodextrin; n = 7) group. Participants performed 5 sets of drop jumps, with each set comprising 20 repetitions. Isometric knee-extensor strength, counter-movement jump (CMJ) height, delayed-onset muscle soreness (DOMS) and creatine kinase (CK) were measured at baseline, 1, 24, 48 h and 72 h post-exercise. There was a time × group interaction for isometric strength, CMJ and CK (P < 0.05), with differences between the leucine + glutamine and placebo group at 48 h and 72 h for strength (P = 0.013; d = 1.43 and P < 0.001; d = 2.06), CMJ (P = 0.008; d = 0.87 and P = 0.019; d = 1.17) and CK at 24 h (P = 0.012; d = 0.54) and 48 h (P = 0.010; d = 1.37). The leucine group produced higher strength at 72 h compared to placebo (P = 0.007; d = 1.65) and lower CK at 24 h (P = 0.039; d = 0.63) and 48 h (P = 0.022; d = 1.03). Oral leucine or leucine + glutamine increased the rate of recovery compared to placebo after eccentric exercise. These findings highlight potential benefits of co-ingesting these amino acids to ameliorate recovery.
Collapse
Affiliation(s)
- Mark Waldron
- School of Sport, Health and Applied Science, St Mary's University, Waldegrave Road, Twickenham, London, TW1 4SX, UK. .,School of Science and Technology, University of New England, Armidale, NSW, Australia.
| | - Cameron Ralph
- School of Sport, Health and Applied Science, St Mary's University, Waldegrave Road, Twickenham, London, TW1 4SX, UK
| | - Owen Jeffries
- School of Sport, Health and Applied Science, St Mary's University, Waldegrave Road, Twickenham, London, TW1 4SX, UK
| | - Jamie Tallent
- School of Sport, Health and Applied Science, St Mary's University, Waldegrave Road, Twickenham, London, TW1 4SX, UK
| | - Nicola Theis
- School of Sport and Exercise Sciences, University of Gloucestershire, Gloucester, UK
| | - Stephen David Patterson
- School of Sport, Health and Applied Science, St Mary's University, Waldegrave Road, Twickenham, London, TW1 4SX, UK
| |
Collapse
|
157
|
Lynn A, Garner S, Nelson N, Simper TN, Hall AC, Ranchordas MK. Effect of bilberry juice on indices of muscle damage and inflammation in runners completing a half-marathon: a randomised, placebo-controlled trial. J Int Soc Sports Nutr 2018; 15:22. [PMID: 29743826 PMCID: PMC5930783 DOI: 10.1186/s12970-018-0227-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/25/2018] [Indexed: 11/10/2022] Open
Abstract
Background Emerging evidence indicates that fruits rich in polyphenols may attenuate exercise-induced muscle damage and associated markers of inflammation and soreness. This study was conducted to determine whether bilberry juice (BJ), which is particularly rich in polyphenols, reduces markers of muscle damage in runners completing a half marathon. Methods A total of 21 recreationally trained runners (age 30.9 ± 10.4 y; mass 71.6 ± 11.0 kg; M = 16; F = 5) were recruited to a single blind, randomised, placebo-controlled, parallel study. Participants were block randomised to consume 2 × 200 ml of BJ or energy-matched control drink (PLA) for 5 d before the Sheffield Half Marathon, on race day, and for 2 days post-race. Measurements of delayed onset muscle soreness (DOMS), muscle damage (creatine kinase; CK) and inflammation (c-reactive protein; CRP) were taken at baseline, pre-race, post-race, 24 h post-race and 48 h post-race. The effect of treatment on outcome measures was analysed using magnitude-based inferences based on data from 19 participants; 2 participants were excluded from the analyses because they did not provide samples for all time points. Results The half marathon caused elevations in DOMS, CRP and CK. BJ had a possibly harmful effect on DOMS from pre-race to immediately post-race (11.6%, 90% CI ± 14.7%), a likely harmful effect on CRP from pre-race to 24 h post-race (mean difference ES 0.56, 90% CI ± 0.72) and a possibly harmful effect on CRP from pre-race to 48 h post-race (ES 0.12, 90% CI ± 0.69). At other time points, the differences between the BJ and PLA groups in DOMS and CRP were unclear, possibly trivial or likely trivial. Differences in the changes in CK between BJ and PLA were unclear at every time point other than from baseline to pre-race, where BJ had a possibly harmful effect on reducing muscle damage (ES 0.23, 90% CI ± 0.57). Conclusion Despite being a rich source of antioxidant and anti-inflammatory phytochemicals, BJ evoked small to moderate increases in exercise-induced DOMS and CRP. Further larger studies are required to confirm these unexpected preliminary results.
Collapse
Affiliation(s)
- Anthony Lynn
- 1Food Group, Sheffield Business School, Sheffield Hallam University, S1 1WB, Sheffield, UK
| | - Samantha Garner
- 1Food Group, Sheffield Business School, Sheffield Hallam University, S1 1WB, Sheffield, UK
| | - Nichola Nelson
- 1Food Group, Sheffield Business School, Sheffield Hallam University, S1 1WB, Sheffield, UK
| | - Trevor N Simper
- 1Food Group, Sheffield Business School, Sheffield Hallam University, S1 1WB, Sheffield, UK
| | - Anna C Hall
- 1Food Group, Sheffield Business School, Sheffield Hallam University, S1 1WB, Sheffield, UK
| | - Mayur K Ranchordas
- 2Academy of Sport and Physical Activity, Sheffield Hallam University, S10 2BP, Sheffield, UK
| |
Collapse
|
158
|
Post-Game High Protein Intake May Improve Recovery of Football-Specific Performance during a Congested Game Fixture: Results from the PRO-FOOTBALL Study. Nutrients 2018; 10:nu10040494. [PMID: 29659539 PMCID: PMC5946279 DOI: 10.3390/nu10040494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 01/04/2023] Open
Abstract
The effects of protein supplementation on performance recovery and inflammatory responses during a simulated one-week in-season microcycle with two games (G1, G2) performed three days apart were examined. Twenty football players participated in two trials, receiving either milk protein concentrate (1.15 and 0.26 g/kg on game and training days, respectively) (PRO) or an energy-matched placebo (1.37 and 0.31 g/kg of carbohydrate on game and training days, respectively) (PLA) according to a randomized, repeated-measures, crossover, double-blind design. Each trial included two games and four daily practices. Speed, jump height, isokinetic peak torque, and muscle soreness of knee flexors (KF) and extensors (KE) were measured before G1 and daily thereafter for six days. Blood was drawn before G1 and daily thereafter. Football-specific locomotor activity and heart rate were monitored using GPS technology during games and practices. The two games resulted in reduced speed (by 3–17%), strength of knee flexors (by 12–23%), and jumping performance (by 3–10%) throughout recovery, in both trials. Average heart rate and total distance covered during games remained unchanged in PRO but not in PLA. Moreover, PRO resulted in a change of smaller magnitude in high-intensity running at the end of G2 (75–90 min vs. 0–15 min) compared to PLA (P = 0.012). KE concentric strength demonstrated a more prolonged decline in PLA (days 1 and 2 after G1, P = 0.014–0.018; days 1, 2 and 3 after G2, P = 0.016–0.037) compared to PRO (days 1 after G1, P = 0.013; days 1 and 2 after G2, P = 0.014–0.033) following both games. KF eccentric strength decreased throughout recovery after G1 (PLA: P=0.001–0.047—PRO: P =0.004–0.22) in both trials, whereas after G2 it declined throughout recovery in PLA (P = 0.000–0.013) but only during the first two days (P = 0.000–0.014) in PRO. No treatment effect was observed for delayed onset of muscle soreness, leukocyte counts, and creatine kinase activity. PRO resulted in a faster recovery of protein and lipid peroxidation markers after both games. Reduced glutathione demonstrated a more short-lived reduction after G2 in PRO compared to PLA. In summary, these results provide evidence that protein feeding may more efficiently restore football-specific performance and strength and provide antioxidant protection during a congested game fixture.
Collapse
|
159
|
Macgregor LJ, Hunter AM. High-threshold motor unit firing reflects force recovery following a bout of damaging eccentric exercise. PLoS One 2018; 13:e0195051. [PMID: 29630622 PMCID: PMC5890972 DOI: 10.1371/journal.pone.0195051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/11/2018] [Indexed: 11/18/2022] Open
Abstract
Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p <0.001) and rate of torque development (495.7 ± 136.9 Nm.s-1 vs. 163.4 ± 163.7 Nm.s-1; p <0.001) 48h post-exercise. Mean motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p <0.01) in high-threshold motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; p< 0.001) 48h post-exercise. The firing rate of high-threshold motor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures.
Collapse
Affiliation(s)
- Lewis J. Macgregor
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, Scotland
| | - Angus M. Hunter
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, Scotland
- * E-mail:
| |
Collapse
|
160
|
Rago V, Silva JR, Brito J, Barreira D, Mohr M, Krustrup P, Rebelo AN. Switching between pitch surfaces: practical applications and future perspectives for soccer training. J Sports Med Phys Fitness 2018; 59:510-519. [PMID: 29619795 DOI: 10.23736/s0022-4707.18.08278-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Soccer training and completion is conventionally practiced on natural grass (NG) or artificial turf (AT). Recently, AT pitches for training/competition, and of unstable surfaces for injury prevention training has increased. Therefore, soccer players are frequently exposed to variations in pitch surface during either training or competition. These ground changes may impact physical and physiological responses, adaptations as well as the injury. The aim of this review was to summarize the acute physical and physiological responses, chronic adaptations, and injury risk associated with exercising on different pitch surfaces in soccer. EVIDENCE ACQUISITION Eligible studies were published in English, had pitch surface as an independent variable, and had physical, physiological or epidemiological information as outcome variables. Specific data extracted from the articles included the training response, training adaptations or injury outcomes according to different pitch surfaces. A total of 224 studies were retrieved from a literature search. EVIDENCE SYNTHESIS Twenty articles met the inclusion criteria: 9 for acute physical and physiological responses, 2 for training adaptations and 9 for injury assessment. The literature lacks consistent evidence regarding the effects of pitch surface on performance and health outcomes in soccer players. However, it seems that occasionally switching training surfaces seems a valuable strategy for focusing on specific musculoskeletal queries and enhancing players' fitness. For instance, sand training may be occasionally proposed as complementary training strategy, given the recruitment of additional musculature probably not involved on firmer surfaces, but the possible training-induced adaptations of non-conventional soccer surfaces (e.g., sand) might potentially result into a negative transfer on AT or NG. CONCLUSIONS Since the specific physical demands of soccer can differ between surfaces, coaches should resort to the use of non-traditional surfaces with parsimony, emphasizing the specific surface-related motor tasks, normally observed on natural grass or artificial turf. Further studies are required to better understand the physiological effects induced by systematic surface-specific training, or switching between pitch surfaces.
Collapse
Affiliation(s)
- Vincenzo Rago
- Center of Research, Education, Innovation and Intervention in Sport, Faculty of Sports, University of Porto, Porto, Portugal - .,Unit of Health and Performance, Portuguese Football Federation, Lisbon, Portugal -
| | - João R Silva
- National Sports Medicine Programme Excellence in Football Project, Aspetar-Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - João Brito
- Unit of Health and Performance, Portuguese Football Federation, Lisbon, Portugal
| | - Daniel Barreira
- Center of Research, Education, Innovation and Intervention in Sport, Faculty of Sports, University of Porto, Porto, Portugal
| | - Magni Mohr
- Center of Health Sciences, Faculty of Natural and Health Sciences Tórshavn, University of the Faroe Islands, Tórshavn, Faroe Islands.,Department of Sports Science and Clinical Biomechanics, Faculty of Health Sciences, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark.,Center of Health and Human Performance, Department of Food and Nutrition, and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Peter Krustrup
- Department of Sports Science and Clinical Biomechanics, Faculty of Health Sciences, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark
| | - António N Rebelo
- Center of Research, Education, Innovation and Intervention in Sport, Faculty of Sports, University of Porto, Porto, Portugal
| |
Collapse
|
161
|
Takagi R, Ogasawara R, Takegaki J, Tamura Y, Tsutaki A, Nakazato K, Ishii N. Past injurious exercise attenuates activation of primary calcium-dependent injury pathways in skeletal muscle during subsequent exercise. Physiol Rep 2018; 6:e13660. [PMID: 29595913 PMCID: PMC5875535 DOI: 10.14814/phy2.13660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 02/22/2018] [Indexed: 11/24/2022] Open
Abstract
Past contraction‐induced skeletal muscle injury reduces the degree of subsequent injury; this phenomenon is called the “repeated bout effect (RBE).” This study addresses the mechanisms underlying the RBE, focusing on primary calcium‐dependent injury pathways. Wistar rats were subdivided into single injury (SI) and repeated injury (RI) groups. At age 10 weeks, the right gastrocnemius muscle in each rat in the RI group was subjected to strenuous eccentric contractions (ECs). Subsequently, mild ECs were imposed on the same muscle of each rat at 14 weeks of age in both groups. One day after the exercise, the RI group showed a lower strength deficit than did the SI group, and neither group manifested any increase in membrane permeability. The concentration of protein carbonyls and activation of total calpain increased after ECs given at the age of 14 weeks. Nonetheless, these increases were lower in the RI group than in the SI group. Furthermore, calcium‐dependent autolysis of calpain‐1 and calpain‐3 in the RI group was diminished as compared with that in the SI group. Although peak ankle joint torque and total force generation during ECs at the age of 14 weeks were similar between the two groups, phosphorylation of JNK (Thr183/Tyr185), an indicator of mechanical stress applied to a muscle, was lower in the RI group than in the SI group. These findings suggest that activation of the primary calcium‐dependent injury pathways is attenuated by past injurious exercise, and mechanical stress applied to muscle fibers during ECs may decrease in the RBE.
Collapse
Affiliation(s)
- Ryo Takagi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Riki Ogasawara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Aichi, Japan
| | - Junya Takegaki
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Tamura
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Arata Tsutaki
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Naokata Ishii
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
162
|
Kato E, Nakamura M, Takahashi H. Effect of Compression Garments on Controlled Force Output After Heel-Rise Exercise. J Strength Cond Res 2018; 32:1174-1179. [PMID: 29570601 DOI: 10.1519/jsc.0000000000001919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Kato, E, Nakamura, M, and Takahashi, H. Effect of compression garments on controlled force output after heel-rise exercise. J Strength Cond Res 32(4): 1174-1179, 2018-The purpose of this study was to elucidate the effects of compression garments (CG) on controlled force output after strenuous exercise. Sixteen healthy volunteers completed trials both with CG and without CG (control trial: CON) on 2 separate, random days which were at least 1 month apart. Both trials required participants to perform heel-rise exercises from maximal dorsiflexion to maximal plantar flexion 20 times with a single leg. The subjects repeated 3 sets of the exercise and took a rest for 2 minutes between sets. Before and after the heel-rise exercise, mechanical (stiffness) and architectural properties of the gastrocnemius medialis muscle were evaluated using the ultrasound method. Also, isometric maximal voluntary contraction (MVC) of plantar flexion was measured, and the subjects maintained 20% MVC of plantar flexion torque for 20 seconds as steadily as possible (steadiness task) as an index of force control. Repeated 2-way analysis of variance analysis (CG/CON × time) indicated that all the parameters declined immediately after heel-rise exercise in both CG and CON trials. Maximal voluntary contraction did not show different tendencies between CG and CON trials, but muscle stiffness and steadiness declined less in CG than CON (p < 0.05). In conclusion, CG are considered to positively benefit controlled force output after strenuous exercise.
Collapse
Affiliation(s)
- Emika Kato
- Faculty of Sociology, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto, Japan
| | - Mariko Nakamura
- Department of Sports Sciences, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Hideyuki Takahashi
- Department of Sports Sciences, Japan Institute of Sports Sciences, Tokyo, Japan
| |
Collapse
|
163
|
Heapy AM, Hoffman MD, Verhagen HH, Thompson SW, Dhamija P, Sandford FJ, Cooper MC. A randomized controlled trial of manual therapy and pneumatic compression for recovery from prolonged running - an extended study. Res Sports Med 2018. [PMID: 29513036 DOI: 10.1080/15438627.2018.1447469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Manual therapy (MT) and intermittent pneumatic compression (IPC) are recovery methods used by endurance athletes with little evidence supporting effectiveness. This randomized controlled trial evaluated effectiveness of four daily post-race treatments of a specific MT protocol and IPC compared with supine rest on recovery following an ultramarathon among 56 ultramarathoners. Groups were comparable across all characteristics examined, including post-race plasma creatine kinase concentration. Subject completed timed 400 m runs before the race and on days three, five, seven and 14 post- race, and also provided muscle pain and soreness ratings and fatigue scores immediately before and after treatments, and during the 14 days post- race. Daily subjective measures and 400 m run times were not improved by either treatment, but both treatments reduced (p < .05) muscular fatigue scores acutely after treatment following the race and on post-race day 1, and MT improved (p < .05) muscle pain and soreness acutely following the race.
Collapse
Affiliation(s)
- Amanda M Heapy
- a Department of Health and Sport , Toi Ohomai Institute of Technology , Rotorua , New Zealand
| | - Martin D Hoffman
- b Department of Physical Medicine & Rehabilitation, Department of Veteran Affairs , Northern California Health Care System , Sacramento , CA , USA.,c Department of Physical Medicine & Rehabilitation , University of California Davis Medical Center, Sacramento , CA , USA.,d Ultra Sports Science Foundation , USA
| | - Heidie H Verhagen
- e Department of Rehabilitation , Fortebody Reconditioning , Rotorua , New Zealand
| | - Samuel W Thompson
- a Department of Health and Sport , Toi Ohomai Institute of Technology , Rotorua , New Zealand
| | - Pavitra Dhamija
- a Department of Health and Sport , Toi Ohomai Institute of Technology , Rotorua , New Zealand
| | - Fiona J Sandford
- f Department of Massage Therapy , QE Health , Rotorua , New Zealand
| | - Mary C Cooper
- a Department of Health and Sport , Toi Ohomai Institute of Technology , Rotorua , New Zealand
| |
Collapse
|
164
|
Milk: An Effective Recovery Drink for Female Athletes. Nutrients 2018; 10:nu10020228. [PMID: 29462969 PMCID: PMC5852804 DOI: 10.3390/nu10020228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 11/17/2022] Open
Abstract
Milk has become a popular post-exercise recovery drink. Yet the evidence for its use in this regard comes from a limited number of investigations utilising very specific exercise protocols, and mostly with male participants. Therefore, the aim of this study was to investigate the effects of post-exercise milk consumption on recovery from a sprinting and jumping protocol in female team-sport athletes. Eighteen females participated in an independent-groups design. Upon completion of the protocol participants consumed 500 mL of milk (MILK) or 500 mL of an energy-matched carbohydrate (CHO) drink. Muscle function (peak torque, rate of force development (RFD), countermovement jump (CMJ), reactive strength index (RSI), sprint performance), muscle soreness and tiredness, symptoms of stress, serum creatine kinase (CK) and high-sensitivity C-reactive protein (hsCRP) were determined pre- and 24 h, 48 h and 72 h post-exercise. MILK had a very likely beneficial effect in attenuating losses in peak torque (180°/s) from baseline to 72 h (0.0 ± 10.0% vs. −8.7 ± 3.7%, MILK v CHO), and countermovement jump (−1.1 ± 5.2% vs. −10.4 ± 6.7%) and symptoms of stress (−13.5 ± 7.4% vs. −18.7 ± 11.0%) from baseline to 24 h. MILK had a likely beneficial effect and a possibly beneficial effect on other peak torque measures and 5 m sprint performance at other timepoints but had an unclear effect on 10 and 20 m sprint performance, RSI, muscle soreness and tiredness, CK and hsCRP. In conclusion, consumption of 500 mL milk attenuated losses in muscle function following repeated sprinting and jumping and thus may be a valuable recovery intervention for female team-sport athletes following this type of exercise.
Collapse
|
165
|
Brusco CM, Blazevich AJ, Radaelli R, Botton CE, Cadore EL, Baroni BM, Trajano GS, Pinto RS. The effects of flexibility training on exercise-induced muscle damage in young men with limited hamstrings flexibility. Scand J Med Sci Sports 2018; 28:1671-1680. [PMID: 29396987 DOI: 10.1111/sms.13068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2018] [Indexed: 11/30/2022]
Abstract
Adaptations to 6 weeks of supervised hamstring stretching training and its potential impact on symptoms of eccentric exercise-induced muscle damage (EIMD) were studied in 10 young, untrained men with limited hamstrings flexibility. Participants performed unilateral flexibility training (experimental leg; EL) on an isokinetic dynamometer, while the contralateral limb acted as control (CL). Hip range of motion (ROM), passive, isometric, and concentric torques, active optimum angle, and biceps femoris and semitendinosus muscle thickness and ultrasound echo intensity were assessed both before and after the training. Additionally, muscle soreness was assessed before and after an acute eccentric exercise bout in both legs (EL and CL) at post-training only. Hip ROM increased (P < .001) only in EL after the training (EL = 10.6° vs CL = 1.6°), but no changes (P > .05) in other criterion measurements were observed. After a bout of eccentric exercise at the end of the program, isometric and dynamic peak torques and muscle soreness ratings were significantly altered at all time points equally in EL and CL. Also, active optimum angle was reduced immediately, 48 and 72 hours post-exercise, and hip ROM was reduced at 48 and 72 hours equally in EL and CL. Finally, biceps femoris muscle thickness was significantly increased at all time points, and semitendinosus thickness and echo intensity significantly increased at 72 hours, with no significant differences between legs. The stretching training protocol significantly increased hip ROM; however, it did not induce a protective effect on EIMD in men with tight hamstrings.
Collapse
Affiliation(s)
- C M Brusco
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - A J Blazevich
- Centre for Exercise and Sports Science Research, School of Exercise and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - R Radaelli
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - C E Botton
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - E L Cadore
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - B M Baroni
- Graduate Program in Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - G S Trajano
- School of Exercise& Nutrition Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - R S Pinto
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
166
|
Brown DR, Gough LA, Deb SK, Sparks SA, McNaughton LR. Astaxanthin in Exercise Metabolism, Performance and Recovery: A Review. Front Nutr 2018; 4:76. [PMID: 29404334 PMCID: PMC5778137 DOI: 10.3389/fnut.2017.00076] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022] Open
Abstract
During periods of heavy exercise training and competition, lipid, protein, and nucleic molecules can become damaged due to an overproduction of reactive oxygen and nitrogen species (RONS) within the exercising organism. As antioxidants can prevent and delay cellular oxidative damage through removing, deactivating, and preventing the formation of RONS, supplementation with exogenous antioxidant compounds has become a commercialized nutritional strategy commonly adopted by recreationally active individuals and athletes. The following review is written as a critical appraisal of the current literature surrounding astaxanthin and its potential application as a dietary supplement in exercising humans. Astaxanthin is a lipid-soluble antioxidant carotenoid available to supplement through the intake of Haematococcus pluvialis-derived antioxidant products. Based upon in vitro and in vivo research conducted in mice exercise models, evidence would suggest that astaxanthin supplementation could potentially improve indices of exercise metabolism, performance, and recovery because of its potent antioxidant capacity. In exercising humans, however, these observations have yet to be consistently realized, with equivocal data reported. Implicated, in part, by the scarcity of well-controlled, scientifically rigorous research, future investigation is necessary to enable a more robust conclusion in regard to the efficacy of astaxanthin supplementation and its potential role in substrate utilization, endurance performance, and acute recovery in exercising humans.
Collapse
Affiliation(s)
- Daniel R Brown
- Sports Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, United Kingdom
| | - Lewis A Gough
- Sports Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, United Kingdom
| | - Sanjoy K Deb
- Sports Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, United Kingdom
| | - S Andy Sparks
- Sports Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, United Kingdom
| | - Lars R McNaughton
- Sports Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, United Kingdom.,Faculty of Health Science, Department of Sport and Movement Studies, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
167
|
Takagi R, Ogasawara R, Takegaki J, Tsutaki A, Nakazato K, Ishii N. Influence of past injurious exercise on fiber type-specific acute anabolic response to resistance exercise in skeletal muscle. J Appl Physiol (1985) 2018; 124:16-22. [PMID: 28912360 DOI: 10.1152/japplphysiol.00480.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We investigated the influence of past injurious exercise on anabolic response of skeletal muscle fibers to resistance exercise (RE). Wistar rats were divided into exercise (E) and exercise-after-injury (I-E) groups. At age 10 wk, the right gastrocnemius muscle in each rat in the I-E group was subjected to strenuous eccentric contractions. Subsequently, RE was imposed on the same muscle of each rat at 14 wk of age in both groups. Peak joint torque and total force generation per body mass during RE were similar between the groups. Muscle protein synthesis (MPS) in the I-E group was higher than that in the E group 6 h after RE. Furthermore, levels of phospho-p70S6 kinase (Thr389) and phospho-ribosomal protein S6 (phospho-rpS6) (Ser240/244), a downstream target of p70S6 kinase, were higher in the I-E group than in the E group. For the anabolic response in each fiber type, the I-E group showed a higher MPS response in type IIb, IIa, and I fibers and a higher phospho-rpS6 response in type IIx, IIa, and I fibers than the E group. In the I-E group, the relative content of myosin heavy chain (MHC) IIa was higher and that of MHC IIb was lower than those in the E group. In addition, type IIa fibers showed a lower MPS response to RE than type IIb fibers in the I-E group. In conclusion, the past injurious exercise enhanced the MPS and phospho-rpS6 responses in type IIb, IIa, and I fibers and type IIx, IIa, and I fibers, respectively. NEW & NOTEWORTHY Past injurious exercise increased the muscle protein synthesis (MPS) response and mammalian target of rapamycin complex 1 (mTORC1) signaling activation to resistance exercise. In the responses of each fiber type, the past injurious exercise increased the MPS and phosphorylation ribosomal protein (Ser240/244) responses in type IIb, IIa, and I fibers and type IIx, IIa, and I fibers, respectively.
Collapse
Affiliation(s)
- Ryo Takagi
- Graduate School of Health and Sport Science, Nippon Sport Science University , Tokyo , Japan.,Department of Life Sciences, The University of Tokyo , Tokyo , Japan
| | - Riki Ogasawara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology , Aichi , Japan
| | - Junya Takegaki
- Department of Life Sciences, The University of Tokyo , Tokyo , Japan
| | - Arata Tsutaki
- Graduate School of Health and Sport Science, Nippon Sport Science University , Tokyo , Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University , Tokyo , Japan
| | - Naokata Ishii
- Department of Life Sciences, The University of Tokyo , Tokyo , Japan
| |
Collapse
|
168
|
Shen L, Meng X, Zhang Z, Wang T. Physical Exercise for Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:529-545. [PMID: 30390268 DOI: 10.1007/978-981-13-1435-3_24] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The most direct characteristic of muscle atrophy is reduction in muscle mass, which is due to increased protein degradation or reduced protein synthesis in skeletal muscle. The loss of muscle mass can directly affect the quality of daily life, prolong the recovery period, and become the main risk factor for chronic diseases. However, there is currently no effective way to prevent and treat this disease, and therefore it is imperative to explore effective therapeutic approaches for muscle atrophy. It is well known that physical exercise is important for maintaining good health and long-term adherence to exercise can reduce the risk of cardiovascular diseases, obesity, and diabetes. It is also well established that exercise training can promote the synthesis of muscle protein and activate signaling pathways that regulate the metabolism and function of muscle fibers. Therefore, exercise can be used as a method to treat muscle atrophy in many of these conditions. Mitochondria play an important role in skeletal muscle homeostasis and bioenergy metabolism. Mitochondria are sensitive to contractile signals, and hence exercise can improve mitochondrial function and promote biosynthesis, which ultimately maintains the healthy state of cells and the whole body. On the other hand, frequent unaccustomed exercise will change the structure and function of skeletal muscle fibers, which is called exercise-induced muscle damage. When the exercise-induced muscle damage happens, it can cause temporary muscle damage and soreness, giving a negative effect on the muscle function.
Collapse
Affiliation(s)
- Liang Shen
- Physical Education College of Shanghai University, Shanghai, China
| | - Xiangmin Meng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Zhongrong Zhang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Tianhui Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China.
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
169
|
Adding Fish Oil to Whey Protein, Leucine, and Carbohydrate Over a Six-Week Supplementation Period Attenuates Muscle Soreness Following Eccentric Exercise in Competitive Soccer Players. Int J Sport Nutr Exerc Metab 2018; 28:26-36. [DOI: 10.1123/ijsnem.2017-0161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Soccer players often experience eccentric exercise-induced muscle damage given the physical demands of soccer match-play. Since long chain n-3 polyunsaturated fatty acids (n-3PUFA) enhance muscle sensitivity to protein supplementation, dietary supplementation with a combination of fish oil–derived n-3PUFA, protein, and carbohydrate may promote exercise recovery. This study examined the influence of adding n-3PUFA to a whey protein, leucine, and carbohydrate containing beverage over a six-week supplementation period on physiological markers of recovery measured over three days following eccentric exercise. Competitive soccer players were assigned to one of three conditions (2 × 200 mL): a fish oil supplement beverage (FO; n = 10) that contained n-3PUFA (1100 mg DHA/EPA—approximately 550 mg DHA, 550 mg EPA), whey protein (15 g), leucine (1.8 g), and carbohydrate (20 g); a protein supplement beverage (PRO; n = 10) that contained whey protein (15 g), leucine (1.8 g), and carbohydrate (20 g); and a carbohydrate supplement beverage (CHO; n = 10) that contained carbohydrate (24 g). Eccentric exercise consisted of unilateral knee extension/flexion contractions on both legs separately. Maximal force production was impaired by 22% during the 72-hour recovery period following eccentric exercise (p < 0.05). Muscle soreness, expressed as area under the curve (AUC) during 72-hour recovery, was less in FO (1948 ± 1091 mm × 72 h) than PRO (4640 ± 2654 mm × 72 h, p < 0.05) and CHO (4495 ± 1853 mm × 72 h, p = 0.10). Blood concentrations of creatine kinase, expressed as AUC, were ~60% lower in FO compared to CHO (p < 0.05) and tended to be lower (~39%, p = 0.07) than PRO. No differences in muscle function, soccer performance, or blood c-reactive protein concentrations were observed between groups. In conclusion, the addition of n-3PUFA to a beverage containing whey protein, leucine, and carbohydrate ameliorates the increase in muscle soreness and blood concentrations of creatine kinase following eccentric exercise in competitive soccer players.
Collapse
|
170
|
Ranchordas MK, Rogerson D, Soltani H, Costello JT. Antioxidants for preventing and reducing muscle soreness after exercise. Cochrane Database Syst Rev 2017; 12:CD009789. [PMID: 29238948 PMCID: PMC6486214 DOI: 10.1002/14651858.cd009789.pub2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Muscle soreness typically occurs after intense exercise, unaccustomed exercise or actions that involve eccentric contractions where the muscle lengthens while under tension. It peaks between 24 and 72 hours after the initial bout of exercise. Many people take antioxidant supplements or antioxidant-enriched foods before and after exercise in the belief that these will prevent or reduce muscle soreness after exercise. OBJECTIVES To assess the effects (benefits and harms) of antioxidant supplements and antioxidant-enriched foods for preventing and reducing the severity and duration of delayed onset muscle soreness following exercise. SEARCH METHODS We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, SPORTDiscus, trial registers, reference lists of articles and conference proceedings up to February 2017. SELECTION CRITERIA We included randomised and quasi-randomised controlled trials investigating the effects of all forms of antioxidant supplementation including specific antioxidant supplements (e.g. tablets, powders, concentrates) and antioxidant-enriched foods or diets on preventing or reducing delayed onset muscle soreness (DOMS). We excluded studies where antioxidant supplementation was combined with another supplement. DATA COLLECTION AND ANALYSIS Two review authors independently screened search results, assessed risk of bias and extracted data from included trials using a pre-piloted form. Where appropriate, we pooled results of comparable trials, generally using the random-effects model. The outcomes selected for presentation in the 'Summary of findings' table were muscle soreness, collected at times up to 6 hours, 24, 48, 72 and 96 hours post-exercise, subjective recovery and adverse effects. We assessed the quality of the evidence using GRADE. MAIN RESULTS Fifty randomised, placebo-controlled trials were included, 12 of which used a cross-over design. Of the 1089 participants, 961 (88.2%) were male and 128 (11.8%) were female. The age range for participants was between 16 and 55 years and training status varied from sedentary to moderately trained. The trials were heterogeneous, including the timing (pre-exercise or post-exercise), frequency, dose, duration and type of antioxidant supplementation, and the type of preceding exercise. All studies used an antioxidant dosage higher than the recommended daily amount. The majority of trials (47) had design features that carried a high risk of bias due to selective reporting and poorly described allocation concealment, potentially limiting the reliability of their findings.We tested only one comparison: antioxidant supplements versus control (placebo). No studies compared high-dose versus low-dose, where the low-dose supplementation was within normal or recommended levels for the antioxidant involved.Pooled results for muscle soreness indicated a small difference in favour of antioxidant supplementation after DOMS-inducing exercise at all main follow-ups: up to 6 hours (standardised mean difference (SMD) -0.30, 95% confidence interval (CI) -0.56 to -0.04; 525 participants, 21 studies; low-quality evidence); at 24 hours (SMD -0.13, 95% CI -0.27 to 0.00; 936 participants, 41 studies; moderate-quality evidence); at 48 hours (SMD -0.24, 95% CI -0.42 to -0.07; 1047 participants, 45 studies; low-quality evidence); at 72 hours (SMD -0.19, 95% CI -0.38 to -0.00; 657 participants, 28 studies; moderate-quality evidence), and little difference at 96 hours (SMD -0.05, 95% CI -0.29 to 0.19; 436 participants, 17 studies; low-quality evidence). When we rescaled to a 0 to 10 cm scale in order to quantify the actual difference between groups, we found that the 95% CIs for all five follow-up times were all well below the minimal important difference of 1.4 cm: up to 6 hours (MD -0.52, 95% CI -0.95 to -0.08); at 24 hours (MD -0.17, 95% CI -0.42 to 0.07); at 48 hours (MD -0.41, 95% CI -0.69 to -0.12); at 72 hours (MD -0.29, 95% CI -0.59 to 0.02); and at 96 hours (MD -0.03, 95% CI -0.43 to 0.37). Thus, the effect sizes suggesting less muscle soreness with antioxidant supplementation were very unlikely to equate to meaningful or important differences in practice. Neither of our subgroup analyses to examine for differences in effect according to type of DOMS-inducing exercise (mechanical versus whole body aerobic) or according to funding source confirmed subgroup differences. Sensitivity analyses excluding cross-over trials showed that their inclusion had no important impact on results.None of the 50 included trials measured subjective recovery (return to previous activities without signs or symptoms).There is very little evidence regarding the potential adverse effects of taking antioxidant supplements as this outcome was reported in only nine trials (216 participants). From the studies that did report adverse effects, two of the nine trials found adverse effects. All six participants in the antioxidant group of one trial had diarrhoea and four of these also had mild indigestion; these are well-known side effects of the particular antioxidant used in this trial. One of 26 participants in a second trial had mild gastrointestinal distress. AUTHORS' CONCLUSIONS There is moderate to low-quality evidence that high dose antioxidant supplementation does not result in a clinically relevant reduction of muscle soreness after exercise at up to 6 hours or at 24, 48, 72 and 96 hours after exercise. There is no evidence available on subjective recovery and only limited evidence on the adverse effects of taking antioxidant supplements. The findings of, and messages from, this review provide an opportunity for researchers and other stakeholders to come together and consider what are the priorities, and underlying justifications, for future research in this area.
Collapse
Affiliation(s)
- Mayur K Ranchordas
- Sheffield Hallam UniversityDepartment of SportCollegiate Crescent CampusA221 Collegiate Hall, Ecclesall RoadSheffieldSouth YorkshireUKS10 2BP
| | - David Rogerson
- Sheffield Hallam UniversityDepartment of SportCollegiate Crescent CampusA221 Collegiate Hall, Ecclesall RoadSheffieldSouth YorkshireUKS10 2BP
| | - Hora Soltani
- Sheffield Hallam UniversityCentre for Health and Social Care Research32 Collegiate CrescentSheffieldUKS10 2BP
| | - Joseph T Costello
- University of PortsmouthDepartment of Sport and Exercise ScienceSpinnaker BuildingCambridge RoadPortsmouthUKP01 2ER
| | | |
Collapse
|
171
|
Clifford T, Howatson G, West DJ, Stevenson EJ. Beetroot juice is more beneficial than sodium nitrate for attenuating muscle pain after strenuous eccentric-bias exercise. Appl Physiol Nutr Metab 2017; 42:1185-1191. [DOI: 10.1139/apnm-2017-0238] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to compare the effects of beetroot juice (BTJ) and a nitrate only drink (sodium nitrate; SN) on indices of exercise-induced muscle damage (EIMD). Thirty recreationally active males consumed either BTJ (n = 10), a nitrate-matched SN drink (n = 10), or an isocaloric placebo (PLA; n = 10) immediately and at 24 and 48 h after performing 100 drop jumps. To assess muscle damage, maximal isometric voluntary contractions (MIVCs), countermovement jumps (CMJs), pressure-pain threshold (PPT), creatine kinase (CK), and high-sensitivity C-reactive protein (hs-CRP) were measured before, immediately after and at 24, 48, and 72 h following the drop jumps. BTJ and SN increased serum nitric oxide, which peaked at 2 h post-ingestion (136 ± 78 and 189 ± 79 μmol·L−1, respectively). PPT decreased in all groups postexercise (P = 0.001), but was attenuated with BTJ compared with SN and PLA (P = 0.043). PPT was 104% ± 26% of baseline values at 72 h after BTJ, 94% ± 16% after SN, and 91% ± 19% after PLA. MIVC and CMJ were reduced following exercise (−15% to 25%) and did not recover to baseline by 72 h in all groups; however, no group differences were observed (P > 0.05). Serum CK increased after exercise but no group differences were present (P > 0.05). hsCRP levels were unaltered by the exercise protocol (P > 0.05). These data suggest that BTJ supplementation is more effective than SN for attenuating muscle pain associated with EIMD, and that any analgesic effects are likely due to phytonutrients in BTJ other than nitrate, or interactions between them.
Collapse
Affiliation(s)
- Tom Clifford
- School of Biomedical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
- Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom 2520, South Africa
| | - Daniel J. West
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Emma J. Stevenson
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
172
|
Rankin P, Lawlor MJ, Hills FA, Bell PG, Stevenson EJ, Cockburn E. The effect of milk on recovery from repeat-sprint cycling in female team-sport athletes. Appl Physiol Nutr Metab 2017; 43:113-122. [PMID: 28972854 DOI: 10.1139/apnm-2017-0275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The consumption of milk following eccentric exercise attenuates the effects of muscle damage in team-sport athletes. However, participation in team sport involves both concentric-eccentric loading and metabolic stress. Therefore, the aim of this study was to investigate the effects of postexercise milk consumption on recovery from a cycling protocol designed to simulate the metabolic demands of team sport. Ten female team-sport athletes participated in a randomised crossover investigation. Upon completion of the protocol participants consumed 500 mL of milk (MILK) or 500 mL of an energy-matched carbohydrate (CHO) drink. Muscle function (peak torque, rate of force development, countermovement jump, 20-m sprint), muscle soreness and tiredness, serum creatine kinase, high-sensitivity C-reactive protein, and measures of oxidative stress (protein carbonyls and reduced glutathione/oxidized glutathione (GSH/GSSG) ratio) were determined at pre-exercise and 24 h, 48 h, and 72 h postexercise. MILK had a possible beneficial effect in attenuating losses in peak torque (180°/s) from baseline to 24 h (3.2% ± 7.8% vs. -6.2% ± 7.5%, MILK vs. CHO) and a possible beneficial effect in minimising soreness (baseline-48 h; baseline-72 h) and tiredness (baseline-24 h; baseline-72 h). There was no change in oxidative stress following the exercise protocol, though a likely benefit of milk was observed for GSH/GSSG ratio at baseline-24 h (0.369 ×/÷ 1.89, 1.103 ×/÷ 3.96, MILK vs. CHO). MILK had an unclear effect on all other variables. Consumption of 500 mL of milk after repeat sprint cycling had little to no benefit in minimising losses in peak torque or minimising increases in soreness and tiredness and had no effect on serum markers of muscle damage and inflammation.
Collapse
Affiliation(s)
- Paula Rankin
- a Department of Science and Health, Institute of Technology Carlow, Carlow R93 V960, Ireland.,b School of Biomedical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK.,c London Institute of Sport, Middlesex University, London NW4 4BT, UK
| | - Michael J Lawlor
- a Department of Science and Health, Institute of Technology Carlow, Carlow R93 V960, Ireland
| | - Frank A Hills
- d Department of Natural Sciences, Middlesex University, London NW4 4BT, UK
| | - Phillip G Bell
- e GlaxoSimthKline Human Performance Laboratory, Brentford, London TW8 9DA, UK
| | - Emma J Stevenson
- f Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Emma Cockburn
- b School of Biomedical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK.,c London Institute of Sport, Middlesex University, London NW4 4BT, UK
| |
Collapse
|
173
|
Machado F, Peserico C, Mezzaroba P, Manoel F, da Silva D. Light-emitting diodes (LED) therapy applied between two running time trials has a moderate effect on attenuating delayed onset muscle soreness but does not change recovery markers and running performance. Sci Sports 2017. [DOI: 10.1016/j.scispo.2016.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
174
|
Guo J, Li L, Gong Y, Zhu R, Xu J, Zou J, Chen X. Massage Alleviates Delayed Onset Muscle Soreness after Strenuous Exercise: A Systematic Review and Meta-Analysis. Front Physiol 2017; 8:747. [PMID: 29021762 PMCID: PMC5623674 DOI: 10.3389/fphys.2017.00747] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/13/2017] [Indexed: 11/17/2022] Open
Abstract
Purpose: The purpose of this systematic review and meta-analysis was to evaluate the effects of massage on alleviating delayed onset of muscle soreness (DOMS) and muscle performance after strenuous exercise. Method: Seven databases consisting of PubMed, Embase, EBSCO, Cochrane Library, Web of Science, CNKI and Wanfang were searched up to December 2016. Randomized controlled trials (RCTs) were eligible and the outcomes of muscle soreness, performance (including muscle maximal isometric force (MIF) and peak torque) and creatine kinase (CK) were used to assess the effectiveness of massage intervention on DOMS. Results: Eleven articles with a total of 23 data points (involving 504 participants) satisfied the inclusion criteria and were pooled in the meta-analysis. The findings demonstrated that muscle soreness rating decreased significantly when the participants received massage intervention compared with no intervention at 24 h (SMD: –0.61, 95% CI: –1.17 to –0.05, P = 0.03), 48 h (SMD: –1.51, 95% CI: –2.24 to –0.77, P < 0.001), 72 h (SMD: –1.46, 95% CI: –2.59 to –0.33, P = 0.01) and in total (SMD: –1.16, 95% CI: –1.60 to –0.72, P < 0.001) after intense exercise. Additionally, massage therapy improved MIF (SMD: 0.56, 95% CI: 0.21–0.90, P = 0.002) and peak torque (SMD: 0.38, 95% CI: 0.04–0.71, P = 0.03) as total effects. Furthermore, the serum CK level was reduced when participants received massage intervention (SMD: –0.64, 95% CI: –1.04 to –0.25, P = 0.001). Conclusion: The current evidence suggests that massage therapy after strenuous exercise could be effective for alleviating DOMS and improving muscle performance.
Collapse
Affiliation(s)
- Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Linjin Li
- Wenzhou People's Hospital, The Third Clinical Institute of Wenzhou Medical University, Wenzhou, China
| | - Yuxiang Gong
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Rong Zhu
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Jiake Xu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Molecular Laboratory, School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xi Chen
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
175
|
Nausheen S, Moiz JA, Raza S, Shareef MY, Anwer S, Alghadir AH. Preconditioning by light-load eccentric exercise is equally effective as low-level laser therapy in attenuating exercise-induced muscle damage in collegiate men. J Pain Res 2017; 10:2213-2221. [PMID: 28979160 PMCID: PMC5602376 DOI: 10.2147/jpr.s139615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background/objective Previous studies have already reported an independent effect of light-load eccentric exercise (10% eccentric exercise contraction [EEC]) and low-level laser therapy (LLLT) as a protective measure against more strenuous eccentric exercise. However, the difference between these two interventions is largely unknown. Therefore, the present study aimed to compare the preconditioning effect of 10% EEC vs. LLLT on subjective, physiological, and biochemical markers of muscle damage in elbow flexors in collegiate men. Methods All 36 enrolled subjects were randomly assigned to either 10% EEC or LLLT group. Subjects in 10% EEC group performed 30 repetitions of an eccentric exercise with 10% maximal voluntary contraction strength 2 days prior to maximal eccentric exercise bout, whereas subjects in LLLT group were given LLLT. All the indirect markers of muscle damage were measured pre-exercise and at 24, 48, and 72 hours after the exercise-induced muscle damage protocol. Results The muscle soreness was reduced in both groups (p = 0.024); however, soreness was attenuated more in LLLT group at 48 hours (33.5 vs. 42.7, p = 0.004). There was no significant difference between the effect of 10% EEC and LLLT groups on other markers of muscle damage like a maximum voluntary isometric contraction (p = 0.47), range of motion (p = 0.16), upper arm circumference (p = 0.70), creatine kinase (p = 0.42), and lactate dehydrogenase (p = 0.08). Within-group analysis showed both interventions provided similar protection over time. Conclusion This study indicated that light-load eccentric exercise confers similar protective effect against subsequent maximal eccentric exercise as LLLT. Both the treatments could be used reciprocally based on the patient preference, costs, and feasibility of the equipment.
Collapse
Affiliation(s)
- Samar Nausheen
- Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, New Delhi, India
| | - Jamal Ali Moiz
- Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shahid Raza
- Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, New Delhi, India
| | | | - Shahnawaz Anwer
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.,Dr. D. Y. Patil College of Physiotherapy, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Ahmad H Alghadir
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
176
|
Romain C, Freitas TT, Martínez-Noguera FJ, Laurent C, Gaillet S, Chung LH, Alcaraz PE, Cases J. Supplementation with a Polyphenol-Rich Extract, TensLess ® , Attenuates Delayed Onset Muscle Soreness and Improves Muscle Recovery from Damages After Eccentric Exercise. Phytother Res 2017; 31:1739-1746. [PMID: 28856749 DOI: 10.1002/ptr.5902] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 11/05/2022]
Abstract
High-intensity exercises are known to provoke delayed onset muscle soreness (DOMS). Delayed onset muscle soreness typically occurs within the first 24 h, peaks between 24 and 72 h, and can last as long as 5-7 days post-exercise. Delayed onset muscle soreness is a multifactorial process involving both mechanical and biochemical components, associated with clinical features that may limit range of motion, and athletes seek for effective recovery strategies to optimize future training sessions. TensLess® is a food supplement developed to help manage post-exercise recovery. The supplement has been investigated on 13 recreationally active athletes of both sex, during a randomized, double-blind, and crossover clinical investigation, including a 3-week washout period. The clinical investigation was based on the study of TensLess® effects for DOMS management and on the reduction of associated muscle damages following an eccentric exercise protocol. Supplementation with TensLess® induced significant decrease in DOMS perception (-33%; p = 0.008) as of the first 24 h; this was significantly correlated with a lowered release of muscle damage-associated biomarkers, namely myoglobin, creatinine, and creatine kinase, for the whole length of the recovery period. Taken together, these positive results clearly indicate that post-exercise supplementation with TensLess® may preserve myocytes and reduce soreness following eccentric exercise-induced damages, and, accordingly, significantly shorten muscle recovery. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Cindy Romain
- Innovation and Scientific Affairs, Fytexia, 34350, Vendres, France
| | - Tomás T Freitas
- Research Center in High Performance Sport, UCAM Universidad Católica de Murcia, Murcia, Spain
| | | | - Caroline Laurent
- UMR 204 Nutripass, Institut de Recherche pour le Développement, Université de Montpellier, 34095, Montpellier, France
| | - Sylvie Gaillet
- UMR 204 Nutripass, Institut de Recherche pour le Développement, Université de Montpellier, 34095, Montpellier, France
| | - Linda H Chung
- Research Center in High Performance Sport, UCAM Universidad Católica de Murcia, Murcia, Spain
| | - Pedro E Alcaraz
- Research Center in High Performance Sport, UCAM Universidad Católica de Murcia, Murcia, Spain
| | - Julien Cases
- Innovation and Scientific Affairs, Fytexia, 34350, Vendres, France
| |
Collapse
|
177
|
Kawanishi N, Mizokami T, Niihara H, Yada K, Suzuki K. Neutrophil Depletion Attenuates Muscle Injury after Exhaustive Exercise. Med Sci Sports Exerc 2017; 48:1917-24. [PMID: 27187099 DOI: 10.1249/mss.0000000000000980] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The infiltration of macrophages in skeletal muscle during exhaustive exercise promotes inflammation, myofiber lesion, and muscle injury. Although neutrophils upregulate macrophage infiltration in skeletal muscles during exercise, the role of neutrophils in promoting muscle injury after exhaustive exercise remains unclear. In this study, we investigated the effects of preexercise neutrophil depletion with antineutrophil antibody treatment on muscle injury, inflammation, and macrophage infiltration after exhaustive exercise. METHODS Male C57BL/6J mice were randomly assigned to four groups, namely, sedentary with control antibody (n = 10), sedentary with antineutrophil antibody (n = 10), exhaustive exercise with control antibody (n = 10), and exhaustive exercise with antineutrophil antibody (n = 10). The mice were given intraperitoneal injection of the antineutrophil antibody (anti-Ly-6G, clone 1A8) or the control antibody (anti-Ly-6G, clone 2A3), and remained inactive or performed exhaustive exercise on a treadmill 48 h after the injection. Twenty-four hours after the exhaustive exercise, the gastrocnemius muscles were removed for histological and polymerase chain reaction (PCR) analyses. Infiltration of neutrophils and macrophages was evaluated with Ly-6G and F4/80 immunohistochemistry staining procedures. Muscle fiber injury was detected based on the number of IgG staining fiber. The mRNA expression levels of proinflammatory cytokines and chemokines were evaluated with real-time reverse transcription PCR. RESULTS Exhaustive exercise increased neutrophil infiltration into the gastrocnemius muscle substantially by 3.1-fold and caused muscle injury, but these effects were markedly suppressed by preexercise treatment with antineutrophil antibody (neutrophil infiltration, 0.42-fold, and muscle injury, 0.18-fold). Treatment with antineutrophil antibody also decreased macrophage infiltration (0.44-fold) and mRNA expression of tumor necrosis factor-α (0.55-fold) and interleukin-6 (0.51-fold) in the skeletal muscle after exhaustive exercise. CONCLUSION These results suggest that neutrophils contribute to exacerbating muscle injury by regulating inflammation through the induction of macrophage infiltration.
Collapse
Affiliation(s)
- Noriaki Kawanishi
- 1Institute for Nanoscience and Nanotechnology, Waseda University, Tokyo, JAPAN; 2Research Fellow of the Japan Society for the Promotion of Sciences, Tokyo, JAPAN; 3School of Health and Sports Science, Juntendo University, Chiba, JAPAN; 4Graduate School of Sport Sciences, Waseda University, Tokorozawa, Saitama, JAPAN; and 5Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, JAPAN
| | | | | | | | | |
Collapse
|
178
|
Abstract
OBJECTIVE To assess the impact of heat applied for 8 hours immediately after or 24 hours after exercise on delayed-onset muscle soreness (DOMS) in large skeletal muscle groups measured by subjective and objective means. DESIGN Cross-sectional repeated measure design study. SETTING Research laboratory. SUBJECTS Three groups of 20 subjects, age range 20 to 40 years. INTERVENTION Squats were conducted in three 5-minute bouts to initiate DOMS; 3 minutes of rest separated the bouts. One group had heat applied immediately after exercise, and a second group had heat applied 24 hours after exercise. A third group was the control group where no heat was applied. MAIN OUTCOME MEASURES Visual analog pain scales, muscle strength of quads, range of motion of quads, stiffness of quads (Continuous Passive Motion machine), algometer to measure quadriceps soreness, and blood myoglobin. RESULTS The most significant outcome was a reduction in soreness in the group that had low-temperature heat wraps applied immediately after exercise (P < 0.01). There was benefit to applying heat 24 hours after exercise, but to a smaller extent. This was corroborated by myoglobin, algometer, and stiffness data. CONCLUSIONS Low-level continuous heat wraps left for 8 hours just after heavy exercise reduced DOMS in the population tested as assessed by subjective and objective measures. CLINICAL RELEVANCE Although cold is commonly used after heavy exercise to reduce soreness, heat applied just after exercise seems very effective in reducing soreness. Unlike cold, it increases flexibility of tissue and tissue blood flow. For joint, it is still probably better to use cold to reduce swelling.
Collapse
|
179
|
Eddens L, Browne S, Stevenson EJ, Sanderson B, van Someren K, Howatson G. The efficacy of protein supplementation during recovery from muscle-damaging concurrent exercise. Appl Physiol Nutr Metab 2017; 42:716-724. [DOI: 10.1139/apnm-2016-0626] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study investigated the effect of protein supplementation on recovery following muscle-damaging exercise, which was induced with a concurrent exercise design. Twenty-four well-trained male cyclists were randomised to 3 independent groups receiving 20 g protein hydrolysate, iso-caloric carbohydrate, or low-calorific placebo supplementation, per serve. Supplement serves were provided twice daily, from the onset of the muscle-damaging exercise, for a total of 4 days and in addition to a controlled diet (6 g·kg−1·day−1 carbohydrate, 1.2 g·kg−1·day−1 protein, remainder from fat). Following the concurrent exercise session at time-point 0 h, comprising a simulated high-intensity road cycling trial and 100 drop-jumps, recovery of outcome measures was assessed at 24, 48, and 72 h. The concurrent exercise protocol was deemed to have caused exercise-induced muscle damage (EIMD), owing to time effects (p < 0.001), confirming decrements in maximal voluntary contraction (peaking at 15% ± 10%) and countermovement jump performance (peaking at 8% ± 7%), along with increased muscle soreness, creatine kinase, and C-reactive protein concentrations. No group or interaction effects (p > 0.05) were observed for any of the outcome measures. The present results indicate that protein supplementation does not attenuate any of the indirect indices of EIMD imposed by concurrent exercise, when employing great rigour around the provision of a quality habitual diet and the provision of appropriate supplemental controls.
Collapse
Affiliation(s)
- Lee Eddens
- GlaxoSmithKline Human Performance Laboratory, Brentford TW8 9DA, UK
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Sarah Browne
- GlaxoSmithKline Human Performance Laboratory, Brentford TW8 9DA, UK
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Emma J. Stevenson
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Brad Sanderson
- GlaxoSmithKline Human Performance Laboratory, Brentford TW8 9DA, UK
| | - Ken van Someren
- GlaxoSmithKline Human Performance Laboratory, Brentford TW8 9DA, UK
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
- Water Research Group, North West University, Potchefstroom 2520, South Africa
| |
Collapse
|
180
|
Tunc-Ata M, Turgut G, Mergen-Dalyanoglu M, Turgut S. Examination of levels pentraxin-3, interleukin-6, and C-reactive protein in rat model acute and chronic exercise. J Exerc Rehabil 2017; 13:279-283. [PMID: 28702438 PMCID: PMC5498083 DOI: 10.12965/jer.1734920.490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/10/2017] [Indexed: 01/21/2023] Open
Abstract
Different types of exercise occurs damage at the cellular level in the muscles. Muscle damage caused by exercise is determined creatine kinase, myoglobin, and increase in levels of acute phase protein and interleukin in blood. The purpose of this study was investigated the levels of pentraxin-3 (PTX-3), interleukin-6 (IL-6), and C-reactive protein (CRP) following acute and chronic exercising in rats. Twenty-six Wistar Albino male rats were divided in to three groups. A treadmill exercise was performed 3 days/week, 10 min/day for 1 week in acute groups. In chronic group, exercise performed 7 days/week, 60 min/day for 4 weeks. At the end of the experiment, plasma PTX-3, IL-6, and CRP levels were measured. In current study, the PTX-3, IL-6, and CRP levels not observed statistically significant difference among control, acute, and chronic groups. The levels IL-6 and CRP were not significantly different between acute and chronic exercise groups (P>0.05). However, the level of PTX-3 was found to be higher in the chronic group compared to the acute group (P<0.05). The PTX-3 level increase on chronic exercise-induced muscle damage. Accorting to our results, we think that PTX-3 may have a protect role on muscle damage during chronic exercises.
Collapse
Affiliation(s)
- Melek Tunc-Ata
- Department of Physiology, Health Science, Pamukkale University, Denizli, Turkey
| | - Gunfer Turgut
- Department of Physiology, Health Science, Pamukkale University, Denizli, Turkey
| | | | - Sebahat Turgut
- Department of Physiology, Health Science, Pamukkale University, Denizli, Turkey
| |
Collapse
|
181
|
Waldron M, Whelan K, Jeffries O, Burt D, Howe L, Patterson SD. The effects of acute branched-chain amino acid supplementation on recovery from a single bout of hypertrophy exercise in resistance-trained athletes. Appl Physiol Nutr Metab 2017; 42:630-636. [DOI: 10.1139/apnm-2016-0569] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study investigated the effects of acute branched-chain amino acid (BCAA) supplementation on recovery from exercise-induced muscle damage among experienced resistance-trained athletes. In a double-blind matched-pairs design, 16 resistance-trained participants, routinely performing hypertrophy training, were randomly assigned to a BCAA (n = 8) or placebo (n = 8) group. The BCAAs were administered at a dosage of 0.087 g/kg body mass, with a 2:1:1 ratio of leucine, isoleucine, and valine. The participants performed 6 sets of 10 full-squats at 70% 1-repetition maximum to induce muscle damage. All participants were diet-controlled across the study. Creatine kinase, peak isometric knee-extensor force, perceived muscle soreness, and countermovement jump (CMJ) height were measured immediately before (baseline) and at 1 h, 24 h, and 48 h postexercise. There were large to very large time effects for all measurements between baseline and 24–48 h. Between-group comparisons, expressed as a percentage of baseline, revealed differences in isometric strength at 24-h (placebo ∼87% vs. BCAA ∼92%; moderate, likely), CMJ at 24 h (placebo ∼93% vs. BCAA ∼96%; small, likely), and muscle soreness at both 24 h (placebo ∼685% vs. BCAA ∼531%; small, likely) and 48 h (placebo ∼468% vs. BCAA ∼350%; small, likely). Acute supplementation of BCAAs (0.087 g/kg) increased the rate of recovery in isometric strength, CMJ height, and perceived muscle soreness compared with placebo after a hypertrophy-based training session among diet-controlled, resistance-trained athletes. These findings question the need for longer BCAA loading phases and highlight the importance of dietary control in studies of this type.
Collapse
Affiliation(s)
- Mark Waldron
- School of Sport, Health and Applied Science, St Mary’s University, Waldegrave Road, Twickenham, London TW1 4SX, UK
- School of Science and Technology, University of New England, NSW 2350, Australia
| | - Kieran Whelan
- School of Sport, Health and Applied Science, St Mary’s University, Waldegrave Road, Twickenham, London TW1 4SX, UK
| | - Owen Jeffries
- School of Sport, Health and Applied Science, St Mary’s University, Waldegrave Road, Twickenham, London TW1 4SX, UK
| | - Dean Burt
- Sport and Exercise Science, Brindley Building, Staffordshire University, Leek Road, Stoke-on-Trent, UK
| | - Louis Howe
- School of Sport, Health and Applied Science, St Mary’s University, Waldegrave Road, Twickenham, London TW1 4SX, UK
| | - Stephen David Patterson
- School of Sport, Health and Applied Science, St Mary’s University, Waldegrave Road, Twickenham, London TW1 4SX, UK
| |
Collapse
|
182
|
Rahimi MH, Shab-Bidar S, Mollahosseini M, Djafarian K. Branched-chain amino acid supplementation and exercise-induced muscle damage in exercise recovery: A meta-analysis of randomized clinical trials. Nutrition 2017; 42:30-36. [PMID: 28870476 DOI: 10.1016/j.nut.2017.05.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/14/2017] [Accepted: 05/08/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Accumulating evidence suggests positive effects of branched-chain amino acids (BCAAs) on moderate muscle damage. However, findings vary substantially across studies. The aim of this review was to examine the effect of BCAAs on recovery following exercise-induced muscle damage. METHODS Controlled trials were identified through a computerized literature search and tracking of citations performed up to November 2015. To pool data, either a fixed-effects or a random-effects model was used; for assessing heterogeneity, Cochran's Q and I2 tests were used. RESULTS Eight trials met the inclusion criteria. Pooled data from the eight studies showed that BCAAs significantly reduced creatine kinase at two follow-up times (<24 and 24 h) in comparison with placebo recovery (<24 h: mean difference, -71.55 U/L, 95% confidence interval, -93.49 to -49.60, P < 0.000, n = 5 trials; 24 h: mean difference, -145.04 U/L, 95% confidence interval, -253.66 to -36.43, P = 0.009, n = 8 trials). In contrast, effects were not significant in any of the follow-up times for muscle soreness or lactate dehydrogenase. CONCLUSION The current evidence-based information indicates that use of BCAAs is better than passive recovery or rest after various forms of exhaustive and damaging exercise. The advantages relate to a reduction in muscle soreness and ameliorated muscle function because of an attenuation of muscle strength and muscle power loss after exercise.
Collapse
Affiliation(s)
- Mohammad Hossein Rahimi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mollahosseini
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
183
|
Ferreira Junior A, Kaspchak LAM, Bertuzzi R, Okuno NM. Effects of light-emitting diode irradiation on time to exhaustion at maximal aerobic speed. Lasers Med Sci 2017; 33:935-939. [PMID: 28466196 DOI: 10.1007/s10103-017-2212-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 04/17/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Adalberto Ferreira Junior
- Department of Physical Education, Universidade Estadual de Ponta Grossa (UEPG), Av. General Carlos Cavalcanti, 4748-Campus Uvaranas, Ponta Grossa, PR, 84030-900, Brazil.
| | - Luiz André Mainardes Kaspchak
- Department of Physical Education, Universidade Estadual de Ponta Grossa (UEPG), Av. General Carlos Cavalcanti, 4748-Campus Uvaranas, Ponta Grossa, PR, 84030-900, Brazil
| | - Rômulo Bertuzzi
- School of Physical Education and Sport, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Nilo Massaru Okuno
- Department of Physical Education, Universidade Estadual de Ponta Grossa (UEPG), Av. General Carlos Cavalcanti, 4748-Campus Uvaranas, Ponta Grossa, PR, 84030-900, Brazil
| |
Collapse
|
184
|
Brown F, Gissane C, Howatson G, van Someren K, Pedlar C, Hill J. Compression Garments and Recovery from Exercise: A Meta-Analysis. Sports Med 2017; 47:2245-2267. [DOI: 10.1007/s40279-017-0728-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
185
|
Chen TCC, Tseng WC, Huang GL, Chen HL, Tseng KW, Nosaka K. Superior Effects of Eccentric to Concentric Knee Extensor Resistance Training on Physical Fitness, Insulin Sensitivity and Lipid Profiles of Elderly Men. Front Physiol 2017; 8:209. [PMID: 28443029 PMCID: PMC5385383 DOI: 10.3389/fphys.2017.00209] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/22/2017] [Indexed: 01/04/2023] Open
Abstract
It has been reported that eccentric training of knee extensors is effective for improving blood insulin sensitivity and lipid profiles to a greater extent than concentric training in young women. However, it is not known whether this is also the case for elderly individuals. Thus, the present study tested the hypothesis that eccentric training of the knee extensors would improve physical function and health parameters (e.g., blood lipid profiles) of older adults better than concentric training. Healthy elderly men (60–76 years) were assigned to either eccentric training or concentric training group (n = 13/group), and performed 30–60 eccentric or concentric contractions of knee extensors once a week. The intensity was progressively increased over 12 weeks from 10 to 100% of maximal concentric strength for eccentric training and from 50 to 100% for concentric training. Outcome measures were taken before and 4 days after the training period. The results showed that no sings of muscle damage were observed after any sessions. Functional physical fitness (e.g., 30-s chair stand) and maximal concentric contraction strength of the knee extensors increased greater (P ≤ 0.05) after eccentric training than concentric training. Homeostasis model assessment, oral glucose tolerance test and whole blood glycosylated hemoglobin showed improvement of insulin sensitivity only after eccentric training (P ≤ 0.05). Greater (P ≤ 0.05) decreases in fasting triacylglycerols, total, and low-density lipoprotein cholesterols were evident after eccentric training than concentric training, and high-density lipoprotein cholesterols increased only after eccentric training. These results support the hypothesis and suggest that it is better to focus on eccentric contractions in exercise medicine.
Collapse
Affiliation(s)
| | - Wei-Chin Tseng
- Department of Physical Education, Health and Recreation, National Chiayi UniversityChiayi, Taiwan
| | - Guan-Ling Huang
- Department of Physical Education, National Taiwan Normal UniversityTaipei, Taiwan
| | - Hsin-Lian Chen
- Department of Physical Education, Health and Recreation, National Chiayi UniversityChiayi, Taiwan
| | - Kuo-Wei Tseng
- Department of Exercise and Health Science, University of TaipeiTaipei, Taiwan
| | - Kazunori Nosaka
- Centre for Exercise and Sports Sciences, School of Medical and Health Sciences, Edith Cowan UniversityJoondalup, WA, Australia
| |
Collapse
|
186
|
Kwiecien SY, McHugh MP, Howatson G. The efficacy of cooling with phase change material for the treatment of exercise-induced muscle damage: pilot study. J Sports Sci 2017; 36:407-413. [PMID: 28391765 DOI: 10.1080/02640414.2017.1312492] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Post-exercise cryotherapy treatments are typically short duration interventions. This study examined the efficacy of prolonged cooling using phase change material (PCM) on strength loss and pain after eccentric exercise. Eight adults performed 120 bilateral eccentric quadriceps contractions (90% MVC). Immediately afterwards, frozen PCM packs (15°C) were placed over the quadriceps, with room temperature PCM packs on the contralateral quadriceps. Skin temperature was recorded continually (6 h PCM application). Isometric quadriceps strength and soreness were assessed before, 24, 48, 72 and 96 h post-exercise. The protocol was repeated 5 months later, with room temperature PCM applied to both legs. There were three treatments: legs treated with 15°C PCM packs (direct cooling), legs treated with room temperature PCM packs contralateral to the 15°C PCM packs (systemic cooling), and legs tested 5 months later both treated with room temperature PCM packs (control). Skin temperature was 9°C-10°C lower with direct cooling versus systemic cooling and control (P < 0.01). Strength loss and soreness were less (P < 0.05) with direct cooling versus systemic cooling and control (strength 101%, 94%, 93%, respectively; pain 1.0, 2.3, 2.7, respectively). Six hours of PCM cooling was well tolerated and reduced strength loss and pain after damaging exercise.
Collapse
Affiliation(s)
- Susan Y Kwiecien
- a Nicholas Institute of Sports Medicine and Athletic Trauma , Lenox Hill Hospital , New York , NY , USA.,b Department of Sport , Exercise & Rehabilitation, Northumbria University , Newcastle upon Tyne , UK
| | - Malachy P McHugh
- a Nicholas Institute of Sports Medicine and Athletic Trauma , Lenox Hill Hospital , New York , NY , USA
| | - Glyn Howatson
- b Department of Sport , Exercise & Rehabilitation, Northumbria University , Newcastle upon Tyne , UK.,c Water Research Group , School of Environmental Sciences and Development, Northwest University , Potchefstroom , South Africa
| |
Collapse
|
187
|
Maeo S, Saito A, Otsuka S, Shan X, Kanehisa H, Kawakami Y. Localization of muscle damage within the quadriceps femoris induced by different types of eccentric exercises. Scand J Med Sci Sports 2017; 28:95-106. [DOI: 10.1111/sms.12880] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 01/22/2023]
Affiliation(s)
- S. Maeo
- Faculty of Sport Sciences; Waseda University; Tokorozawa Saitama Japan
- Research Fellow of Japan Society for the Promotion of Science; Chiyoda Tokyo Japan
| | - A. Saito
- Faculty of Sport Sciences; Waseda University; Tokorozawa Saitama Japan
| | - S. Otsuka
- Faculty of Sport Sciences; Waseda University; Tokorozawa Saitama Japan
| | - X. Shan
- Faculty of Sport Sciences; Waseda University; Tokorozawa Saitama Japan
| | - H. Kanehisa
- Department of Sports and Life Science; National Institute of Fitness and Sports in Kanoya; Kanoya Kagoshima Japan
| | - Y. Kawakami
- Faculty of Sport Sciences; Waseda University; Tokorozawa Saitama Japan
| |
Collapse
|
188
|
Kennedy P, Macgregor LJ, Barnhill E, Johnson CL, Perrins M, Hunter A, Brown C, van Beek EJR, Roberts N. MR elastography measurement of the effect of passive warmup prior to eccentric exercise on thigh muscle mechanical properties. J Magn Reson Imaging 2017; 46:1115-1127. [PMID: 28218814 PMCID: PMC5600114 DOI: 10.1002/jmri.25642] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/06/2017] [Indexed: 01/19/2023] Open
Abstract
Purpose To investigate the effect of warmup by application of the thermal agent Deep Heat (DH) on muscle mechanical properties using magnetic resonance elastography (MRE) at 3T before and after exercise‐induced muscle damage (EIMD). Materials and Methods Twenty male participants performed an individualized protocol designed to induce EIMD in the quadriceps. DH was applied to the thigh in 50% of the participants before exercise. MRE, T2‐weighted MRI, maximal voluntary contraction (MVC), creatine kinase (CK) concentration, and muscle soreness were measured before and after the protocol to assess EIMD effects. Five participants were excluded: four having not experienced EIMD and one due to incidental findings. Results Total workload performed during the EIMD protocol was greater in the DH group than the control group (P < 0.03), despite no significant differences in baseline MVC (P = 0.23). Shear stiffness |G*| increased in the rectus femoris (RF) muscle in both groups (P < 0.03); however, DH was not a significant between‐group factor (P = 0.15). MVC values returned to baseline faster in the DH group (5 days) than the control group (7 days). Participants who displayed hyperintensity on T2‐weighted images had a greater stiffness increase following damage than those without: RF; 0.61 kPa vs. 0.15 kPa, P < 0.006, vastus intermedius; 0.34 kPa vs. 0.03 kPa, P = 0.06. Conclusion EIMD produces increased muscle stiffness as measured by MRE, with the change in |G*| significantly increased when T2 hyperintensity was present. DH did not affect CK concentration or soreness; however, DH participants produced greater workload during the EIMD protocol and exhibited accelerated MVC recovery. Level of Evidence: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1115–1127.
Collapse
Affiliation(s)
- Paul Kennedy
- Clinical Research Imaging Centre (CRIC), Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Translational and Molecular Imaging Institute (TMII), Icahn School of Medicine at Mount Sinai, New York, USA
| | - Lewis J Macgregor
- Health and Exercise Research Group, School of Sport, University of Stirling, UK
| | - Eric Barnhill
- Department of Radiological Science, Charité-Universitätsmedizin, Berlin, Germany
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Michael Perrins
- Clinical Research Imaging Centre (CRIC), Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Angus Hunter
- Health and Exercise Research Group, School of Sport, University of Stirling, UK
| | - Colin Brown
- The Mentholatum Company Ltd, East Kilbride, Glasgow, UK
| | - Edwin J R van Beek
- Clinical Research Imaging Centre (CRIC), Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Neil Roberts
- Clinical Research Imaging Centre (CRIC), Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
189
|
Hillman AR, Taylor BC, Thompkins D. The effects of tart cherry juice with whey protein on the signs and symptoms of exercise-induced muscle damage following plyometric exercise. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
190
|
Kirk B, Mitchell J, Jackson M, Amirabdollahian F, Alizadehkhaiyat O, Clifford T. A2 Milk Enhances Dynamic Muscle Function Following Repeated Sprint Exercise, a Possible Ergogenic Aid for A1-Protein Intolerant Athletes? Nutrients 2017; 9:nu9020094. [PMID: 28134840 PMCID: PMC5331525 DOI: 10.3390/nu9020094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 12/21/2022] Open
Abstract
Hyperaminoacidemia following ingestion of cows-milk may stimulate muscle anabolism and attenuate exercise-induced muscle damage (EIMD). However, as dairy-intolerant athletes do not obtain the reported benefits from milk-based products, A2 milk may offer a suitable alternative as it lacks the A1-protein. This study aimed to determine the effect of A2 milk on recovery from a sports-specific muscle damage model. Twenty-one male team sport players were allocated to three independent groups: A2 milk (n = 7), regular milk (n = 7), and placebo (PLA) (n = 7). Immediately following muscle-damaging exercise, participants consumed either A2 milk, regular milk or PLA (500 mL each). Visual analogue scale (muscle soreness), maximal voluntary isometric contraction (MVIC), countermovement jump (CMJ) and 20-m sprint were measured prior to and 24, 48, and 72 h post EIMD. At 48 h post-EIMD, CMJ and 20-m sprint recovered quicker in A2 (33.4 ± 6.6 and 3.3 ± 0.1, respectively) and regular milk (33.1 ± 7.1 and 3.3 ± 0.3, respectively) vs. PLA (29.2 ± 3.6 and 3.6 ± 0.3, respectively) (p < 0.05). Relative to baseline, decrements in 48 h CMJ and 20-m sprint were minimised in A2 (by 7.2 and 5.1%, respectively) and regular milk (by 6.3 and 5.2%, respectively) vs. PLA. There was a trend for milk treatments to attenuate decrements in MVIC, however statistical significance was not reached (p = 0.069). Milk treatments had no apparent effect on muscle soreness (p = 0.152). Following muscle-damaging exercise, ingestion of 500 mL of A2 or regular milk can limit decrements in dynamic muscle function in male athletes, thus hastening recovery and improving subsequent performance. The findings propose A2 milk as an ergogenic aid following EIMD, and may offer an alternative to athletes intolerant to the A1 protein.
Collapse
Affiliation(s)
- Ben Kirk
- School of Health Sciences, Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK.
| | - Jade Mitchell
- Department of Sport, Exercise & Rehabilitation, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Matthew Jackson
- School of Health Sciences, Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK.
| | | | - Omid Alizadehkhaiyat
- School of Health Sciences, Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK.
| | - Tom Clifford
- Department of Sport, Exercise & Rehabilitation, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
191
|
Boobphachart D, Manimmanakorn N, Manimmanakorn A, Thuwakum W, Hamlin MJ. Effects of elastic taping, non-elastic taping and static stretching on recovery after intensive eccentric exercise. Res Sports Med 2017; 25:181-190. [PMID: 28121177 DOI: 10.1080/15438627.2017.1282360] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to compare the effect of elastic tape (Kinesio tape) to placebo tape or static stretching on delayed onset muscle soreness. Fifty-one untrained female healthy volunteers were randomly assigned into three groups (n = 17/group), elastic tape, placebo tape and stretching group. Muscle soreness was induced by 4 sets of 25 maximal isokinetic (60°.s-1) eccentric contractions of dominant quadriceps on an isokinetic dynamometer. Compared with placebo tape, the elastic tape participants had less muscle soreness at 72 h post-exercise (p = 0.01). The elastic tape also increased isometric strength at 72 h post-exercise compared with the placebo (p = 0.03) and stretching group (p = 0.02). However, there was little effect between groups for changes in thigh circumference, jumping, pressure pain threshold, rate of perceived exertion, creatine kinase activity and joint motion. Elastic taping increased muscle strength recovery and reduced muscle soreness after intensive exercise.
Collapse
Affiliation(s)
- Disaphon Boobphachart
- a Department of Physical Education, Faculty of Education , Ubonratchathani Rajabhat University , Ubonratchathani , Thailand.,b Research Center in Back, Neck, Other Joint Pain and Human Performance (BNOJPH) , Khon Kaen University , Khon Kaen , Thailand
| | - Nuttaset Manimmanakorn
- b Research Center in Back, Neck, Other Joint Pain and Human Performance (BNOJPH) , Khon Kaen University , Khon Kaen , Thailand.,c Department of Physical Medicine and Rehabilitation, Faculty of Medicine , Khon Kaen University , Khon Kaen , Thailand
| | - Apiwan Manimmanakorn
- d Department of Physiology, Faculty of Medicine , Khon Kaen University , Khon Kaen , Thailand
| | - Worrawut Thuwakum
- e Department of Sport Science, Faculty of Science , Uttaradit Rajabhat University , Uttaradit , Thailand
| | - Michael J Hamlin
- f Department of Tourism, Sport and Society , Lincoln University, Lincoln , Christchurch , New Zealand
| |
Collapse
|
192
|
Page W, Swan R, Patterson SD. The effect of intermittent lower limb occlusion on recovery following exercise-induced muscle damage: A randomized controlled trial. J Sci Med Sport 2017; 20:729-733. [PMID: 28153608 DOI: 10.1016/j.jsams.2016.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The purpose of this investigation was to examine the effectiveness of intermittent lower limb occlusion in augmenting recovery from exercise induced muscle damage (EIMD) in physically active males. DESIGN Randomized controlled trial, double blind. METHODS Sixteen healthy recreationally active male participants were randomly assigned to an intermittent occlusion (OCC; n=8) or control (SHAM; n=8) group. The EIMD protocol comprised of 100 drop-jumps, from a 0.6m box. Indices of muscle damage were creatine kinase (CK), thigh-circumference (TC), muscle soreness (DOMS), counter-movement jump (CMJ) and maximal isometric voluntary contraction (MIVC). Measurements were assessed pre, 24h, 48h and 72h following exercise. RESULTS There was a significant time effect for all indices of muscle damage suggesting EIMD was present following the exercise protocol. The decrease in MIVC was significantly attenuated in the OCC group compared to the SHAM group at 24 (90.4±10.7 vs. 81.5±6.7%), 48 (96.2±6.1 vs. 84.5±7.1%) and 72h (101.1±4.2 vs. 89.7±7.5%). The CK response was reduced in the OCC group at 24 (335±87 vs. 636±300 IU) and 48h (244±70 vs. 393±248 IU), compared to the SHAM group. DOMS was significantly lower in the OCC compared to the SHAM group at 24, 48 and 72h post EIMD. There was no effect of OCC on CMJ or TC. CONCLUSIONS This investigation shows that intermittent lower limb occlusion administered after a damaging bout of exercise reduces indices of muscle damage and accelerates the recovery in physically active males.
Collapse
Affiliation(s)
- Will Page
- School of Sport, Health, and Applied Science, St. Mary's University, UK
| | - Rachael Swan
- School of Sport, Health, and Applied Science, St. Mary's University, UK
| | | |
Collapse
|
193
|
Mawhinney C, Jones H, Low DA, Green DJ, Howatson G, Gregson W. Influence of cold-water immersion on limb blood flow after resistance exercise. Eur J Sport Sci 2017; 17:519-529. [PMID: 28100130 DOI: 10.1080/17461391.2017.1279222] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study determined the influence of cold (8°C) and cool (22°C) water immersion on lower limb and cutaneous blood flow following resistance exercise. Twelve males completed 4 sets of 10-repetition maximum squat exercise and were then immersed, semi-reclined, into 8°C or 22°C water for 10-min, or rested in a seated position (control) in a randomized order on different days. Rectal and thigh skin temperature, muscle temperature, thigh and calf skin blood flow and superficial femoral artery blood flow were measured before and after immersion. Indices of vascular conductance were calculated (flux and blood flow/mean arterial pressure). The colder water reduced thigh skin temperature and deep muscle temperature to the greatest extent (P < .001). Reductions in rectal temperature were similar (0.2-0.4°C) in all three trials (P = .69). Femoral artery conductance was similar after immersion in both cooling conditions, with both conditions significantly lower (55%) than the control post-immersion (P < .01). Similarly, there was greater thigh and calf cutaneous vasoconstriction (40-50%) after immersion in both cooling conditions, relative to the control (P < .01), with no difference between cooling conditions. These findings suggest that cold and cool water similarly reduce femoral artery and cutaneous blood flow responses but not muscle temperature following resistance exercise.
Collapse
Affiliation(s)
- Chris Mawhinney
- a Research Institute for Sport and Exercise Sciences , Liverpool John Moores University , Liverpool , UK
| | - Helen Jones
- a Research Institute for Sport and Exercise Sciences , Liverpool John Moores University , Liverpool , UK
| | - David A Low
- a Research Institute for Sport and Exercise Sciences , Liverpool John Moores University , Liverpool , UK
| | - Daniel J Green
- a Research Institute for Sport and Exercise Sciences , Liverpool John Moores University , Liverpool , UK.,b School of Sport Science, Exercise and Health , The University of Western Australia , Perth , Australia
| | - Glyn Howatson
- c Department of Sport, Exercise and Rehabilitation , Northumbria University , Newcastle-upon-Tyne , UK.,d Water Research Group, School of Biological Sciences , North West University , Potchefstroom , South Africa
| | - Warren Gregson
- a Research Institute for Sport and Exercise Sciences , Liverpool John Moores University , Liverpool , UK
| |
Collapse
|
194
|
Casanova N, Reis JF, Vaz JR, Machado R, Mendes B, Button DC, Pezarat-Correia P, Freitas SR. Effects of roller massager on muscle recovery after exercise-induced muscle damage. J Sports Sci 2017; 36:56-63. [PMID: 28095747 DOI: 10.1080/02640414.2017.1280609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Two experiments (n = 10) were conducted to determine the effects of roller massager (RM) on ankle plantar flexor muscle recovery after exercise-induced muscle damage (EIMD). Experiment 1 examined both functional [i.e., ankle plantar flexion maximal isometric contraction and submaximal (30%) sustained force; ankle dorsiflexion maximal range of motion and resistance to stretch; and medial gastrocnemius pain pressure threshold] and morphological [cross-sectional area, thickness, fascicle length, and fascicle angle] variables, before and immediately, 1, 24, 48, and 72 h after an EIMD stimulus. Experiment 2 examined medial gastrocnemius deoxyhaemoglobin concentration kinetics before and 48 h after EIMD. Participants performed both experiments twice: with (RM) and without (no-roller massager; NRM) the application of a RM (6 × 45 s; 20-s rest between sets). RM intervention did not alter the functional impairment after EIMD, as well as the medial gastrocnemius morphology and oxygenation kinetics (P > 0.05). Although, an acute increase of ipsilateral (RM = + 19%, NRM = -5%, P = 0.032) and a strong tendency for contralateral (P = 0.095) medial gastrocnemius pain pressure threshold were observed. The present results suggest that a RM has no effect on plantar flexors performance, morphology, and oxygenation recovery after EIMD, except for muscle pain pressure threshold (i.e., a soreness).
Collapse
Affiliation(s)
- Nuno Casanova
- a CIPER, Faculdade de Motricidade Humana , Universidade de Lisboa, Estrada da Costa , Cruz Quebrada , Dafundo , Portugal
| | - Joana F Reis
- a CIPER, Faculdade de Motricidade Humana , Universidade de Lisboa, Estrada da Costa , Cruz Quebrada , Dafundo , Portugal.,b Escola de Turismo, Desporto e Hospitalidade , Universidade Europeia , Lisboa , Portugal
| | - João R Vaz
- a CIPER, Faculdade de Motricidade Humana , Universidade de Lisboa, Estrada da Costa , Cruz Quebrada , Dafundo , Portugal.,b Escola de Turismo, Desporto e Hospitalidade , Universidade Europeia , Lisboa , Portugal.,d Sport Lisboa e Benfica , Benfica LAB , Lisboa , Portugal
| | - Rita Machado
- a CIPER, Faculdade de Motricidade Humana , Universidade de Lisboa, Estrada da Costa , Cruz Quebrada , Dafundo , Portugal
| | - Bruno Mendes
- d Sport Lisboa e Benfica , Benfica LAB , Lisboa , Portugal
| | - Duane C Button
- c Memorial University , School of Human Kinetics and Recreation , St. John's , NL , Canada
| | - Pedro Pezarat-Correia
- a CIPER, Faculdade de Motricidade Humana , Universidade de Lisboa, Estrada da Costa , Cruz Quebrada , Dafundo , Portugal
| | - Sandro R Freitas
- a CIPER, Faculdade de Motricidade Humana , Universidade de Lisboa, Estrada da Costa , Cruz Quebrada , Dafundo , Portugal.,d Sport Lisboa e Benfica , Benfica LAB , Lisboa , Portugal
| |
Collapse
|
195
|
Levine M, Violet PC. Breaking down, starting up: can a vitamin C-enriched gelatin supplement before exercise increase collagen synthesis? Am J Clin Nutr 2017; 105:5-7. [PMID: 28003207 PMCID: PMC5183735 DOI: 10.3945/ajcn.116.148312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mark Levine
- Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD
| | | |
Collapse
|
196
|
Abstract
Eccentric-contraction-induced skeletal muscle injuries, included in what is clinically referred to as muscle strains, are among the most common injuries treated in the sports medicine setting. Although patients with mild injuries often fully recover to their preinjury levels, patients who suffer moderate or severe injuries can have a persistent weakness and loss of function that is refractory to rehabilitation exercises and currently available therapeutic interventions. The objectives of this review were to describe the fundamental biophysics of force transmission in muscle and the mechanism of muscle-strain injuries, as well as the cellular and molecular processes that underlie the repair and regeneration of injured muscle tissue. The review also summarizes how commonly used therapeutic modalities affect muscle regeneration and opportunities to further improve our treatment of skeletal muscle strain injuries.
Collapse
|
197
|
Bolin K, Lindgren B. Non-monotonic health behaviours - implications for individual health-related behaviour in a demand-for-health framework. JOURNAL OF HEALTH ECONOMICS 2016; 50:9-26. [PMID: 27642705 DOI: 10.1016/j.jhealeco.2016.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/02/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
A number of behaviours influence health in a non-monotonic way. Physical activity and alcohol consumption, for instance, may be beneficial to one's health in moderate but detrimental in large quantities. We develop a demand-for-health framework that incorporates the feature of a physiologically optimal level. An individual may still choose a physiologically non-optimal level, because of the trade-off in his or her preferences for health versus other utility-affecting commodities. However, any deviation above or below the physiologically optimal level will be punished with respect to health. Distinguishing between two individual types we study (a) the qualitative properties of optimal time-paths of health capital and health-related behaviour, (b) the perturbations of the optimal time-paths that result from changes in exogenous parameters, and (c) steady state properties. Predictions of the model and the implications for empirical analysis are discussed at length. Some comments on potential future extensions conclude the paper.
Collapse
Affiliation(s)
- Kristian Bolin
- Department of Economics, University of Gothenburg, Gothenburg, Sweden; Centre for Health Economics, University of Gothenburg, Gothenburg, Sweden.
| | - Björn Lindgren
- Centre for Health Economics, University of Gothenburg, Gothenburg, Sweden; Department of Health Sciences, Lund University, Lund, Sweden; National Bureau of Economic Research (NBER), Cambridge, MA, USA
| |
Collapse
|
198
|
Köhne JL, Ormsbee MJ, McKune AJ. Supplementation Strategies to Reduce Muscle Damage and Improve Recovery Following Exercise in Females: A Systematic Review. Sports (Basel) 2016; 4:sports4040051. [PMID: 29910299 PMCID: PMC5968901 DOI: 10.3390/sports4040051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/31/2016] [Accepted: 11/06/2016] [Indexed: 01/05/2023] Open
Abstract
Exercise-induced muscle damage (EIMD) caused by unaccustomed or strenuous exercise can result in reduced muscle force, increased muscle soreness, increased intramuscular proteins in the blood, and reduced performance. Pre- and post-exercise optimal nutritional intake is important to assist with muscle-damage repair and reconditioning to allow for an accelerated recovery. The increased demand for training and competing on consecutive days has led to a variety of intervention strategies being used to reduce the negative effects of EIMD. Nutritional intervention strategies are largely tested on male participants, and few report on sex-related differences relating to the effects of the interventions employed. This review focuses on nutritional intervention strategies employed to negate the effects of EIMD, focussing solely on females.
Collapse
Affiliation(s)
- Jessica L Köhne
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban 3629, South Africa.
| | - Michael J Ormsbee
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban 3629, South Africa.
- Department of Nutrition, Food and Exercise Sciences, Institute of Sport Sciences and Medicine, Florida State University, Tallahassee, FL 32308, USA.
| | - Andrew J McKune
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban 3629, South Africa.
- Department of Nutrition, Food and Exercise Sciences, Institute of Sport Sciences and Medicine, Florida State University, Tallahassee, FL 32308, USA.
- Discipline of Sport and Exercise Science, University of Canberra Research Institute for Sport and Exercise, Faculty of Health, University of Canberra, Canberra ACT 2601, Australia.
| |
Collapse
|
199
|
Clifford T, Allerton DM, Brown MA, Harper L, Horsburgh S, Keane KM, Stevenson EJ, Howatson G. Minimal muscle damage after a marathon and no influence of beetroot juice on inflammation and recovery. Appl Physiol Nutr Metab 2016; 42:263-270. [PMID: 28165768 DOI: 10.1139/apnm-2016-0525] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study examined whether beetroot juice (BTJ) would attenuate inflammation and muscle damage following a marathon. Using a double blind, independent group design, 34 runners (each having completed ca. ∼16 previous marathons) consumed either BTJ or an isocaloric placebo (PLA) for 3 days following a marathon. Maximal isometric voluntary contractions (MIVC), countermovement jumps (CMJ), muscle soreness, serum cytokines, leucocytosis, creatine kinase (CK), high sensitivity C-reactive protein (hs-CRP), and aspartate aminotransferase (AST) were measured pre, post, and 2 days after the marathon. CMJ and MIVC were reduced after the marathon (P < 0.05), but no group differences were observed (P > 0.05). Muscle soreness was increased in the day after the marathon (BTJ; 45 ± 48 vs. PLA; 46 ± 39 mm) and had returned to baseline by day 2, irrespective of supplementation (P = 0.694). Cytokines (interleukin-6; IL-6, interleukin-8, tumour necrosis factor-α) were increased immediately post-marathon but apart from IL-6 had returned to baseline values by day 1 post. No interaction effects were evident for IL-6 (P = 0.213). Leucocytes increased 1.7-fold after the race and remained elevated 2 days post, irrespective of supplement (P < 0.0001). CK peaked at 1 day post marathon (BTJ: 965 ± 967, and PLA: 1141 ± 979 IU·L-1) and like AST and hs-CRP, was still elevated 2 days after the marathon (P < 0.05); however, no group differences were present for these variables. Beetroot juice did not attenuate inflammation or reduce muscle damage following a marathon, possibly because most of these indices were not markedly different from baseline values in the days after the marathon.
Collapse
Affiliation(s)
- Tom Clifford
- a Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK
| | - Dean M Allerton
- a Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK
| | - Meghan A Brown
- a Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK
| | - Liam Harper
- a Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK
| | - Steven Horsburgh
- a Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK
| | - Karen M Keane
- a Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK
| | - Emma J Stevenson
- b Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle NE1 7RU, UK
| | - Glyn Howatson
- a Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK.,c Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom 2520, South Africa
| |
Collapse
|
200
|
Fatouros IG, Jamurtas AZ. Insights into the molecular etiology of exercise-induced inflammation: opportunities for optimizing performance. J Inflamm Res 2016; 9:175-186. [PMID: 27799809 PMCID: PMC5085309 DOI: 10.2147/jir.s114635] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The study of exercise-induced muscle damage (EIMD) is of paramount importance not only because it affects athletic performance but also because it is an excellent model to study the mechanisms governing muscle cachexia under various clinical conditions. Although, a large number of studies have investigated EIMD and its associated inflammatory response, several aspects of skeletal muscles responses remain unclear. In the first section of this article, the mechanisms of EIMD are reviewed in an attempt to follow the events that result in functional and structural alterations of skeletal muscle. In the second section, the inflammatory response associated with EIMD is presented with emphasis in leukocyte accumulation through mechanisms that are largely coordinated by pro- and anti-inflammatory cytokines released either by injured muscle itself or other cells. The practical applications of EIMD and the subsequent inflammatory response are discussed with respect to athletic performance. Specifically, the mechanisms leading to performance deterioration and development of muscle soreness are discussed. Emphasis is given to the factors affecting individual responses to EIMD and the resulting interindividual variability to this phenomenon.
Collapse
Affiliation(s)
- Ioannis G Fatouros
- School of Physical Education and Sport Sciences, University of Thessaly, Karies, Trikala, Greece
| | - Athanasios Z Jamurtas
- School of Physical Education and Sport Sciences, University of Thessaly, Karies, Trikala, Greece
| |
Collapse
|