151
|
The pharmacological importance of agmatine in the brain. Neurosci Biobehav Rev 2012; 36:502-19. [DOI: 10.1016/j.neubiorev.2011.08.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/23/2011] [Accepted: 08/18/2011] [Indexed: 01/28/2023]
|
152
|
Psychopharmacological study of agmatine in behavioral tests of schizophrenia in rodents. Pharmacol Biochem Behav 2012; 100:398-403. [DOI: 10.1016/j.pbb.2011.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 08/22/2011] [Accepted: 09/15/2011] [Indexed: 12/13/2022]
|
153
|
Knox LT, Jing Y, Fleete MS, Collie ND, Zhang H, Liu P. Scopolamine impairs behavioural function and arginine metabolism in the rat dentate gyrus. Neuropharmacology 2011; 61:1452-62. [DOI: 10.1016/j.neuropharm.2011.08.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 08/24/2011] [Accepted: 08/26/2011] [Indexed: 01/06/2023]
|
154
|
Gupta N, Zhang H, Liu P. Chronic difluoromethylornithine treatment impairs spatial learning and memory in rats. Pharmacol Biochem Behav 2011; 100:464-73. [PMID: 22024160 DOI: 10.1016/j.pbb.2011.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 09/21/2011] [Accepted: 10/09/2011] [Indexed: 01/08/2023]
Abstract
Recent evidence suggests that polyamines putrescine, spermidine and spermine are essential in maintaining normal cellular function. The present study investigated the effects of chronic treatment of difluoromethylornithine (DFMO, 3% in drinking water), a potent inhibitor of putrescine synthesis, for 54 consecutive days on animals'behavior and neurochemical levels in the CA1, CA2/3 and dentate gyrus sub-regions of the hippocampus and the prefrontal cortex. The DFMO group showed performance impairments in the place navigation and the probe test conducted 24 h after the training in the reference memory version of the water maze task, but not in the elevated plus maze, open field, object recognition, cued navigation and the working memory version of the water maze task when compared to the control group (drinking water only). DFMO treatment resulted in approximately 80-90% and 20% of reductions in the putrescine and spermidine levels, respectively, in the four brain regions examined, and a small reduction in agmatine level in the CA2/3, with no effects on spermine, glutamate and γ-aminobutyrate. The DFMO group showed decreased body weight relative to the control one. However, there were no significant differences between groups in the normalized brain, kidney and liver weights. The present study demonstrates that chronic treatment of DFMO depletes putrescine and decreases spermidine levels in the brain, inhibits growth, and impairs spatial learning and memory in the reference memory version of the water maze specifically. These findings merit further investigation to fully understand the functional role of endogenous polyamines in learning and memory.
Collapse
Affiliation(s)
- Neeraj Gupta
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
155
|
Liu P, Jing Y, Collie ND, Campbell SA, Zhang H. Pre-aggregated Aβ25–35 alters arginine metabolism in the rat hippocampus and prefrontal cortex. Neuroscience 2011; 193:269-82. [DOI: 10.1016/j.neuroscience.2011.07.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 07/19/2011] [Accepted: 07/22/2011] [Indexed: 10/17/2022]
|
156
|
Thorn DA, Zhang Y, Peng BW, Winter JC, Li JX. Effects of imidazoline I₂ receptor ligands on morphine- and tramadol-induced antinociception in rats. Eur J Pharmacol 2011; 670:435-40. [PMID: 21970802 DOI: 10.1016/j.ejphar.2011.09.173] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 11/19/2022]
Abstract
Currently available analgesics cannot meet the increasing clinical needs and new analgesics with better therapeutic profiles are in great demand. The imidazoline I₂ receptor is an emerging drug target for analgesics. However, few studies have examined the effects of selective I₂ receptor ligands on the antinociceptive activity of opioids. This study examined the antinociceptive effects of the opioids morphine (0.1-10 mg/kg) and tramadol (3.2-56 mg/kg), the nonselective I₂ receptor ligand agmatine (10-100 mg/kg), and the selective I₂ receptor ligands 2-(2-benzofuranyl)-2-imidazoline hydrochloride (2-BFI; 1-10 mg/kg) and 2-(4, 5-dihydroimidazol-2-yl) quinoline hydrochloride (BU224; 1-10mg/kg), alone and in combination, in a warm water tail withdrawal procedure in rats. Morphine and tramadol but not agmatine, 2-BFI or BU224 increased tail withdrawal latency in a dose-related manner at 48°C water. Agmatine and 2-BFI but not BU224 dose-dependently enhanced the antinociceptive effects of morphine and tramadol, shifting the dose-effect curves of morphine and tramadol leftward. The enhancement of agmatine and 2-BFI on morphine and tramadol antinociception was prevented by BU224. These results, combined with the fact that BU224 and 2-BFI share similar behavioral effects under other conditions, suggest that BU224 has lower efficacy than 2-BFI at I₂ receptors, and that the enhancement of opioid antinociception by I₂ receptor ligands depends on their efficacies.
Collapse
Affiliation(s)
- David A Thorn
- Department of Pharmacology and Toxicology, University at Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|
157
|
Taksande BG, Kotagale NR, Nakhate KT, Mali PD, Kokare DM, Hirani K, Subhedar NK, Chopde CT, Ugale RR. Agmatine in the hypothalamic paraventricular nucleus stimulates feeding in rats: involvement of neuropeptide Y. Br J Pharmacol 2011; 164:704-18. [PMID: 21564088 PMCID: PMC3188911 DOI: 10.1111/j.1476-5381.2011.01484.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 04/02/2011] [Accepted: 05/02/2011] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Agmatine, a multifaceted neurotransmitter, is abundantly expressed in the hypothalamic paraventricular nucleus (PVN). Our aim was to assess (i) the effect of agmatine on feeding behaviour and (ii) its association, if any, with neuropeptide Y (NPY). EXPERIMENTAL APPROACH Satiated rats fitted with intra-PVN cannulae were administered agmatine, alone or jointly with (i) α₂-adrenoceptor agonist, clonidine, or antagonist, yohimbine; (ii) NPY, NPY Y₁ receptor agonist, [Leu³¹, Pro³⁴]-NPY, or antagonist, BIBP3226; or (iii) yohimbine and NPY. Cumulative food intake was monitored at different post-injection time points. Furthermore, the expression of hypothalamic NPY following i.p. treatment with agmatine, alone or in combination with yohimbine (i.p.), was evaluated by immunocytochemistry. KEY RESULTS Agmatine robustly increased feeding in a dose-dependent manner. While pretreatment with clonidine augmented, yohimbine attenuated the orexigenic response to agmatine. Similarly, NPY and [Leu³¹, Pro³⁴]-NPY potentiated the agmatine-induced hyperphagia, whereas BIBP3226 inhibited it. Moreover, yohimbine attenuated the synergistic orexigenic effect induced by the combination of NPY and agmatine. Agmatine increased NPY immunoreactivity in the PVN fibres and in the cells of the hypothalamic arcuate nucleus (ARC) and this effect was prevented by pretreatment with yohimbine. NPY immunoreactivity in the fibres of the ARC, dorsomedial, ventromedial and lateral nuclei of the hypothalamus was not affected by any of the above treatments. CONCLUSIONS AND IMPLICATIONS The orexigenic effect of agmatine is coupled to increased NPY activity mediated by stimulation of α₂-adrenoceptors within the PVN. This signifies the importance of agmatine or α₂-adrenoceptor modulators in the development of novel therapeutic agents to treat feeding-related disorders.
Collapse
Affiliation(s)
- BG Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of PharmacyNew Kamptee, Nagpur, Maharashtra, India
| | - NR Kotagale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of PharmacyNew Kamptee, Nagpur, Maharashtra, India
| | - KT Nakhate
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University CampusNagpur, Maharashtra, India
| | - PD Mali
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of PharmacyNew Kamptee, Nagpur, Maharashtra, India
| | - DM Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University CampusNagpur, Maharashtra, India
| | - K Hirani
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of MedicineMiami, FL, USA
| | - NK Subhedar
- Indian Institute of Science Education and Research (IISER)Sutarwadi, Pashan, Pune, India
| | - CT Chopde
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of PharmacyNew Kamptee, Nagpur, Maharashtra, India
| | - RR Ugale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of PharmacyNew Kamptee, Nagpur, Maharashtra, India
| |
Collapse
|
158
|
Morphine-induced antinociception in the rat: supra-additive interactions with imidazoline I₂ receptor ligands. Eur J Pharmacol 2011; 669:59-65. [PMID: 21867697 DOI: 10.1016/j.ejphar.2011.07.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/04/2011] [Accepted: 07/30/2011] [Indexed: 11/21/2022]
Abstract
Pain remains a significant clinical challenge and currently available analgesics are not adequate to meet clinical needs. Emerging evidence suggests the role of imidazoline I(2) receptors in pain modulation primarily from studies of the non-selective imidazoline receptor ligand, agmatine. However, little is known of the generality of the effect to selective I(2) receptor ligands. This study examined the antinociceptive effects of two selective I(2) receptor ligands 2-BFI and BU224 (>2000-fold selectivity for I(2) receptors over α(2) adrenoceptors) in a hypertonic (5%) saline-induced writhing test and analyzed their interaction with morphine using a dose-addition analysis. Morphine, 2-BFI and BU224 but not agmatine produced a dose-dependent antinociceptive effect. Both composite additive curve analyses and isobolographical plots revealed a supra-additive interaction between morphine and 2-BFI or BU224, whereas the interaction between 2-BFI and BU224 was additive. The antinociceptive effect of 2-BFI and BU224 was attenuated by the I(2) receptor antagonist/α(2) adrenoceptor antagonist idazoxan but not by the selective α(2) adrenoceptor antagonist yohimbine, suggesting an I(2) receptor-mediated mechanism. Agmatine enhanced the antinociceptive effect of morphine, 2-BFI and BU224 and the enhancement was prevented by yohimbine, suggesting that the effect was mediated by α(2) adrenoceptors. Taken together, these data represent the first report that selective I(2) receptor ligands have substantial antinociceptive activity and produce antinociceptive synergy with opioids in a rat model of acute pain. These data suggest that drugs acting on imidazoline I(2) receptors may be useful either alone or in combination with opioids for the treatment of pain.
Collapse
|
159
|
Evidence for an inhibitory LIM domain in a rat brain agmatinase-like protein. Arch Biochem Biophys 2011; 512:107-10. [DOI: 10.1016/j.abb.2011.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/06/2011] [Accepted: 05/08/2011] [Indexed: 11/16/2022]
|
160
|
Further characterization of agmatine binding to mitochondrial membranes: involvement of imidazoline I2 receptor. Amino Acids 2011; 42:761-8. [DOI: 10.1007/s00726-011-0992-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/05/2011] [Indexed: 10/17/2022]
|
161
|
Bernstein HG, Stich C, Jäger K, Dobrowolny H, Wick M, Steiner J, Veh R, Bogerts B, Laube G. Agmatinase, an inactivator of the putative endogenous antidepressant agmatine, is strongly upregulated in hippocampal interneurons of subjects with mood disorders. Neuropharmacology 2011; 62:237-46. [PMID: 21803059 DOI: 10.1016/j.neuropharm.2011.07.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/28/2011] [Accepted: 07/12/2011] [Indexed: 12/20/2022]
Abstract
The diamine agmatine may serve as a precursor in polyamine synthesis. In addition, agmatine may also act as a neurotransmitter, binding to imidazoline receptors. Behaviorally, agmatine exerts antidepressant-like effects. The enzyme agmatinase degrades agmatine. The gene coding for human agmatinase is located on chromosome 1p36, a gene locus which has been linked to bipolar disorder and major depression, but the enzyme has not yet been studied in the context of neuropsychiatric diseases. We analyzed agmatinase protein expression in postmortem hippocampi of individuals with affective disorders. Data from eleven patients with mood disorders (unipolar and bipolar depression) and twelve matched control cases were compared by immunocytochemical and morphometrical analysis. Agmatinase protein was detected in a subset of hippocampal interneurons. The protein was localized to perikarya, neurites and putative nerve endings contacting hippocampal pyramidal neurons and dentate gyrus granule cells. The number and the numerical density of agmatinase-immunopositive cell bodies were strongly elevated in depressive patients. In addition, a significantly increased density of agmatinase-immunoreactive punctate profiles was observed in the CA(4) region in unipolar and bipolar depression. The reported increased expression of agmatinase suggests a functional relevance of the enzyme in the pathophysiology of human affective disorders. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Seo S, Liu P, Leitch B. Spatial learning-induced accumulation of agmatine and glutamate at hippocampal CA1 synaptic terminals. Neuroscience 2011; 192:28-36. [PMID: 21777660 DOI: 10.1016/j.neuroscience.2011.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/01/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
Agmatine, the decarboxylated metabolite of l-arginine, is considered to be a novel putative neurotransmitter. Recent studies have demonstrated that endogenous agmatine may directly participate in the processes of spatial learning and memory. Agmatine-immunoreactivity has been observed within synaptic terminals of asymmetric excitatory synapses in the hippocampal CA1 stratum radiatum (SR), suggesting that agmatine may be colocalized with glutamate. In the present study we demonstrate, using immunofluorescence confocal microscopy, that agmatine is colocalized with glutamate within CA1-CA3 hippocampal pyramidal cell bodies, in young Sprague-Dawley rats. Subcellular investigation, using postembedding electron microscopy-immunogold cytochemistry, has also revealed that agmatine is colocalized with glutamate in most synaptic terminals in the SR region of CA1. Ninety-seven percent of all agmatinergic profiles were found to contain glutamate, and 92% of all glutamatergic profiles contained agmatine (n=6; 300 terminals). Alterations in colocalized agmatine and glutamate levels in the SR synaptic terminals, following 4 days Morris water maze training, were also investigated. Compared with swim only control rats, water maze-trained rats had statistically significant increases in both agmatine (78%; P<0.01) and glutamate (41%; P<0.05) levels within SR terminals synapsing onto CA1 dendrites. These findings provide the first evidence that agmatine and glutamate are colocalized in synaptic terminals in the hippocampal CA1 region, and may co-participate in spatial learning and memory processing.
Collapse
Affiliation(s)
- S Seo
- Department of Anatomy & Structural Biology, Otago School of Medical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
163
|
Rastegar K, Roosta H, Zarifkar A, Rafati A, Moosavi M. The Effect of Intra-CA1 Agmatine Microinjection on Water Maze Learning and Memory in Rat. IRANIAN RED CRESCENT MEDICAL JOURNAL 2011; 13:316-22. [PMID: 22737487 PMCID: PMC3371968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 09/19/2010] [Accepted: 09/27/2010] [Indexed: 10/31/2022]
Abstract
BACKGROUND Reports on agmatine are controversial showing that it may improve memory, it can deteriorate memory and some did not notice any interference with learning and memory. In the present study, the effect of directly intra-CA1 agmatine microinjection on water maze learning and memory has been assessed. METHODS The cannuls were implanted in hippocampal CA1 regions of rats in a sterotaxic frame after general anesthesia. After one week recovery period, the animals were assessed in the reference memory version of water maze. Agmatine (1, 10, 100 or 200 μg/0.5 μl) or saline were infused 20 minutes before or immediately after training. RESULTS Agmatine-treated rats did not show any significant difference neither in water maze acquisition nor in consolidation task in comparison with control and sham groups. CONCLUSION Agmatine does not affect water maze learning and memory.
Collapse
Affiliation(s)
- K Rastegar
- Shiraz Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - H Roosta
- Shiraz Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A Zarifkar
- Shiraz Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence: Asadollah Zarifkar, PhD, Department of Physiology, Shiraz University of Medical sciences, Shiraz, Iran. Tel.: +98-711-2302026, Fax: +98-711-2302026, E-mail:
| | - A Rafati
- Shiraz Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Moosavi
- Shiraz Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
164
|
Leitch B, Shevtsova O, Reusch K, Bergin DH, Liu P. Spatial learning-induced increase in agmatine levels at hippocampal CA1 synapses. Synapse 2011; 65:146-53. [PMID: 20572157 DOI: 10.1002/syn.20828] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Agmatine, a metabolite of L-arginine, is considered as a novel putative neurotransmitter. It has been detected in axon terminals that synapse with pyramidal cells in the hippocampus, a brain region that is critically involved in spatial learning and memory. However, the role of agmatine in learning and memory is poorly understood. Recently, we demonstrated water maze training-induced increases in tissue levels of agmatine in the CA1 subregion of the hippocampus. This finding has raised an issue whether an endogenous agmatine could directly participate in learning and memory processes as a neurotransmitter. In the present study, quantitative immunogold-labeling and electron-microscopical techniques were used to analyze the levels of agmatine in CA1 stratum radiatum (SR) terminals (n = 600) of male Sprague-Dawley rats that had been trained to find a hidden escape platform in the water maze (WM) task or forced to swim (SW) in the pool with no platform presented. Agmatine levels were significantly increased by ∼85% in the synaptic terminals of SR of trained WM group compared with the SW control group (all P < 0.001). These results, for the first time, demonstrate spatial learning-induced elevation in agmatine levels at synapses in the hippocampus and provide evidence of its participation in learning and memory processing as a novel neurotransmitter.
Collapse
Affiliation(s)
- Beulah Leitch
- Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand.
| | | | | | | | | |
Collapse
|
165
|
Nikolic K, Agbaba D. Imidazoline antihypertensive drugs: selective i(1) -imidazoline receptors activation. Cardiovasc Ther 2011; 30:209-16. [PMID: 21884004 DOI: 10.1111/j.1755-5922.2011.00269.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Involvement of imidazoline receptors (IR) in the regulation of vasomotor tone as well as in the mechanism of action of some centrally acting antihypertensives has received tremendous attention. To date, pharmacological studies have allowed the characterization of three main imidazoline receptor classes, the I(1) -imidazoline receptor which is involved in central inhibition of sympathetic tone to lower blood pressure, the I(2) -imidazoline receptor which is an allosteric binding site of monoamine oxidase B (MAO-B), and the I(3) -imidazoline receptor which regulates insulin secretion from pancreatic β-cells. All three imidazoline receptors represent important targets for cardiovascular research. The hypotensive effect of clonidine-like centrally acting antihypertensives was attributed both to α(2) -adrenergic receptors and nonadrenergic I(1) -imidazoline receptors, whereas their sedative action involves activation of only α(2) -adrenergic receptors located in the locus coeruleus. Since more selective I(1) -imidazoline receptors ligands reduced incidence of typical side effects of other centrally acting antihypertensives, there is significant interest in developing new agents with higher selectivity and affinity for I(1) -imidazoline receptors. The selective imidazoline receptors agents are also more effective in regulation of body fat, neuroprotection, inflammation, cell proliferation, epilepsy, depression, stress, cell adhesion, and pain. New agonists and antagonists with high selectivity for imidazoline receptor subtypes have been recently developed. In the present review we provide a brief update to the field of imidazoline research, highlighting some of the chemical diversity and progress made in the theoretical studies of imidazoline receptor ligands.
Collapse
Affiliation(s)
- K Nikolic
- Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, University of Belgrade, Vojvode Stepe, Belgrade, Serbia.
| | | |
Collapse
|
166
|
Li JX, Zhang Y. Imidazoline I2 receptors: target for new analgesics? Eur J Pharmacol 2011; 658:49-56. [PMID: 21371460 DOI: 10.1016/j.ejphar.2011.02.038] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 01/19/2011] [Accepted: 02/15/2011] [Indexed: 12/22/2022]
Abstract
Pain remains a major clinical challenge because there are no effective analgesics for some pain conditions and the mainstay analgesics for severe pain, opioids, have serious unwanted effects. There is a dire need for novel analgesics in the clinic. Imidazoline receptors are a family of three receptors (I(1), I(2) and I(3)) that all can recognize compounds with an imidazoline structure. Accumulating evidence suggests that I(2) receptors are involved in pain modulation. Ligands acting at I(2) receptors are effective for tonic inflammatory and neuropathic pain but are much less effective for acute phasic pain. When studied in combination, I(2) receptor ligands enhance the analgesic effects of opioids in both acute phasic and chronic tonic pain. During chronic use, patients can develop tolerance to and dependence on opioids. Imidazoline I(2) receptor ligands can attenuate the development of tolerance to opioid analgesia and inhibit drug withdrawal or antagonist precipitation induced abstinence syndrome in animals. Taken together, drugs acting on I(2) receptors may be useful as a monotherapy or combined with opioids as an adjuvant for treating pain. Future studies should focus on understanding the relative efficacy of I(2) receptor ligands and developing new compounds to fill the gap in intrinsic efficacy continuum of I(2) receptors.
Collapse
Affiliation(s)
- Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14214, USA.
| | | |
Collapse
|
167
|
Hübner S, Efthymiadis A. Histochemistry and cell biology: the annual review 2010. Histochem Cell Biol 2011; 135:111-40. [PMID: 21279376 DOI: 10.1007/s00418-011-0781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
This review summarizes recent advances in histochemistry and cell biology which complement and extend our knowledge regarding various aspects of protein functions, cell and tissue biology, employing appropriate in vivo model systems in conjunction with established and novel approaches. In this context several non-expected results and discoveries were obtained which paved the way of research into new directions. Once the reader embarks on reading this review, it quickly becomes quite obvious that the studies contribute not only to a better understanding of fundamental biological processes but also provide use-oriented aspects that can be derived therefrom.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstrasse 6, 97070 Würzburg, Germany.
| | | |
Collapse
|
168
|
Bozdagi O, Wang XB, Martinelli GP, Prell G, Friedrich VL, Huntley GW, Holstein GR. Imidazoleacetic acid-ribotide induces depression of synaptic responses in hippocampus through activation of imidazoline receptors. J Neurophysiol 2011; 105:1266-75. [PMID: 21228308 DOI: 10.1152/jn.00263.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Imidazole-4-acetic acid-ribotide (IAA-RP), an endogenous agonist at imidazoline receptors (I-Rs), is a putative neurotransmitter/regulator in mammalian brain. We studied the effects of IAA-RP on excitatory transmission by performing extracellular and whole cell recordings at Schaffer collateral-CA1 synapses in rat hippocampal slices. Bath-applied IAA-RP induced a concentration-dependent depression of synaptic transmission that, after washout, returned to baseline within 20 min. Maximal decrease occurred with 10 μM IAA-RP, which reduced the slope of field extracellular postsynaptic potentials (fEPSPs) to 51.2 ± 5.7% of baseline at 20 min of exposure. Imidazole-4-acetic acid-riboside (IAA-R; 10 μM), the endogenous dephosphorylated metabolite of IAA-RP, also produced inhibition of fEPSPs. This effect was smaller than that produced by IAA-RP (to 65.9 ± 3.8% of baseline) and occurred after a further 5- to 8-min delay. The frequency, but not the amplitude, of miniature excitatory postsynaptic currents was decreased, and paired-pulse facilitation (PPF) was increased after application of IAA-RP, suggesting a principally presynaptic site of action. Since IAA-RP also has low affinity for α(2)-adrenergic receptors (α(2)-ARs), we tested synaptic depression induced by IAA-RP in the presence of α(2)-ARs, I(1)-R, or I(3)-R antagonists. The α(2)-AR antagonist rauwolscine (100 nM), which blocked the actions of the α(2)-AR agonist clonidine, did not affect either the IAA-RP-induced synaptic depression or the increase in PPF. In contrast, efaroxan (50 μM), a mixed I(1)-R and α(2)-AR antagonist, abolished the synaptic depression induced by IAA-RP and abolished the related increase in PPF. KU-14R, an I(3)-R antagonist, partially attenuated responses to IAA-RP. Taken together, these data support a role for IAA-RP in modulating synaptic transmission in the hippocampus through activation of I-Rs.
Collapse
Affiliation(s)
- O Bozdagi
- Department of Neurology, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
169
|
Holstein GR, Martinelli GP, Friedrich VL. Anatomical observations of the caudal vestibulo-sympathetic pathway. J Vestib Res 2011; 21:49-62. [PMID: 21422542 PMCID: PMC3570023 DOI: 10.3233/ves-2011-0395] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vestibular system senses the movement and position of the head in space and uses this information to stabilize vision, control posture, perceive head orientation and self-motion in three-dimensional space, and modulate autonomic and limbic activity in response to locomotion and changes in posture. Most vestibular signals are not consciously perceived and are usually appreciated through effector pathways classically described as the vestibulo-ocular, vestibulo-spinal, vestibulo-collic and vestibulo-autonomic reflexes. The present study reviews some of the recent data concerning the connectivity and chemical anatomy of vestibular projections to autonomic sites that are important in the sympathetic control of blood pressure.
Collapse
Affiliation(s)
- Gay R Holstein
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
170
|
Agmatine modulates neuroadaptations of glutamate transmission in the nucleus accumbens of repeated morphine-treated rats. Eur J Pharmacol 2011; 650:200-5. [DOI: 10.1016/j.ejphar.2010.09.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 09/04/2010] [Accepted: 09/23/2010] [Indexed: 11/22/2022]
|
171
|
Condello S, Currò M, Ferlazzo N, Caccamo D, Satriano J, Ientile R. Agmatine effects on mitochondrial membrane potential and NF-κB activation protect against rotenone-induced cell damage in human neuronal-like SH-SY5Y cells. J Neurochem 2010; 116:67-75. [PMID: 21044082 DOI: 10.1111/j.1471-4159.2010.07085.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Agmatine, an endogenous arginine metabolite, has been proposed as a novel neuromodulator that plays protective roles in the CNS in several models of cellular damage. However, the mechanisms involved in these protective effects in neurodegenerative diseases are poorly understood. The present study was undertaken to investigate the effects of agmatine on cell injury induced by rotenone, commonly used in establishing in vivo and in vitro models of Parkinson's disease, in human-derived dopaminergic neuroblastoma cell line (SH-SY5Y). We report that agmatine dose-dependently suppressed rotenone-induced cellular injury through a reduction of oxidative stress. Similar effects were obtained by spermine, suggesting a scavenging effect for these compounds. However, unlike spermine, agmatine also prevented rotenone-induced nuclear factor-κB nuclear translocation and mitochondrial membrane potential dissipation. Furthermore, rotenone-induced increase in apoptotic markers, such as caspase 3 activity, Bax expression and cytochrome c release, was significantly attenuated with agmatine treatment. These findings demonstrate mitochondrial preservation with agmatine in a rotenone model of apoptotic cell death, and that the neuroprotective action of agmatine appears because of suppressing apoptotic signalling mechanisms. Thus, agmatine may have therapeutic potential in the treatment of Parkinson's disease by protecting dopaminergic neurons.
Collapse
Affiliation(s)
- Salvatore Condello
- Department of Biochemical, Physiological and Nutritional Sciences, University of Messina, Messina, Italy
| | | | | | | | | | | |
Collapse
|
172
|
Liu P, Zhang H, Devaraj R, Ganesalingam GS, Smith PF. A multivariate analysis of the effects of aging on glutamate, GABA and arginine metabolites in the rat vestibular nucleus. Hear Res 2010; 269:122-33. [DOI: 10.1016/j.heares.2010.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 01/21/2023]
|
173
|
Bergin D, Liu P. Agmatine protects against β-amyloid25-35-induced memory impairments in the rat. Neuroscience 2010; 169:794-811. [DOI: 10.1016/j.neuroscience.2010.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 04/13/2010] [Accepted: 05/02/2010] [Indexed: 11/30/2022]
|
174
|
Expression and localization of an agmatinase-like protein in the rat brain. Histochem Cell Biol 2010; 134:137-44. [PMID: 20607275 DOI: 10.1007/s00418-010-0720-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2010] [Indexed: 12/19/2022]
Abstract
Agmatinase catalyzes the hydrolysis of agmatine into putrescine and urea, and agmatine (decarboxylated L: -arginine) plays several roles in mammalian tissues, including neurotransmitter/neuromodulatory actions in the brain. Injection of agmatine in animals produces anticonvulsant, antineurotoxic and antidepressant-like actions. Information regarding the enzymatic aspects of agmatine metabolism in mammals, especially related to its degradation, is relatively scarce. The explanation for this is the lack of enzymatically active preparations of mammalian agmatinase. Recently, we have cloned a protein from a cDNA rat brain library having agmatinase activity although its amino acid sequence greatly differs from all known agmatinases, we called agmatinase-like protein. In this work, we analyzed the expression of this enzyme in the rat brain by means of RT-PCR and immunohistochemical analysis using a polyclonal antibody generated against the recombinant agmatinase-like protein. The agmatinase-like protein was detected in the hypothalamus in glial cells and arcuate nucleus neurons, and in hippocampus astrocytes and neurons, but not in brain cortex. In general, detected localization of agmatinase-like protein coincides with that described for its substrate agmatine and our results help to explain several reported effects of agmatine in the brain. Concretely, a role in the regulation of intracellular concentrations of the neurotransmitter/neuromodulator agmatine is suggested for the brain agmatinase-like protein.
Collapse
|
175
|
The agmatine-degrading enzyme agmatinase: a key to agmatine signaling in rat and human brain? Amino Acids 2010; 40:453-65. [PMID: 20563878 DOI: 10.1007/s00726-010-0657-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 06/05/2010] [Indexed: 01/11/2023]
Abstract
Agmatinase, an ureohydrolase belonging to the arginase family, is widely expressed in mammalian tissues including the brain. Here, it may serve two different functions, the inactivation of the arginine derivative agmatine, a putative neurotransmitter, and the formation of the diamine putrescine. In order to identify the cellular sources of agmatinase expression in the brain, we generated a polyclonal monospecific antibody against recombinant rat agmatinase. With immunocytochemistry, selected areas of rat and human brain were screened. Clearly, in both species agmatinase-like immunoreactivity was predominantly detected in distinct populations of neurons, especially cortical interneurons. Also, principal neurons in limbic regions like the habenula and in the cerebellum robustly expressed agmatinase protein. When comparing the overall agmatinase expression with immunocytochemical data available for agmatine and polyamine biosynthetic enzymes, the observed pattern may argue in favor of an agmatine inactivating function rather than fueling the alternative pathway of polyamine synthesis. The putative neurotransmitter agmatine is seemingly involved with mental disorders. Therefore, agmatinase may be similarly important for pathogenesis. The normal expression profile of the protein as described here may therefore be altered under pathological conditions.
Collapse
|
176
|
Zarifkar A, Choopani S, Ghasemi R, Naghdi N, Maghsoudi AH, Maghsoudi N, Rastegar K, Moosavi M. Agmatine prevents LPS-induced spatial memory impairment and hippocampal apoptosis. Eur J Pharmacol 2010; 634:84-8. [PMID: 20184876 DOI: 10.1016/j.ejphar.2010.02.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/28/2010] [Accepted: 02/14/2010] [Indexed: 12/18/2022]
Abstract
Neuroinflammation is associated with a number of neurodegenerative diseases. It is known that lipopolysaccharide (LPS) treatment induces neuroinflammation and memory deterioration. Agmatine, the metabolite of arginine by arginine decarboxylase, is suggested to be a neuroprotective agent. The aim of this study was to explore if agmatine can prevent LPS-induced spatial memory impairment and hippocampal apoptosis. Adult male Wistar rats (200-250 g) were trained in water maze for 4 days (3 days in hidden platform and the last day in visible platform task). Saline, LPS (250 microg/kg/ip) or (and) agmatine (5 or 10 mg/kg) were administered 4h before every training session. LPS treatment impaired water maze place learning while agmatine co-administration prevented it. Also western blot studies revealed that LPS induces hippocampal caspase-3 activation while agmatine treatment prevented it.
Collapse
Affiliation(s)
- Asadollah Zarifkar
- Neuroscience Research Center and department of Physiology, Shiraz University of Medical sciences, Shiraz, Iran
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Repeated agmatine treatment attenuates nicotine sensitization in mice: modulation by alpha2-adrenoceptors. Behav Brain Res 2010; 213:161-74. [PMID: 20450939 DOI: 10.1016/j.bbr.2010.04.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 04/24/2010] [Accepted: 04/28/2010] [Indexed: 11/22/2022]
Abstract
Agmatine [2-(4-aminobutyl)guanidine] is an endogenous amine proposed as a neurotransmitter/neuromodulator that binds to multiple target receptors in brain. Besides, many central and peripheral functions, agmatine have been implicated in the process of drug addiction. The purpose of the present study was to examine the effects of centrally injected agmatine on nicotine induced locomotor sensitization in Swiss male mice. Our data shows that repeated injections of nicotine (0.4 mg/kg, sc, twice daily for 7 days) gradually increased locomotion during 7 days development period or after 3 days (nicotine) withdrawal phase challenged with nicotine (0.4 mg/kg, sc) on day 11. Mice were pretreated with agmatine (40-80 microg, icv) or agents known to increase endogenous brain agmatine levels [e.g. an agmatine biosynthetic precursor, L-arginine (80 microg, icv), ornithine decarboxylase inhibitor, difluoromethyl-ornithine (50 microg, icv), diamine oxidase inhibitor, aminoguanidine (25 microg, icv) and agmatinase inhibitor, arcaine (50 microg, icv)] 30 min before daily first nicotine injection or during nicotine withdrawal phase. All these treatments attenuated the development as well as incubation of locomotor sensitization to nicotine. Coadministration of agmatine (20 microg, icv) and alpha(2)-adrenoreceptors agonist, clonidine (0.1 microg, icv) evoked synergistic inhibition of nicotine sensitization. Conversely, prior administration of alpha(2)-adrenoceptor antagonist, yohimbine (5mg/kg, ip) or idazoxan (0.4 mg/kg, ip) reversed the inhibitory effect of agmatine on nicotine sensitization. There was no significant difference in activity between mice injected with any of these agents/saline alone and saline/saline groups. These data indicate that agmatine attenuates nicotine induced locomotor sensitization via a mechanism which may involve alpha(2)-adrenergic receptors. Thus, agmatine might have therapeutic implications in the treatment of nicotine addiction and deserve further investigations.
Collapse
|
178
|
Taksande BG, Kotagale NR, Patel MR, Shelkar GP, Ugale RR, Chopde CT. Agmatine, an endogenous imidazoline receptor ligand modulates ethanol anxiolysis and withdrawal anxiety in rats. Eur J Pharmacol 2010; 637:89-101. [PMID: 20394743 DOI: 10.1016/j.ejphar.2010.03.058] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/06/2010] [Accepted: 03/31/2010] [Indexed: 11/15/2022]
Abstract
Present study investigated the role of agmatine in ethanol-induced anxiolysis and withdrawal anxiety using elevated plus maze (EPM) test in rats. The anxiolytic-like effect of ethanol was potentiated by pretreatment with imidazoline I(1)/I(2) receptor agonist agmatine (10-20 mg/kg, i.p.), imidazoline I(1) receptor agonists, moxonidine (0.25 mg/kg, i.p.) and clonidine (0.015 mg/kg, i.p.), imidazoline I(2) receptor agonist, 2-BFI (5 mg/kg, i.p.) as well as by the drugs known to increase endogenous agmatine levels in brain viz., L-arginine, an agmatine biosynthetic precursor (100 microg/rat, i.c.v.), ornithine decarboxylase inhibitor, DFMO (125 microg/rat, i.c.v.), diamine oxidase inhibitor, aminoguanidine (65 microg/rat, i.c.v.) and agmatinase inhibitor, arcaine (50 microg/rat, i.c.v.). Conversely, prior administration of I(1) receptor antagonist, efaroxan (1 mg/kg, i.p.), I(2) receptor antagonist, idazoxan (0.25mg/kg, i.p.) and arginine decarboxylase inhibitor, D-arginine (100 microg/rat, i.c.v.) blocked the anxiolytic-like effect of ethanol. Moreover, ethanol withdrawal anxiety was markedly attenuated by agmatine (10-20 mg/kg, i.p.), moxonidine (0.25 mg/kg, i.p.), clonidine (0.015 mg/kg, i.p.), 2-BFI (5 mg/kg, i.p.), L-arginine (100 microg/rat, i.c.v.), DFMO (125 microg/rat, i.c.v.), aminoguanidine (65 microg/rat, i.c.v.) and arcaine (50 microg/rat, i.c.v.). The anti-anxiety effect of agmatine in ethanol-withdrawn rats was completely blocked by efaroxan (1 mg/kg, i.p.) and idazoxan (0.25 mg/kg, i.p.). These results suggest that agmatine and imidazoline receptor system may be implicated in ethanol-induced anxiolysis and withdrawal anxiety and strongly support further investigation of agmatine in ethanol dependence mechanism. The data also project agmatine as a potential therapeutic target in overcoming alcohol withdrawal symptoms such as anxiety.
Collapse
Affiliation(s)
- Brijesh G Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar, College of Pharmacy, New Kamptee, Nagpur, MS, India
| | | | | | | | | | | |
Collapse
|
179
|
Agmatidine, a modified cytidine in the anticodon of archaeal tRNA(Ile), base pairs with adenosine but not with guanosine. Proc Natl Acad Sci U S A 2010; 107:2872-7. [PMID: 20133752 DOI: 10.1073/pnas.0914869107] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modification of the cytidine in the first anticodon position of the AUA decoding tRNA(Ile) (tRNA2(Ile)) of bacteria and archaea is essential for this tRNA to read the isoleucine codon AUA and to differentiate between AUA and the methionine codon AUG. To identify the modified cytidine in archaea, we have purified this tRNA species from Haloarcula marismortui, established its codon reading properties, used liquid chromatography-mass spectrometry (LC-MS) to map RNase A and T1 digestion products onto the tRNA, and used LC-MS/MS to sequence the oligonucleotides in RNase A digests. These analyses revealed that the modification of cytidine in the anticodon of tRNA2(Ile) adds 112 mass units to its molecular mass and makes the glycosidic bond unusually labile during mass spectral analyses. Accurate mass LC-MS and LC-MS/MS analysis of total nucleoside digests of the tRNA2(Ile) demonstrated the absence in the modified cytidine of the C2-oxo group and its replacement by agmatine (decarboxy-arginine) through a secondary amine linkage. We propose the name agmatidine, abbreviation C(+), for this modified cytidine. Agmatidine is also present in Methanococcus maripaludis tRNA2(Ile) and in Sulfolobus solfataricus total tRNA, indicating its probable occurrence in the AUA decoding tRNA(Ile) of euryarchaea and crenarchaea. The identification of agmatidine shows that bacteria and archaea have developed very similar strategies for reading the isoleucine codon AUA while discriminating against the methionine codon AUG.
Collapse
|
180
|
Bakuridze K, Savli E, Gongadze N, Baş DB, Gepdiremen A. Protection in glutamate-induced neurotoxicity by imidazoline receptor agonist moxonidine. Int J Neurosci 2010; 119:1705-17. [PMID: 19922382 DOI: 10.1080/00207450902787165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the present study we investigated the effects of mixed imidazoline-1 and alpha(2)-adrenoceptor agonist, moxonidine, in glutamate-induced neurotoxicity in frontal cortical cell cultures of rat pups by dye exclusion test. Also, phosphorylated p38 mitogen activated protein kinases (p-p38 MAPK) levels were determined from rat frontal cortical tissue homogenates by two dimensional gel electrophoresis and semidry western blotting. Glutamate at a concentration of 10(-6) M was found neurotoxic when applied for 16 hr in cell cultures. Dead cell mean scores were 12.8 +/- 0.5 for control and 52.3 +/- 4.8 for glutamate (p < .001). On the other hand, p-p38 MAPK levels start to increase at a glutamate concentration of 10(-7) M for 20 min application. Moxonidine was found to have an U-shape neuroprotective effect in glutamate-induced neurotoxicity in neuronal cell culture experiments. Even though moxonidine did not induce neurotoxicity alone between the doses of 10(-8) to 10(-4) M concentrations in cell culture series, it caused the reduction of glutamate-induced dead cell population 23.07 +/- 3.6% in 10(-6) M and 26.7 +/- 2.1% in 10(-5) M concentrations (p <.001 for both, in respect to control values). The protective effect of moxonidine was confirmed in 10(-8) and 10(-7) M, but not in higher concentrations in glutamate neurotoxicity in gel electrophoresis and western blotting of p-p38 MAPK levels. In addition to other studies that revealed an antihypertensive feature of moxonidine, we demonstrated a possible partial neuroprotective role in lower doses for it in glutamate-mediated neurotoxicity model.
Collapse
Affiliation(s)
- Kakhi Bakuridze
- Department of Pharmacology, Tbilisi State Medical University, Tbilisi, Georgia
| | | | | | | | | |
Collapse
|
181
|
Agmatine transport in brain mitochondria: a different mechanism from that in liver mitochondria. Amino Acids 2009; 38:423-30. [PMID: 19997762 DOI: 10.1007/s00726-009-0401-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 10/20/2009] [Indexed: 10/20/2022]
Abstract
The diamine agmatine (AGM), exhibiting two positive charges at physiological pH, is transported into rat brain mitochondria (RBM) by an electrophoretic mechanism, requiring high membrane potential values and exhibiting a marked non-ohmic force-flux relationship. The mechanism of this transport apparently resembles that observed in rat liver mitochondria (RLM), but there are several characteristics that strongly suggest the presence of a different transporter of agmatine in RBM. In this type of mitochondria, the extent of initial binding and total accumulation is higher and lower, respectively, than that in liver; saturation kinetics and the flux-voltage relationship also exhibit different trends, whereas idazoxan and putrescine, ineffective in RLM, act as inhibitors. The characteristics of agmatine uptake in RBM lead to the conclusion that its transporter is a channel with two asymmetric energy barriers, showing some characteristics similar to those of the imidazoline receptor I(2) and the sharing with the polyamine transporter.
Collapse
|
182
|
Liu P, Jing Y, Zhang H. Age-related changes in arginine and its metabolites in memory-associated brain structures. Neuroscience 2009; 164:611-28. [DOI: 10.1016/j.neuroscience.2009.08.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/13/2009] [Accepted: 08/12/2009] [Indexed: 10/20/2022]
|
183
|
Gilhotra N, Dhingra D. Involvement of NO-cGMP pathway in anti-anxiety effect of aminoguanidine in stressed mice. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1502-7. [PMID: 19733204 DOI: 10.1016/j.pnpbp.2009.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Revised: 08/13/2009] [Accepted: 08/19/2009] [Indexed: 10/20/2022]
Abstract
In the present study, effect of aminoguanidine (12.5, 25 and 50mg/kg, i.p.), a selective inhibitor of inducible nitric oxide synthase, was evaluated for its anti-anxiety activity in stressed mice employing elevated plus maze, open field test, light/dark test and social interaction test. Restraint stress induced by immobilizing for 6h enhanced an anxiety-like behavior and increased plasma nitrite levels in mice. Only the highest dose (50mg/kg) employed of aminoguanidine attenuated the stress-induced anxiety-like behavior and decreased plasma nitrite levels. There was no significant anxiolytic effect of aminoguanidine in unstressed mice. Sildenafil (1mg/kg i.p.), was used to explore the probable mechanism of anti-anxiety activity of aminoguanidine through NO-cGMP signaling. Aminoguanidine (50mg/kg) attenuated the anxiogenic effect of sildenafil. Aminoguanidine and sildenafil per se and in combination did not affect the locomotor activity of stressed and unstressed mice as compared to their respective control groups. Thus, aminoguanidine produced anti-anxiety activity in stressed mice through iNOS-NO-cGMP pathway.
Collapse
Affiliation(s)
- Neeraj Gilhotra
- Pharmacology Division, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | | |
Collapse
|
184
|
Hong S, Kim CY, Lee WS, Shim J, Yeom HY, Seong GJ. Ocular hypotensive effects of topically administered agmatine in a chronic ocular hypertensive rat model. Exp Eye Res 2009; 90:97-103. [PMID: 19782071 DOI: 10.1016/j.exer.2009.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 09/09/2009] [Accepted: 09/18/2009] [Indexed: 11/27/2022]
Abstract
Agmatine, a primary polyamine and potential neuromodulator, exhibits a high affinity to the alpha2-adrenergic receptor as well as imidazoline receptors. As alpha2-adrenergic receptor agonists display positive ocular hypotensive effects, we assessed whether agmatine effectively lowers intraocular pressure (IOP) using a chronic ocular hypertensive rat model. We raised IOP in unilateral eyes of Sprague-Dawley rats by cauterizing three episcleral veins per eye. Four weeks later, we topically administered 10(-3) M agmatine solution 4 times a day for 6 consecutive weeks. After confirming the recovery of IOP to pretreatment level at 13 weeks after cauterization, the retinal ganglion cells (RGCs) were retrogradely labeled and counted. Eyes subjected to episcleral vein cauterization (EVC) demonstrated significant increases in IOP (48.39% increase over baseline IOP), and the elevated IOP was well maintained until 12 weeks. Topically administered agmatine powerfully lowered IOP to 30.29% of its pretreatment level, and the associated washout period was about two weeks. EVC was associated with a 55.44% loss of RGCs in the control group, but agmatine appeared to attenuate this RGC loss to 18.65%. Overall, topically administered agmatine appeared to effectively lower IOP and rescue RGCs in a chronic ocular hypertensive rat model. Although the mechanism underlying these effects is not yet established, it is possible that agmatine offers a powerful new ocular hypotensive agent for eyes with chronic ocular hypertension and/or glaucoma.
Collapse
Affiliation(s)
- Samin Hong
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, 712 Eonjuro, Gangnam-gu, Seoul 135-720, Republic of Korea
| | | | | | | | | | | |
Collapse
|
185
|
Liu P, Jing Y, Collie ND, Chary S, Zhang H. Memory-related changes in L-citrulline and agmatine in the rat brain. Hippocampus 2009; 19:597-602. [PMID: 19173225 DOI: 10.1002/hipo.20561] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
L-citrulline, L-ornithine, and agmatine are the metabolites of L-arginine by nitric oxide synthase (NOS), arginase, and arginine decarboxylase (ADC), respectively. In contrast to the NOS and arginase pathways, the role of the ADC-agmatine pathway in learning and memory has only been paid attention lately. Recent evidence suggests a potential involvement of agmatine in learning and memory processing. The present study further addressed this issue by comparing the levels of agmatine, as well as L-arginine, L-citrulline, and L-ornithine, in the hippocampus, parahippocampal region, prefrontal cortex, vestibular nucleus, and cerebellum in rats that were trained in the delayed nonmatch to position task in the T-maze with their yoked controls. There were significantly increased agmatine levels in the prefrontal, entorhinal, and perirhinal cortices and increased L-citrulline concentrations in the dentate gyrus (DG) and prefrontal cortex in the T-maze training group relative to the control one. L-arginine and L-ornithine levels were not significantly different between groups in the brain regions examined. These results demonstrate T-maze training-induced region-specific increases in L-citrulline and agmatine. Significant positive correlations between prefrontal and perirhinal agmatine levels and animals' performance in the T-maze further suggest the direct involvement of agmatine in learning and memory processing.
Collapse
Affiliation(s)
- Ping Liu
- Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand.
| | | | | | | | | |
Collapse
|
186
|
Evsikov AV, Dolan ME, Genrich MP, Patek E, Bult CJ. MouseCyc: a curated biochemical pathways database for the laboratory mouse. Genome Biol 2009; 10:R84. [PMID: 19682380 PMCID: PMC2745765 DOI: 10.1186/gb-2009-10-8-r84] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/17/2009] [Accepted: 08/14/2009] [Indexed: 11/10/2022] Open
Abstract
Linking biochemical genetic data to the reference genome for the laboratory mouse is important for comparative physiology and for developing mouse models of human biology and disease. We describe here a new database of curated metabolic pathways for the laboratory mouse called MouseCyc http://mousecyc.jax.org. MouseCyc has been integrated with genetic and genomic data for the laboratory mouse available from the Mouse Genome Informatics database and with pathway data from other organisms, including human.
Collapse
|
187
|
Su CH, Liu IM, Chung HH, Cheng JT. Activation of I2-imidazoline receptors by agmatine improved insulin sensitivity through two mechanisms in type-2 diabetic rats. Neurosci Lett 2009; 457:125-8. [DOI: 10.1016/j.neulet.2009.03.093] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 03/25/2009] [Indexed: 11/26/2022]
|
188
|
Dastan A, Kocer I, Erdogan F, Ates O, Kiziltunc A. Agmatine as retinal protection from ischemia-reperfusion injury in guinea pigs. Jpn J Ophthalmol 2009; 53:219-24. [PMID: 19484439 DOI: 10.1007/s10384-009-0660-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Accepted: 02/01/2009] [Indexed: 01/26/2023]
Abstract
PURPOSE To determine the neuroprotective effect of agmatine (Agm) on the retinas of guinea pigs subjected to a transient ischemia-reperfusion insult. METHODS Twenty-eight guinea pigs were randomly divided into four groups. Forty-five minutes before ischemic insult, the guinea pigs were intraperitoneally administered either Agm (50 mg/kg) (Agm 1) or saline (control 1 group) once, or twice separated by a 12-h interval (Agm 2; control 2). Transient ocular ischemia was achieved under general anesthesia by cannulating an anterior chamber maintainer connected to an infusion line of a semiflexible bottle. The saline reservoir pressure was increased by using a blood pressure tolls cuff to achieve an intraocular pressure (IOP) of 150 mmHg. This IOP was maintained for 90 min. Reperfusion was achieved by pulling off the anterior chamber maintainer. The animals in the Agm 1 and control 1 groups were killed at the end of the 4-h reperfusion period. The eyes were enucleated for histopathological (retinal thickness) and biochemical (thiobarbituric acid reactive substance, TBARS, and nitric oxide, NO) investigation. The animals in the Agm 2 and control 2 groups were killed at the end of a 24-h reperfusion period. RESULTS The mean retinal thickness of the animals in the Agm 1 (25.94 +/- 1.23 microm) and Agm 2 (24.49 +/- 0.88 microm) groups was lower than that of those in the control 1 (37.60 +/- 2.27 microm) and control 2 (36. 64 +/- 1.32 microm) groups (P < 0.05). The mean TBARS level of the animals in the Agm 1 (8.37 +/- 0.94 nmol/ml) and Agm 2 (8.01 +/- 0.97 nmol/ml) groups was lower than that of those in the control 1 (12.09 +/- 1.27 nmol/ml) and control 2 (12.09 +/- 1.27 and 11.72 +/- 1.63 nmol/ml) groups (P < 0.05). The mean NO level of the animals in the Agm 1 (100.77 +/- 6.20 nmol/ml) and Agm 2 (94.63 +/- 5.24 nmol/ml) was lower than that of those in the control 1 (131.77 +/- 4.61 nmol/ml) and control 2 (122.43 +/- 4.35 nmol/ml) groups (P < 0.05). There were positive correlations between the TBARS and NO levels and retinal thickness in the Agm and control groups. CONCLUSION Agmatine exerts a significant neuroprotective effect on guinea pig retinas after transient ischemia-reperfusion insult.
Collapse
Affiliation(s)
- Ali Dastan
- Department of Ophthalmology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | | | | | | | | |
Collapse
|
189
|
Liu P, Collie ND. Behavioral effects of agmatine in naive rats are task- and delay-dependent. Neuroscience 2009; 163:82-96. [PMID: 19482065 DOI: 10.1016/j.neuroscience.2009.05.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 11/29/2022]
Abstract
The present study systematically investigated the effects of agmatine administered i.p. in several commonly used behavioral tasks. In Experiment 1, pre-test treatment of agmatine (1 and 40 mg/kg) appeared to improve animals' performance in the water maze probe test conducted 24 h, but not 120 s, after training, when the effect was evaluated within subjects. In Experiment 2, pre-test agmatine treatment (40 mg/kg) did not affect animals' performance in the open field, and the place navigation, probe tests (1-4 and 6), reversal test and cued navigation in the water maze, but significantly facilitated performance in probe 5 which was conducted 96 h after training. In Experiment 3, rats with pre-test agmatine treatment (40 mg/kg) were less anxious relative to the controls, with no performance changes in the open field. In the water maze task, post-training agmatine treatment (40 mg/kg) did not affect place and cued navigation, but significantly improved animals' performance in the probe test conducted 24 h after training and the reversal test. In the working memory version of the task, agmatine treated rats took significantly less time and generated markedly shorter path length to reach the platform at the 180 s, but not 30 s, delay relative to the controls. In the object recognition task, rats with pre-test agmatine treatment (40 mg/kg) spent significantly more time exploring displaced objects, but not novel object, as compared to the controls. In Experiment 4, pre-test agmatine treatment (40 mg/kg) had no effect on the task acquisition in the delayed non-match to position task in the T-maze, but significantly facilitated performance at the 600 s delay. These results suggest that the behavioral effects of agmatine are task- and delay-dependent, and agmatine facilitates memory particularly when the task difficulty is increased due to memory trace decay and/or greater interference.
Collapse
Affiliation(s)
- P Liu
- Department of Anatomy and Structural Biology, School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
190
|
Lee WT, Hong S, Yoon SH, Kim JH, Park KA, Seong GJ, Lee JE. Neuroprotective effects of agmatine on oxygen-glucose deprived primary-cultured astrocytes and nuclear translocation of nuclear factor-kappa B. Brain Res 2009; 1281:64-70. [PMID: 19465011 DOI: 10.1016/j.brainres.2009.05.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 01/27/2023]
Abstract
To better understand the neuroprotective actions of agmatine in ischemic insults, its effects on astrocytes were investigated using an in vitro oxygen-glucose deprivation (OGD) model. After primary culture, cortical astrocytes were moved into a closed anaerobic chamber and incubated in glucose-free culture media. 4 h later, the cells were restored to normoxic conditions and supplied with glucose for 20 h. The ability of agmatine to rescue astrocytes from OGD only and OGD followed by restoration (OGD-R) was assessed. Cell viability was monitored with or without 100 muM agmatine, using the lactate dehydrogenase (LDH) assay and annexin V flow cytometric assay. For morphological analysis, Hoechst 33258 and propidium iodide double nuclear staining was performed. Expression and phosphorylation of nuclear factor-kappa B (NF-kappaB) family proteins were also investigated by immunoblotting. Results showed that astrocytes had decreased viability following OGD and OGD-R and that agmatine treatment increased cell viability and induced NF-kappaB translocation into the nucleus. Finally, our studies revealed that agmatine can rescue astrocytes from death caused by ischemic and/or ischemic-perfusion neuronal injuries in vitro. Our findings provide new insights that may lead to a novel therapeutic strategy to reduce these kinds of neuronal injuries.
Collapse
Affiliation(s)
- Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
191
|
Differential effects of i.c.v. microinfusion of agmatine on spatial working and reference memory in the rat. Neuroscience 2009; 159:951-61. [DOI: 10.1016/j.neuroscience.2009.01.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/15/2009] [Accepted: 01/18/2009] [Indexed: 11/24/2022]
|
192
|
Liu P, Collie ND, Chary S, Jing Y, Zhang H. Spatial learning results in elevated agmatine levels in the rat brain. Hippocampus 2009; 18:1094-8. [PMID: 18680141 DOI: 10.1002/hipo.20482] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Accumulating evidence suggests that agmatine, a metabolite of L-arginine by arginine decarboxylase, is a novel neurotransmitter, and exogenous agmatine can modulate behavior functions including learning and memory. However, direct evidence of its involvement in learning and memory processes is currently lacking. This study measured agmatine levels in the hippocampus, parahippocampal region, cerebellum, and vestibular nucleus in rats that were trained to find a hidden escape platform in the water-maze task, or forced to swim in the pool with no platform presented, or kept in the holding-box, using liquid chromatography/mass spectrometry. Compared with the swimming only group and holding-box group, agmatine levels were significantly increased in the CA1 and dentate gyrus subregions of the hippocampus, the entorhinal cortex and the vestibular nucleus in the water-maze training group. These results, for the first time, demonstrate spatial learning-induced region-specific elevation in agmatine, and raise a novel issue of the involvement of agmatine in the processes of learning and memory.
Collapse
Affiliation(s)
- Ping Liu
- Department of Anatomy and Structural Biology, School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| | | | | | | | | |
Collapse
|
193
|
Liu P, Chary S, Devaraj R, Jing Y, Darlington CL, Smith PF, Tucker IG, Zhang H. Effects of aging on agmatine levels in memory-associated brain structures. Hippocampus 2009; 18:853-6. [PMID: 18481282 DOI: 10.1002/hipo.20448] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Agmatine is a metabolite of L-arginine by arginine decarboxylase. Recent evidence suggests that it exists in mammalian brain and is a novel neurotransmitter. The present study measured agmatine levels in several memory-associated brain structures in aged (24-month-old), middle-aged (12-month-old), and young (4-month-old) male Sprague Dawley rats using liquid chromatography/mass spectrometry. Agmatine levels were significantly decreased in the CA1, but increased in the CA2/3 and dentate gyrus, subregions of the hippocampus in aged and middle-aged rats relative to the young adults. In the prefrontal cortex, a dramatic decrease in agmatine level was found in aged rats as compared with middle-aged and young rats. There were significantly increased levels of agmatine in the entorhinal and perirhinal cortices in aged relative to middle-aged and young rats. In the postrhinal and temporal cortices, agmatine levels were significantly increased in aged and middle-aged rats as compared with young adults. The present findings, for the first time, demonstrate age-related changes in agmatine levels in memory-associated brain structures and raise a novel issue of the potential involvement of agmatine in the aging process.
Collapse
Affiliation(s)
- Ping Liu
- Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Agmatine attenuates the disruptive effects of phencyclidine on prepulse inhibition. Eur J Pharmacol 2008; 590:212-6. [DOI: 10.1016/j.ejphar.2008.06.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 05/26/2008] [Accepted: 06/05/2008] [Indexed: 12/18/2022]
|
195
|
Xia Z, Webster A, Du F, Piatkov K, Ghislain M, Varshavsky A. Substrate-binding sites of UBR1, the ubiquitin ligase of the N-end rule pathway. J Biol Chem 2008; 283:24011-28. [PMID: 18566452 DOI: 10.1074/jbc.m802583200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substrates of a ubiquitin-dependent proteolytic system called the N-end rule pathway include proteins with destabilizing N-terminal residues. N-recognins, the pathway's ubiquitin ligases, contain three substrate-binding sites. The type-1 site is specific for basic N-terminal residues (Arg, Lys, and His). The type-2 site is specific for bulky hydrophobic N-terminal residues (Trp, Phe, Tyr, Leu, and Ile). We show here that the type-1/2 sites of UBR1, the sole N-recognin of the yeast Saccharomyces cerevisiae, are located in the first approximately 700 residues of the 1,950-residue UBR1. These sites are distinct in that they can be selectively inactivated by mutations, identified through a genetic screen. Mutations inactivating the type-1 site are in the previously delineated approximately 70-residue UBR motif characteristic of N-recognins. Fluorescence polarization and surface plasmon resonance were used to determine that UBR1 binds, with a K(d) of approximately 1 microm, to either type-1 or type-2 destabilizing N-terminal residues of reporter peptides but does not bind to a stabilizing N-terminal residue such as Gly. A third substrate-binding site of UBR1 targets an internal degron of CUP9, a transcriptional repressor of peptide import. We show that the previously demonstrated in vivo dependence of CUP9 ubiquitylation on the binding of cognate dipeptides to the type-1/2 sites of UBR1 can be reconstituted in a completely defined in vitro system. We also found that purified UBR1 and CUP9 interact nonspecifically and that specific binding (which involves, in particular, the binding by cognate dipeptides to the UBR1 type-1/2 sites) can be restored either by a chaperone such as EF1A or through macromolecular crowding.
Collapse
Affiliation(s)
- Zanxian Xia
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
196
|
Lee YW, Ishikawa T. Effects of Agmatine on GABA AReceptor Antagonist-induced Tactile Allodynia. Korean J Pain 2008. [DOI: 10.3344/kjp.2008.21.3.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Youn Woo Lee
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Toshizo Ishikawa
- Department of Neuroscience, Postgraduated Medical School of Yamaguchi University, Ube, Japan
| |
Collapse
|