151
|
Wu Q, Wang J, Liu Y, Gong X. Epithelial cell adhesion molecule and epithelial-mesenchymal transition are associated with vasculogenic mimicry, poor prognosis, and metastasis of triple negative breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1678-1689. [PMID: 31933986 PMCID: PMC6947126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/26/2019] [Indexed: 06/10/2023]
Abstract
Triple-negative breast cancer (TNBC) is associated with epithelial-mesenchymal transition (EMT) and the phenotype of breast cancer stem cells (CSCs). Vasculogenic mimicry (VM) is a novel pattern of tumor blood supply and associated with aggression and metastasis of TNBC. Previous studies have shown that both CSCs and EMT are associated with VM, although the underlying mechanism is yet unclear. The present study aimed to analyze the immunohistochemical (IHC) expression of CSC marker, epithelial cell adhesion molecule (EpCAM), EMT-related markers, including transcription factors (TFs) (Slug, Twist1, and ZEB1), and EMT markers (E-cadherin and vimentin) in 137 TNBC. The expression of these markers was correlated to the clinicopathological features and VM channels of the tumors, including patient overall survival (OS) and disease-free survival (DFS). Furthermore, the expression of EpCAM and EMT-related markers showed a positive correlation with distant metastasis and lymph node metastasis (P < 0.05). A significant association was noted between VM and histological grade (P = 0.007). Moreover, VM showed a significant positive correlation with EpCAM, EMT-associated TFs, and VE-cadherin expression in TNBC. Furthermore, binary logistic analysis showed that VM expression was significantly correlated with lymph node metastasis and distant metastasis (P < 0.05). In survival analysis, the overexpression of EpCAM and ZEB1 predicted a poor prognosis with respect to OS and DFS. In addition, the presence of VM was significantly associated with poor OS and DFS. Multivariate Cox regression analysis revealed that VM expression is an independent prognostic factor for TNBC patients. In summary, VM was confirmed as a potential biomarker for TNBC associated with poor clinical outcomes and tumor metastasis. This study also suggested that EpCAM protein might be involved in VM formation by EMT in TNBC.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui Province, China
- Department of Pathology, Bengbu Medical CollegeBengbu, Anhui Province, China
| | - Jingping Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui Province, China
- Department of Pathology, Bengbu Medical CollegeBengbu, Anhui Province, China
| | - Yuanyuan Liu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui Province, China
- Department of Pathology, Bengbu Medical CollegeBengbu, Anhui Province, China
| | - Xiaomeng Gong
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui Province, China
- Department of Pathology, Bengbu Medical CollegeBengbu, Anhui Province, China
| |
Collapse
|
152
|
Zamay GS, Kolovskaya OS, Ivanchenko TI, Zamay TN, Veprintsev DV, Grigorieva VL, Garanzha II, Krat AV, Glazyrin YE, Gargaun A, Lapin IN, Svetlichnyi VA, Berezovski MV, Kichkailo AS. Development of DNA Aptamers to Native EpCAM for Isolation of Lung Circulating Tumor Cells from Human Blood. Cancers (Basel) 2019; 11:cancers11030351. [PMID: 30871104 PMCID: PMC6468627 DOI: 10.3390/cancers11030351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/05/2023] Open
Abstract
We selected DNA aptamers to the epithelial cell adhesion molecule (EpCAM) expressed on primary lung cancer cells isolated from the tumors of patients with non-small cell lung cancer using competitive displacement of aptamers from EpCAM by a corresponding antibody. The resulting aptamers clones showed good nanomolar affinity to EpCAM-positive lung cancer cells. Confocal microscopy imaging and spectral profiling of lung cancer tissues confirmed the same protein target for the aptamers and anti-EpCAM antibodies. Furthermore, the resulted aptamers were successfully applied for isolation and detection of circulating tumor cells in clinical samples of peripheral blood of lung cancer patients.
Collapse
Affiliation(s)
- Galina S Zamay
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", Krasnoyarsk 660036, Russia.
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, Krasnoyarsk 660022, Russia.
| | - Olga S Kolovskaya
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", Krasnoyarsk 660036, Russia.
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, Krasnoyarsk 660022, Russia.
| | - Tatiana I Ivanchenko
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", Krasnoyarsk 660036, Russia.
| | - Tatiana N Zamay
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", Krasnoyarsk 660036, Russia.
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, Krasnoyarsk 660022, Russia.
| | - Dmitry V Veprintsev
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", Krasnoyarsk 660036, Russia.
| | - Valentina L Grigorieva
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, Krasnoyarsk 660022, Russia.
| | - Irina I Garanzha
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, Krasnoyarsk 660022, Russia.
| | - Alexey V Krat
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, Krasnoyarsk 660022, Russia.
- Krasnoyarsk Regional Clinical Cancer Center named after A.I. Kryzhanovsky, Krasnoyarsk 660133, Russia.
| | - Yury E Glazyrin
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", Krasnoyarsk 660036, Russia.
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, Krasnoyarsk 660022, Russia.
| | - Ana Gargaun
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Ivan N Lapin
- Laboratory of Advanced Materials and Technology, Siberian Physical-Technical Institute of Tomsk State University, Tomsk 634050, Russia.
| | - Valery A Svetlichnyi
- Laboratory of Advanced Materials and Technology, Siberian Physical-Technical Institute of Tomsk State University, Tomsk 634050, Russia.
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Anna S Kichkailo
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", Krasnoyarsk 660036, Russia.
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, Krasnoyarsk 660022, Russia.
| |
Collapse
|
153
|
Surface-attached dual-functional hydrogel for controlled cell adhesion based on poly(N,N-dimethylacrylamide). JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1728-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
154
|
Campos-Silva C, Suárez H, Jara-Acevedo R, Linares-Espinós E, Martinez-Piñeiro L, Yáñez-Mó M, Valés-Gómez M. High sensitivity detection of extracellular vesicles immune-captured from urine by conventional flow cytometry. Sci Rep 2019; 9:2042. [PMID: 30765839 PMCID: PMC6376115 DOI: 10.1038/s41598-019-38516-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/31/2018] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) provide an invaluable tool to analyse physiological processes because they transport, in biological fluids, biomolecules secreted from diverse tissues of an individual. EV biomarker detection requires highly sensitive techniques able to identify individual molecules. However, the lack of widespread, affordable methodologies for high-throughput EV analyses means that studies on biomarkers have not been done in large patient cohorts. To develop tools for EV analysis in biological samples, we evaluated here the critical parameters to optimise an assay based on immunocapture of EVs followed by flow cytometry. We describe a straightforward method for EV detection using general EV markers like the tetraspanins CD9, CD63 and CD81, that allowed highly sensitive detection of urinary EVs without prior enrichment. In proof-of-concept experiments, an epithelial marker enriched in carcinoma cells, EpCAM, was identified in EVs from cell lines and directly in urine samples. However, whereas EVs isolated from 5–10 ml of urine were required for western blot detection of EpCAM, only 500 μl of urine were sufficient to visualise EpCAM expression by flow cytometry. This method has the potential to allow any laboratory with access to conventional flow cytometry to identify surface markers on EVs, even non-abundant proteins, using minimally processed biological samples.
Collapse
Affiliation(s)
- Carmen Campos-Silva
- Department of Immunology and Oncology, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| | - Henar Suárez
- Department of Molecular Biology, UAM, Centro de Biología Molecular Severo Ochoa (CBM-SO), Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | | | | | - Luis Martinez-Piñeiro
- Servicio de Urología and Instituto Sanitario (Idipaz), Hospital Universitario La Paz, Madrid, Spain
| | - María Yáñez-Mó
- Department of Molecular Biology, UAM, Centro de Biología Molecular Severo Ochoa (CBM-SO), Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Mar Valés-Gómez
- Department of Immunology and Oncology, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain.
| |
Collapse
|
155
|
Pathak SJ, Mueller JL, Okamoto K, Das B, Hertecant J, Greenhalgh L, Cole T, Pinsk V, Yerushalmi B, Gurkan OE, Yourshaw M, Hernandez E, Oesterreicher S, Naik S, Sanderson IR, Axelsson I, Agardh D, Boland CR, Martin MG, Putnam CD, Sivagnanam M. EPCAM mutation update: Variants associated with congenital tufting enteropathy and Lynch syndrome. Hum Mutat 2019; 40:142-161. [PMID: 30461124 PMCID: PMC6328345 DOI: 10.1002/humu.23688] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/24/2018] [Accepted: 11/14/2018] [Indexed: 12/30/2022]
Abstract
The epithelial cell adhesion molecule gene (EPCAM, previously known as TACSTD1 or TROP1) encodes a membrane-bound protein that is localized to the basolateral membrane of epithelial cells and is overexpressed in some tumors. Biallelic mutations in EPCAM cause congenital tufting enteropathy (CTE), which is a rare chronic diarrheal disorder presenting in infancy. Monoallelic deletions of the 3' end of EPCAM that silence the downstream gene, MSH2, cause a form of Lynch syndrome, which is a cancer predisposition syndrome associated with loss of DNA mismatch repair. Here, we report 13 novel EPCAM mutations from 17 CTE patients from two separate centers, review EPCAM mutations associated with CTE and Lynch syndrome, and structurally model pathogenic missense mutations. Statistical analyses indicate that the c.499dupC (previously reported as c.498insC) frameshift mutation was associated with more severe treatment regimens and greater mortality in CTE, whereas the c.556-14A>G and c.491+1G>A splice site mutations were not correlated with treatments or outcomes significantly different than random simulation. These findings suggest that genotype-phenotype correlations may be useful in contributing to management decisions of CTE patients. Depending on the type and nature of EPCAM mutation, one of two unrelated diseases may occur, CTE or Lynch syndrome.
Collapse
Affiliation(s)
- Sagar J. Pathak
- Department of PediatricsUniversity of California, San DiegoLa JollaCalifornia
- Rady Children's HospitalSan DiegoCalifornia
| | - James L. Mueller
- Department of PediatricsUniversity of California, San DiegoLa JollaCalifornia
| | - Kevin Okamoto
- Department of PediatricsUniversity of California, San DiegoLa JollaCalifornia
| | - Barun Das
- Department of PediatricsUniversity of California, San DiegoLa JollaCalifornia
| | - Jozef Hertecant
- Genetics/Metabolics ServiceTawam HospitalAl AinUnited Arab Emirates
| | | | - Trevor Cole
- West Midlands Regional Genetics Service and Birmingham Health PartnersBirmingham Women's HospitalBirminghamUK
| | - Vered Pinsk
- Division of Pediatrics, Pediatric Gastroenterology UnitSoroka University Medical Center and Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Baruch Yerushalmi
- Division of Pediatrics, Pediatric Gastroenterology UnitSoroka University Medical Center and Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Odul E. Gurkan
- Department of PediatricsGazi University School of MedicineAnkaraTurkey
| | - Michael Yourshaw
- Department of Human GeneticsUniversity of California, Los AngelesLos AngelesCalifornia
| | - Erick Hernandez
- Pediatric GastroenterologyMiami Children's Health SystemMiamiFlorida
| | | | - Sandhia Naik
- Paediatric GastroenterologyBarts and the London School of MedicineLondonUK
| | - Ian R. Sanderson
- Paediatric GastroenterologyBarts and the London School of MedicineLondonUK
| | - Irene Axelsson
- Department of PediatricsSkane University HospitalMalmoSweden
| | - Daniel Agardh
- Department of Clinical SciencesLund University, Skane University HospitalMalmoSweden
| | - C. Richard Boland
- Department of MedicineUniversity of California, San DiegoLa JollaCalifornia
| | - Martin G. Martin
- Department of PediatricsUniversity of California, Los AngelesLos AngelesCalifornia
| | - Christopher D. Putnam
- Department of MedicineUniversity of California, San DiegoLa JollaCalifornia
- San Diego BranchLudwig Institute for Cancer ResearchLa JollaCalifornia
| | - Mamata Sivagnanam
- Department of PediatricsUniversity of California, San DiegoLa JollaCalifornia
- Rady Children's HospitalSan DiegoCalifornia
| |
Collapse
|
156
|
Aya-Bonilla C, Gray ES, Manikandan J, Freeman JB, Zaenker P, Reid AL, Khattak MA, Frank MH, Millward M, Ziman M. Immunomagnetic-Enriched Subpopulations of Melanoma Circulating Tumour Cells (CTCs) Exhibit Distinct Transcriptome Profiles. Cancers (Basel) 2019; 11:cancers11020157. [PMID: 30769764 PMCID: PMC6406574 DOI: 10.3390/cancers11020157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma circulating tumour cells (CTCs) are phenotypically and molecularly heterogeneous. We profiled the gene expression of CTC subpopulations immunomagnetic-captured by targeting either the melanoma-associated marker, MCSP, or the melanoma-initiating marker, ABCB5. Firstly, the expression of a subset of melanoma genes was investigated by RT-PCR in MCSP-enriched and ABCB5-enriched CTCs isolated from a total of 59 blood draws from 39 melanoma cases. Of these, 6 MCSP- and 6 ABCB5-enriched CTC fractions were further analysed using a genome-wide gene expression microarray. The transcriptional programs of both CTC subtypes included cell survival maintenance, cell proliferation, and migration pathways. ABCB5-enriched CTCs were specifically characterised by up-regulation of genes involved in epithelial to mesenchymal transition (EMT), suggesting an invasive phenotype. These findings underscore the presence of at least two distinct melanoma CTC subpopulations with distinct transcriptional programs, which may have distinct roles in disease progression and response to therapy.
Collapse
Affiliation(s)
- Carlos Aya-Bonilla
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | | | - James B Freeman
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | - Pauline Zaenker
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | - Anna L Reid
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | - Muhammad A Khattak
- School of Medicine, University of Western Australia, Crawley, WA 6009, Australia.
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia.
| | - Markus H Frank
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
- Transplantation Research Program, Boston Children's Hospital and Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| | - Michael Millward
- School of Medicine, University of Western Australia, Crawley, WA 6009, Australia.
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia.
| | - Mel Ziman
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
- School of Biomedical Science, University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
157
|
Sumpter TL, Balmert SC, Kaplan DH. Cutaneous immune responses mediated by dendritic cells and mast cells. JCI Insight 2019; 4:123947. [PMID: 30626752 DOI: 10.1172/jci.insight.123947] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In the skin, complex cellular networks maintain barrier function and immune homeostasis. Tightly regulated multicellular cascades are required to initiate innate and adaptive immune responses. Innate immune cells, particularly DCs and mast cells, are central to these networks. Early studies evaluated the function of these cells in isolation, but recent studies clearly demonstrate that cutaneous DCs (dermal DCs and Langerhans cells) physically interact with neighboring cells and are receptive to activation signals from surrounding cells, such as mast cells. These interactions amplify immune activation. In this review, we discuss the known functions of cutaneous DC populations and mast cells and recent studies highlighting their roles within cellular networks that determine cutaneous immune responses.
Collapse
Affiliation(s)
| | | | - Daniel H Kaplan
- Department of Dermatology and.,Department of Immunology, University of Pittsburgh School of Medicine,Pittsburgh, Pennsylvania, USA
| |
Collapse
|
158
|
Yahyazadeh Mashhadi SM, Kazemimanesh M, Arashkia A, Azadmanesh K, Meshkat Z, Golichenari B, Sahebkar A. Shedding light on the EpCAM: An overview. J Cell Physiol 2019; 234:12569-12580. [DOI: 10.1002/jcp.28132] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Seyed Muhammad Yahyazadeh Mashhadi
- Department of Virology Pasteur Institute of Iran Tehran Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences Mashhad Iran
- Production Expert at Samandaroo 8 (Biotech Pharmaceutical) Co. Mashhad Iran
| | | | - Arash Arashkia
- Department of Virology Pasteur Institute of Iran Tehran Iran
| | | | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences Mashhad Iran
| | - Behrouz Golichenari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- Neurogenic inflammation Research Center, Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
159
|
Khalid U, Vi C, Henri J, Macdonald J, Eu P, Mandarano G, Shigdar S. Radiolabelled Aptamers for Theranostic Treatment of Cancer. Pharmaceuticals (Basel) 2018; 12:ph12010002. [PMID: 30586898 PMCID: PMC6469178 DOI: 10.3390/ph12010002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/30/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022] Open
Abstract
Cancer has a high incidence and mortality rate worldwide, which continues to grow as millions of people are diagnosed annually. Metastatic disease caused by cancer is largely responsible for the mortality rates, thus early detection of metastatic tumours can improve prognosis. However, a large number of patients will also present with micrometastasis tumours which are often missed, as conventional medical imaging modalities are unable to detect micrometastases due to the lack of specificity and sensitivity. Recent advances in radiochemistry and the development of nucleic acid based targeting molecules, have led to the development of novel agents for use in cancer diagnostics. Monoclonal antibodies may also be used, however, they have inherent issues, such as toxicity, cost, unspecified binding and their clinical use can be controversial. Aptamers are a class of single-stranded RNA or DNA ligands with high specificity, binding affinity and selectivity for a target, which makes them promising for molecular biomarker imaging. Aptamers are presented as being a superior choice over antibodies because of high binding affinity and pH stability, amongst other factors. A number of aptamers directed to cancer cell markers (breast, lung, colon, glioblastoma, melanoma) have been radiolabelled and characterised to date. Further work is ongoing to develop these for clinical applications.
Collapse
Affiliation(s)
- Umair Khalid
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
| | - Chris Vi
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
| | - Justin Henri
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
| | - Joanna Macdonald
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
| | - Peter Eu
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.
| | - Giovanni Mandarano
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
| | - Sarah Shigdar
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
- Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3128, Australia.
| |
Collapse
|
160
|
Stacchini A, Aliberti S, Demurtas A, Maletta F, Molinaro L, Godio L, Papotti M. Flow cytometry identification of nonhemopoietic neoplasms during routine immunophenotyping. Int J Lab Hematol 2018; 41:208-217. [PMID: 30480372 DOI: 10.1111/ijlh.12946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Nonhemopoietic neoplasms (NHNs) may be encountered during routine flow cytometry (FC) immunophenotyping. The clue of their presence mainly relies on detection of CD45-negative (CD45-) cells with altered scatter parameters. METHODS In this study, we evaluated a monoclonal antibody combination conceived to characterize the CD45- population by FC, suspected of belonging to NHNs, when present. The panel included CD45 for leucocytes identification, CD326 (clones BerEP4 and HEA-125) to mark epithelial cells, CD33 to identify myeloid cells, CD138 to trace plasma cells and CD56 useful in the identification of neuroendocrine tumours. 7AAD vital dye was used to gate out dead cells. Results were correlated with cytomorphology and confirmed by histological data, if available. RESULTS Among 9422 specimens submitted for routine FC investigation, 47 samples that included fine-needle aspirates, bone marrow aspirates, tissue biopsies and body fluids had a detectable CD45- population and a sufficient cell amount to be further investigated. FC revealed the presence of CD326-positive epithelial cells in 38 specimens; altered scatter parameters and variable reactivity to the other antigens tested allowed to suspect NHNs in the remaining nine samples. The presence of NHNs was confirmed in all cases by morphology. CONCLUSIONS The current results show that when CD45- cells with altered scatter parameters were detected, cytometrists involved in leukaemia/lymphoma diagnosis may require further FC investigations to rapidly identify NHNs in different specimens, thus reducing the time of the immunohistochemical diagnostic workup to reach a final diagnosis.
Collapse
Affiliation(s)
- Alessandra Stacchini
- Flow Cytometry Unit, Pathology Division, Citta' della Salute e della Scienza Hospital, Turin, Italy
| | - Sabrina Aliberti
- Flow Cytometry Unit, Pathology Division, Citta' della Salute e della Scienza Hospital, Turin, Italy
| | - Anna Demurtas
- Flow Cytometry Unit, Pathology Division, Citta' della Salute e della Scienza Hospital, Turin, Italy
| | - Francesca Maletta
- Pathology Division, Citta' della Salute e della Scienza Hospital, Turin, Italy
| | - Luca Molinaro
- Pathology Division, Citta' della Salute e della Scienza Hospital, Turin, Italy
| | - Laura Godio
- Pathology Division, Citta' della Salute e della Scienza Hospital, Turin, Italy
| | - Mauro Papotti
- Pathology Division, Citta' della Salute e della Scienza Hospital, Turin, Italy.,University of Turin, Turin, Italy
| |
Collapse
|
161
|
Ni J, Cozzi P, Beretov J, Duan W, Bucci J, Graham P, Li Y. Epithelial cell adhesion molecule (EpCAM) is involved in prostate cancer chemotherapy/radiotherapy response in vivo. BMC Cancer 2018; 18:1092. [PMID: 30419852 PMCID: PMC6233586 DOI: 10.1186/s12885-018-5010-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022] Open
Abstract
Background Development of chemo−/radioresistance is a major challenge for the current prostate cancer (CaP) therapy. We have previously demonstrated that epithelial cell adhesion molecule (EpCAM) is associated with CaP growth and therapeutic resistance in vitro, however, the role of EpCAM in CaP in vivo is not fully elucidated. Here, we aimed to investigate how expression of EpCAM is involved in CaP growth and chemo−/radiotherapy response in NOD/SCID mouse models in vivo and to validate its role as a therapeutic target for CaP therapy. Methods EpCAM was knocked down in PC-3 CaP cell line using short hairpin RNA (shRNA). The effect of EpCAM-knockdown (KD) on tumour growth, chemo−/radiotherapy response and animal survival was evaluated on subcutaneous (s.c) and orthotopic mouse models. Results We found that KD of EpCAM significantly inhibited tumour growth, increased xenograft sensitivity to chemotherapy/radiotherapy, and prolonged the survival of tumour-bearing mice. In addition, we demonstrated that KD of EpCAM is associated with downregulation of the PI3K/Akt/mTOR pathway. Conclusions In conclusion, our data confirms that CaP growth and chemo−/radioresistance in vivo is associated with over-expression of EpCAM, which serves both a functional biomarker and promising therapeutic target. Electronic supplementary material The online version of this article (10.1186/s12885-018-5010-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Ni
- Cancer Care Centre, St George Hospital, Level 2, 4-10 South St, Kogarah, NSW, 2217, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Paul Cozzi
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia.,Department of Surgery, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Julia Beretov
- Cancer Care Centre, St George Hospital, Level 2, 4-10 South St, Kogarah, NSW, 2217, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia.,Anatomical Pathology, NSW Health Pathology, St George Hospital, Gray St, Kogarah, NSW, 2217, Australia
| | - Wei Duan
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Joseph Bucci
- Cancer Care Centre, St George Hospital, Level 2, 4-10 South St, Kogarah, NSW, 2217, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Peter Graham
- Cancer Care Centre, St George Hospital, Level 2, 4-10 South St, Kogarah, NSW, 2217, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Yong Li
- Cancer Care Centre, St George Hospital, Level 2, 4-10 South St, Kogarah, NSW, 2217, Australia. .,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia. .,School of Basic Medical Sciences, Zhengzhou University, Henan, 450001, China.
| |
Collapse
|
162
|
Xu Y, Shen K. Identification of potential key genes associated with ovarian clear cell carcinoma. Cancer Manag Res 2018; 10:5461-5470. [PMID: 30519094 PMCID: PMC6234989 DOI: 10.2147/cmar.s187156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Ovarian cancer is the major cause of death from cancer among females worldwide. Ovarian clear cell carcinoma (OCCC) is considered a distinct histopathologic subtype with worse prognosis and resistance to conventional chemotherapy. Materials and methods We analyzed five microarray datasets derived from the Gene Expression Omnibus database. GEO2R tool was used to screen out differentially expressed genes (DEGs) between OCCC tumor and normal ovary tissue. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed using the g:Profiler database and Cytoscape. Based on Search Tool for the Retrieval of Interacting Genes, we performed protein-protein interaction (PPI) network analysis on the DEGs. Real-time PCR (RT-PCR) and Western blotting in frozen samples of normal ovary and OCCC were performed to verify the expression difference of hub genes in OCCC patients. Results Thirty upregulated DEGs and 13 downregulated DEGs were identified by cross referencing. Six were chosen as hub genes with high connectivity degree via PPI network analysis, including two upregulated and four downregulated. RT-PCR and Western blotting results showed significant expression difference of the two upregulated genes, SPP1 and EPCAM, between tumor and normal tissues. Conclusion Our research suggests that SPP1 and EPCAM are overexpressed in OCCC compared with normal ovary tissue. Clinical study of large sample is required to evaluate the value of SPP1 and EPCAM in the precision treatment and prognostic influence on OCCC in the future.
Collapse
Affiliation(s)
- Youzheng Xu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Eastern District, Beijing 100730, China,
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Eastern District, Beijing 100730, China,
| |
Collapse
|
163
|
Fluorescence-guided tumor detection with a novel anti-EpCAM targeted antibody fragment: Preclinical validation. Surg Oncol 2018; 28:1-8. [PMID: 30851880 DOI: 10.1016/j.suronc.2018.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 09/13/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
Abstract
Tumor-specific fluorescent imaging agents are moving towards the clinic, supporting surgeons with real-time intraoperative feedback about tumor locations. The epithelial cell adhesion molecule (EpCAM) is considered as one of the most promising tumor-specific proteins due its high overexpression on epithelial-derived cancers. This study describes the development and evaluation of EpCAM-F800, a novel fluorescent anti-EpCAM antibody fragment, for intraoperative tumor imaging. Fab production, conjugation to the fluorophore IRDye 800CW, and binding capacities were determined and validated using HPLC, spectrophotometry and cell-based assays. In vivo, dose escalation-, blocking-, pharmacokinetic- and biodistribution studies (using both fluorescence and radioactivity) were performed, next to imaging of clinically relevant orthotopic xenografts for breast and colorectal cancer. EpCAM-F800 targets EpCAM with high specificity in vitro, which was validated using in vivo blocking experiments with a 10x higher dose of unlabeled Fab. The optimal dose range for fluorescence tumor detection in mice was 1-5 nmol (52-260 μg), which corresponds to a human equivalent dose of 0.2-0.8 mg/kg. Biodistribution showed high accumulation of EpCAM-F800 in tumors and metabolizing organs. Breast and colorectal tumors could clearly be visualized within 8 h post-injection and up to 96 h, while the agent already showed homogenous tumor distribution within 4 h. The blood half-life was 4.5 h. This study describes the development and evaluation of a novel EpCAM-targeting agent and the feasibility to visualize breast and colorectal tumors by fluorescence imaging during resections. EpCAM-F800 will be translated for clinical use, considering its abundance in a broad range of tumor types.
Collapse
|
164
|
Farquhar MJ, McCluskey E, Staunton R, Hughes KR, Coltherd JC. Characterisation of a canine epithelial cell line for modelling the intestinal barrier. Altern Lab Anim 2018; 46:115-132. [PMID: 30022673 DOI: 10.1177/026119291804600304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Little is known about how food interacts with the intestinal epithelium during the digestion process. However, it is known that ingredients in food can modulate the intestinal barrier, and have the potential to disrupt homeostasis of the gut. Here, we characterise a conditionally immortalised canine intestinal epithelial cell (cIEC) line for use in in vitro assays, to assess the effect of food ingredients on intestinal barrier function, permeability, cell health, and inflammation. Microscopy and flow cytometry confirmed that cIECs had a phenotype consistent with those of epithelial origin, and were able to differentiate to mature enterocytes. The cIECs also formed a monolayer when grown on Transwell® inserts, producing functional tight junctions between the cells. In contrast to the human-derived Caco-2 cell line, transepithelial electrical resistance (TEER) was increased in cIECs in response to two different raw ingredients. The exposure of cIECs to known inflammatory stimuli and raw ingredients induced the nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-?B). This work demonstrates the value of a unique cIEC in vitro model to study the effects of food ingredients on canine intestinal function and health, and supports continued efforts to reduce and refine the use of animals in scientific research.
Collapse
Affiliation(s)
| | - Emma McCluskey
- WALTHAM Centre for Pet Nutrition, Waltham on the Wolds, Leicestershire, U
| | - Ruth Staunton
- WALTHAM Centre for Pet Nutrition, Waltham on the Wolds, Leicestershire, U
| | - Kevin R Hughes
- WALTHAM Centre for Pet Nutrition, Waltham on the Wolds, Leicestershire, U
| | | |
Collapse
|
165
|
Individual variations in cardiovascular-disease-related protein levels are driven by genetics and gut microbiome. Nat Genet 2018; 50:1524-1532. [PMID: 30250126 PMCID: PMC6241851 DOI: 10.1038/s41588-018-0224-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 08/02/2018] [Indexed: 02/05/2023]
Abstract
Despite a growing body of evidence, the role of the gut microbiome in cardiovascular diseases (CVDs) is still unclear. Here we present a systems-genome-wide and metagenome-wide association study on plasma concentrations of 92 CVD-related proteins in the population cohort Lifelines-DEEP. We identified genetic components for 73 proteins and microbial associations for 41 proteins, of which 31 were associated to both. The genetic and microbial factors identified mostly exert additive effects and collectively explain up to 76.6% of inter-individual variation (17.5% on average). Genetics contributes most to concentrations of immune-related proteins, while the gut microbiome contributes most to proteins involved in metabolism and intestinal health. We found several host-microbe interactions that impact proteins involved in epithelial function, lipid metabolism and central nervous system function. This study reveals important evidence for a joint genetic and microbial effect in cardiovascular disease and provides directions for future applications in personalized medicine.
Collapse
|
166
|
Gaber A, Kim SJ, Kaake RM, Benčina M, Krogan N, Šali A, Pavšič M, Lenarčič B. EpCAM homo-oligomerization is not the basis for its role in cell-cell adhesion. Sci Rep 2018; 8:13269. [PMID: 30185875 PMCID: PMC6125409 DOI: 10.1038/s41598-018-31482-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023] Open
Abstract
Cell-surface tumor marker EpCAM plays a key role in proliferation, differentiation and adhesion processes in stem and epithelial cells. It is established as a cell-cell adhesion molecule, forming intercellular interactions through homophilic association. However, the mechanism by which such interactions arise has not yet been fully elucidated. Here, we first show that EpCAM monomers do not associate into oligomers that would resemble an inter-cellular homo-oligomer, capable of mediating cell-cell adhesion, by using SAXS, XL-MS and bead aggregation assays. Second, we also show that EpCAM forms stable dimers on the surface of a cell with pre-formed cell-cell contacts using FLIM-FRET; however, no inter-cellular homo-oligomers were detectable. Thus, our study provides clear evidence that EpCAM indeed does not function as a homophilic cell adhesion molecule and therefore calls for a significant revision of its role in both normal and cancerous tissues. In the light of this, we strongly support the previously suggested name Epithelial Cell Activating Molecule instead of the Epithelial Cell Adhesion Molecule.
Collapse
Affiliation(s)
- Aljaž Gaber
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana, SI 1000, Slovenia
| | - Seung Joong Kim
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, 1700 4th Street, Suite 503B, San Francisco, CA, 94158, USA
| | - Robyn M Kaake
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, SI 1000, Slovenia
| | - Nevan Krogan
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute, QBI, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Andrej Šali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, 1700 4th Street, Suite 503B, San Francisco, CA, 94158, USA
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana, SI 1000, Slovenia.
| | - Brigita Lenarčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana, SI 1000, Slovenia.
- Department of Biochemistry, Molecular and Structural Biology, Institute Jožef Stefan, Jamova 39, Ljubljana, SI 1000, Slovenia.
| |
Collapse
|
167
|
Hosseinian SA, Haddad-Mashadrizeh A, Dolatabadi S. Simulation and Stability Assessment of Anti-EpCAM Immunotoxin for Cancer Therapy. Adv Pharm Bull 2018; 8:447-455. [PMID: 30276141 PMCID: PMC6156485 DOI: 10.15171/apb.2018.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 12/02/2022] Open
Abstract
Purpose: Epithelial cell adhesion molecule (EpCAM) is a dominant antigen in human colon carcinoma tissue. Topology features of this antigen are different in normal and malignant conditions; for instance, EpCAM is much less accessible to antibodies in normal cells than in cancerous tissues. Hence, EpCAM has been considered as a suitable candidate for cancer target therapy via immunotoxins (ITs) development. In this study, attention was focused on the stability assessment of anti-EpCAM-IT (anti-Ep-IT) to design a novel IT. Methods: The 3D structures of the antibody template and the toxin segment of anti-Ep-IT were retrieved from PDB. Discovery Studio3.0 was used to separate the ligands and water molecules. The antibody (Ab) fragment of anti-Ep-IT was aligned using protein blast (BLAST-p), and SWISS-MODEL database was used for Ab modeling. IT modeling was accomplished using MODELLER 9.15. Also, GROMACS 5.07 was used for molecular dynamic (MD) simulation step. Moreover, ERRAT and RAMPAGE databases were used for quality assessment of the structures. Results: BLAST-p results indicated that antibody moiety of IT has the highest E-value and query coverage scores to the monoclonal antibody (mAb) 4D5MOC-B. Modeling by SWISS-MODEL provided a reasonable template for Ab portion compared to MODELLER. The best modeled full-length IT with the lowest RMSD values was selected. Finally, RMSD plot for MD stage demonstrated constant values from 7000ps to 20000ps. Conclusion: In general, both modeling results and their quality evaluations were satisfactory for designing IT. Moreover, RMSD plot revealed that IT stability was preserved during the simulation. Overall, our findings led to modeling and simulation of the anti-Ep-IT with more structural stability.
Collapse
Affiliation(s)
- Seyed-Ali Hosseinian
- Department of Biology, Khorasan Razavi Science and Research Branch, Islamic Azad University, Neyshabur, Iran.,Department of Biology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Aliakbar Haddad-Mashadrizeh
- Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, and Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Samaneh Dolatabadi
- Department of Biology, Khorasan Razavi Science and Research Branch, Islamic Azad University, Neyshabur, Iran.,Department of Biology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
168
|
Sartoneva R, Kuismanen K, Juntunen M, Karjalainen S, Hannula M, Kyllönen L, Hyttinen J, Huhtala H, Paakinaho K, Miettinen S. Porous poly-l-lactide-co-ɛ-caprolactone scaffold: a novel biomaterial for vaginal tissue engineering. ROYAL SOCIETY OPEN SCIENCE 2018. [PMID: 30225072 DOI: 10.5061/dryad.2bg877b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The surgical reconstruction of functional neovagina is challenging and susceptible to complications. Therefore, developing tissue engineering-based treatment methods for vaginal defects is important. Our aim was to develop and test a novel supercritical carbon dioxide foamed poly-l-lactide-co-ɛ-caprolactone (scPLCL) scaffold for vaginal reconstruction. The scaffolds were manufactured and characterized for porosity (65 ± 4%), pore size (350 ± 150 µm) and elastic modulus (2.8 ± 0.4 MPa). Vaginal epithelial (EC) and stromal cells (SC) were isolated, expanded and characterized with flow cytometry. Finally, cells were cultured with scPLCL scaffolds in separate and/or co-cultures. Their attachment, viability, proliferation and phenotype were analysed. Both cell types strongly expressed cell surface markers CD44, CD73 and CD166. Strong expression of CD326 was detected with ECs and CD90 and CD105 with SCs. Both ECs and SCs attached and maintained viability on scPLCL. Further, scPLCL supported the proliferation of especially ECs, which also maintained epithelial phenotype (cytokeratin expression) during 14-day assessment period. Interestingly, ECs expressed uroplakin (UP) Ia, UPIb and UPIII markers; further, UPIa and UPIII expression was significantly higher on ECs cultured on scPLCL than on cell culture plastic. In conclusion, the scPLCL is potential scaffold for vaginal tissue engineering and the results of this study further illustrate the excellent biocompatibility of PLCL.
Collapse
Affiliation(s)
- Reetta Sartoneva
- Adult Stem Cell Research Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpönkatu 34, 4th Floor, 33520 Tampere, Finland
- Science Centre, Tampere University Hospital, Tampere, Finland
| | - Kirsi Kuismanen
- Science Centre, Tampere University Hospital, Tampere, Finland
- Department of Obstetrics and Gynaecology, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Miia Juntunen
- Adult Stem Cell Research Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpönkatu 34, 4th Floor, 33520 Tampere, Finland
- Science Centre, Tampere University Hospital, Tampere, Finland
| | - Sanna Karjalainen
- Biomaterials and Tissue Engineering Group, BioMediTech, Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Markus Hannula
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Laura Kyllönen
- Adult Stem Cell Research Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpönkatu 34, 4th Floor, 33520 Tampere, Finland
- Science Centre, Tampere University Hospital, Tampere, Finland
| | - Jari Hyttinen
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, University of Tampere, Tampere, Finland
| | - Kaarlo Paakinaho
- Biomaterials and Tissue Engineering Group, BioMediTech, Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Susanna Miettinen
- Adult Stem Cell Research Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpönkatu 34, 4th Floor, 33520 Tampere, Finland
- Science Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
169
|
Sartoneva R, Kuismanen K, Juntunen M, Karjalainen S, Hannula M, Kyllönen L, Hyttinen J, Huhtala H, Paakinaho K, Miettinen S. Porous poly-l-lactide-co-ɛ-caprolactone scaffold: a novel biomaterial for vaginal tissue engineering. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180811. [PMID: 30225072 PMCID: PMC6124079 DOI: 10.1098/rsos.180811] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/09/2018] [Indexed: 05/12/2023]
Abstract
The surgical reconstruction of functional neovagina is challenging and susceptible to complications. Therefore, developing tissue engineering-based treatment methods for vaginal defects is important. Our aim was to develop and test a novel supercritical carbon dioxide foamed poly-l-lactide-co-ɛ-caprolactone (scPLCL) scaffold for vaginal reconstruction. The scaffolds were manufactured and characterized for porosity (65 ± 4%), pore size (350 ± 150 µm) and elastic modulus (2.8 ± 0.4 MPa). Vaginal epithelial (EC) and stromal cells (SC) were isolated, expanded and characterized with flow cytometry. Finally, cells were cultured with scPLCL scaffolds in separate and/or co-cultures. Their attachment, viability, proliferation and phenotype were analysed. Both cell types strongly expressed cell surface markers CD44, CD73 and CD166. Strong expression of CD326 was detected with ECs and CD90 and CD105 with SCs. Both ECs and SCs attached and maintained viability on scPLCL. Further, scPLCL supported the proliferation of especially ECs, which also maintained epithelial phenotype (cytokeratin expression) during 14-day assessment period. Interestingly, ECs expressed uroplakin (UP) Ia, UPIb and UPIII markers; further, UPIa and UPIII expression was significantly higher on ECs cultured on scPLCL than on cell culture plastic. In conclusion, the scPLCL is potential scaffold for vaginal tissue engineering and the results of this study further illustrate the excellent biocompatibility of PLCL.
Collapse
Affiliation(s)
- Reetta Sartoneva
- Adult Stem Cell Research Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpönkatu 34, 4th Floor, 33520 Tampere, Finland
- Science Centre, Tampere University Hospital, Tampere, Finland
- Author for correspondence: Reetta Sartoneva e-mail:
| | - Kirsi Kuismanen
- Science Centre, Tampere University Hospital, Tampere, Finland
- Department of Obstetrics and Gynaecology, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Miia Juntunen
- Adult Stem Cell Research Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpönkatu 34, 4th Floor, 33520 Tampere, Finland
- Science Centre, Tampere University Hospital, Tampere, Finland
| | - Sanna Karjalainen
- Biomaterials and Tissue Engineering Group, BioMediTech, Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Markus Hannula
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Laura Kyllönen
- Adult Stem Cell Research Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpönkatu 34, 4th Floor, 33520 Tampere, Finland
- Science Centre, Tampere University Hospital, Tampere, Finland
| | - Jari Hyttinen
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, University of Tampere, Tampere, Finland
| | - Kaarlo Paakinaho
- Biomaterials and Tissue Engineering Group, BioMediTech, Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Susanna Miettinen
- Adult Stem Cell Research Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpönkatu 34, 4th Floor, 33520 Tampere, Finland
- Science Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
170
|
Azimian-Zavareh V, Hossein G, Ebrahimi M, Dehghani-Ghobadi Z. Wnt11 alters integrin and cadherin expression by ovarian cancer spheroids and inhibits tumorigenesis and metastasis. Exp Cell Res 2018; 369:90-104. [PMID: 29753625 DOI: 10.1016/j.yexcr.2018.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/20/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022]
Abstract
The present study investigated the role of Wnt11 in multicellular tumor spheroid-like structures (MCTS) ovarian cancer cell proliferation, migration and invasion in vitro and in vivo tumorigenesis and metastasis in xenograft nude mice model. Moreover, samples from human serous ovarian cancer (SOC) were used to assess the association of Wnt11 with integrins and cadherins. The data showed that Wnt11 overexpressing SKOV-3 cells became more compact accompanied by increased expression of E-and N-cadherin and lower expression of EpCAM and CD44. The α5, β2, β3 and β6 integrin subunits expression levels were significantly reduced in Wnt11 overexpressing cells accompanied with significantly reduced disaggregation of Wnt11 overexpressing SKOV-3 MCTS on ECM components. Moreover, Wnt11 overexpressing SKOV-3 MCTS showed decreased migration, invasion as well as no tumor growth and metastasis in vivo. We found that Wnt11 significantly and negatively correlated with ITGB2, ITGB6, and EpCAM and positively with CDH-1 in high-grade SOC specimens. Our results suggest that Wnt11 impedes MCTS attachment to ECM components and therefore can affect ovarian cancer progression.
Collapse
Affiliation(s)
- Vajihe Azimian-Zavareh
- Department of Animal Physiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ghamartaj Hossein
- Department of Animal Physiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Zeinab Dehghani-Ghobadi
- Department of Animal Physiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
171
|
Blaauwgeers H, Russell PA, Jones KD, Radonic T, Thunnissen E. Pulmonary loose tumor tissue fragments and spread through air spaces (STAS): Invasive pattern or artifact? A critical review. Lung Cancer 2018; 123:107-111. [PMID: 30089579 DOI: 10.1016/j.lungcan.2018.07.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/08/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
Abstract
The concept of loose tumor tissue fragments as a pattern of invasion in lung carcinoma has recently been proposed and is included in the 2015 WHO fascicle on the classification of lung tumors, so-called "spread through airs paces" or STAS. This inclusion is controversial, as there are significant data to support that this histologic finding represents an artifact of tissue handling and processing rather than a pattern of invasion. These data are summarized in this review. These data are summarized in this review and support the conclusion that the inclusion of STAS in the WHO classification for lung cancer as a pattern of invasion was premature and erroneous. In our opinion, these tumor cell clusters or loose cells appear to be simply an artifact, although one which may or may not pinpoint to a high-grade tumor with discohesive cells and adverse prognosis.
Collapse
Affiliation(s)
- Hans Blaauwgeers
- Department of Pathology, OLVG, Oosterpark 9, 1091 AC, Amsterdam, The Netherlands
| | - Prudence A Russell
- Department of Anatomical Pathology, St Vincent's Hospital, University of Melbourne, Fitzroy, 3065, Victoria, Australia
| | - Kirk D Jones
- Department of Pathology, UCSF Medical Center, 550 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Teodora Radonic
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Erik Thunnissen
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
172
|
Maghathe T, Miller WK, Mugge L, Mansour TR, Schroeder J. Immunotherapy and potential molecular targets for the treatment of pituitary adenomas resistant to standard therapy: a critical review of potential therapeutic targets and current developments. J Neurosurg Sci 2018; 64:71-83. [PMID: 30014686 DOI: 10.23736/s0390-5616.18.04419-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Pituitary adenomas (PAs) are primary central nervous system (CNS) tumors, accounting for as much as 25% of intracranial neoplasms. Although existing remedies show success in treating most PAs, treatment of invasive and non-functioning PAs, in addition to functioning PAs unresponsive to standard therapy, remains challenging. With the continually increasing understanding of biochemical pathways involved in tumorigenesis, immunotherapy stands as a promising alternative therapy for pituitary tumors that are resistant to standard therapy. EVIDENCE ACQUISITION A literature search was conducted of the PubMed database for immunotherapies of PAs. The search yielded a total of 2621 articles, 26 of which were included in our discussion. EVIDENCE SYNTHESIS Several pathologically expressed molecules could potentially serve as promising targets of current or future immunotherapies for PAs. Programmed death ligand-1, matrix metalloproteinases, EpCAM (Trop1) and Trop2, cancer-testis antigen MAGE-A3, epidermal growth factor receptor (EGFR), folate receptor alpha, vascular endothelial growth factor, and galectin-3 have all been implicated as crucial factors involved with tumor survival and invasion. Inhibition of these pathways may prove efficacious in the management of invasive and treatment-resistant PAs. CONCLUSIONS Rapid advancements in tumor immunology may increase the probability of successful treatment of PAs by exploitation of the normal immune response or by targeting novel proteins. Current research on many of the targets reviewed in this article are successfully being utilized to manage various neoplastic disease including CNS tumors. These therapies may eventually play a key role in the treatment of PAs that do not respond to standard therapy.
Collapse
Affiliation(s)
- Tamara Maghathe
- Division of Neurosurgery, Department of Surgery, University of Toledo Medical Center, Toledo, OH, USA
| | - William K Miller
- Division of Neurosurgery, Department of Surgery, University of Toledo Medical Center, Toledo, OH, USA
| | - Luke Mugge
- Division of Neurosurgery, Department of Surgery, University of Toledo Medical Center, Toledo, OH, USA
| | - Tarek R Mansour
- Division of Neurosurgery, Department of Surgery, University of Toledo Medical Center, Toledo, OH, USA
| | - Jason Schroeder
- Division of Neurosurgery, Department of Surgery, University of Toledo Medical Center, Toledo, OH, USA -
| |
Collapse
|
173
|
Huang L, Yang Y, Yang F, Liu S, Zhu Z, Lei Z, Guo J. Functions of EpCAM in physiological processes and diseases (Review). Int J Mol Med 2018; 42:1771-1785. [PMID: 30015855 PMCID: PMC6108866 DOI: 10.3892/ijmm.2018.3764] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022] Open
Abstract
EpCAM (epithelial cell adhesion molecule) is a type I transmembrane glycoprotein, which was originally identified as a tumor-associated antigen due to its high expression level in rapidly growing epithelial tumors. Germ line mutations of the human EpCAM gene have been indicated as the cause of congenital tufting enteropathy. Previous studies based on cell models have revealed that EpCAM contributes to various biological processes including cell adhesion, signaling, migration and proliferation. Due to the previous lack of genetic animal models, the in vivo functions of EpCAM remain largely unknown. However, EpCAM genetic animal models have recently been generated, and are useful for understanding the functions of EpCAM. The authors here briefly review the functions and mechanisms of EpCAM in physiological processes and different diseases.
Collapse
Affiliation(s)
- Li Huang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Yanhong Yang
- The First Affiliated Hospital, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Fei Yang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Shaomin Liu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Ziqin Zhu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Zili Lei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
174
|
Alimbetov D, Askarova S, Umbayev B, Davis T, Kipling D. Pharmacological Targeting of Cell Cycle, Apoptotic and Cell Adhesion Signaling Pathways Implicated in Chemoresistance of Cancer Cells. Int J Mol Sci 2018; 19:ijms19061690. [PMID: 29882812 PMCID: PMC6032165 DOI: 10.3390/ijms19061690] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
Chemotherapeutic drugs target a physiological differentiating feature of cancer cells as they tend to actively proliferate more than normal cells. They have well-known side-effects resulting from the death of highly proliferative normal cells in the gut and immune system. Cancer treatment has changed dramatically over the years owing to rapid advances in oncology research. Developments in cancer therapies, namely surgery, radiotherapy, cytotoxic chemotherapy and selective treatment methods due to better understanding of tumor characteristics, have significantly increased cancer survival. However, many chemotherapeutic regimes still fail, with 90% of the drug failures in metastatic cancer treatment due to chemoresistance, as cancer cells eventually develop resistance to chemotherapeutic drugs. Chemoresistance is caused through genetic mutations in various proteins involved in cellular mechanisms such as cell cycle, apoptosis and cell adhesion, and targeting those mechanisms could improve outcomes of cancer therapy. Recent developments in cancer treatment are focused on combination therapy, whereby cells are sensitized to chemotherapeutic agents using inhibitors of target pathways inducing chemoresistance thus, hopefully, overcoming the problems of drug resistance. In this review, we discuss the role of cell cycle, apoptosis and cell adhesion in cancer chemoresistance mechanisms, possible drugs to target these pathways and, thus, novel therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Dauren Alimbetov
- Laboratory of bioengineering and regenerative medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave, Z05H0P9 Astana, Kazakhstan.
| | - Sholpan Askarova
- Laboratory of bioengineering and regenerative medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave, Z05H0P9 Astana, Kazakhstan.
| | - Bauyrzhan Umbayev
- Laboratory of bioengineering and regenerative medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave, Z05H0P9 Astana, Kazakhstan.
| | - Terence Davis
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - David Kipling
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
175
|
Machlowska J, Maciejewski R, Sitarz R. The Pattern of Signatures in Gastric Cancer Prognosis. Int J Mol Sci 2018; 19:1658. [PMID: 29867026 PMCID: PMC6032410 DOI: 10.3390/ijms19061658] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/26/2018] [Accepted: 05/30/2018] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer is one of the most common malignancies worldwide and it is a fourth leading cause of cancer-related death. Carcinogenesis is a multistage disease process specified by the gradual procurement of mutations and epigenetic alterations in the expression of different genes, which finally lead to the occurrence of a malignancy. These genes have diversified roles regarding cancer development. Intracellular pathways are assigned to the expression of different genes, signal transduction, cell-cycle supervision, genomic stability, DNA repair, and cell-fate destination, like apoptosis, senescence. Extracellular pathways embrace tumour invasion, metastasis, angiogenesis. Altered expression patterns, leading the different clinical responses. This review highlights the list of molecular biomarkers that can be used for prognostic purposes and provide information on the likely outcome of the cancer disease in an untreated individual.
Collapse
Affiliation(s)
- Julita Machlowska
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Ryszard Maciejewski
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Robert Sitarz
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland.
- Department of Surgery, St. John's Cancer Center, 20-090 Lublin, Poland.
| |
Collapse
|
176
|
Chung JW, Cho YH, Ahn MJ, Lee MJ, Kim GM, Chung CS, Bang OY. Association of Cancer Cell Type and Extracellular Vesicles With Coagulopathy in Patients With Lung Cancer and Stroke. Stroke 2018; 49:1282-1285. [DOI: 10.1161/strokeaha.118.020995] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/27/2018] [Accepted: 03/07/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Jong-Won Chung
- From the Departments of Neurology (J.-W.C., M.J.L., G.-M.K., C.-S.C., O.Y.B.)
- Hemato-oncology (M.-J.A.)
| | - Yeon Hee Cho
- Hemato-oncology (M.-J.A.)
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; and Clinical Research Center, Samsung Biomedical Research Institute, Seoul, Korea (Y.H.C.)
| | | | - Mi Ji Lee
- From the Departments of Neurology (J.-W.C., M.J.L., G.-M.K., C.-S.C., O.Y.B.)
| | - Gyeong-Moon Kim
- From the Departments of Neurology (J.-W.C., M.J.L., G.-M.K., C.-S.C., O.Y.B.)
| | - Chin-Sang Chung
- From the Departments of Neurology (J.-W.C., M.J.L., G.-M.K., C.-S.C., O.Y.B.)
| | - Oh Young Bang
- From the Departments of Neurology (J.-W.C., M.J.L., G.-M.K., C.-S.C., O.Y.B.)
- Hemato-oncology (M.-J.A.)
| |
Collapse
|
177
|
Tretter JY, Schorpp K, Luxenburger E, Trambauer J, Steiner H, Hadian K, Gires O, Niessing D. A high-content screen for small-molecule regulators of epithelial cell-adhesion molecule (EpCAM) cleavage yields a robust inhibitor. J Biol Chem 2018; 293:8994-9005. [PMID: 29700109 DOI: 10.1074/jbc.ra118.002776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/20/2018] [Indexed: 12/30/2022] Open
Abstract
Epithelial cell-adhesion molecule (EpCAM) is a transmembrane protein that regulates cell cycle progression and differentiation and is overexpressed in many carcinomas. The EpCAM-induced mitogenic cascade is activated via regulated intramembrane proteolysis (RIP) of EpCAM by ADAM and γ-secretases, generating the signaling-active intracellular domain EpICD. Because of its expression pattern and molecular function, EpCAM is a valuable target in prognostic and therapeutic approaches for various carcinomas. So far, several immunotherapeutic strategies have targeted the extracellular domain of EpCAM. However, targeting the intracellular signaling cascade of EpCAM holds promise for specifically interfering with EpCAM's proliferation-stimulating signaling cascade. Here, using a yellow fluorescence protein-tagged version of the C-terminal fragment of EpCAM, we established a high-content screening (HCS) of a small-molecule compound library (n = 27,280) and characterized validated hits that target EpCAM signaling. In total, 128 potential inhibitors were initially identified, of which one compound with robust inhibitory effects on RIP of EpCAM was analyzed in greater detail. In summary, our study demonstrates that the development of an HCS for small-molecule inhibitors of the EpCAM signaling pathway is feasible. We propose that this approach may also be useful for identifying chemical compounds targeting other disorders involving membrane cleavage-dependent signaling pathways.
Collapse
Affiliation(s)
| | - Kenji Schorpp
- the Assay Development and Screening Platform, Institute for Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Center for Environmental Health, 85764 Neuherberg, Germany
| | - Elke Luxenburger
- the Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center and
| | - Johannes Trambauer
- the Biomedical Center, Metabolic Biochemistry, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Harald Steiner
- the Biomedical Center, Metabolic Biochemistry, Ludwig-Maximilians-University Munich, 80539 Munich, Germany.,the German Center for Neurodegenerative Diseases, 81377 Munich, Germany, and
| | - Kamyar Hadian
- the Assay Development and Screening Platform, Institute for Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Center for Environmental Health, 85764 Neuherberg, Germany
| | - Olivier Gires
- the Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center and
| | - Dierk Niessing
- From the Institute of Structural Biology and .,the Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
178
|
Boesch M, Spizzo G, Seeber A. Concise Review: Aggressive Colorectal Cancer: Role of Epithelial Cell Adhesion Molecule in Cancer Stem Cells and Epithelial-to-Mesenchymal Transition. Stem Cells Transl Med 2018; 7:495-501. [PMID: 29667344 PMCID: PMC5980125 DOI: 10.1002/sctm.17-0289] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/31/2018] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. In spite of various attempts to ameliorate outcome by escalating treatment, significant improvement is lacking particularly in the adjuvant setting. It has been proposed that cancer stem cells (CSCs) and the epithelial‐to‐mesenchymal transition (EMT) are at least partially responsible for therapy resistance in CRC. The epithelial cell adhesion molecule (EpCAM) was one of the first CSC antigens to be described. Furthermore, an EpCAM‐specific antibody (edrecolomab) has the merit of having launched the era of monoclonal antibody treatment in oncology in the 1990s. However, despite great initial enthusiasm, monoclonal antibody treatment has not proven successful in the adjuvant treatment of CRC patients. In the meantime, new insights into the function of EpCAM in CRC have emerged and new drugs targeting various epitopes have been developed. In this review article, we provide an update on the role of EpCAM in CSCs and EMT, and emphasize the potential predictive selection criteria for novel treatment strategies and refined clinical trial design. stemcellstranslationalmedicine2018;7:495–501
Collapse
Affiliation(s)
- Maximilian Boesch
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| | - Gilbert Spizzo
- Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| | - Andreas Seeber
- Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| |
Collapse
|
179
|
Gaiser MR, von Bubnoff N, Gebhardt C, Utikal JS. Liquid Biopsy zur Überwachung von Melanompatienten. J Dtsch Dermatol Ges 2018; 16:405-416. [DOI: 10.1111/ddg.13461_g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/21/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Maria Rita Gaiser
- Klinische Kooperationseinheit Klinische Kooperationseinheit Dermatoonkologie des Deutschen; Krebsforschungszentrums (DKFZ); Heidelberg Deutschland
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Mannheim, Ruprecht-Karls-Universität Heidelberg; Mannheim Deutschland
| | - Nikolas von Bubnoff
- Klinik für Hämatologie; Onkologie und Stammzelltransplantation; Universitätsklinikum Freiburg; Deutschland
- Deutsches Konsortium für Translationale Krebsforschung (DKTK); Deutsches Krebsforschungszentrum (DKFZ); Heidelberg Deutschland
| | - Christoffer Gebhardt
- Klinische Kooperationseinheit Klinische Kooperationseinheit Dermatoonkologie des Deutschen; Krebsforschungszentrums (DKFZ); Heidelberg Deutschland
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Mannheim, Ruprecht-Karls-Universität Heidelberg; Mannheim Deutschland
| | - Jochen Sven Utikal
- Klinische Kooperationseinheit Klinische Kooperationseinheit Dermatoonkologie des Deutschen; Krebsforschungszentrums (DKFZ); Heidelberg Deutschland
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Mannheim, Ruprecht-Karls-Universität Heidelberg; Mannheim Deutschland
| |
Collapse
|
180
|
Boogerd LS, van der Valk MJ, Boonstra MC, Prevoo HA, Hilling DE, van de Velde CJ, Sier CF, Fariña Sarasqueta A, Vahrmeijer AL. Biomarker expression in rectal cancer tissue before and after neoadjuvant therapy. Onco Targets Ther 2018; 11:1655-1664. [PMID: 29615840 PMCID: PMC5870658 DOI: 10.2147/ott.s145473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Intraoperative identification of rectal cancer (RC) can be challenging, especially because of fibrosis after treatment with preoperative chemo- and radiotherapy (CRT). Tumor-targeted fluorescence imaging can enhance the contrast between tumor and normal tissue during surgery. Promising targets for RC imaging are carcinoembryonic antigen (CEA), epithelial cell adhesion molecule (EpCAM) and the tyrosine-kinase receptor Met (c-Met). The effect of CRT on their expression determines their applicability for imaging. Therefore, we investigated whether CRT modifies expression patterns in tumors, lymph node (LN) metastases and adjacent normal rectal tissues. Patients and methods Preoperative biopsies, primary tumor specimens and metastatic LNs were collected from 38 RC patients who did not receive CRT (cohort 1) and 34 patients who did (cohort 2). CEA, EpCAM and c-Met expression was determined using immunohistochemical staining and was semiquantified by a total immunostaining score (TIS), consisting of the percentage and intensity of stained tumor cells (0–12). Results In both cohorts CEA, EpCAM and c-Met were significantly highly expressed in >60% of tumor tissues compared with adjacent normal epithelium (T/N ratio, P<0.01). EpCAM showed the most homogenous expression in tumors, whereas CEA showed the highest T/N ratio. Most importantly, CEA and EpCAM expression did not significantly change in normal or neoplastic RC tissue after CRT, whereas levels of c-Met changed (P=0.02). Tissues of eight patients with a pathological complete response after CRT showed expression of all biomarkers with TIS close to normal epithelium. Conclusion Histological evaluation shows that CEA, EpCAM and c-Met are suitable targets for RC imaging, because all three are significantly enhanced in cancer tissue from primary tumors or LN metastases compared with normal adjacent tissue. Furthermore, the expression of CEA and EpCAM is not significantly changed after CRT. These data underscore the applicability of c-Met and especially, CEA and EpCAM as targets for image-guided RC surgery, both before and after CRT.
Collapse
|
181
|
Gaiser MR, von Bubnoff N, Gebhardt C, Utikal JS. Liquid biopsy to monitor melanoma patients. J Dtsch Dermatol Ges 2018. [PMID: 29512873 DOI: 10.1111/ddg.13461] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During the last six years, several innovative, systemic therapies for the treatment of metastatic malignant melanoma (MM) have emerged. Conventional chemotherapy has been superseded by novel first-line therapies, including systemic immunotherapies (anti-CTLA4 and anti-PD1; authorization of anti-PDL1 is anticipated) and therapies targeting specific mutations (BRAF, NRAS, and c-KIT). Thus, treating physicians are confronted with new challenges, such as stratifying patients for appropriate treatments and monitoring long-term responders for progression. Consequently, reliable methods for monitoring disease progression or treatment resistance are necessary. Localized and advanced cancers may generate circulating tumor cells and circulating tumor DNA (ctDNA) that can be detected and quantified from peripheral blood samples (liquid biopsy). For melanoma patients, liquid biopsy results may be useful as novel predictive biomarkers to guide therapeutic decisions, particularly in the context of mutation-based targeted therapies. The challenges of using liquid biopsy include strict criteria for the phenotypic nature of circulating MM cells or their fragments and the instability of ctDNA in blood. The limitations of liquid biopsy in routine diagnostic testing are discussed in this review.
Collapse
Affiliation(s)
- Maria Rita Gaiser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Nikolas von Bubnoff
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoffer Gebhardt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Sven Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
182
|
EpCAM Immunotherapy versus Specific Targeted Delivery of Drugs. Cancers (Basel) 2018; 10:cancers10010019. [PMID: 29329202 PMCID: PMC5789369 DOI: 10.3390/cancers10010019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 02/07/2023] Open
Abstract
The epithelial cell adhesion molecule (EpCAM), or CD326, was one of the first cancer associated biomarkers to be discovered. In the last forty years, this biomarker has been investigated for use in personalized cancer therapy, with the first monoclonal antibody, edrecolomab, being trialled in humans more than thirty years ago. Since then, several other monoclonal antibodies have been raised to EpCAM and tested in clinical trials. However, while monoclonal antibody therapy has been investigated against EpCAM for almost 40 years as primary or adjuvant therapy, it has not shown as much promise as initially heralded. In this review, we look at the reasons why and consider alternative targeting options, such as aptamers, to turn this almost ubiquitously expressed epithelial cancer biomarker into a viable target for future personalized therapy.
Collapse
|
183
|
Wang MH, Sun R, Zhou XM, Zhang MY, Lu JB, Yang Y, Zeng LS, Yang XZ, Shi L, Xiao RW, Wang HY, Mai SJ. Epithelial cell adhesion molecule overexpression regulates epithelial-mesenchymal transition, stemness and metastasis of nasopharyngeal carcinoma cells via the PTEN/AKT/mTOR pathway. Cell Death Dis 2018; 9:2. [PMID: 29305578 PMCID: PMC5849035 DOI: 10.1038/s41419-017-0013-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
Epithelial cell adhesion molecule (EpCAM) is known to be highly expressed in a variety of epithelial carcinomas, and it is involved in cell adhesion and proliferation. However, its expression profile and biological function in nasopharyngeal carcinoma (NPC) remains unclear. In this study, higher expression of EpCAM was found in NPC samples compared with non-cancer nasopharyngeal mucosa by qRT-PCR. Additionally, immunohistochemistry (IHC) analysis of NPC specimens from 64 cases showed that high EpCAM expression was associated with metastasis and shorter survival. Multivariate survival analysis identified high EpCAM expression as an independent prognostic factor. Ectopic EpCAM expression in NPC cells promoted epithelial-mesenchymal transition (EMT), induced a cancer stem cell (CSC)-like phenotype, and enhanced metastasis in vitro and in vivo without an effect on cell proliferation. Notably, EpCAM overexpression reduced PTEN expression and increased the level of AKT, mTOR, p70S6K and 4EBP1 phosphorylation. Correspondingly, an AKT inhibitor and rapamycin blocked the effect of EpCAM on NPC cell invasion and stem-like phenotypes, and siRNA targeting PTEN rescued the oncogenic activities in EpCAM knockdown NPC cells. Our data demonstrate that EpCAM regulates EMT, stemness and metastasis of NPC cells via the PTEN/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Meng-He Wang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rui Sun
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiao-Min Zhou
- Zhoukou Hospital of Traditional Chinese Medicine, Zhoukou, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jia-Bin Lu
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yang Yang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li-Si Zeng
- Cancer Center of Guangzhou Medical University, Guangzhou, China
| | - Xian-Zi Yang
- Cancer Center of Guangzhou Medical University, Guangzhou, China
| | - Lu Shi
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ruo-Wen Xiao
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Guangzhou, China. .,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Guangzhou, China. .,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
184
|
Winkens T, Pachmann K, Freesmeyer M. Circulating epithelial cells in patients with thyroid carcinoma. Nuklearmedizin 2018; 52:7-13. [DOI: 10.3413/nukmed-0524-12-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/25/2012] [Indexed: 01/30/2023]
Abstract
Summary
Goal: To investigate whether circulating epithelial cells (CEC) recognized via the epithelial cell adhesion molecule (EpCAM) can be identified in the blood of patients with thyroid carcinoma, given that CEC have already been detected in other types of carcinoma and are considered a potential marker of tumour dissemination. Patients, methods: Blood samples of patients with active differentiated thyroid carcinoma (DTC) (n = 50) were compared to samples of patients with: a) recent surgical excision of a thyroid carcinoma (postOP-DTC) (n = 16); b) athyreotic, tumour-free status after radioiodine ablation (AT-DTC) (n= 33); and c) benign thyroid diseases (BTD) (n = 51). Samples of volunteers with normal thyroid parameters (NT) (n = 12) were also investigated. Cells from EDTAblood were subjected to erythrocyte lysis, isolated by centrifugation, and incubated with a fluorescence-labeled antibody against EpCAM. The numbers of vital cells were counted via fluorescence microscopy. Results: CEC were identified in all groups, with the postOP-DTC group showing the highest mean CEC numbers of all groups. The DTC group had significantly higher CEC numbers than the NT group, and numerically higher numbers than the other groups, although not reaching statistical significance. Within the DTC group there was a correlation between levels of serum thyroglobulin and numbers of CEC (r = 0.409, p = 0.003). Conclusions: High CEC numbers were not specific to thyroid carcinoma. The methodology used here, based on a single measurement does not allow to identify severe forms of DTC, emphasizing the need of longitudinal measurements throughout therapy. Detection and characterization of tumour thyroid cells in circulation should be based on additiona l consideration of tissue-specific characteristics.
Collapse
|
185
|
Abstract
BACKGROUND AND AIMS Congenital tufting enteropathy (CTE) is a rare autosomal recessive form of intractable diarrhea of infancy. Patients develop chronic diarrhea within days after birth, leading to severe malabsorption and significant mortality. CTE is characterized by subtotal villous atrophy with crypt hyperplasia. Typical features include abnormal villi in the intestinal epithelium and disorganization of surface enterocytes with focal crowding, resembling tufts. The pathogenesis of CTE remains poorly understood. CTE has been reported in Western populations, but until now had not been reported in China. The objective of this study was to identify the gene responsible for CTE in a Chinese individual. METHODS A 13-year-old girl with suspected CTE, whose parents were both healthy, was evaluated in our clinic. Tissues were obtained by endoscopy and examined by electron microscopy. Genomic DNA, extracted from the peripheral blood of the child and parents, was subjected to whole-exome sequencing. After mutations in the gene encoding epithelial cell adhesion molecule (EPCAM) were identified, expression of EPCAM was examined by immunohistochemistry staining. RESULTS Whole-exome sequencing revealed compound heterozygous mutations in EPCAM in the patient, with immunohistochemical analysis showing complete loss of EPCAM expression in the intestinal villi and crypts. CONCLUSIONS We identified compound heterozygous mutations in EPCAM, with loss of EPCAM expression in duodenal enterocytes, in a patient with intractable diarrhea since infancy who was subsequently diagnosed with CTE. This is the first case of CTE to be reported in a Chinese patient.
Collapse
Affiliation(s)
- Wenjuan Tang
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai
| | - Taosheng Huang
- Divisions of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | | | - Ying Huang
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai
| |
Collapse
|
186
|
Nakano H, Nakano K, Cook DN. Isolation and Purification of Epithelial and Endothelial Cells from Mouse Lung. Methods Mol Biol 2018; 1799:59-69. [PMID: 29956144 DOI: 10.1007/978-1-4939-7896-0_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is well established that responses to inhaled environmental agents are controlled by the coordinated actions by multiple immune cell types, including macrophages, dendritic cells, and lymphocytes. Recent evidence indicates that some structural cells can also contribute to the initiation and propagation of immune responses. For example, airway epithelial cells can promote eosinophilic inflammation in response to allergen inhalation. Much remains to be learned, however, regarding how each of these cell types interact with the others, and how these interactions shape immune responses to inhaled agents. Such studies have been hampered by the lack of reliable methods to isolate multiple and distinct populations of cells from the same tissue sample. Consequently, investigators have had to choose between using different protocols to isolate different populations of cells from different animals and accept that for some populations, cell yields can be very low. To overcome these difficulties, we have developed a convenient and practical method to isolate and purify subpopulations of epithelial and endothelial cells from mouse lung. Here, we describe these methods in detail.
Collapse
Affiliation(s)
- Hideki Nakano
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | - Keiko Nakano
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
187
|
Gaiser MR, Hirsch D, Gaiser T. Loss of epithelial cell adhesion molecule (EpCAM) in infiltrative basal cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:406-412. [PMID: 31938125 PMCID: PMC6957965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/09/2017] [Indexed: 06/10/2023]
Abstract
Basal cell carcinoma (BCC) is the most common type of skin cancer and expresses high protein levels of the epithelial cell adhesion molecule (EpCAM, syn. CD326). Though BCCs only rarely metastasize, infiltrative and destructive growth do occur. EpCAM has been studied extensively in the context of adhesion and carcinogenesis but results of studies relating EpCAM expression to invasive potential or patient prognosis have been inconsistent. In an attempt to link EpCAM expression with infiltrative potential, we retrospectively stained paraffin embedded tissue samples of nodular and infiltrative BCCs. A total of 96 samples comprising 48 nodular and 48 infiltrative BCC cases were immuhistochemically stained with anti-EpCAM clone BerEP4. Loss of EpCAM expression along the tumor invasive front was detected in 6 of 48 (12.5%) of the nodular BCC as compared to 29 of 48 (60.4%) of the infiltrative BCC cases (P < 0.0001). These results exemplify the important role of EpCAM for cell adhesion. BCC infiltration seems to be promoted by down-regulation of EpCAM along the tumor invasion front.
Collapse
Affiliation(s)
- Maria Rita Gaiser
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of HeidelbergMannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (DKFZ)Heidelberg, Germany
| | - Daniela Hirsch
- Institute of Pathology, University Medical Center Mannheim, Ruprecht-Karl University of HeidelbergMannheim, Germany
| | - Timo Gaiser
- Institute of Pathology, University Medical Center Mannheim, Ruprecht-Karl University of HeidelbergMannheim, Germany
| |
Collapse
|
188
|
The Use of BEREP4 Immunohistochemistry Staining for Detection of Basal Cell Carcinoma. J Skin Cancer 2017; 2017:2692604. [PMID: 29464122 PMCID: PMC5804366 DOI: 10.1155/2017/2692604] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/03/2017] [Accepted: 11/29/2017] [Indexed: 11/21/2022] Open
Abstract
Basal Cell Carcinoma (BCC) is the most common type of malignant cancer found in the world today with a 3–10% increase in incidence each year. The American Cancer Society reported that 8 out of 10 patients with skin cancer are suffering from BCC with over 2 million new cases each year. BCC needs to be detected at the early stages to prevent local destruction causing disabilities to patients and increasing treatment costs. Furthermore, BCC patients who have undergone surgery are still at risk for recurrence, especially when the surgery performed fails to remove all the BCC cells, even when conventional histopathological testing after surgery has reported a surgically free margin. This review aims to evaluate studies on the use of BerEP4 immunohistochemistry staining on pathological sections of various types of BCC as well as its shortfalls. BerEP4 is a monoclonal antibody which detects specific epithelial-glycoprotein-adhesion-molecules (EpCAM) found on BCC cells. Various studies have shown that BerEP4 has a high sensitivity and specificity in detecting only BCC cells. The use of BerEP4 immunohistochemistry testing for the routine examination of cases of BCC is expected to be able to increase and improve early diagnosis as well as prevent recurrence after surgery.
Collapse
|
189
|
Gerlach JC, Foka HG, Thompson RL, Gridelli B, Schmelzer E. Epithelial cell adhesion molecule fragments and signaling in primary human liver cells. J Cell Physiol 2017; 233:4841-4851. [PMID: 29150960 DOI: 10.1002/jcp.26286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/14/2017] [Indexed: 01/15/2023]
Abstract
Epithelial Cell Adhesion Molecule (EpCAM), or CD326, is a trans-membrane glycoprotein expressed by multiple normal epithelia as well as carcinoma. Human hepatic stem cells and bile duct epithelium of the liver are EpCAM positive. In tumor cell lines, its intracellular domain can be released after cleavage of the extracellular domain. Within the cell nucleus, it induces cell proliferation, but cleavage depends on cell contact. Fragments of various lengths have been described in tumor cells. Despite its described important role in proliferation in tumor cells, there is not much known about the expression and role of EpCAM fragments in primary human liver cells. Here, we demonstrate that EpCAM protein fragments and function are considerable different between tumor cells, normal fetal and adult liver cells. Contrary to previously reported findings in tumor cells, gene knockdown or treatment with an inhibitor of the cleavage enzyme ADAM17 (TACE) rather increased cell numbers in primary human fetal liver-derived EpCAM-positive cells. EpCAM fragment sizes were not affected by treatment with inhibitor. Knockdown of EPCAM gene expression by siRNA in sorted cells did not significantly affect proliferation-associated genes or cell numbers. The intracellular domain could not be detected within cell nuclei of fetal and adult liver cells. In conclusion, signaling through the intracellular domain of EpCAM appears to be a mechanism that induces proliferation specifically in tumorigenic cells but not in normal primary EpCAM-positive liver cells.
Collapse
Affiliation(s)
- Jörg C Gerlach
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hubert G Foka
- University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert L Thompson
- University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bruno Gridelli
- University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Surgery, ISMETT-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, UPMC Italy, Palermo, Italy
| | - Eva Schmelzer
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
190
|
Zhou Y, Xia L, Wang H, Oyang L, Su M, Liu Q, Lin J, Tan S, Tian Y, Liao Q, Cao D. Cancer stem cells in progression of colorectal cancer. Oncotarget 2017; 9:33403-33415. [PMID: 30279970 PMCID: PMC6161799 DOI: 10.18632/oncotarget.23607] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is one of the most common cancers worldwide with high mortality. Distant metastasis and relapse are major causes of patient death. Cancer stem cells (CSCs) play a critical role in the metastasis and relapse of colorectal cancer. CSCs are a subpopulation of cancer cells with unique properties of self-renewal, infinite division and multi-directional differentiation potential. Colorectal CSCs are defined with a group of cell surface markers, such as CD44, CD133, CD24, EpCAM, LGR5 and ALDH. They are highly tumorigenic, chemoresistant and radioresistant and thus are critical in the metastasis and recurrence of colorectal cancer and disease-free survival. This review article updates the colorectal CSCs with a focus on their role in tumor initiation, progression, drug resistance and tumor relapse.
Collapse
Affiliation(s)
- Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Heran Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qiang Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jingguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, 62794, USA
| |
Collapse
|
191
|
Ren H, Yang X, Yang Y, Zhang X, Zhao R, Wei R, Zhang X, Zhang Y. Upregulation of LncRNA BCYRN1 promotes tumor progression and enhances EpCAM expression in gastric carcinoma. Oncotarget 2017; 9:4851-4861. [PMID: 29435146 PMCID: PMC5797017 DOI: 10.18632/oncotarget.23585] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/13/2017] [Indexed: 11/25/2022] Open
Abstract
Brain cytoplasmic RNA 1 (BCYRN1), along non-coding RNA, plays a critical role in various diseases, including some cancers. However, the expression of BCYRN1 and its roles in gastric carcinoma (GC) still remain unidentified. Thus, this study employed RT-qPCR to detect expression of BCYRN1 in 85 paired GC samples and adjacent normal tissues, and performed in vitro studies to explore effects of BCYRN1 in GC cells on cell proliferation, apoptosis and migration. We found BCYRN1 was significantly upregulated in GC samples, and its expression was positively correlated with advanced TNM stage (p = 0.0012) and tumor size (p = 0.027). Functionally, BCYRN1 knockdown by siRNA could inhibit cell proliferation, induce G1/G0 cell cycle arrest, increase apoptosis and impair migratory ability of AGS cells. Moreover, the results of RT-qPCR and western blotting indicated that knockdown of BCYRN1 notably decreased the expression of epithelial cell adhesion molecules (EpCAM). Otherwise, overexpression of BCYRN1 in GC cells (BGC-823 and SGC-7901) could reverse the effects of BCYRN1 knockdown. Taken together, our data indicate for the first time that BCYRN1 acts as an oncogenic lncRNA in GC progression and may be a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Hao Ren
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.,Department of Laboratory, Yuhuangding Hospital, Qingdao University Medical College, Yantai, Shandong Province, China
| | - Xiaomin Yang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yongmei Yang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xiaoyu Zhang
- Clinical Medicine of Undergraduate, Taishan Medical University, Taian, Shandong Province, China
| | - Rui Zhao
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Ran Wei
- Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
192
|
Corraliza-Gorjón I, Somovilla-Crespo B, Santamaria S, Garcia-Sanz JA, Kremer L. New Strategies Using Antibody Combinations to Increase Cancer Treatment Effectiveness. Front Immunol 2017; 8:1804. [PMID: 29312320 PMCID: PMC5742572 DOI: 10.3389/fimmu.2017.01804] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Antibodies have proven their high value in antitumor therapy over the last two decades. They are currently being used as the first-choice to treat some of the most frequent metastatic cancers, like HER2+ breast cancers or colorectal cancers, currently treated with trastuzumab (Herceptin) and bevacizumab (Avastin), respectively. The impressive therapeutic success of antibodies inhibiting immune checkpoints has extended the use of therapeutic antibodies to previously unanticipated tumor types. These anti-immune checkpoint antibodies allowed the cure of patients devoid of other therapeutic options, through the recovery of the patient’s own immune response against the tumor. In this review, we describe how the antibody-based therapies will evolve, including the use of antibodies in combinations, their main characteristics, advantages, and how they could contribute to significantly increase the chances of success in cancer therapy. Indeed, novel combinations will consist of mixtures of antibodies against either different epitopes of the same molecule or different targets on the same tumor cell; bispecific or multispecific antibodies able of simultaneously binding tumor cells, immune cells or extracellular molecules; immunomodulatory antibodies; antibody-based molecules, including fusion proteins between a ligand or a receptor domain and the IgG Fab or Fc fragments; autologous or heterologous cells; and different formats of vaccines. Through complementary mechanisms of action, these combinations could contribute to elude the current limitations of a single antibody which recognizes only one particular epitope. These combinations may allow the simultaneous attack of the cancer cells by using the help of the own immune cells and exerting wider therapeutic effects, based on a more specific, fast, and robust response, trying to mimic the action of the immune system.
Collapse
Affiliation(s)
- Isabel Corraliza-Gorjón
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| | - Beatriz Somovilla-Crespo
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| | - Silvia Santamaria
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biologicas (CIB-CSIC), Madrid, Spain
| | - Jose A Garcia-Sanz
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biologicas (CIB-CSIC), Madrid, Spain
| | - Leonor Kremer
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| |
Collapse
|
193
|
Zhang ZY, Lu YX, Zhang ZY, Chang YY, Zheng L, Yuan L, Zhang F, Hu YH, Zhang WJ, Li XN. Loss of TINCR expression promotes proliferation, metastasis through activating EpCAM cleavage in colorectal cancer. Oncotarget 2017; 7:22639-49. [PMID: 27009809 PMCID: PMC5008388 DOI: 10.18632/oncotarget.8141] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/15/2016] [Indexed: 01/02/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in kinds of human diseases, including colorectal cancer (CRC). TINCR, a 3.7 kb long non coding RNA, was associated with cell differentiation in keratinocyte and gastric cancer cells. However, little is known about the role of TINCR in regulation CRC progression. Here, we showed that lncRNA TINCR was associated with CRC proliferation and metastasis. TINCR was statistically downregulated in CRC tissues and metastatic CRC cell lines compared with their counterparts. TINCR was reversely correlated with CRC progression and promoted tumor cells growth, metastasis in vivo and in vitro. While overexpression of TINCR had opposite effect. In addition, we also found that TINCR specifically bound to EpCAM through RNA IP and RNA pull down assays. Loss of TINCR promoted hydrolysis of EpCAM and then released EpICD, subsequently, activated the Wnt/β-catenin pathway. Further studies shown that c-Myc repressed the expression of TINCR through repressing sp1 transcriptive activity, which established a positive feedback loop controlling c-Myc and TINCR expression. These findings elucidate that loss of TINCR expression promotes proliferation and metastasis in CRC and it could be considered as a potential cancer suppressor gene.
Collapse
Affiliation(s)
- Zuo-Yang Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan-Xia Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhe-Ying Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ya-Ya Chang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin Zheng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Li Yuan
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou 510515, China
| | - Fan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yu-Han Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wen-Juan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xue-Nong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
194
|
Henri JL, Macdonald J, Strom M, Duan W, Shigdar S. Aptamers as potential therapeutic agents for ovarian cancer. Biochimie 2017; 145:34-44. [PMID: 29224849 DOI: 10.1016/j.biochi.2017.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/05/2017] [Indexed: 12/30/2022]
Abstract
Current therapy for ovarian cancer typically involves indiscriminate chemotherapies that can have severe off target effects on healthy tissue and are still plagued by aggressive recurrence. Recent shifts towards targeted therapies offer the possibility of circumventing the obstacles experienced by these traditional treatments. While antibodies are the pioneering agents in targeted therapies, clinical experience has demonstrated that their antitumor efficacy is limited due to their high immunogenicity, large molecular size, and costly and laborious production. In contrast, nucleic acid based chemical antibodies, also known as aptamers, are ideal for this application given their small size, lack of immunogenicity and in vitro production. As aptamers have begun to demonstrate their promise through targeting Epithelial Cell Adhesion Molecule (EpCAM), as well as a number of ovarian cancer biomarkers, in in vivo and in vitro models, their clinical applicability is slowly being realised. This review explores some of the current progress of aptamers targeting cancer biomarkers and their potential role as ovarian cancer therapeutics.
Collapse
Affiliation(s)
- Justin Liam Henri
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Joanna Macdonald
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Mia Strom
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Wei Duan
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Sarah Shigdar
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
195
|
Alibakhshi A, Abarghooi Kahaki F, Ahangarzadeh S, Yaghoobi H, Yarian F, Arezumand R, Ranjbari J, Mokhtarzadeh A, de la Guardia M. Targeted cancer therapy through antibody fragments-decorated nanomedicines. J Control Release 2017; 268:323-334. [DOI: 10.1016/j.jconrel.2017.10.036] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 01/10/2023]
|
196
|
The non-invasive exfoliated transcriptome (exfoliome) reflects the tissue-level transcriptome in a mouse model of NSAID enteropathy. Sci Rep 2017; 7:14687. [PMID: 29089621 PMCID: PMC5665873 DOI: 10.1038/s41598-017-13999-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most frequently used classes of medications in the world, yet they induce an enteropathy that is associated with high morbidity and mortality. A major limitation to better understanding the pathophysiology and diagnosis of this enteropathy is the difficulty of obtaining information about the primary site of injury, namely the distal small intestine. We investigated the utility of using mRNA from exfoliated cells in stool as a means to surveil the distal small intestine in a murine model of NSAID enteropathy. Specifically, we performed RNA-Seq on exfoliated cells found in feces and compared these data to RNA-Seq from both the small intestinal mucosa and colonic mucosa of healthy control mice or those exhibiting NSAID-induced enteropathy. Global gene expression analysis, data intersection, pathway analysis, and computational approaches including linear discriminant analysis (LDA) and sparse canonical correlation analysis (CCA) were used to assess the inter-relatedness of tissue (invasive) and stool (noninvasive) datasets. These analyses revealed that the exfoliated cell transcriptome closely mirrored the transcriptome of the small intestinal mucosa. Thus, the exfoliome may serve as a non-invasive means of detecting and monitoring NSAID enteropathy (and possibly other gastrointestinal mucosal inflammatory diseases).
Collapse
|
197
|
LePhong C, Hubbard EW, Van Meter S, Nodit L. Squamous cell carcinoma in serous effusions: Avoiding pitfalls in this rare encounter. Diagn Cytopathol 2017; 45:1095-1099. [DOI: 10.1002/dc.23827] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Christopher LePhong
- Pathology Department; University of Tennessee Graduate School of Medicine; Knoxville Tennessee
| | - Elizabeth W. Hubbard
- Pathology Department; University of Tennessee Graduate School of Medicine; Knoxville Tennessee
| | - Stuart Van Meter
- Pathology Department; University of Tennessee Graduate School of Medicine; Knoxville Tennessee
| | - Laurentia Nodit
- Pathology Department; University of Tennessee Graduate School of Medicine; Knoxville Tennessee
| |
Collapse
|
198
|
Manicone M, Poggiana C, Facchinetti A, Zamarchi R. Critical issues in the clinical application of liquid biopsy in non-small cell lung cancer. J Thorac Dis 2017; 9:S1346-S1358. [PMID: 29184673 DOI: 10.21037/jtd.2017.07.28] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Current therapeutic options for non-small cell lung cancer (NSCLC) patients are chemotherapy and targeted therapy directed mainly against epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements. Targeted therapy relies on the availability of tumor biopsies for molecular profiling at diagnosis and to longitudinally monitor treatment response and resistance development. Unfortunately, tumor biopsy might be invasive, recover poor material of suboptimal quality, and cause sample bias due to tumor heterogeneity. Many studies have illustrated the potential of liquid biopsy as minimal invasive approach to respond to the urgent need for real time monitoring, stratification, and personalized optimized treatment in NSCLC patients. In principle, the liquid biopsy could provide the genetic landscape of primary and metastatic cancerous lesions, detecting "druggable" genomic alterations or associated with treatment resistance. Moreover, it would guarantee the prognostic/predictive biomarkers evaluation in patients for whom biopsies are inaccessible or difficult to repeat. At this regard, the prognostic value of circulating tumor cells (CTCs) in NSCLC patients has been largely investigated, but still their clinical utility as tumor biomarker is hampered by the lack of a consensus on the criteria necessary and sufficient to define them and on the standard operating procedures (SOPs) for their assessment. This review will summarize current developments on liquid biopsy in NSCLC, addressing the technology issues that contribute to the poor ability to track CTCs in the blood of NSCLC patients, thus limiting their extensive use in the clinical practice, and analyzing the solutions adopted to overcome such limits, on the road towards the clinical validation.
Collapse
Affiliation(s)
| | | | - Antonella Facchinetti
- IOV-IRCCS, Padova, Italy.,Department of Surgery, Oncology and Gastroenterology, Oncology Section, University of Padova, Padova, Italy
| | | |
Collapse
|
199
|
Munro MJ, Wickremesekera SK, Peng L, Tan ST, Itinteang T. Cancer stem cells in colorectal cancer: a review. J Clin Pathol 2017; 71:110-116. [PMID: 28942428 DOI: 10.1136/jclinpath-2017-204739] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/01/2017] [Indexed: 12/26/2022]
Abstract
Colorectal cancer (CRC) is the second most common cancer in women and the third most common in men. Adenocarcinoma accounts for 90% of CRC cases. There has been accumulating evidence in support of the cancer stem cell (CSC) concept of cancer which proposes that CSCs are central in the initiation of cancer. CSCs have been the focus of study in a range of cancers, including CRC. This has led to the identification and understanding of genes involved in the induction and maintenance of pluripotency of stem cells, and markers for CSCs, including those investigated specifically in CRC. Knowledge of the expression pattern of CSCs in CRC has been increasing in recent years, revealing a heterogeneous population of cells within CRC ranging from pluripotent to differentiated cells, with overlapping and sometimes unique combinations of markers. This review summarises current literature on the understanding of CSCs in CRC, including evidence of the presence of CSC subpopulations, and the stem cell markers currently used to identify and localise these CSC subpopulations. Future research into this field may lead to improved methods for early detection of CRC, novel therapy and monitoring of treatment for CRC and other cancer types.
Collapse
Affiliation(s)
- Matthew J Munro
- Gillies McIndoe Research Institute, Wellington, New Zealand
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Susrutha K Wickremesekera
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Department of General Surgery, Upper Gastrointestinal, Hepatobiliary & Pancreatic Section, Wellington Regional Hospital, Wellington, New Zealand
| | - Lifeng Peng
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Wellington, New Zealand
| | | |
Collapse
|
200
|
Stewart AS, Freund JM, Gonzalez LM. Advanced three-dimensional culture of equine intestinal epithelial stem cells. Equine Vet J 2017; 50:241-248. [PMID: 28792626 DOI: 10.1111/evj.12734] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 08/02/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Intestinal epithelial stem cells are critical to epithelial repair following gastrointestinal injury. The culture of intestinal stem cells has quickly become a cornerstone of a vast number of new research endeavours that range from determining tissue viability to testing drug efficacy for humans. This study aims to describe the methods of equine stem cell culture and highlights the future benefits of these techniques for the advancement of equine medicine. OBJECTIVES To describe the isolation and culture of small intestinal stem cells into three-dimensional (3D) enteroids in horses without clinical gastrointestinal abnormalities. STUDY DESIGN Descriptive study. METHODS Intestinal samples were collected by sharp dissection immediately after euthanasia. Intestinal crypts containing intestinal stem cells were dissociated from the underlying tissue layers, plated in a 3D matrix and supplemented with growth factors. After several days, resultant 3D enteroids were prepared for immunofluorescent imaging and polymerase chain reaction (PCR) analysis to detect and characterise specific cell types present. Intestinal crypts were cryopreserved immediately following collection and viability assessed. RESULTS Intestinal crypts were successfully cultured and matured into 3D enteroids containing a lumen and budding structures. Immunofluorescence and PCR were used to confirm the existence of stem cells and all post mitotic, mature cell types, described to exist in the horse intestinal epithelium. Previously frozen crypts were successfully cultured following a freeze-thaw cycle. MAIN LIMITATIONS Tissues were all derived from normal horses. Application of this technique for the study of specific disease was not performed at this time. CONCLUSIONS The successful culture of equine intestinal crypts into 3D "mini-guts" allows for in vitro studies of the equine intestine. Additionally, these results have relevance to future development of novel therapies that harness the regenerative potential of equine intestine in horses with gastrointestinal disease (colic).
Collapse
Affiliation(s)
- A Stieler Stewart
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - J M Freund
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - L M Gonzalez
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|