151
|
Di Lorenzo L, Pipoli A, Manghisi NM, Clodoveo ML, Corbo F, De Pergola G, Sabbà C. Nutritional hazard analysis and critical control points at work (NACCPW): interdisciplinary assessment of subjective and metabolic work-related risk of the workers and their prevention. Int J Food Sci Nutr 2020; 71:902-908. [DOI: 10.1080/09637486.2020.1750572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Luigi Di Lorenzo
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy
| | - Antonella Pipoli
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy
| | - Nicola M. Manghisi
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy
| | - Maria L. Clodoveo
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Giovanni De Pergola
- Clinical Nutrition Unit, Medical Oncology, Department of Biomedical Science and Human Oncology, School of Medicine, University of Bari, Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy
| |
Collapse
|
152
|
Bano F, Mohanty B. Thyroid disrupting pesticides mancozeb and fipronil in mixture caused oxidative damage and genotoxicity in lymphoid organs of mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 79:103408. [PMID: 32413496 DOI: 10.1016/j.etap.2020.103408] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 03/26/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
The interference in endocrine signaling in particular of hypothyroid-pituitary-thyroid axis during embryonic/neonatal development increases the risk of long-lasting immune dysfunctioning. Anticipating that, environmentally realistic exposure of established thyroid disrupting pesticides of dithiocarbamate group mancozeb and phenylpyrazole fipronil was given to mice as individual and as mixtures (MIX-I/MIX-II) during the critical initiation phase of the immune response from postnatal day (PND) 31 till PND 60 (maturation phase). The direct exposure effect was assessed at PND 61 and the persistent effect was assessed at PND 91. Pronounced oxidative stress/genotoxicity in lymphoid organs at even low dose mixture exposure of pesticides (MIX-I/ MIX-II) continued to suppress the immune system till adulthood; might be due to the synergistic/additive action. The oxidative stress/genotoxicity effect was prevented on T4 supplementation to inhibit immunotoxicity as T4 is an immune enhancer and antioxidants. Oxidative stress/genotoxicity is suggested as a mechanism of thyroid disruption mediated immune suppression.
Collapse
Affiliation(s)
- Farhad Bano
- Department of Zoology, University of Allahabad, Prayagraj 211001, U. P., India.
| | - Banalata Mohanty
- Department of Zoology, University of Allahabad, Prayagraj 211001, U. P., India.
| |
Collapse
|
153
|
Deshmukh H, Aylward LL, Rose M, Fernandes A, Sedman P, Thatcher NJ, Atkin SL, Sathyapalan T. Association of endocrine active environmental compounds with body mass index and weight loss following bariatric surgery. Clin Endocrinol (Oxf) 2020; 93:280-287. [PMID: 32436601 DOI: 10.1111/cen.14257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The objective of this study was to study associations of a wide range of halogenated biphenyls, dibenzo-p-dioxins, dibenzofurans and diphenylethers with body mass index (BMI) and evaluate changes in their concentration following bariatric surgery. METHODS Subcutaneous fat, visceral fat and liver tissue samples were collected from 106 patients undergoing Roux-en-Y gastric bypass surgery for weight loss or patients who were undergoing abdominal surgery for nonbariatric reasons. We measured concentrations of an extensive panel of chlorinated and brominated biphenyls, dioxins, and furans, and brominated diphenylethers in the samples. We conducted linear regression to examine associations with BMI, adjusting for age and gender. Changes in concentration for indicator chemicals were evaluated in samples collected following bariatric surgery in a small subpopulation. RESULTS After adjustments for age and gender and correction for multiple testing, seven ortho-chlorinated biphenyls, one nonortho-chlorinated biphenyl, four PCDD/Fs and one ortho-brominated biphenyl were associated with BMI. The strongest associations between BMI and lipid-adjusted concentrations were seen with PCB-105 in subcutaneous fat (beta = 16.838 P-val = 1.45E-06) PCB-126 in visceral fat (beta = 15.067 P-val = 7.72E-06) and PCB-118 (beta = 14.101 P-val = 2.66E-05) in liver. The concentrations of sum PCBs, chlorinated toxic equivalent quantity (TEQ's) and brominated compounds increased significantly with weight loss in subcutaneous fat in a group of ten individuals resampled up to five years after bariatric surgery and substantial weight loss. CONCLUSION We show that selected polychlorinated biphenyls PCBs and structurally related polychlorinated dibenzo-p-dioxins dibenzofurans (PCDD/Fs) were associated with BMI. Concentrations of these lipophilic compounds in subcutaneous fat increased following bariatric surgery.
Collapse
Affiliation(s)
| | | | | | - Alwyn Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Peter Sedman
- Hull York Medical School, University of Hull, Hull, UK
| | | | | | | |
Collapse
|
154
|
Li ZM, Benker B, Bao Q, Henkelmann B, Corsten C, Michalke B, Pauluschke-Fröhlich J, Flisikowski K, Schramm KW, De Angelis M. Placental distribution of endogenous and exogenous substances: A pilot study utilizing cryo-sampled specimen off delivery room. Placenta 2020; 100:45-53. [PMID: 32828006 DOI: 10.1016/j.placenta.2020.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Reliability in the use of placentome (including placenta, umbilical cord, and cord blood) biomarkers requires an understanding of their distributions. Here we aim to develop a simple and proper placenta sampling scheme, and to evaluate the placental distributions of biomarkers. METHODS We developed a continuous cooling chain protocol off delivery room and cryo-subsampling method for placenta sampling. The levels of thyroid hormones (THs), elements, persistent organic pollutants (POPs), monoamines, and vitamin E were measured using UPLC-Q-TOF-MS, HPLC-ICP-MS, HPLC-EcD, and HRGC-HRMS, respectively. The distributions of biomarkers were assessed. RESULTS In human placentome, l-thyroxine (T4), Cd, Se, Zn, Cu, Fe, Ca, K, Mg, α-tocopherol, β-tocopherol, and β-tocotrienol levels were higher in placenta than in umbilical cord, while Pb and Mn were concentrated in human cord. In porcine placentome, T4, 3,3',5'-triiodo-l-thyronine (rT3), 3,3'-diiodo-l-thyronine, Cd, Pb, Zn, K, and Al levels were higher in the cord. The intraclass correlation coefficient (ICC) was <0.4 for 3,3',5-triiodo-l-thyronine, rT3, α-tocopherol, and 7 elements in human basal plate, indicating low reliability. rT3, Cd, Zn, Mn, and Cu were significantly concentrated in the central region in human placenta, while higher levels of As, Cd, Cr, and Al were found in the periphery region in porcine placenta. Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) showed moderate reliability (ICC: 0.40-0.98) except PCB-81, -126, and BDE-208, while polychlorinated dibenzo-p-doixins/furans (PCDD/Fs) showed poor reliability (ICC: 0.07-0.31). DISCUSSION These results highlight the complexity of placenta sampling. This study provides a novel and simple sampling approach in investigating placental exposomics.
Collapse
Affiliation(s)
- Zhong-Min Li
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Molecular EXposomics, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; School of Life Sciences Weihenstephan (Nutrition), Technische Universität München, 85354, Freising, Germany.
| | - Bärbel Benker
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Research Unit Analytical BioGeoChemistry, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Qibei Bao
- Ningbo College of Health Sciences, 315100, Ningbo, Zhejiang, China
| | - Bernhard Henkelmann
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Molecular EXposomics, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Claudia Corsten
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Molecular EXposomics, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Bernhard Michalke
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Research Unit Analytical BioGeoChemistry, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Jan Pauluschke-Fröhlich
- Department für Frauengesundheit Universitäts-Frauenklinik Tübingen, Calwerstr. 7, 70276, Tübingen, Germany
| | - Krzysztof Flisikowski
- Lehrstuhl für Biotechnologie der Nutztiere, Technische Universität München, Liesel-Beckmannstr. 1, 85354, Freising, Germany
| | - Karl-Werner Schramm
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Molecular EXposomics, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Department für Biowissenschaftliche Grundlagen, Technische Universität München, Weihenstephaner Steig 23, 85350, Freising, Germany
| | - Meri De Angelis
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Molecular EXposomics, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
155
|
Akinola LK, Uzairu A, Shallangwa GA, Abechi SE. Theoretical study on endocrine disrupting effects of polychlorinated dibenzo‐
p
‐dioxins using molecular docking simulation. J Appl Toxicol 2020; 41:233-246. [DOI: 10.1002/jat.4039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Lukman K. Akinola
- Department of Chemistry Ahmadu Bello University Zaria Nigeria
- Department of Chemistry Bauchi State University Gadau Nigeria
| | - Adamu Uzairu
- Department of Chemistry Ahmadu Bello University Zaria Nigeria
| | | | | |
Collapse
|
156
|
Yue S, Zhang T, Shen Q, Song Q, Ji C, Chen Y, Mao M, Kong Y, Chen D, Liu J, Sun Z, Zhao M. Assessment of endocrine-disrupting effects of emerging polyhalogenated carbazoles (PHCZs): In vitro, in silico, and in vivo evidence. ENVIRONMENT INTERNATIONAL 2020; 140:105729. [PMID: 32344252 DOI: 10.1016/j.envint.2020.105729] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Polyhalogenated carbazoles (PHCZs) are an emerging class of persistent, bioaccumulative compounds that are structurally and chemically related to dioxins. They have been detected widely in sediment, river, and soil samples, but their environmental risks are largely unknown. Therefore, seven common PHCZs were tested for their endocrine disrupting potential in silico, in vitro, and in vivo. A dual-luciferase reporter gene assay was used to detect receptor-mediated (agonist or antagonistic) activity (concentration range: 10-9-10-5 M) against the estrogen receptor α (ERα), glucocorticoid receptor α (GRα), and mineralocorticoid receptor (MR). The alterations in the steroidogenesis pathway were investigated in H295R cells. Antagonistic effects against GRα were observed with five PHCZs, along with an increase in the cortisol levels of H295R cells. The most common effect observed was that of the agonistic activity of ERα, with the molecular docking analysis further indicating that hydrogen bonding and hydrophobic interactions may stabilize the interaction between PHCZs and the estrogen receptor binding pocket. In addition, a seven-day exposure of young female rats to three PHCZs (27-BCZ, 3-BCZ, and 36-BCZ) resulted in changes in serum E2 levels, uterine epithelium cell heights, and relative uterus weights. In conclusion, endocrine-disrupting effects, especially the estrogenic effects, were observed for the tested PHCZs. Such adverse effects of PHCZs on humans and wildlife warrant further thorough investigation.
Collapse
Affiliation(s)
- Siqing Yue
- College of Environment, Research Center of Environmental Science, Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Zhang
- Department of Blood, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qiqi Shen
- College of Environment, Research Center of Environmental Science, Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qin Song
- College of Environment, Research Center of Environmental Science, Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chenyang Ji
- College of Environment, Research Center of Environmental Science, Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanchen Chen
- College of Environment, Research Center of Environmental Science, Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China
| | - Manfei Mao
- College of Environment, Research Center of Environmental Science, Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuan Kong
- College of Environment, Research Center of Environmental Science, Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China
| | - Da Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jing Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Sun
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Meirong Zhao
- College of Environment, Research Center of Environmental Science, Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
157
|
The Interaction Test of Binary Mixtures of Endocrine-Disrupting Chemicals Using In Vitro Bioassays. J CHEM-NY 2020. [DOI: 10.1155/2020/9729015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Typical environmental endocrine-disrupting chemicals (EDCs) such as estradiol valerate (EV), diethylstilbestrol (DES), di-2-ethylhexyl phthalate (DEHP), mono-2-ethylhexyl phthalate (MEHP), and bisphenol A (BPA) have a strong reproductive and developmental toxicity at low concentrations. However, information on their joint toxicity is scarce. In this study, we evaluated the combined effects of EV and other four EDCs (DES, DEHP, MEHP, and BPA) on the human breast MCF-7 cells by detecting the cell proliferation, intracellular reactive oxygen species (ROS) levels, and estrogen receptor alpha (ERα) protein expression using equal concentration ratio method. The results showed that, after exposure for 24, 48, and 72 h, single EV, DES, and BPA can promote the proliferation of MCF-7 human breast cancer cells, and EV has the strongest effect in inducing cell proliferation. DEHP and MEHP cannot induce MCF-7 cell proliferation for all exposure time, while cell proliferation induced by EV was significantly attenuated by DES, BPA, DEHP, and MEHP when they mixed with EV. For intracellular ROS, single EV, BPA, DES, DEHP, and MEHP elevated intracellular ROS levels for different exposure time. Similar to the cell proliferation, DES and BPA decreased intracellular ROS levels induced by EV when they mixed with EV for 24 h. EV, DES, and BPA exposed alone or combined with EV upregulated the ERα protein expression. However, DEHP and MEHP exposed alone or combined with EV had no effect on ERα protein expression, indicating that DEHP or MEHP could attenuate ERα protein expression upregulated by EV. These results showed that the joint toxicity of binary mixtures of EV and other EDCs do not interact in a synergistic fashion in inducing cell proliferation, intracellular ROS levels, and ERα protein expression. These findings have important implications in the human risk assessments of EV mixed with other EDCs in the environment.
Collapse
|
158
|
Vail GM, Walley SN, Yasrebi A, Maeng A, Conde KN, Roepke TA. The interactions of diet-induced obesity and organophosphate flame retardant exposure on energy homeostasis in adult male and female mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:438-455. [PMID: 32546061 PMCID: PMC7337410 DOI: 10.1080/15287394.2020.1777235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Previously, sex-dependent alterations in energy homeostasis were reported in adult mice fed a standard chow attributed to exposure to a mixture of organophosphate flame retardants (OPFRs) via estrogen receptors (ERα). In this study, adult male and female mice (C57BL/6J; Taconic) were treated with the same mixture of OPFRs (1 mg/kg each of tricresyl phosphate (TCP), triphenyl phosphate (TPP), and tris(1-3-dichloro-2propyl)phosphate (TDCPP)) for 7 weeks on a low-fat diet (LFD, 10% kcal fat) or a high fat (HFD, 45% kcal fat) in a diet-induced obesity model. Consistent with our previous observations, OPFRs altered weight gain in males, differentially with diet, while females remained unaffected. OPFR treatment also revealed sex-dependent perturbations in metabolic activity. During the night (approximately 0100-0400 hr), males exhibited elevated activity and oxygen consumption, while in females these parameters were decreased, irrespective of diet. OPFR disrupted feeding behavior and abolished diurnal water intake patterns in females while increasing nighttime fluid consumption in males. Despite no marked effect of OPFRs on glucose or insulin tolerance, OPFR treatment altered circulating insulin and leptin in females and ghrelin in males. Data indicate that adult OPFR exposure might influence, and perhaps exacerbate, the effects of diet-induced obesity in adult mice by altering activity, ingestive behavior, and metabolism.
Collapse
Affiliation(s)
- Gwyndolin M. Vail
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Sabrina N. Walley
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Angela Maeng
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Kristie N. Conde
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Troy A. Roepke
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| |
Collapse
|
159
|
Hales BF, Robaire B. Effects of brominated and organophosphate ester flame retardants on male reproduction. Andrology 2020; 8:915-923. [DOI: 10.1111/andr.12789] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Barbara F. Hales
- Department of Pharmacology and Therapeutics McGill University Montreal QC Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics McGill University Montreal QC Canada
- Department of Obstetrics and Gynecology McGill University Montreal QC Canada
| |
Collapse
|
160
|
Ilgin S. The adverse effects of psychotropic drugs as an endocrine disrupting chemicals on the hypothalamic-pituitary regulation in male. Life Sci 2020; 253:117704. [PMID: 32339542 DOI: 10.1016/j.lfs.2020.117704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 02/01/2023]
Abstract
Adverse effects of drugs on male reproductive system can be categorized as pre-testicular, testicular, and post-testicular. Pre-testicular adverse effects disrupt the hypothalamic-pituitary-gonadal (HPG) axis, generally by interfering with endocrine function. It is known that the HPG axis has roles in the maintenance of spermatogenesis and sexual function. The hypothalamus secretes gonadotropin-releasing hormone (GnRH) which enters the hypophyseal portal system to stimulate the anterior pituitary. The anterior pituitary secretes gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) which are vital for spermatogenesis, into the blood. The FSH stimulates the Sertoli cells for the production of regulatory molecules and nutrients needed for the maintenance of spermatogenesis, while the LH stimulates the Leydig cells to produce and secrete testosterone. Many neurotransmitters influence the hypothalamic-pituitary regulation, consequently the HPG axis, and can consequently affect spermatogenesis and sexual function. Psychotropic drugs including antipsychotics, antidepressants, and mood stabilizers that all commonly modulate dopamine, serotonin, and GABA, can affect male spermatogenesis and sexual function by impairment of the hypothalamic-pituitary regulation, act like endocrine-disrupting chemicals. Otherwise, studies have shown the relationship between decreased sperm quality and psychotropic drugs treatment. Therefore, it is important to investigate the adverse reproductive effects of psychotropic drugs which are frequently used during reproductive ages in males and to determine the role of the hypothalamic-pituitary regulation axis on possible pathologies.
Collapse
Affiliation(s)
- Sinem Ilgin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey.
| |
Collapse
|
161
|
Browne P, Van Der Wal L, Gourmelon A. OECD approaches and considerations for regulatory evaluation of endocrine disruptors. Mol Cell Endocrinol 2020; 504:110675. [PMID: 31830512 DOI: 10.1016/j.mce.2019.110675] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
Identifying the potential endocrine disruptor hazard of environmental chemicals is a regulatory mandate for many countries. However, due to the adaptive nature of the endocrine system, absence of a single method capable of identifying endocrine disruption, and the latency between exposure to endocrine disrupting chemical during sensitive life stages and the manifestation of adverse responses, satisfying the regulatory requirement needed to identify a chemical as an endocrine disruptor is a challenge. There are now a variety of validated regulatory tests that can be used in combination to provide evidence that a chemical affects the oestrogen, androgen, thyroid, and steroidogenic pathways of vertebrates, but most rely (at least to some extent) on animal testing and require considerable cost and time to produce the necessary data. Emerging research methods are able to evaluate other endocrine pathways, incorporate more sensitive endpoints, and combine multiple alternative methods to predict in vivo outcomes. Some research approaches may also bridge gaps that have been identified in current endocrine regulatory testing. For the near term, considering new endpoints in a regulatory context may require adding them to existing test methods in order to establish relationships between the traditional and the innovative. From the outset, endocrine testing has always required integration of multiple methods that provide data on different levels of biological organisation, thus, the area of endocrine disruption is particularly adaptable to adverse outcome pathway (AOP) frameworks and integrated test methods built around AOPs. Herein, we provide a review of the status of endocrine disruptors in the OECD context, examples where innovation from research is needed to improve or bridge gaps in endocrine testing, and suggestions for regulators and researchers to facilitate uptake of innovate methods for endocrine disruptor regulatory testing. The increase in several human complex human disorders that include an endocrine component and the alarming decrease in wildlife biodiversity are commanding directives to include the best, most informative, innovative approaches to accelerate the rate and throughput of chemical evaluation for endocrine disruption.
Collapse
Affiliation(s)
- Patience Browne
- Organisation for Economic Cooperation and Development, Environment Directorate, Paris, France.
| | - Leon Van Der Wal
- Organisation for Economic Cooperation and Development, Environment Directorate, Paris, France
| | - Anne Gourmelon
- Organisation for Economic Cooperation and Development, Environment Directorate, Paris, France
| |
Collapse
|
162
|
Yilmaz B, Terekeci H, Sandal S, Kelestimur F. Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev Endocr Metab Disord 2020; 21:127-147. [PMID: 31792807 DOI: 10.1007/s11154-019-09521-z] [Citation(s) in RCA: 343] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endocrine Disrupting Chemicals (EDCs) are a global problem for environmental and human health. They are defined as "an exogenous chemical, or mixture of chemicals, that can interfere with any aspect of hormone action". It is estimated that there are about 1000 chemicals with endocrine-acting properties. EDCs comprise pesticides, fungicides, industrial chemicals, plasticizers, nonylphenols, metals, pharmaceutical agents and phytoestrogens. Human exposure to EDCs mainly occurs by ingestion and to some extent by inhalation and dermal uptake. Most EDCs are lipophilic and bioaccumulate in the adipose tissue, thus they have a very long half-life in the body. It is difficult to assess the full impact of human exposure to EDCs because adverse effects develop latently and manifest at later ages, and in some people do not present. Timing of exposure is of importance. Developing fetus and neonates are the most vulnerable to endocrine disruption. EDCs may interfere with synthesis, action and metabolism of sex steroid hormones that in turn cause developmental and fertility problems, infertility and hormone-sensitive cancers in women and men. Some EDCs exert obesogenic effects that result in disturbance in energy homeostasis. Interference with hypothalamo-pituitary-thyroid and adrenal axes has also been reported. In this review, potential EDCs, their effects and mechanisms of action, epidemiological studies to analyze their effects on human health, bio-detection and chemical identification methods, difficulties in extrapolating experimental findings and studying endocrine disruptors in humans and recommendations for endocrinologists, individuals and policy makers will be discussed in view of the relevant literature.
Collapse
Affiliation(s)
- Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Hakan Terekeci
- Department of Internal Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Suleyman Sandal
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Fahrettin Kelestimur
- Department of Endocrinology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
163
|
Wang B, Chen H, Chan YL, Wang G, Oliver BG. Why Do Intrauterine Exposure to Air Pollution and Cigarette Smoke Increase the Risk of Asthma? Front Cell Dev Biol 2020; 8:38. [PMID: 32117969 PMCID: PMC7012803 DOI: 10.3389/fcell.2020.00038] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/15/2020] [Indexed: 02/05/2023] Open
Abstract
The prevalence of childhood asthma is increasing worldwide and increased in utero exposure to environmental toxicants may play a major role. As current asthma treatments are not curative, understanding the mechanisms underlying the etiology of asthma will allow better preventative strategies to be developed. This review focuses on the current understanding of how in utero exposure to environmental factors increases the risk of developing asthma in children. Epidemiological studies show that maternal smoking and particulate matter exposure during pregnancy are prominent risk factors for the development of childhood asthma. We discuss the changes in the developing fetus due to reduced oxygen and nutrient delivery affected by intrauterine environmental change. This leads to fetal underdevelopment and abnormal lung structure. Concurrently an altered immune response and aberrant epithelial and mesenchymal cellular function occur possibly due to epigenetic reprograming. The sequelae of these early life events are airway remodeling, airway hyperresponsiveness, and inflammation, the hallmark features of asthma. In summary, exposure to inhaled oxidants such as cigarette smoking or particulate matter increases the risk of childhood asthma and involves multiple mechanisms including impaired fetal lung development (structural changes), endocrine disorders, abnormal immune responses, and epigenetic modifications. These make it challenging to reduce the risk of asthma, but knowledge of the mechanisms can still help to develop personalized medicines.
Collapse
Affiliation(s)
- Baoming Wang
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Centre for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
164
|
Martín-Pozo L, Cantarero-Malagón S, Hidalgo F, Navalón A, Zafra-Gómez A. Determination of endocrine disrupting chemicals in human nails using an alkaline digestion prior to ultra-high performance liquid chromatography–tandem mass spectrometry. Talanta 2020; 208:120429. [DOI: 10.1016/j.talanta.2019.120429] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
|
165
|
Arabnezhad MR, Montazeri-Najafabady N, Chatrabnous N, Ghafarian Bahreman A, Mohammadi-Bardbori A. Anti-androgenic effect of 6-formylindolo[3,2-b]carbazole (FICZ) in LNCaP cells is mediated by the aryl hydrocarbon-androgen receptors cross-talk. Steroids 2020; 153:108508. [PMID: 31586605 DOI: 10.1016/j.steroids.2019.108508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/16/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022]
Abstract
The factual impact of endogenously activated AHR by 6-formylindolo[3,2-b]carbazole (FICZ), an endogenous ligand of AHR on androgen receptor (AR) was aim of this study. In this study, LNCaP cells were exposed to FICZ, CH223191 and flutamide (Flu) alone or in combination in the presence and absence of testosterone. CYP1A1 enzyme activity, cell viability, cellular prostate-specific antigen (PSA) and dihydrotestosterone (DHT) production, mRNA levels of PSA, KLK2, TMPRSS2, and AR genes were measured as endpoints. A declining in the expression of androgen- responsive target genes was seen by either Flu or FICZ in the presence of testosterone. Furthermore, the forced decrease in the expression of AR target genes resulted in 41% and 31% decline in the DHT and PSA concentrations respectively. Taken together, endogenously activated AHR plays a regulatory role on AR. Therefore, FICZ might be an effective chemical in treating prostate cancer.
Collapse
Affiliation(s)
- Mohammad-Reza Arabnezhad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nazanin Chatrabnous
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Ghafarian Bahreman
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
166
|
Selenium usage and oxidative stress in Graves’ disease and Graves’ orbitopathy. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
167
|
Friques AG, Santos FD, Angeli DB, Silva FAC, Dias AT, Aires R, Leal MA, Nogueira BV, Amorim FG, Campagnaro BP, Pereira TMC, Campos-Toimil M, Meyrelles SS, Vasquez EC. Bisphenol A contamination in infant rats: molecular, structural, and physiological cardiovascular changes and the protective role of kefir. J Nutr Biochem 2020; 75:108254. [DOI: 10.1016/j.jnutbio.2019.108254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/15/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022]
|
168
|
Hoermann R, Midgley JEM, Larisch R, Dietrich JW. Individualised requirements for optimum treatment of hypothyroidism: complex needs, limited options. Drugs Context 2019; 8:212597. [PMID: 31516533 PMCID: PMC6726361 DOI: 10.7573/dic.212597] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Levothyroxine (LT4) therapy has a long history, a well-defined pharmacological profile and a favourable safety record in the alleviation of hypothyroidism. However, questions remain in defining the threshold for the requirement of treatment in patients with subclinical hypothyroidism, assessing the dose adequacy of the drug, and selecting the best treatment mode (LT4 monotherapy versus liothyronine [LT3]/LT4 combinations) for subpopulations with persisting complaints. Supplied as a prodrug, LT4 is enzymatically converted into the biologically more active thyroid hormone, triiodothyronine (T3). Importantly, tetraiodothyronine (T4) to T3 conversion efficiency may be impaired in patients receiving LT4, resulting in a loss of thyroid-stimulating hormone (TSH)-mediated feed-forward control of T3, alteration of the interlocking equilibria between serum concentrations of TSH, free thyroxine (FT4), and free triiodothyonine (FT3), and a decrease in FT3 to FT4 ratios. This downgrades the value of the TSH reference system derived in thyroid health for guiding the replacement dose in the treatment situation. Individualised conditionally defined setpoints may therefore provide appropriate biochemical targets to be clinically tested, together with a stronger focus on clinical presentation and future endpoint markers of tissue thyroid state. This cautionary note encompasses the use of aggregated statistical data from clinical trials which are not safely applicable to the individual level of patient care under these circumstances.
Collapse
Affiliation(s)
- Rudolf Hoermann
- Department for Nuclear Medicine, Klinikum Lüdenscheid, Paulmannshöherstr. 14, 58515 Lüdenscheid, Germany
| | | | - Rolf Larisch
- Department for Nuclear Medicine, Klinikum Lüdenscheid, Paulmannshöherstr. 14, 58515 Lüdenscheid, Germany
| | - Johannes W Dietrich
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Buerkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.,Ruhr Center for Rare Diseases (CeSER), Ruhr University of Bochum and Witten/Herdecke University, Alexandrinenstr. 5, 44791 Bochum, Germany
| |
Collapse
|
169
|
Bhatt P, Huang Y, Zhan H, Chen S. Insight Into Microbial Applications for the Biodegradation of Pyrethroid Insecticides. Front Microbiol 2019; 10:1778. [PMID: 31428072 PMCID: PMC6687851 DOI: 10.3389/fmicb.2019.01778] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Pyrethroids are broad-spectrum insecticides and presence of chiral carbon differentiates among various forms of pyrethroids. Microbial approaches have emerged as a popular solution to counter pyrethroid toxicity to marine life and mammals. Bacterial and fungal strains can effectively degrade pyrethroids into non-toxic compounds. Different strains of bacteria and fungi such as Bacillus spp., Raoultella ornithinolytica, Psudomonas flourescens, Brevibacterium sp., Acinetobactor sp., Aspergillus sp., Candida sp., Trichoderma sp., and Candia spp., are used for the biodegradation of pyrethroids. Hydrolysis of ester bond by enzyme esterase/carboxyl esterase is the initial step in pyrethroid biodegradation. Esterase is found in bacteria, fungi, insect and mammalian liver microsome cells that indicates its hydrolysis ability in living cells. Biodegradation pattern and detected metabolites reveal microbial consumption of pyrethroids as carbon and nitrogen source. In this review, we aim to explore pyrethroid degrading strains, enzymes and metabolites produced by microbial strains. This review paper covers in-depth knowledge of pyrethroids and recommends possible solutions to minimize their environmental toxicity.
Collapse
Affiliation(s)
| | | | | | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
170
|
Gibert Y, Sargis RM, Nadal A. Editorial: Endocrine Disrupters and Metabolism. Front Endocrinol (Lausanne) 2019; 10:859. [PMID: 31920972 PMCID: PMC6914735 DOI: 10.3389/fendo.2019.00859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yann Gibert
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, United States
- *Correspondence: Yann Gibert
| | - Robert M. Sargis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnologia Sanitaria de Elche, IDiBE and CIBERDEM, Universitas Miguel Hernández, Elche, Spain
| |
Collapse
|