151
|
Garret M, Du Z, Chazalon M, Cho YH, Baufreton J. Alteration of GABAergic neurotransmission in Huntington's disease. CNS Neurosci Ther 2018; 24:292-300. [PMID: 29464851 DOI: 10.1111/cns.12826] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 12/16/2022] Open
Abstract
Hereditary Huntington's disease (HD) is characterized by cell dysfunction and death in the brain, leading to progressive cognitive, psychiatric, and motor impairments. Despite molecular and cellular descriptions of the effects of the HD mutation, no effective pharmacological treatment is yet available. In addition to well-established alterations of glutamatergic and dopaminergic neurotransmitter systems, it is becoming clear that the GABAergic systems are also impaired in HD. GABA is the major inhibitory neurotransmitter in the brain, and GABAergic neurotransmission has been postulated to be modified in many neurological and psychiatric diseases. In addition, GABAergic neurotransmission is the target of many drugs that are in wide clinical use. Here, we summarize data demonstrating the occurrence of alterations of GABAergic markers in the brain of HD carriers as well as in rodent models of the disease. In particular, we pinpoint HD-related changes in the expression of GABAA receptors (GABAA Rs). On the basis that a novel GABA pharmacology of GABAA Rs established with more selective drugs is emerging, we argue that clinical treatments acting specifically on GABAergic neurotransmission may be an appropriate strategy for improving symptoms linked to the HD mutation.
Collapse
Affiliation(s)
- Maurice Garret
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Zhuowei Du
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Marine Chazalon
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Bordeaux, France.,Institut des Maladies Neurodégénératives, CNRS, UMR 5293, Bordeaux, France
| | - Yoon H Cho
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Jérôme Baufreton
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Bordeaux, France.,Institut des Maladies Neurodégénératives, CNRS, UMR 5293, Bordeaux, France
| |
Collapse
|
152
|
Aparicio-Juárez A, Duhne M, Lara-González E, Ávila-Cascajares F, Calderón V, Galarraga E, Bargas J. Cortical stimulation relieves parkinsonian pathological activity in vitro. Eur J Neurosci 2018; 49:834-848. [PMID: 29250861 DOI: 10.1111/ejn.13806] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/21/2017] [Accepted: 12/11/2017] [Indexed: 01/22/2023]
Abstract
Previously, we have shown that chemical excitatory drives such as N-methyl-d-aspartate (NMDA) are capable of activating the striatal microcircuit exhibiting neuronal ensembles that alternate their activity producing temporal sequences. One aim of this work was to demonstrate whether similar activity could be evoked by delivering cortical stimulation. Dynamic calcium imaging allowed us to follow the activity of dozens of neurons with single-cell resolution in mus musculus brain slices. A train of electrical stimuli in the cortex evoked network activity similar to the one induced by bath application of NMDA. Previously, we have also shown that the dopamine-depleted striatal microcircuit increases its spontaneous activity generating dominant recurrent ensembles that interrupt the temporal sequences found in control microcircuits. This activity correlates with parkinsonian pathological activity. Several cortical stimulation protocols such as transcranial magnetic stimulation reduce motor signs of Parkinsonism. Here, we show that cortical stimulation in vitro temporarily eliminates the pathological activity from the dopamine-depleted striatal microcircuit by turning off some neurons that sustain this activity and recruiting new ones that allow transitions between network states, similar to the control circuit. When cortical stimulation is given in the presence of L-DOPA, parkinsonian activity is eliminated during the whole recording period. The present experimental evidence suggests that cortical stimulation such as that generated by transcranial magnetic stimulation, or otherwise, may allow reduce L-DOPA dosage.
Collapse
Affiliation(s)
- Ariadna Aparicio-Juárez
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, CDMX, Mexico City, 04510, México
| | - Mariana Duhne
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, CDMX, Mexico City, 04510, México
| | - Esther Lara-González
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, CDMX, Mexico City, 04510, México
| | - Fátima Ávila-Cascajares
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, CDMX, Mexico City, 04510, México
| | - Vladimir Calderón
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, CDMX, Mexico City, 04510, México
| | - Elvira Galarraga
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, CDMX, Mexico City, 04510, México
| | - José Bargas
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, CDMX, Mexico City, 04510, México
| |
Collapse
|
153
|
Nakano Y, Karube F, Hirai Y, Kobayashi K, Hioki H, Okamoto S, Kameda H, Fujiyama F. Parvalbumin-producing striatal interneurons receive excitatory inputs onto proximal dendrites from the motor thalamus in male mice. J Neurosci Res 2018; 96:1186-1207. [PMID: 29314192 DOI: 10.1002/jnr.24214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 01/09/2023]
Abstract
In rodents, the dorsolateral striatum regulates voluntary movement by integrating excitatory inputs from the motor-related cerebral cortex and thalamus to produce contingent inhibitory output to other basal ganglia nuclei. Striatal parvalbumin (PV)-producing interneurons receiving this excitatory input then inhibit medium spiny neurons (MSNs) and modify their outputs. To understand basal ganglia function in motor control, it is important to reveal the precise synaptic organization of motor-related cortical and thalamic inputs to striatal PV interneurons. To examine which domains of the PV neurons receive these excitatory inputs, we used male bacterial artificial chromosome transgenic mice expressing somatodendritic membrane-targeted green fluorescent protein in PV neurons. An anterograde tracing study with the adeno-associated virus vector combined with immunodetection of pre- and postsynaptic markers visualized the distribution of the excitatory appositions on PV dendrites. Statistical analysis revealed that the density of thalamostriatal appositions along the dendrites was significantly higher on the proximal than distal dendrites. In contrast, there was no positional preference in the density of appositions from axons of the dorsofrontal cortex. Population observations of thalamostriatal and corticostriatal appositions by immunohistochemistry for pathway-specific vesicular glutamate transporters confirmed that thalamic inputs preferentially, and cortical ones less preferentially, made apposition on proximal dendrites of PV neurons. This axodendritic organization suggests that PV neurons produce fast and reliable inhibition of MSNs in response to thalamic inputs and process excitatory inputs from motor cortices locally and plastically, possibly together with other GABAergic and dopaminergic dendritic inputs, to modulate MSN inhibition.
Collapse
Affiliation(s)
- Yasutake Nakano
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Fuyuki Karube
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Yasuharu Hirai
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Hiroyuki Hioki
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinichiro Okamoto
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kameda
- Department of Physiology, Teikyo University School of Medicine, Tokyo, Japan
| | - Fumino Fujiyama
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
154
|
Garas FN, Kormann E, Shah RS, Vinciati F, Smith Y, Magill PJ, Sharott A. Structural and molecular heterogeneity of calretinin-expressing interneurons in the rodent and primate striatum. J Comp Neurol 2017; 526:877-898. [PMID: 29218729 PMCID: PMC5814860 DOI: 10.1002/cne.24373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022]
Abstract
Calretinin‐expressing (CR+) interneurons are the most common type of striatal interneuron in primates. However, because CR+ interneurons are relatively scarce in rodent striatum, little is known about their molecular and other properties, and they are typically excluded from models of striatal circuitry. Moreover, CR+ interneurons are often treated in models as a single homogenous population, despite previous descriptions of their heterogeneous structures and spatial distributions in rodents and primates. Here, we demonstrate that, in rodents, the combinatorial expression of secretagogin (Scgn), specificity protein 8 (SP8) and/or LIM homeobox protein 7 (Lhx7) separates striatal CR+ interneurons into three structurally and topographically distinct cell populations. The CR+/Scgn+/SP8+/Lhx7− interneurons are small‐sized (typically 7–11 µm in somatic diameter), possess tortuous, partially spiny dendrites, and are rostrally biased in their positioning within striatum. The CR+/Scgn−/SP8−/Lhx7− interneurons are medium‐sized (typically 12–15 µm), have bipolar dendrites, and are homogenously distributed throughout striatum. The CR+/Scgn−/SP8−/Lhx7+ interneurons are relatively large‐sized (typically 12–20 µm), and have thick, infrequently branching dendrites. Furthermore, we provide the first in vivo electrophysiological recordings of identified CR+ interneurons, all of which were the CR+/Scgn−/SP8−/Lhx7− cell type. In the primate striatum, Scgn co‐expression also identified a topographically distinct CR+ interneuron population with a rostral bias similar to that seen in both rats and mice. Taken together, these results suggest that striatal CR+ interneurons comprise at least three molecularly, structurally, and topographically distinct cell populations in rodents. These properties are partially conserved in primates, in which the relative abundance of CR+ interneurons suggests that they play a critical role in striatal microcircuits.
Collapse
Affiliation(s)
- Farid N Garas
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Eszter Kormann
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Rahul S Shah
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Federica Vinciati
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| | - Peter J Magill
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
155
|
Elghaba R, Bracci E. Dichotomous Effects of Mu Opioid Receptor Activation on Striatal Low-Threshold Spike Interneurons. Front Cell Neurosci 2017; 11:385. [PMID: 29259544 PMCID: PMC5723306 DOI: 10.3389/fncel.2017.00385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/20/2017] [Indexed: 11/13/2022] Open
Abstract
Striatal low-threshold spike interneurons (LTSIs) are tonically active neurons that express GABA and nitric oxide synthase and are involved in information processing as well as neurovascular coupling. While mu opioid receptors (MORs) and their ligand encephalin are prominent in the striatum, their action on LTSIs has not been investigated. We addressed this issue carrying out whole-cell recordings in transgenic mice in which the NPY-expressing neurons are marked with green fluorescent protein (GFP). The MOR agonist (D-Ala(2), N-MePhe(4), Gly-ol)-enkephalin (DAMGO) produced dual effects on subpopulations of LTSIs. DAMGO caused inhibitory effects, accompanied by decreases of spontaneous firing, in 62% of LTSIs, while depolarizing effects (accompanied by an increase in spontaneous firing) were observed in 23% of LTSIs tested. The dual effects of DAMGO persisted in the presence of tetrodotoxin (TTX), a sodium channel blocker or in the presence of the nicotinic acetylcholine receptor antagonist mecamylamine. However, in the presence of either the GABAA receptor antagonist picrotoxin or the muscarinic cholinergic receptor antagonist atropine, DAMGO only elicited inhibitory effects on LTSIs. Furthermore, we found that DAMGO decreased the amplitude and frequency of spontaneous GABAergic events. Unexpectedly, these effects of DAMGO on spontaneous GABAergic events disappeared after blocking of the muscarinic and nicotinic cholinergic blockers, showing that GABA inputs to LTSIs are not directly modulated by presynaptic MORs. These finding suggest that activation of MORs affect LTSIs both directly and indirectly, through modulation of GABAergic and cholinergic tones. The complex balance between direct and indirect effects determines the net effect of DAMGO on LTSIs.
Collapse
Affiliation(s)
- Rasha Elghaba
- Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
| | - Enrico Bracci
- Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
156
|
Melchior JR, Jones SR. Chronic ethanol exposure increases inhibition of optically targeted phasic dopamine release in the nucleus accumbens core and medial shell ex vivo. Mol Cell Neurosci 2017; 85:93-104. [PMID: 28942046 PMCID: PMC5698100 DOI: 10.1016/j.mcn.2017.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/08/2017] [Accepted: 09/18/2017] [Indexed: 01/07/2023] Open
Abstract
Dopamine signaling encodes reward learning and motivated behavior through modulation of synaptic signaling in the nucleus accumbens, and aberrations in these processes are thought to underlie obsessive behaviors associated with alcohol abuse. The nucleus accumbens is divided into core and shell sub-regions with overlapping but also divergent contributions to behavior. Here we optogenetically targeted dopamine projections to the accumbens allowing us to isolate stimulation of dopamine terminals ex vivo. We applied 5 pulse (phasic) light stimulations to probe intrinsic differences in dopamine release parameters across regions. Also, we exposed animals to 4weeks of chronic intermittent ethanol vapor and measured phasic release. We found that initial release probability, uptake rate and autoreceptor inhibition were greater in the accumbens core compared to the shell, yet the shell showed greater phasic release ratios. Following chronic ethanol, uptake rates were increased in the core but not the shell, suggesting region-specific neuronal adaptations. Conversely, kappa opioid receptor function was upregulated in both regions to a similar extent, suggesting a local mechanism of kappa opioid receptor regulation that is generalized across the nucleus accumbens. These data suggest that dopamine axons in the nucleus accumbens core and shell display differences in intrinsic release parameters, and that ethanol-induced adaptations to dopamine neuron terminal fields may not be homogeneous. Also, chronic ethanol exposure induces an upregulation in kappa opioid receptor function, providing a mechanism for potential over-inhibition of accumbens dopamine signaling which may negatively impact downstream synaptic function and ultimately bias choice towards previously reinforced alcohol use behaviors.
Collapse
Affiliation(s)
- James R Melchior
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
157
|
Progress in developing transgenic monkey model for Huntington's disease. J Neural Transm (Vienna) 2017; 125:401-417. [PMID: 29127484 DOI: 10.1007/s00702-017-1803-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 10/17/2017] [Indexed: 12/27/2022]
Abstract
Huntington's disease (HD) is a complex neurodegenerative disorder that has no cure. Although treatments can often be given to relieve symptoms, the neuropathology associated with HD cannot be stopped or reversed. HD is characterized by degeneration of the striatum and associated pathways that leads to impairment in motor and cognitive functions as well as psychiatric disturbances. Although cell and rodent models for HD exist, longitudinal study in a transgenic HD nonhuman primate (i.e., rhesus macaque; HD monkeys) shows high similarity in its progression with human patients. Progressive brain atrophy and changes in white matter integrity examined by magnetic resonance imaging are coherent with the decline in cognitive behaviors related to corticostriatal functions and neuropathology. HD monkeys also express higher anxiety and irritability/aggression similar to human HD patients that other model systems have not yet replicated. While a comparative model approach is critical for advancing our understanding of HD pathogenesis, HD monkeys could provide a unique platform for preclinical studies and long-term assessment of translatable outcome measures. This review summarizes the progress in the development of the transgenic HD monkey model and the opportunities for advancing HD preclinical research.
Collapse
|
158
|
Functional comparison of corticostriatal and thalamostriatal postsynaptic responses in striatal neurons of the mouse. Brain Struct Funct 2017; 223:1229-1253. [PMID: 29101523 DOI: 10.1007/s00429-017-1536-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/05/2017] [Indexed: 12/19/2022]
Abstract
Synaptic inputs from cortex and thalamus were compared in electrophysiologically defined striatal cell classes: direct and indirect pathways' striatal projection neurons (dSPNs and iSPNs), fast-spiking interneurons (FS), cholinergic interneurons (ChINs), and low-threshold spiking-like (LTS-like) interneurons. Our purpose was to observe whether stimulus from cortex or thalamus had equivalent synaptic strength to evoke prolonged suprathreshold synaptic responses in these neuron classes. Subthreshold responses showed that inputs from either source functionally mix up in their dendrites at similar electrotonic distances from their somata. Passive and active properties of striatal neuron classes were consistent with the previous studies. Cre-dependent adeno-associated viruses containing Td-Tomato or eYFP fluorescent proteins were used to identify target cells. Transfections with ChR2-eYFP driven by the promoters CamKII or EF1.DIO in intralaminar thalamic nuclei using Vglut-2-Cre mice, or CAMKII in the motor cortex were used to stimulate cortical or thalamic afferents optogenetically. Both field stimuli in the cortex or photostimulation of ChR2-YFP cortical fibers evoked similar prolonged suprathreshold responses in SPNs. Photostimulation of ChR2-YFP thalamic afferents also evoked suprathreshold responses. Differences previously described between responses of dSPNs and iSPNs were observed in both cases. Prolonged suprathreshold responses could also be evoked from both sources onto all other neuron classes studied. However, to evoke thalamostriatal suprathreshold responses, afferents from more than one thalamic nucleus had to be stimulated. In conclusion, both thalamus and cortex are capable to generate suprathreshold responses converging on diverse striatal cell classes. Postsynaptic properties appear to shape these responses.
Collapse
|
159
|
Purgianto A, Weinfeld ME, Wolf ME. Prolonged withdrawal from cocaine self-administration affects prefrontal cortex- and basolateral amygdala-nucleus accumbens core circuits but not accumbens GABAergic local interneurons. Addict Biol 2017; 22:1682-1694. [PMID: 27457780 DOI: 10.1111/adb.12430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/26/2016] [Accepted: 06/17/2016] [Indexed: 11/28/2022]
Abstract
Withdrawal from extended-access cocaine self-administration leads to progressive intensification ('incubation') of cocaine craving. After prolonged withdrawal (1-2 months), when craving is high, expression of incubation depends on strengthening of excitatory inputs to medium spiny neurons (MSN) of the nucleus accumbens (NAc). These excitatory inputs interact with the intra-NAc GABAergic 'microcircuit', composed of MSN axon collaterals and GABAergic interneurons. Here, we investigated whether the increased glutamatergic neurotransmission observed after prolonged withdrawal is accompanied by altered GABAergic neurotransmission, focusing on NAc core. Rats self-administered cocaine or saline (6 hours/day) and then underwent >40 days of withdrawal. First, we investigated parvalbumin positive (PV+) interneurons, GABAergic fast-spiking interneurons that regulate MSN activity. Immunohistochemical studies revealed no significant change in PV signal intensity or the number of PV+ cells in cocaine rats versus saline controls. We then screened PV and other interneuron markers using immunoblotting. We detected no changes in levels of PV, calretinin, calbindin or neuronal nitric oxide synthase. Because expression of these markers is activity dependent, our results suggest no marked changes in interneuron activity. Finally, we utilized local field potential recording, which can detect GABA-mediated alterations at the circuit level, to investigate potential changes in two circuits implicated in cocaine craving: prelimbic prefrontal cortex to NAc core and basolateral amygdala to NAc core. We detected differential adaptations in these circuits, some of which may involve GABA. Overall, our results suggest that alterations in GABA transmission may accompany incubation of cocaine craving, but they are circuit specific and less pronounced than alterations in glutamate transmission.
Collapse
Affiliation(s)
- Anthony Purgianto
- Department of Neuroscience; Rosalind Franklin University of Medicine and Science; USA
| | - Michael E. Weinfeld
- Department of Neuroscience; Rosalind Franklin University of Medicine and Science; USA
| | - Marina E. Wolf
- Department of Neuroscience; Rosalind Franklin University of Medicine and Science; USA
| |
Collapse
|
160
|
Lineage Is a Poor Predictor of Interneuron Positioning within the Forebrain. Neuron 2017; 92:45-51. [PMID: 27710788 DOI: 10.1016/j.neuron.2016.09.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/25/2016] [Accepted: 09/15/2016] [Indexed: 11/20/2022]
Abstract
This Matters Arising Response paper addresses the Sultan et al. (2016) Matters Arising paper, published concurrently in Neuron. Clonally related excitatory neurons maintain a coherent relationship following their specification and migration. Whether cortical interneurons behave similarly is a fundamental question in developmental neuroscience. In Mayer et al. (2015), we reported that sibling interneurons disperse over several millimeters, across functional and anatomical boundaries. This finding demonstrated that clonality is not predictive of an interneuron's ultimate circuit specificity. Comparing the distribution of interneurons published in Mayer et al. to a random computer simulation, Sultan et al. suggest that clonally related interneurons are "not randomly dispersed." We argue that this comparison provides no insight into the influence of clonality on interneuron development because the entire population of cortical interneurons is "not randomly dispersed" in vivo. We find that the majority of cortical interneurons are similarly distributed whether or not they share a lineal relationship. Thus, at present there is no compelling evidence that clonality influences the position or function of interneurons.
Collapse
|
161
|
Rangel-Barajas C, Rebec GV. Dysregulation of Corticostriatal Connectivity in Huntington's Disease: A Role for Dopamine Modulation. J Huntingtons Dis 2017; 5:303-331. [PMID: 27983564 PMCID: PMC5181679 DOI: 10.3233/jhd-160221] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aberrant communication between striatum, the main information processing unit of the basal ganglia, and cerebral cortex plays a critical role in the emergence of Huntington’s disease (HD), a fatal monogenetic condition that typically strikes in the prime of life. Although both striatum and cortex undergo substantial cell loss over the course of HD, corticostriatal circuits become dysfunctional long before neurons die. Understanding the dysfunction is key to developing effective strategies for treating a progressively worsening triad of motor, cognitive, and psychiatric symptoms. Cortical output neurons drive striatal activity through the release of glutamate, an excitatory amino acid. Striatal outputs, in turn, release γ-amino butyric acid (GABA) and exert inhibitory control over downstream basal ganglia targets. Ample evidence from transgenic rodent models points to dysregulation of corticostriatal glutamate transmission along with corresponding changes in striatal GABA release as underlying factors in the HD behavioral phenotype. Another contributor is dysregulation of dopamine (DA), a modulator of both glutamate and GABA transmission. In fact, pharmacological manipulation of DA is the only currently available treatment for HD symptoms. Here, we review data from animal models and human patients to evaluate the role of DA in HD, including DA interactions with glutamate and GABA within the context of dysfunctional corticostriatal circuitry.
Collapse
Affiliation(s)
| | - George V. Rebec
- Correspondence to: George V. Rebec, PhD, Department of Psychological and Brain Sciences, Program in
Neuroscience, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405-7007, USA. Tel.: +1 812 855 4832;
Fax: +1 812 855 4520; E-mail:
| |
Collapse
|
162
|
Nakajima A, Shimo Y, Uka T, Hattori N. Subthalamic nucleus and globus pallidus interna influence firing of tonically active neurons in the primate striatum through different mechanisms. Eur J Neurosci 2017; 46:2662-2673. [PMID: 28949036 PMCID: PMC5765455 DOI: 10.1111/ejn.13726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 11/30/2022]
Abstract
Both the subthalamic nucleus (STN) and the globus pallidus pars interna (GPi) are major targets for neuromodulation therapy for movement disorders. An example of such a therapy is deep brain stimulation (DBS). The striatum is the primary target for pharmacological treatment of these disorders. To further our understanding of both the functional relationships among motor nuclei and the mechanisms of therapies for movement disorders, it is important to clarify how changing the neuronal activity of one target, either by medication or by artificial electrical stimulation, affects the other connected nuclei. To investigate this point, we recorded single-unit activity from tonically active neurons (TANs), which are putative cholinergic interneurons in the striatum, of healthy monkeys (Macaca fuscata) during electrical stimulation of the STN or GPi. Both STN stimulation and GPi stimulation reduced the TAN spike rate. Local infusion of a D2 receptor antagonist in the striatum blocked the reduction in spike rate induced by STN stimulation but not that induced by GPi stimulation. Further, STN stimulation induced phasic dopamine release in the striatum as revealed by in vivo fast-scan cyclic voltammetry. These results suggest the presence of multiple, strong functional relationships among the STN, GPi, and striatum that have different pathways and imply distinct therapeutic mechanisms for STN- and GPi-DBS.
Collapse
Affiliation(s)
- Asuka Nakajima
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Yasushi Shimo
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan.,Department of Research and Therapeutics for Movement Disorders, School of Medicine, Juntendo University, Tokyo, Japan
| | - Takanori Uka
- Department of Physiology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
163
|
Burke DA, Rotstein HG, Alvarez VA. Striatal Local Circuitry: A New Framework for Lateral Inhibition. Neuron 2017; 96:267-284. [PMID: 29024654 DOI: 10.1016/j.neuron.2017.09.019] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/09/2017] [Accepted: 09/12/2017] [Indexed: 12/01/2022]
Abstract
This Perspective will examine the organization of intrastriatal circuitry, review recent findings in this area, and discuss how the pattern of connectivity between striatal neurons might give rise to the behaviorally observed synergism between the direct/indirect pathway neurons. The emphasis of this Perspective is on the underappreciated role of lateral inhibition between striatal projection cells in controlling neuronal firing and shaping the output of this circuit. We review some classic studies in combination with more recent anatomical and functional findings to lay out a framework for an updated model of the intrastriatal lateral inhibition, where we explore its contribution to the formation of functional units of processing and the integration and filtering of inputs to generate motor patterns and learned behaviors.
Collapse
Affiliation(s)
- Dennis A Burke
- Laboratory on Neurobiology of Compulsive Behaviors, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA; Department of Neuroscience, Brown University, Providence, Providence, RI 02912, USA
| | - Horacio G Rotstein
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ 07102, USA; Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA; Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
164
|
Nucleus accumbens feedforward inhibition circuit promotes cocaine self-administration. Proc Natl Acad Sci U S A 2017; 114:E8750-E8759. [PMID: 28973852 DOI: 10.1073/pnas.1707822114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The basolateral amygdala (BLA) sends excitatory projections to the nucleus accumbens (NAc) and regulates motivated behaviors partially by activating NAc medium spiny neurons (MSNs). Here, we characterized a feedforward inhibition circuit, through which BLA-evoked activation of NAc shell (NAcSh) MSNs was fine-tuned by GABAergic monosynaptic innervation from adjacent fast-spiking interneurons (FSIs). Specifically, BLA-to-NAcSh projections predominantly innervated NAcSh FSIs compared with MSNs and triggered action potentials in FSIs preceding BLA-mediated activation of MSNs. Due to these anatomical and temporal properties, activation of the BLA-to-NAcSh projection resulted in a rapid FSI-mediated inhibition of MSNs, timing-contingently dictating BLA-evoked activation of MSNs. Cocaine self-administration selectively and persistently up-regulated the presynaptic release probability of BLA-to-FSI synapses, entailing enhanced FSI-mediated feedforward inhibition of MSNs upon BLA activation. Experimentally enhancing the BLA-to-FSI transmission in vivo expedited the acquisition of cocaine self-administration. These results reveal a previously unidentified role of an FSI-embedded circuit in regulating NAc-based drug seeking and taking.
Collapse
|
165
|
Cabanas M, Bassil F, Mons N, Garret M, Cho YH. Changes in striatal activity and functional connectivity in a mouse model of Huntington's disease. PLoS One 2017; 12:e0184580. [PMID: 28934250 PMCID: PMC5608247 DOI: 10.1371/journal.pone.0184580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/26/2017] [Indexed: 11/28/2022] Open
Abstract
Hereditary Huntington’s disease (HD) is associated with progressive motor, cognitive and psychiatric symptoms. A primary consequence of the HD mutation is the preferential loss of medium spiny projection cells with relative sparing of local interneurons in the striatum. In addition, among GABAergic striatal projection cells, indirect pathway cells expressing D2 dopamine receptors are lost earlier than direct pathway cells expressing D1 receptors. To test in vivo the functional integrity of direct and indirect pathways as well as interneurons in the striatum of male R6/1 transgenic mice, we assessed their c-Fos expression levels induced by a striatal-dependent cognitive task and compared them with age-matched wild-type littermates. We found a significant increase of c-Fos+ nuclei in the dorsomedial striatum, and this only at 2 months, when our HD mouse model is still pre-motor symptomatic, the increase disappearing with symptom manifestation. Contrary to our expectation, the indirect pathway projection neurons did not undergo any severer changes of c-Fos expression regardless of age in R6/1 mice. We also found a decreased activation of interneurons that express parvalbumin in the dorsomedial striatum at both presymptomatic and symptomatic ages. Finally, analysis of c-Fos expression in extended brain regions involved in the cognitive learning used in our study, demonstrates, throughout ages studied, changes in the functional connectivity between regions in the transgenic mice. Further analysis of the cellular and molecular changes underlying the transient striatal hyperactivity in the HD mice may help to understand the mechanisms involved in the disease onset.
Collapse
Affiliation(s)
- Magali Cabanas
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, CNRS UMR 5287, Pessac, France
- University of Bordeaux, Bordeaux, France
| | - Fares Bassil
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, CNRS UMR 5287, Pessac, France
- University of Bordeaux, Bordeaux, France
| | - Nicole Mons
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, CNRS UMR 5287, Pessac, France
- University of Bordeaux, Bordeaux, France
| | - Maurice Garret
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, CNRS UMR 5287, Pessac, France
- University of Bordeaux, Bordeaux, France
- * E-mail: (MG); (YHC)
| | - Yoon H. Cho
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, CNRS UMR 5287, Pessac, France
- University of Bordeaux, Bordeaux, France
- * E-mail: (MG); (YHC)
| |
Collapse
|
166
|
O'Hare JK, Li H, Kim N, Gaidis E, Ade K, Beck J, Yin H, Calakos N. Striatal fast-spiking interneurons selectively modulate circuit output and are required for habitual behavior. eLife 2017; 6:26231. [PMID: 28871960 PMCID: PMC5584985 DOI: 10.7554/elife.26231] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022] Open
Abstract
Habit formation is a behavioral adaptation that automates routine actions. Habitual behavior correlates with broad reconfigurations of dorsolateral striatal (DLS) circuit properties that increase gain and shift pathway timing. The mechanism(s) for these circuit adaptations are unknown and could be responsible for habitual behavior. Here we find that a single class of interneuron, fast-spiking interneurons (FSIs), modulates all of these habit-predictive properties. Consistent with a role in habits, FSIs are more excitable in habitual mice compared to goal-directed and acute chemogenetic inhibition of FSIs in DLS prevents the expression of habitual lever pressing. In vivo recordings further reveal a previously unappreciated selective modulation of SPNs based on their firing patterns; FSIs inhibit most SPNs but paradoxically promote the activity of a subset displaying high fractions of gamma-frequency spiking. These results establish a microcircuit mechanism for habits and provide a new example of how interneurons mediate experience-dependent behavior. From biting fingernails to the daily commute, habits are sets of actions that can be completed almost without thinking and that are difficult to change or stop. Behavioral neuroscientists refer to habits as “stimulus-response” behaviors, and know that forming a new habit requires a region deep within the brain called the dorsolateral striatum. Indeed, in this region, the outgoing neurons – which make up 95% of the cells - respond differently to incoming signals in mice that have learned habits compared to non-habitual mice. However a question remained: what exactly was producing these differences? O’Hare et al. have now found, unexpectedly, that the answer resides not in the 95% of outgoing neurons, but rather in a rare type of cell known as the fast-spiking interneuron. This cell is connected to many others and it appears to act like a conductor, orchestrating the previously identified changes in the output neurons. These findings were made using mice that had been trained to press a lever for a sugar pellet reward. Habit was measured by how long mice kept pressing even if they had just been allowed to eat their fill of pellets and the test lever was no longer dispensing pellets. Habitual mice continue to press the lever in this circumstance, while other mice do not. O’Hare et al. found that inactivating the “conductor” cell made the output neurons respond in the opposite way to how they normally respond in habitual mice. Further experiments showed that fast-spiking interneurons were also more easily activated in habitual mice. To test whether this putative “conductor” cell was necessary for habitual behaviors, a technique known as chemogenetics was used to turn down its activity in habitual mice. Indeed, reducing activity in the conductor cell blocked the habitual behavior. While some habits are a helpful and economical way to get through daily life, habits are also thought to be corrupted in a number of diseases such as neurodegenerative diseases, addictions and compulsions. Identifying this specific, yet rare, cell as a critical part of maintaining habits points out a new target to consider for therapies. Further work is needed before such treatments might become available to treat habit-related disorders; though O'Hare et al. are now taking steps in this direction by trying to work out how the fast-spiking interneuron changes its own activity when a habit is formed.
Collapse
Affiliation(s)
- Justin K O'Hare
- Department of Neurobiology, Duke University Medical Center, Durham, United States.,Department of Neurology, Duke University Medical Center, Durham, United States
| | - Haofang Li
- Department of Psychology and Neuroscience, Duke University, Durham, United States
| | - Namsoo Kim
- Department of Psychology and Neuroscience, Duke University, Durham, United States
| | - Erin Gaidis
- Department of Psychology and Neuroscience, Duke University, Durham, United States
| | - Kristen Ade
- Department of Neurobiology, Duke University Medical Center, Durham, United States.,Department of Neurology, Duke University Medical Center, Durham, United States
| | - Jeff Beck
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Henry Yin
- Department of Psychology and Neuroscience, Duke University, Durham, United States
| | - Nicole Calakos
- Department of Neurobiology, Duke University Medical Center, Durham, United States.,Department of Neurology, Duke University Medical Center, Durham, United States
| |
Collapse
|
167
|
Miyamoto Y, Iegaki N, Fu K, Ishikawa Y, Sumi K, Azuma S, Uno K, Muramatsu SI, Nitta A. Striatal N-Acetylaspartate Synthetase Shati/Nat8l Regulates Depression-Like Behaviors via mGluR3-Mediated Serotonergic Suppression in Mice. Int J Neuropsychopharmacol 2017; 20:1027-1035. [PMID: 29020418 PMCID: PMC5716104 DOI: 10.1093/ijnp/pyx078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Several clinical studies have suggested that N-acetylaspartate and N-acetylaspartylglutamate levels in the human brain are associated with various psychiatric disorders, including major depressive disorder. We have previously identified Shati/Nat8l, an N-acetyltransferase, in the brain using an animal model of psychosis. Shati/Nat8l synthesizes N-acetylaspartate from L-aspartate and acetyl-coenzyme A. Further, N-acetylaspartate is converted into N-acetylaspartylglutamate, a neurotransmitter for metabotropic glutamate receptor 3. METHODS Because Shati/Nat8l mRNA levels were increased in the dorsal striatum of mice following the exposure to forced swimming stress, Shati/Nat8l was overexpressed in mice by the microinjection of adeno-associated virus vectors containing Shati/Nat8l gene into the dorsal striatum (dS-Shati/Nat8l mice). The dS-Shati/Nat8l mice were further assessed using behavioral and neurochemical tests. RESULTS The dS-Shati/Nat8l mice exhibited behavioral despair in the forced swimming and tail suspension tests and social withdrawal in the 3-chamber social interaction test. These depression-like behaviors were attenuated by the administration of a metabotropic glutamate receptor 2/3 antagonist and a selective serotonin reuptake inhibitor. Furthermore, the metabolism of N-acetylaspartate to N-acetylaspartylglutamate was decreased in the dorsal striatum of the dS-Shati/Nat8l mice. This finding corresponded with the increased expression of glutamate carboxypeptidase II, an enzyme that metabolizes N-acetylaspartylglutamate present in the extracellular space. Extracellular serotonin levels were lower in the dorsal striatum of the dS-Shati/Nat8l and normal mice that were repeatedly administered a selective glutamate carboxypeptidase II inhibitor. CONCLUSIONS Our findings indicate that the striatal expression of N-acetylaspartate synthetase Shati/Nat8l plays a role in major depressive disorder via the metabotropic glutamate receptor 3-mediated functional control of the serotonergic neuronal system.
Collapse
Affiliation(s)
- Yoshiaki Miyamoto
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta)
| | - Noriyuki Iegaki
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta)
| | - Kequan Fu
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta)
| | - Yudai Ishikawa
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta)
| | - Kazuyuki Sumi
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta)
| | - Sota Azuma
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta)
| | - Kyosuke Uno
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta)
| | - Shin-ichi Muramatsu
- Division of Neurology, Jichi Medical University, Shimotsuke, Japan (Dr Muramatsu),Center for Gene & Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (Dr Muramatsu)
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta),Correspondence: Atsumi Nitta, PhD, Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan ()
| |
Collapse
|
168
|
Ben-Ari Y. NKCC1 Chloride Importer Antagonists Attenuate Many Neurological and Psychiatric Disorders. Trends Neurosci 2017; 40:536-554. [PMID: 28818303 DOI: 10.1016/j.tins.2017.07.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/03/2017] [Accepted: 07/10/2017] [Indexed: 12/23/2022]
Abstract
In physiological conditions, adult neurons have low intracellular Cl- [(Cl-)I] levels underlying the γ-aminobutyric acid (GABA)ergic inhibitory drive. In contrast, neurons have high (Cl-)I levels and excitatory GABA actions in a wide range of pathological conditions including spinal cord lesions, chronic pain, brain trauma, cerebrovascular infarcts, autism, Rett and Down syndrome, various types of epilepsies, and other genetic or environmental insults. The diuretic highly specific NKCC1 chloride importer antagonist bumetanide (PubChem CID: 2461) efficiently restores low (Cl-)I levels and attenuates many disorders in experimental conditions and in some clinical trials. Here, I review the mechanisms of action, therapeutic effects, promises, and pitfalls of bumetanide.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- New INMED, Aix-Marseille University, Campus Scientifique de Luminy, Marseilles, France.
| |
Collapse
|
169
|
Abdurakhmanova S, Chary K, Kettunen M, Sierra A, Panula P. Behavioral and stereological characterization of Hdc KO mice: Relation to Tourette syndrome. J Comp Neurol 2017; 525:3476-3487. [PMID: 28681514 DOI: 10.1002/cne.24279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 01/03/2023]
Abstract
A premature termination codon in the human histidine decarboxylase (Hdc) gene has been identified in a family suffering from Guilles de la Tourette syndrome (GTS). In the current study we investigated if mice lacking the histamine producing enzyme HDC share the morphological and cytological phenotype with GTS patients by using magnetic resonance (MRI) and diffusion tensor imaging (DTI), unbiased stereology and immunohistochemistry. Behavior of Hdc knock-out (Hdc KO) mice was assessed in an open field test. The results of stereological, volumetric and DTI analysis measurements showed no significant differences between control and Hdc KO mice. The numbers and distribution of GABAergic parvalbumin or nitric oxide-expressing and cholinergic interneurons were normal in Hdc KO mice. Cortical morphology and layering in adult Hdc KO mice were also preserved. In open field test Hdc KO mice showed impaired exploratory activity and habituation when introduced to novel environment. Our results indicate that Hdc deficiency in mice does not disturb the development of striatal and cortical interneurons and does not lead to the morphological and cytological phenotypes characterized by humans with GTS. Nevertheless, histamine deficiency leads to behavioral alterations probably due to neurotransmitter dysbalance on the level of the striatum.
Collapse
Affiliation(s)
| | - Karthik Chary
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Kettunen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Alejandra Sierra
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pertti Panula
- Department of Anatomy and Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
170
|
Differential Encoding of Time by Prefrontal and Striatal Network Dynamics. J Neurosci 2017; 37:854-870. [PMID: 28123021 DOI: 10.1523/jneurosci.1789-16.2016] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 11/21/2022] Open
Abstract
Telling time is fundamental to many forms of learning and behavior, including the anticipation of rewarding events. Although the neural mechanisms underlying timing remain unknown, computational models have proposed that the brain represents time in the dynamics of neural networks. Consistent with this hypothesis, changing patterns of neural activity dynamically in a number of brain areas-including the striatum and cortex-has been shown to encode elapsed time. To date, however, no studies have explicitly quantified and contrasted how well different areas encode time by recording large numbers of units simultaneously from more than one area. Here, we performed large-scale extracellular recordings in the striatum and orbitofrontal cortex of mice that learned the temporal relationship between a stimulus and a reward and reported their response with anticipatory licking. We used a machine-learning algorithm to quantify how well populations of neurons encoded elapsed time from stimulus onset. Both the striatal and cortical networks encoded time, but the striatal network outperformed the orbitofrontal cortex, a finding replicated both in simultaneously and nonsimultaneously recorded corticostriatal datasets. The striatal network was also more reliable in predicting when the animals would lick up to ∼1 s before the actual lick occurred. Our results are consistent with the hypothesis that temporal information is encoded in a widely distributed manner throughout multiple brain areas, but that the striatum may have a privileged role in timing because it has a more accurate "clock" as it integrates information across multiple cortical areas. SIGNIFICANCE STATEMENT The neural representation of time is thought to be distributed across multiple functionally specialized brain structures, including the striatum and cortex. However, until now, the neural code for time has not been compared quantitatively between these areas. Here, we performed large-scale recordings in the striatum and orbitofrontal cortex of mice trained on a stimulus-reward association task involving a delay period and used a machine-learning algorithm to quantify how well populations of simultaneously recorded neurons encoded elapsed time from stimulus onset. We found that, although both areas encoded time, the striatum consistently outperformed the orbitofrontal cortex. These results suggest that the striatum may refine the code for time by integrating information from multiple inputs.
Collapse
|
171
|
Apicella P. The role of the intrinsic cholinergic system of the striatum: What have we learned from TAN recordings in behaving animals? Neuroscience 2017; 360:81-94. [PMID: 28768155 DOI: 10.1016/j.neuroscience.2017.07.060] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/28/2022]
Abstract
Cholinergic interneurons provide rich local innervation of the striatum and play an important role in controlling behavior, as evidenced by the variety of movement and psychiatric disorders linked to disrupted striatal cholinergic transmission. Much progress has been made in recent years regarding our understanding of how these interneurons contribute to the processing of information in the striatum. In particular, investigation of the activity of presumed striatal cholinergic interneurons, identified as tonically active neurons or TANs in behaving animals, has pointed to their role in the signaling and learning of the motivational relevance of environmental stimuli. Although the bulk of this work has been conducted in monkeys, several studies have also been carried out in behaving rats, but information remains rather disparate across studies and it is still questionable whether rodent TANs correspond to TANs described in monkeys. Consequently, our current understanding of the function of cholinergic transmission in the striatum is challenged by the rapidly growing, but often confusing literature on the relationship between TAN activity and specific behaviors. As regards the precise nature of the information conveyed by the cholinergic TANs, a recent influential view emphasized that these local circuit neurons may play a special role in the processing of contextual information that is important for reinforcement learning and selection of appropriate actions. This review provides a summary of recent progress in TAN physiology from which it is proposed that striatal cholinergic interneurons are crucial elements for flexible switching of behaviors under changing environmental conditions.
Collapse
Affiliation(s)
- Paul Apicella
- Institut de Neurosciences de la Timone UMR 7289, Aix Marseille Université, CNRS, 13385 Marseille, France.
| |
Collapse
|
172
|
Background activity and visual responsiveness of caudate nucleus neurons in halothane anesthetized and in awake, behaving cats. Neuroscience 2017; 356:182-192. [PMID: 28546109 DOI: 10.1016/j.neuroscience.2017.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 11/20/2022]
Abstract
This study focuses on the important question whether brain activity recorded from anesthetized, paralyzed animals is comparable to that recorded from awake, behaving ones. We compared neuronal activity recorded from the caudate nucleus (CN) of two halothane-anesthetized, paralyzed and two awake, behaving cats. In both models, extracellular recordings were made from the CN during static and dynamic visual stimulation. The anesthesia was maintained during the recordings by a gaseous mixture of air and halothane (1.0%). The behaving animals were trained to perform a visual fixation task. Based on their electrophysiological properties, the recorded CN neurons were separated into three different classes: phasically active (PANs), high firing (HFNs), and tonically active (TANs) neurons. Halothane anesthesia significantly decreased the background activity of the CN neurons in all three classes. The anesthesia had the most remarkable suppressive effect on PANs, where the background activity was consistently under 1 spike/s. The analysis of these responses was almost impossible due to the extremely low activity. The evoked responses during both static and dynamic visual stimulation were obvious in the behaving cats. On the other hand, only weak visual responses were found in some neurons of halothane anesthetized cats. These results show that halothane gas anesthesia has a marked suppressive effect on the feline CN. We suggest that for the purposes of the visual and related multisensory/sensorimotor electrophysiological exploration of the CN, behaving animal models are preferable over anesthetized ones.
Collapse
|
173
|
Galinsky R, Davidson JO, Lear CA, Bennet L, Green CR, Gunn AJ. Connexin hemichannel blockade improves survival of striatal GABA-ergic neurons after global cerebral ischaemia in term-equivalent fetal sheep. Sci Rep 2017; 7:6304. [PMID: 28740229 PMCID: PMC5524909 DOI: 10.1038/s41598-017-06683-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/15/2017] [Indexed: 11/17/2022] Open
Abstract
Basal ganglia injury at term remains a major cause of disability, such as cerebral palsy. In this study we tested the hypotheses that blockade of astrocytic connexin hemichannels with a mimetic peptide would improve survival of striatal phenotypic neurons after global cerebral ischaemia in term-equivalent fetal sheep, and that neuronal survival would be associated with electrophysiological recovery. Fetal sheep (0.85 gestation) were randomly assigned to receive a short or long (1 or 25 h) intracerebroventricular infusion of a mimetic peptide or vehicle, starting 90 minutes after 30 minutes of cerebral ischaemia. Sheep were killed 7 days after ischaemia. Cerebral ischaemia was associated with reduced numbers of calbindin-28k, calretinin, parvalbumin and GAD positive striatal neurons (P < 0.05 ischaemia + vehicle, n = 6 vs. sham ischaemia, n = 6) but not ChAT or nNOS positive neurons. Short infusion of peptide (n = 6) did not significantly improve survival of any striatal phenotype. Long infusion of peptide (n = 6) was associated with increased survival of calbindin-28k, calretinin, parvalbumin and GAD positive neurons (P < 0.05 vs. ischaemia + vehicle). Neurophysiological recovery was associated with improved survival of calbindin-28k, calretinin and parvalbumin positive striatal neurons (P < 0.05 for all). In conclusion, connexin hemichannel blockade after cerebral ischaemia in term-equivalent fetal sheep improves survival of striatal GABA-ergic neurons.
Collapse
Affiliation(s)
- Robert Galinsky
- Department of Physiology, The University of Auckland, Auckland, New Zealand.,The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
174
|
Activation of Glutamatergic Fibers in the Anterior NAc Shell Modulates Reward Activity in the aNAcSh, the Lateral Hypothalamus, and Medial Prefrontal Cortex and Transiently Stops Feeding. J Neurosci 2017; 36:12511-12529. [PMID: 27974611 DOI: 10.1523/jneurosci.1605-16.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/09/2016] [Accepted: 10/14/2016] [Indexed: 01/08/2023] Open
Abstract
Although the release of mesoaccumbal dopamine is certainly involved in rewarding responses, recent studies point to the importance of the interaction between it and glutamate. One important component of this network is the anterior nucleus accumbens shell (aNAcSh), which sends GABAergic projections into the lateral hypothalamus (LH) and receives extensive glutamatergic inputs from, among others, the medial prefrontal cortex (mPFC). The effects of glutamatergic activation of aNAcSh on the ingestion of rewarding stimuli as well as its effect in the LH and mPFC are not well understood. Therefore, we studied behaving mice that express a light-gated channel (ChR2) in glutamatergic fibers in their aNAcSh while recording from neurons in the aNAcSh, or mPFC or LH. In Thy1-ChR2, but not wild-type, mice activation of aNAcSh fibers transiently stopped the mice licking for sucrose or an empty sipper. Stimulation of aNAcSh fibers both activated and inhibited single-unit responses aNAcSh, mPFC, and LH, in a manner that maintains firing rate homeostasis. One population of licking-inhibited pMSNs in the aNAcSh was also activated by optical stimulation, suggesting their relevance in the cessation of feeding. A rewarding aspect of stimulation of glutamatergic inputs was found when the Thy1-ChR2 mice learned to nose-poke to self-stimulate these inputs, indicating that bulky stimulation of these fibers are rewarding in the sense of wanting. Stimulation of excitatory afferents evoked both monosynaptic and polysynaptic responses distributed in the three recorded areas. In summary, we found that activation of glutamatergic aNAcSh fibers is both rewarding and transiently inhibits feeding. SIGNIFICANCE STATEMENT We have established that the activation of glutamatergic fibers in the anterior nucleus accumbens shell (aNAcSh) transiently stops feeding and yet, because mice self-stimulate, is rewarding in the sense of wanting. Moreover, we have characterized single-unit responses of distributed components of a hedonic network (comprising the aNAcSh, medial prefrontal cortex, and lateral hypothalamus) recruited by activation of glutamatergic aNAcSh afferents that are involved in encoding a positive valence signal important for the wanting of a reward and that transiently stops ongoing consummatory actions, such as licking.
Collapse
|
175
|
Michalski D, Hofmann S, Pitsch R, Grosche J, Härtig W. Neurovascular Specifications in the Alzheimer-Like Brain of Mice Affected by Focal Cerebral Ischemia: Implications for Future Therapies. J Alzheimers Dis 2017; 59:655-674. [DOI: 10.3233/jad-170185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Sarah Hofmann
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Roman Pitsch
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | | | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
176
|
Gamma Oscillations in the Rat Ventral Striatum Originate in the Piriform Cortex. J Neurosci 2017; 37:7962-7974. [PMID: 28716962 DOI: 10.1523/jneurosci.2944-15.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 06/15/2017] [Accepted: 07/08/2017] [Indexed: 01/08/2023] Open
Abstract
Local field potentials (LFPs) recorded from the human and rodent ventral striatum (vStr) exhibit prominent, behaviorally relevant gamma-band oscillations. These oscillations are related to local spiking activity and transiently synchronize with anatomically related areas, suggesting a possible role in organizing vStr activity. However, the origin of vStr gamma is unknown. We recorded vStr gamma oscillations across a 1.4 mm2 grid spanned by 64 recording electrodes as male rats rested and foraged for rewards, revealing a highly consistent power gradient originating in the adjacent piriform cortex. Phase differences across the vStr were consistently small (<15°) and current source density analysis further confirmed the absence of local sink-source pairs in the vStr. Reversible occlusions of the ipsilateral (but not contralateral) nostril, known to abolish gamma oscillations in the piriform cortex, strongly reduced vStr gamma power and the occurrence of transient gamma-band events. These results imply that local circuitry is not a major contributor to gamma oscillations in the vStr LFP and that piriform cortex is an important driver of gamma-band oscillations in the vStr and associated limbic areas.SIGNIFICANCE STATEMENT The ventral striatum (vStr) is an area of anatomical convergence in circuits underlying motivated behavior, but it remains unclear how its inputs from different sources interact. A major proposal about how neural circuits may switch dynamically between convergent inputs is through temporal organization reflected in local field potential (LFP) oscillations. Our results show that, in the rat, the mechanisms controlling gamma-band oscillations in the vStr LFP are primarily located in the in the adjacent piriform cortex rather than in the vStr itself, providing a novel interpretation of previous rodent work on gamma oscillations in the vStr and related circuits and an important consideration for future work seeking to use oscillations in these areas as biomarkers for behavioral and neurological disorders.
Collapse
|
177
|
Npas1+ Pallidal Neurons Target Striatal Projection Neurons. J Neurosci 2017; 36:5472-88. [PMID: 27194328 DOI: 10.1523/jneurosci.1720-15.2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 04/03/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Compelling evidence demonstrates that the external globus pallidus (GPe) plays a key role in processing sensorimotor information. An anatomical projection from the GPe to the dorsal striatum has been described for decades. However, the cellular target and functional impact of this projection remain unknown. Using cell-specific transgenic mice, modern monosynaptic tracing techniques, and optogenetics-based mapping, we discovered that GPe neurons provide inhibitory inputs to direct and indirect pathway striatal projection neurons (SPNs). Our results indicate that the GPe input to SPNs arises primarily from Npas1-expressing neurons and is strengthened in a chronic Parkinson's disease (PD) model. Alterations of the GPe-SPN input in a PD model argue for the critical position of this connection in regulating basal ganglia motor output and PD symptomatology. Finally, chemogenetic activation of Npas1-expressing GPe neurons suppresses motor output, arguing that strengthening of the GPe-SPN connection is maladaptive and may underlie the hypokinetic symptoms in PD. SIGNIFICANCE STATEMENT An anatomical projection from the pallidum to the striatum has been described for decades, but little is known about its connectivity pattern. The authors dissect the presynaptic and postsynaptic neurons involved in this projection, and show its cell-specific remodeling and strengthening in parkinsonian mice. Chemogenetic activation of Npas1(+) pallidal neurons that give rise to the principal pallidostriatal projection increases the time that the mice spend motionless. This argues that maladaptive strengthening of this connection underlies the paucity of volitional movements, which is a hallmark of Parkinson's disease.
Collapse
|
178
|
Kosubek-Langer J, Schulze L, Scharff C. Maturation, Behavioral Activation, and Connectivity of Adult-Born Medium Spiny Neurons in a Striatal Song Nucleus. Front Neurosci 2017. [PMID: 28638318 PMCID: PMC5461290 DOI: 10.3389/fnins.2017.00323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neurogenesis continues in the adult songbird brain. Many telencephalic song control regions incorporate new neurons into their existing circuits in adulthood. One song nucleus that receives many new neurons is Area X. Because this striatal region is crucial for song learning and song maintenance the recruitment of new neurons into Area X could influence these processes. As an entry point into addressing this possibility, we investigated the maturation and connectivity within the song circuit and behavioral activation of newly generated Area X neurons. Using BrdU birth dating and virally mediated GFP expression we followed adult-generated neurons from their place of birth in the ventricle to their place of incorporation into Area X. We show that newborn neurons receive glutamatergic input from pallial/cortical song nuclei. Additionally, backfills revealed that the new neurons connect to pallidal-like projection neurons that innervate the thalamus. Using in situ hybridization, we found that new neurons express the mRNA for D1- and D2-type dopamine receptors. Employing DARPP-32 (dopamine and cAMP-regulated phosphoprotein of 32 kDa) and EGR-1 (early growth response protein 1) as markers for neural maturation and activation, we established that at 42 days after labeling approximately 80% of new neurons were mature medium spiny neurons (MSNs) and could be activated by singing behavior. Finally, we compared the MSN density in Area X of birds up to seven years of age and found a significant increase with age, indicating that new neurons are constantly added to the nucleus. In summary, we provide evidence that newborn MSNs in Area X constantly functionally integrate into the circuit and are thus likely to play a role in the maintenance and regulation of adult song.
Collapse
Affiliation(s)
| | - Lydia Schulze
- Animal Behavior, Freie Universität BerlinBerlin, Germany
| | | |
Collapse
|
179
|
Assous M, Kaminer J, Shah F, Garg A, Koós T, Tepper JM. Differential processing of thalamic information via distinct striatal interneuron circuits. Nat Commun 2017; 8:15860. [PMID: 28604688 PMCID: PMC5477498 DOI: 10.1038/ncomms15860] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/03/2017] [Indexed: 11/23/2022] Open
Abstract
Recent discoveries of striatal GABAergic interneurons require a new conceptualization of the organization of intrastriatal circuitry and their cortical and thalamic inputs. We investigated thalamic inputs to the two populations of striatal neuropeptide Y (NPY) interneurons, plateau low threshold spike (PLTS) and NPY-neurogliaform (NGF) cells. Optogenetic activation of parafascicular inputs evokes suprathreshold monosynaptic glutamatergic excitation in NGF interneurons and a disynaptic, nicotinic excitation through cholinergic interneurons. In contrast, the predominant response of PLTS interneurons is a disynaptic inhibition dependent on thalamic activation of striatal tyrosine hydroxylase interneurons (THINs). In contrast, THINs do not innervate NGF or fast spiking interneurons, showing significant specificity in THINs outputs. Chemospecific ablation of THINs impairs prepulse inhibition of the acoustic startle response suggesting an important behavioural role of this disynaptic pathway. Our findings demonstrate that the impact of the parafascicular nucleus on striatal activity and some related behaviour critically depend on synaptic interactions within interneuronal circuits. The responses of striatal GABAergic interneurons to thalamic inputs are not well characterised. Here, the authors demonstrate that complex intrastriatal circuitry is responsible for thalamic-evoked monosynaptic and disynaptic excitation in NPY-NGF interneurons but a disynaptic inhibition in the NPY-PLTS.
Collapse
Affiliation(s)
- Maxime Assous
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102, USA
| | - Jaime Kaminer
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102, USA
| | - Fulva Shah
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102, USA
| | - Arpan Garg
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102, USA
| | - Tibor Koós
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102, USA
| | - James M Tepper
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102, USA
| |
Collapse
|
180
|
Morigaki R, Goto S. Striatal Vulnerability in Huntington's Disease: Neuroprotection Versus Neurotoxicity. Brain Sci 2017; 7:brainsci7060063. [PMID: 28590448 PMCID: PMC5483636 DOI: 10.3390/brainsci7060063] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 01/18/2023] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat encoding an abnormally long polyglutamine tract (PolyQ) in the huntingtin (Htt) protein. In HD, striking neuropathological changes occur in the striatum, including loss of medium spiny neurons and parvalbumin-expressing interneurons accompanied by neurodegeneration of the striosome and matrix compartments, leading to progressive impairment of reasoning, walking and speaking abilities. The precise cause of striatal pathology in HD is still unknown; however, accumulating clinical and experimental evidence suggests multiple plausible pathophysiological mechanisms underlying striatal neurodegeneration in HD. Here, we review and discuss the characteristic neurodegenerative patterns observed in the striatum of HD patients and consider the role of various huntingtin-related and striatum-enriched proteins in neurotoxicity and neuroprotection.
Collapse
Affiliation(s)
- Ryoma Morigaki
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima University, Tokushima 770-8503, Japan.
- Department of Neurodegenerative Disorders Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
| | - Satoshi Goto
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima University, Tokushima 770-8503, Japan.
- Department of Neurodegenerative Disorders Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
| |
Collapse
|
181
|
Villalba RM, Smith Y. Loss and remodeling of striatal dendritic spines in Parkinson's disease: from homeostasis to maladaptive plasticity? J Neural Transm (Vienna) 2017; 125:431-447. [PMID: 28540422 DOI: 10.1007/s00702-017-1735-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/10/2017] [Indexed: 12/20/2022]
Abstract
In Parkinson's disease (PD) patients and animal models of PD, the progressive degeneration of the nigrostriatal dopamine (DA) projection leads to two major changes in the morphology of striatal projection neurons (SPNs), i.e., a profound loss of dendritic spines and the remodeling of axospinous glutamatergic synapses. Striatal spine loss is an early event tightly associated with the extent of striatal DA denervation, but not the severity of parkinsonian motor symptoms, suggesting that striatal spine pruning might be a form of homeostatic plasticity that compensates for the loss of striatal DA innervation and the resulting dysregulation of corticostriatal glutamatergic transmission. On the other hand, the remodeling of axospinous corticostriatal and thalamostriatal glutamatergic synapses might represent a form of late maladaptive plasticity that underlies changes in the strength and plastic properties of these afferents and the resulting increased firing and bursting activity of striatal SPNs in the parkinsonian state. There is also evidence that these abnormal synaptic connections might contribute to the pathophysiology of L-DOPA-induced dyskinesia. Despite the significant advances made in this field over the last thirty years, many controversial issues remain about the striatal SPN subtypes affected, the role of spine changes in the altered activity of SPNs in the parkinsonisn state, and the importance of striatal spine plasticity in the pathophysiology of L-DOPA-induced dyskinesia. In this review, we will examine the current state of knowledge of these issues, discuss the limitations of the animal models used to address some of these questions, and assess the relevance of data from animal models to the human-diseased condition.
Collapse
Affiliation(s)
- Rosa M Villalba
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA. .,UDALL Center of Excellence for Parkinson's Disease, Emory University, Atlanta, GA, USA.
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.,UDALL Center of Excellence for Parkinson's Disease, Emory University, Atlanta, GA, USA.,Department of Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|
182
|
Nakamura T, Nagata M, Yagi T, Graybiel AM, Yamamori T, Kitsukawa T. Learning new sequential stepping patterns requires striatal plasticity during the earliest phase of acquisition. Eur J Neurosci 2017; 45:901-911. [PMID: 28177160 PMCID: PMC5378612 DOI: 10.1111/ejn.13537] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 11/28/2022]
Abstract
Animals including humans execute motor behavior to reach their goals. For this purpose, they must choose correct strategies according to environmental conditions and shape many parameters of their movements, including their serial order and timing. To investigate the neurobiology underlying such skills, we used a multi-sensor equipped, motor-driven running wheel with adjustable sequences of foothold pegs on which mice ran to obtain water reward. When the peg patterns changed from a familiar pattern to a new pattern, the mice had to learn and implement new locomotor strategies in order to receive reward. We found that the accuracy of stepping and the achievement of water reward improved with the new learning after changes in the peg-pattern, and c-Fos expression levels assayed after the first post-switch session were high in both dorsolateral striatum and motor cortex, relative to post-switch plateau levels. Combined in situ hybridization and immunohistochemistry of striatal sections demonstrated that both enkephalin-positive (indirect pathway) neurons and substance P-positive (direct pathway) neurons were recruited specifically after the pattern switches, as were interneurons expressing neuronal nitric oxide synthase. When we blocked N-methyl-D-aspartate (NMDA) receptors in the dorsolateral striatum by injecting the NMDA receptor antagonist, D-2-amino-5-phosphonopentanoic acid (AP5), we found delays in early post-switch improvement in performance. These findings suggest that the dorsolateral striatum is activated on detecting shifts in environment to adapt motor behavior to the new context via NMDA-dependent plasticity, and that this plasticity may underlie forming and breaking skills and habits as well as to behavioral difficulties in clinical disorders.
Collapse
Affiliation(s)
- Toru Nakamura
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Division of Brain Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Masatoshi Nagata
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Ann M. Graybiel
- Department of Brain and Cognitive Sciences and the McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Laboratory of Molecular Analysis for Higher Brain Function, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Takashi Kitsukawa
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Division of Brain Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Brain and Cognitive Sciences and the McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
183
|
Lee K, Holley SM, Shobe JL, Chong NC, Cepeda C, Levine MS, Masmanidis SC. Parvalbumin Interneurons Modulate Striatal Output and Enhance Performance during Associative Learning. Neuron 2017; 93:1451-1463.e4. [PMID: 28334608 PMCID: PMC5386608 DOI: 10.1016/j.neuron.2017.02.033] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/09/2017] [Accepted: 02/15/2017] [Indexed: 01/13/2023]
Abstract
The prevailing view is that striatal parvalbumin (PV)-positive interneurons primarily function to downregulate medium spiny projection neuron (MSN) activity via monosynaptic inhibitory signaling. Here, by combining in vivo neural recordings and optogenetics, we unexpectedly find that both suppressing and over-activating PV cells attenuates spontaneous MSN activity. To account for this, we find that, in addition to monosynaptic coupling, PV-MSN interactions are mediated by a competing disynaptic inhibitory circuit involving a variety of neuropeptide Y-expressing interneurons. Next we use optogenetic and chemogenetic approaches to show that dorsolateral striatal PV interneurons influence the initial expression of reward-conditioned responses but that their contribution to performance declines with experience. Consistent with this, we observe with large-scale recordings in behaving animals that the relative contribution of PV cells on MSN activity diminishes with training. Together, this work provides a possible mechanism by which PV interneurons modulate striatal output and selectively enhance performance early in learning.
Collapse
Affiliation(s)
- Kwang Lee
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sandra M Holley
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Justin L Shobe
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Natalie C Chong
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sotiris C Masmanidis
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
184
|
Circadian Plasticity of Mammalian Inhibitory Interneurons. Neural Plast 2017; 2017:6373412. [PMID: 28367335 PMCID: PMC5358450 DOI: 10.1155/2017/6373412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/15/2017] [Accepted: 02/19/2017] [Indexed: 12/11/2022] Open
Abstract
Inhibitory interneurons participate in all neuronal circuits in the mammalian brain, including the circadian clock system, and are indispensable for their effective function. Although the clock neurons have different molecular and electrical properties, their main function is the generation of circadian oscillations. Here we review the circadian plasticity of GABAergic interneurons in several areas of the mammalian brain, suprachiasmatic nucleus, neocortex, hippocampus, olfactory bulb, cerebellum, striatum, and in the retina.
Collapse
|
185
|
Nguyen MD, Wang Y, Ganesana M, Venton BJ. Transient Adenosine Release Is Modulated by NMDA and GABA B Receptors. ACS Chem Neurosci 2017; 8:376-385. [PMID: 28071892 DOI: 10.1021/acschemneuro.6b00318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adenosine is a neuroprotective agent that modulates neurotransmission and is modulated by other neurotransmitters. Spontaneous, transient adenosine is a recently discovered mode of signaling where adenosine is released and cleared from the extracellular space quickly, in less than three seconds. Spontaneous adenosine release is regulated by adenosine A1 and A2a receptors, but regulation by other neurotransmitter receptors has not been studied. Here, we examined the effect of glutamate and GABA receptors on the concentration and frequency of spontaneous, transient adenosine release by measuring adenosine with fast-scan cyclic voltammetry in the rat caudate-putamen. The glutamate NMDA antagonist, 3-(R-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 6.25 mg/kg i.p.), increased the frequency of adenosine transients and the concentration of individual transients, but NMDA (agonist, 50 mg/kg, i.p.) did not change the frequency. In contrast, antagonists of other glutamate receptors had no effect on the frequency or concentration of transient adenosine release, including the AMPA antagonist NBQX (15 mg/kg i.p.) and the mGlu2/3 glutamate receptor antagonist LY 341495 (5 mg/kg i.p.). The GABAB antagonist CGP 52432 (30 mg/kg i.p.) significantly decreased the number of adenosine release events while the GABAB agonist baclofen (4 mg/kg i.p.) increased the frequency of adenosine release. The GABAA antagonist bicuculline (5 mg/kg i.p.) had no significant effects on adenosine. NMDA and GABAB likely act presynaptically, affecting the overall cell excitability for vesicular release. The ability to regulate adenosine with NMDA and GABAB receptors will help control the modulatory effects of transient adenosine release.
Collapse
Affiliation(s)
- Michael D. Nguyen
- Department
of Chemistry and
Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ying Wang
- Department
of Chemistry and
Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Mallikarjunarao Ganesana
- Department
of Chemistry and
Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22904, United States
| | - B. Jill Venton
- Department
of Chemistry and
Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
186
|
Kosaka T, Yasuda S, Kosaka K. Calcium-binding protein, secretagogin, characterizes novel groups of interneurons in the rat striatum. Neurosci Res 2017; 119:53-60. [PMID: 28193530 DOI: 10.1016/j.neures.2017.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/28/2016] [Accepted: 01/18/2017] [Indexed: 11/25/2022]
Abstract
In the rat striatum numerous secretagogin (SCGN) positive neurons were scattered. They were heterogeneous in their morphological and chemical properties. We examined the colocalization of SCGN with known four interneuron markers, parvalbumin (PV), calretinin (CR), nitric oxide synthase (NOS) and choline acetyl transferase (ChAT). 60-70% of SCGN positive striatal neurons contained either PV or CR or ChAT, but none contained NOS. On the other hand the remaining 30-40% expressed none of these markers, most of which were GAD positive. The present study indicates that there are hitherto unknown groups of striatal interneurons in the rat striatum.
Collapse
Affiliation(s)
- Toshio Kosaka
- Department of Medical Science Technology, Faculty of Health and Welfare Sciences in Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa City, Fukuoka 831-8501, Japan.
| | - Seiko Yasuda
- Department of Medical Science Technology, Faculty of Health and Welfare Sciences in Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa City, Fukuoka 831-8501, Japan
| | - Katsuko Kosaka
- Department of Medical Science Technology, Faculty of Health and Welfare Sciences in Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa City, Fukuoka 831-8501, Japan
| |
Collapse
|
187
|
Petryszyn S, Parent A, Parent M. The calretinin interneurons of the striatum: comparisons between rodents and primates under normal and pathological conditions. J Neural Transm (Vienna) 2017; 125:279-290. [PMID: 28168621 DOI: 10.1007/s00702-017-1687-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/22/2017] [Indexed: 12/16/2022]
Abstract
This paper reviews the major organizational features of calretinin interneurons in the dorsal striatum of rodents and primates, with some insights on the state of these neurons in Parkinson's disease and Huntington's chorea. The rat striatum harbors medium-sized calretinin-immunoreactive (CR+) interneurons, whereas the mouse striatum is pervaded by medium-sized CR+ interneurons together with numerous small and highly immunoreactive CR+ cells. The CR interneuronal network is even more elaborated in monkey and human striatum where, in addition to the small- and medium-sized CR+ interneurons, a set of large CR+ interneurons occurs. The majority of these giant CR+ interneurons, which are unique to the primate striatum, also display immunoreactivity for choline acetyltransferase (ChAT), a faithful marker of cholinergic neurons. The expression of CR and/or ChAT by the large striatal interneurons appears to be seriously compromised in Parkinson's disease and Huntington's chorea. The species differences noted above have to be considered to better understand the role of CR interneurons in striatal organization in both normal and pathological conditions.
Collapse
Affiliation(s)
- S Petryszyn
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Centre de recherche de l'Institut universitaire en santé mentale de Québec, Université Laval, 2601, Canardière, Room F-6500, Quebec, QC, G1J 2G3, Canada
| | - A Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Centre de recherche de l'Institut universitaire en santé mentale de Québec, Université Laval, 2601, Canardière, Room F-6500, Quebec, QC, G1J 2G3, Canada
| | - Martin Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Centre de recherche de l'Institut universitaire en santé mentale de Québec, Université Laval, 2601, Canardière, Room F-6500, Quebec, QC, G1J 2G3, Canada.
| |
Collapse
|
188
|
Dopamine D1 receptor agonist treatment attenuates extinction of morphine conditioned place preference while increasing dendritic complexity in the nucleus accumbens core. Behav Brain Res 2017; 322:18-28. [PMID: 28089852 DOI: 10.1016/j.bbr.2017.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 01/16/2023]
Abstract
The dopamine D1 receptor (D1R) has a role in opioid reward and conditioned place preference (CPP), but its role in CPP extinction is undetermined. We examined the effect of D1R agonist SKF81297 on the extinction of opioid CPP and associated dendritic morphology in the nucleus accumbens (NAc), a region involved with reward integration and its extinction. During the acquisition of morphine CPP, mice received morphine and saline on alternate days; injections were given immediately before each of eight daily conditioning sessions. Mice subsequently underwent six days of extinction training designed to diminish the previously learned association. Mice were treated with either 0.5mg/kg SKF81297, 0.8mg/kg SKF81297, or saline immediately after each extinction session. There was a dose-dependent effect, with the highest dose of SKF81297 attenuating extinction, as mice treated with this dose had significantly higher CPP scores than controls. Analysis of medium spiny neuron morphology revealed that in the NAc core, but not in the shell, dendritic arbors were significantly more complex in the morphine conditioned, SKF81297-treated mice compared to controls. In separate experiments using mice conditioned with only saline, SKF81297 administration after extinction sessions had no effect on CPP and produced differing effects on dendritic morphology. At the doses used in our experiments, SKF81297 appears to maintain previously learned opioid conditioned behavior, even in the face of new information. The D1R agonist's differential, rather than unidirectional, effects on dendritic morphology in the NAc core suggests that it may be involved in encoding reward information depending on previously learned behavior.
Collapse
|
189
|
Activation of Glutamatergic Fibers in the Anterior NAc Shell Modulates Reward Activity in the aNAcSh, the Lateral Hypothalamus, and Medial Prefrontal Cortex and Transiently Stops Feeding. J Neurosci 2016. [PMID: 27974611 DOI: 10.1523/jneurosci.1605‐16.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the release of mesoaccumbal dopamine is certainly involved in rewarding responses, recent studies point to the importance of the interaction between it and glutamate. One important component of this network is the anterior nucleus accumbens shell (aNAcSh), which sends GABAergic projections into the lateral hypothalamus (LH) and receives extensive glutamatergic inputs from, among others, the medial prefrontal cortex (mPFC). The effects of glutamatergic activation of aNAcSh on the ingestion of rewarding stimuli as well as its effect in the LH and mPFC are not well understood. Therefore, we studied behaving mice that express a light-gated channel (ChR2) in glutamatergic fibers in their aNAcSh while recording from neurons in the aNAcSh, or mPFC or LH. In Thy1-ChR2, but not wild-type, mice activation of aNAcSh fibers transiently stopped the mice licking for sucrose or an empty sipper. Stimulation of aNAcSh fibers both activated and inhibited single-unit responses aNAcSh, mPFC, and LH, in a manner that maintains firing rate homeostasis. One population of licking-inhibited pMSNs in the aNAcSh was also activated by optical stimulation, suggesting their relevance in the cessation of feeding. A rewarding aspect of stimulation of glutamatergic inputs was found when the Thy1-ChR2 mice learned to nose-poke to self-stimulate these inputs, indicating that bulky stimulation of these fibers are rewarding in the sense of wanting. Stimulation of excitatory afferents evoked both monosynaptic and polysynaptic responses distributed in the three recorded areas. In summary, we found that activation of glutamatergic aNAcSh fibers is both rewarding and transiently inhibits feeding. SIGNIFICANCE STATEMENT We have established that the activation of glutamatergic fibers in the anterior nucleus accumbens shell (aNAcSh) transiently stops feeding and yet, because mice self-stimulate, is rewarding in the sense of wanting. Moreover, we have characterized single-unit responses of distributed components of a hedonic network (comprising the aNAcSh, medial prefrontal cortex, and lateral hypothalamus) recruited by activation of glutamatergic aNAcSh afferents that are involved in encoding a positive valence signal important for the wanting of a reward and that transiently stops ongoing consummatory actions, such as licking.
Collapse
|
190
|
Kobrin KL, Moody O, Arena DT, Moore CF, Heinrichs SC, Kaplan GB. Acquisition of morphine conditioned place preference increases the dendritic complexity of nucleus accumbens core neurons. Addict Biol 2016; 21:1086-1096. [PMID: 26096355 DOI: 10.1111/adb.12273] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Contexts associated with opioid reward trigger craving and relapse in opioid addiction. Effects of reward-context associative learning on nucleus accumbens (NAc) dendritic morphology were studied using morphine conditioned place preference (CPP). Morphine-conditioned mice received saline and morphine 10 mg/kg subcutaneous (s.c.) on alternate days. Saline-conditioned mice received saline s.c. each day. Morphine-conditioned and saline-conditioned groups received injections immediately before each of eight daily conditioning sessions. Morphine homecage controls had no CPP training, but received saline and morphine in the homecage concomitantly with the morphine-conditioned group. Morphine conditioning produced greater place preference than saline conditioning. Mice were sacrificed 1 day after CPP expression. Dendritic changes were studied using Golgi-Cox staining and digital tracing of NAc core and shell neurons. In the NAc core, morphine homecage administration increased spine density, while morphine conditioning increased dendritic complexity, as defined by increased dendritic count, length and intersections. Place preference positively correlated with dendritic length and intersections in the NAc core. The core may mediate reward consolidation and determine how context-related signals from the shell lead to motor behavior. The combination of drug and conditioning in the morphine-conditioned group produced unique morphological effects different from the effects of drug or conditioning procedures by themselves. An additional study found no differences in neuron morphology between saline-conditioned mice, trained as described earlier, and mice that were not conditioned, but received saline in the homecage. The unique effect of morphine reward learning on NAc core dendrites reflects a brain substrate that could be targeted for therapeutic intervention in addiction.
Collapse
Affiliation(s)
- Kendra L. Kobrin
- Research Service VA Boston Healthcare System; Boston MA USA
- Department of Pharmacology and Experimental Therapeutics; Boston University School of Medicine; Boston MA USA
| | - Olivia Moody
- Research Service VA Boston Healthcare System; Boston MA USA
| | | | - Catherine F. Moore
- Research Service VA Boston Healthcare System; Boston MA USA
- Department of Pharmacology and Experimental Therapeutics; Boston University School of Medicine; Boston MA USA
| | | | - Gary B. Kaplan
- Department of Pharmacology and Experimental Therapeutics; Boston University School of Medicine; Boston MA USA
- Mental Health Service; VA Boston Healthcare System; Boston MA USA
| |
Collapse
|
191
|
Marche K, Apicella P. Changes in activity of fast-spiking interneurons of the monkey striatum during reaching at a visual target. J Neurophysiol 2016; 117:65-78. [PMID: 27733597 DOI: 10.1152/jn.00566.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/05/2016] [Indexed: 01/08/2023] Open
Abstract
Recent works highlight the importance of local inhibitory interneurons in regulating the function of the striatum. In particular, fast-spiking interneurons (FSIs), which likely correspond to a subgroup of GABAergic interneurons, have been involved in the control of movement by exerting strong inhibition on striatal output pathways. However, little is known about the exact contribution of these presumed interneurons in movement preparation, initiation, and execution. We recorded the activity of FSIs in the striatum of monkeys as they performed reaching movements to a visual target under two task conditions: one in which the movement target was presented at unsignaled left or right locations, and another in which advance information about target location was available, thus allowing monkeys to react faster. Modulations of FSI activity around the initiation of movement (53% of 55 neurons) consisted mostly of increases reaching maximal firing immediately before or, less frequently, after movement onset. Another subset of FSIs showed decreases in activity during movement execution. Rarely did movement-related changes in FSI firing depend on response direction and movement speed. Modulations of FSI activity occurring relatively early in relation to movement initiation were more influenced by the preparation for movement, compared with those occurring later. Conversely, FSI activity remained unaffected, as monkeys were preparing a movement toward a specific location and instead moved to the opposite direction when the trigger occurred. These results provide evidence that changes in activity of presumed GABAergic interneurons of the primate striatum could make distinct contributions to processes involved in movement generation. NEW & NOTEWORTHY We explored the functional contributions of striatal fast-spiking interneurons (FSIs), presumed GABAergic interneurons, to distinct steps of movement generation in monkeys performing a reaching task. The activity of individual FSIs was modulated before and during the movement, consisting mostly of increased in firing rates. Changes in activity also occurred during movement preparation. We interpret this variety of modulation types at different moments of task performance as reflecting differential FSI control over distinct phases of movement.
Collapse
Affiliation(s)
- Kévin Marche
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Paul Apicella
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| |
Collapse
|
192
|
Mechanisms Underlying Population Response Dynamics in Inhibitory Interneurons of the Drosophila Antennal Lobe. J Neurosci 2016; 36:4325-38. [PMID: 27076428 DOI: 10.1523/jneurosci.3887-15.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/02/2016] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Local inhibitory neurons control the timing of neural activity in many circuits. To understand how inhibition controls timing, it is important to understand the dynamics of activity in populations of local inhibitory interneurons, as well as the mechanisms that underlie these dynamics. Here we describe the in vivo response dynamics of a large population of inhibitory local neurons (LNs) in the Drosophila melanogaster antennal lobe, the analog of the vertebrate olfactory bulb, and we dissect the network and intrinsic mechanisms that give rise to these dynamics. Some LNs respond to odor onsets ("ON" cells) and others to offsets ("OFF" cells), whereas still others respond at both times. Moreover, different LNs signal odor concentration fluctuations on different timescales. Some respond rapidly, and can track rapid concentration fluctuations. Others respond slowly, and are best at tracking slow fluctuations. We found a continuous spectrum of preferred stimulation timescales among LNs, as well as a continuum of ON-OFF behavior. Using in vivo whole-cell recordings, we show that the timing of an LN's response (ON vs OFF) can be predicted from the interplay of excitatory and inhibitory synaptic currents that it receives. Meanwhile, the preferred timescale of an LN is related to its intrinsic properties. These results illustrate how a population of inhibitory interneurons can collectively encode bidirectional changes in stimulus intensity on multiple timescales, and how this can arise via an interaction between synaptic and intrinsic mechanisms. SIGNIFICANCE STATEMENT Most neural circuits contain diverse populations of inhibitory interneurons. The way inhibition shapes network activity will depend on the spiking dynamics of the interneuron population. Here we describe the dynamics of activity in a large population of inhibitory interneurons in the first brain relay of the fruit fly olfactory system. Because odor plumes fluctuate on multiple timescales, the drive to this circuit can vary over a range of frequencies. We show how synaptic and cellular mechanisms interact to recruit different interneurons at different times, and in response to different temporal features of odor stimuli. As a result, inhibition is recruited over a range of conditions, and there is the potential to tune the timing of inhibition as the environment changes.
Collapse
|
193
|
Berthet P, Lindahl M, Tully PJ, Hellgren-Kotaleski J, Lansner A. Functional Relevance of Different Basal Ganglia Pathways Investigated in a Spiking Model with Reward Dependent Plasticity. Front Neural Circuits 2016; 10:53. [PMID: 27493625 PMCID: PMC4954853 DOI: 10.3389/fncir.2016.00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Abstract
The brain enables animals to behaviorally adapt in order to survive in a complex and dynamic environment, but how reward-oriented behaviors are achieved and computed by its underlying neural circuitry is an open question. To address this concern, we have developed a spiking model of the basal ganglia (BG) that learns to dis-inhibit the action leading to a reward despite ongoing changes in the reward schedule. The architecture of the network features the two pathways commonly described in BG, the direct (denoted D1) and the indirect (denoted D2) pathway, as well as a loop involving striatum and the dopaminergic system. The activity of these dopaminergic neurons conveys the reward prediction error (RPE), which determines the magnitude of synaptic plasticity within the different pathways. All plastic connections implement a versatile four-factor learning rule derived from Bayesian inference that depends upon pre- and post-synaptic activity, receptor type, and dopamine level. Synaptic weight updates occur in the D1 or D2 pathways depending on the sign of the RPE, and an efference copy informs upstream nuclei about the action selected. We demonstrate successful performance of the system in a multiple-choice learning task with a transiently changing reward schedule. We simulate lesioning of the various pathways and show that a condition without the D2 pathway fares worse than one without D1. Additionally, we simulate the degeneration observed in Parkinson's disease (PD) by decreasing the number of dopaminergic neurons during learning. The results suggest that the D1 pathway impairment in PD might have been overlooked. Furthermore, an analysis of the alterations in the synaptic weights shows that using the absolute reward value instead of the RPE leads to a larger change in D1.
Collapse
Affiliation(s)
- Pierre Berthet
- Numerical Analysis and Computer Science, Stockholm UniversityStockholm, Sweden
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden
- Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden
| | - Mikael Lindahl
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden
- Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden
| | - Philip J. Tully
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden
- Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden
- Institute for Adaptive and Neural Computation, School of Informatics, University of EdinburghEdinburgh, UK
| | - Jeanette Hellgren-Kotaleski
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden
- Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden
- Department of Neuroscience, Karolinska InstituteStockholm, Sweden
| | - Anders Lansner
- Numerical Analysis and Computer Science, Stockholm UniversityStockholm, Sweden
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden
- Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden
| |
Collapse
|
194
|
Song SC, Beatty JA, Wilson CJ. The ionic mechanism of membrane potential oscillations and membrane resonance in striatal LTS interneurons. J Neurophysiol 2016; 116:1752-1764. [PMID: 27440246 DOI: 10.1152/jn.00511.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/15/2016] [Indexed: 01/22/2023] Open
Abstract
Striatal low-threshold spiking (LTS) interneurons spontaneously transition to a depolarized, oscillating state similar to that seen after sodium channels are blocked. In the depolarized state, whether spontaneous or induced by sodium channel blockade, the neurons express a 3- to 7-Hz oscillation and membrane impedance resonance in the same frequency range. The membrane potential oscillation and membrane resonance are expressed in the same voltage range (greater than -40 mV). We identified and recorded from LTS interneurons in striatal slices from a mouse that expressed green fluorescent protein under the control of the neuropeptide Y promoter. The membrane potential oscillation depended on voltage-gated calcium channels. Antagonism of L-type calcium currents (CaV1) reduced the amplitude of the oscillation, whereas blockade of N-type calcium currents (CaV2.2) reduced the frequency. Both calcium sources activate a calcium-activated chloride current (CaCC), the blockade of which abolished the oscillation. The blocking of any of these three channels abolished the membrane resonance. Immunohistochemical staining indicated anoctamin 2 (ANO2), and not ANO1, as the CaCC source. Biophysical modeling showed that CaV1, CaV2.2, and ANO2 are sufficient to generate a membrane potential oscillation and membrane resonance, similar to that in LTS interneurons. LTS interneurons exhibit a membrane potential oscillation and membrane resonance that are both generated by CaV1 and CaV2.2 activating ANO2. They can spontaneously enter a state in which the membrane potential oscillation dominates the physiological properties of the neuron.
Collapse
Affiliation(s)
- S C Song
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas; and
| | - J A Beatty
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas; and Department of Physiology, Michigan State University, East Lansing, Michigan
| | - C J Wilson
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas; and
| |
Collapse
|
195
|
Abstract
Unidirectional connections from the cortex to the matrix of the corpus striatum initiate the cortico-basal ganglia (BG)-thalamocortical loop, thought to be important in momentary action selection and in longer-term fine tuning of behavioural repertoire; a discrete set of striatal compartments, striosomes, has the complementary role of registering or anticipating reward that shapes corticostriatal plasticity. Re-entrant signals traversing the cortico-BG loop impact predominantly frontal cortices, conveyed through topographically ordered output channels; by contrast, striatal input signals originate from a far broader span of cortex, and are far more divergent in their termination. The term 'disclosed loop' is introduced to describe this organisation: a closed circuit that is open to outside influence at the initial stage of cortical input. The closed circuit component of corticostriatal afferents is newly dubbed 'operative', as it is proposed to establish the bid for action selection on the part of an incipient cortical action plan; the broader set of converging corticostriatal afferents is described as contextual. A corollary of this proposal is that every unit of the striatal volume, including the long, C-shaped tail of the caudate nucleus, should receive a mandatory component of operative input, and hence include at least one area of BG-recipient cortex amongst the sources of its corticostriatal afferents. Individual operative afferents contact twin classes of GABAergic striatal projection neuron (SPN), distinguished by their neurochemical character, and onward circuitry. This is the basis of the classic direct and indirect pathway model of the cortico-BG loop. Each pathway utilises a serial chain of inhibition, with two such links, or three, providing positive and negative feedback, respectively. Operative co-activation of direct and indirect SPNs is, therefore, pictured to simultaneously promote action, and to restrain it. The balance of this rival activity is determined by the contextual inputs, which summarise the external and internal sensory environment, and the state of ongoing behavioural priorities. Notably, the distributed sources of contextual convergence upon a striatal locus mirror the transcortical network harnessed by the origin of the operative input to that locus, thereby capturing a similar set of contingencies relevant to determining action. The disclosed loop formulation of corticostriatal and subsequent BG loop circuitry, as advanced here, refines the operating rationale of the classic model and allows the integration of more recent anatomical and physiological data, some of which can appear at variance with the classic model. Equally, it provides a lucid functional context for continuing cellular studies of SPN biophysics and mechanisms of synaptic plasticity.
Collapse
|
196
|
Petryszyn S, Di Paolo T, Parent A, Parent M. The number of striatal cholinergic interneurons expressing calretinin is increased in parkinsonian monkeys. Neurobiol Dis 2016; 95:46-53. [PMID: 27388937 DOI: 10.1016/j.nbd.2016.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/13/2016] [Accepted: 07/03/2016] [Indexed: 12/17/2022] Open
Abstract
The most abundant interneurons in the primate striatum are those expressing the calcium-binding protein calretinin (CR). The present immunohistochemical study provides detailed assessments of their morphological traits, number, and topographical distribution in normal monkeys (Macaca fascicularis) and in monkeys rendered parkinsonian (PD) by MPTP intoxication. In primates, the CR+ striatal interneurons comprise small (8-12μm), medium (12-20μm) and large-sized (20-45μm) neurons, each with distinctive morphologies. The small CR+ neurons were 2-3 times more abundant than the medium-sized CR+ neurons, which were 20-40 times more numerous than the large CR+ neurons. In normal and PD monkeys, the density of small and medium-sized CR+ neurons was twice as high in the caudate nucleus than in the putamen, whereas the inverse occurred for the large CR+ neurons. Double immunostaining experiments revealed that only the large-sized CR+ neurons expressed choline acetyltransferase (ChAT). The number of large CR+ neurons was found to increase markedly (4-12 times) along the entire anteroposterior extent of both the caudate nucleus and putamen of PD monkeys compared to controls. Comparison of the number of large CR-/ChAT+ and CR+/ChAT+ neurons together with experiments involving the use of bromo-deoxyuridine (BrdU) as a marker of newly generated cells showed that it is the expression of CR by the large ChAT+ striatal interneurons, and not their absolute number, that is increased in the dopamine-depleted striatum. These findings reveal the modulatory role of dopamine in the phenotypic expression of the large cholinergic striatal neurons, which are known to play a crucial role in PD pathophysiology.
Collapse
Affiliation(s)
- Sarah Petryszyn
- Centre de recherche de l'Institut universitaire en santé mentale de Québec, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC, Canada
| | - Thérèse Di Paolo
- Centre de recherche du CHU de Québec, Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
| | - André Parent
- Centre de recherche de l'Institut universitaire en santé mentale de Québec, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC, Canada
| | - Martin Parent
- Centre de recherche de l'Institut universitaire en santé mentale de Québec, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
197
|
Scofield MD, Heinsbroek JA, Gipson CD, Kupchik YM, Spencer S, Smith ACW, Roberts-Wolfe D, Kalivas PW. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacol Rev 2016; 68:816-71. [PMID: 27363441 PMCID: PMC4931870 DOI: 10.1124/pr.116.012484] [Citation(s) in RCA: 413] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances.
Collapse
Affiliation(s)
- M D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - J A Heinsbroek
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - C D Gipson
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - Y M Kupchik
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - S Spencer
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - A C W Smith
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - D Roberts-Wolfe
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - P W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| |
Collapse
|
198
|
Chertok VM, Kotsyuba AE, Startseva MS, Kotsyuba EP. Immunolocalization of gaseous neurotransmitters in interneurons in the medulla oblongata in rats. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
199
|
Wenger Combremont AL, Bayer L, Dupré A, Mühlethaler M, Serafin M. Slow Bursting Neurons of Mouse Cortical Layer 6b Are Depolarized by Hypocretin/Orexin and Major Transmitters of Arousal. Front Neurol 2016; 7:88. [PMID: 27379007 PMCID: PMC4908144 DOI: 10.3389/fneur.2016.00088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/30/2016] [Indexed: 11/17/2022] Open
Abstract
Neurons firing spontaneously in bursts in the absence of synaptic transmission have been previously recorded in different layers of cortical brain slices. It has been suggested that such neurons could contribute to the generation of alternating UP and DOWN states, a pattern of activity seen during slow-wave sleep. Here, we show that in layer 6b (L6b), known from our previous studies to contain neurons highly responsive to the wake-promoting transmitter hypocretin/orexin (hcrt/orx), there is a set of neurons, endowed with distinct intrinsic properties, which displayed a strong propensity to fire spontaneously in rhythmic bursts. In response to small depolarizing steps, they responded with a delayed firing of action potentials which, upon higher depolarizing steps, invariably inactivated and were followed by a depolarized plateau potential and a depolarizing afterpotential. These cells also displayed a strong hyperpolarization-activated rectification compatible with the presence of an Ih current. Most L6b neurons with such properties were able to fire spontaneously in bursts. Their bursting activity was of intrinsic origin as it persisted not only in presence of blockers of ionotropic glutamatergic and GABAergic receptors but also in a condition of complete synaptic blockade. However, a small number of these neurons displayed a mix of intrinsic bursting and synaptically driven recurrent UP and DOWN states. Most of the bursting L6b neurons were depolarized and excited by hcrt/orx through a direct postsynaptic mechanism that led to tonic firing and eventually inactivation. Similarly, they were directly excited by noradrenaline, histamine, dopamine, and neurotensin. Finally, the intracellular injection of these cells with dye and their subsequent Neurolucida reconstruction indicated that they were spiny non-pyramidal neurons. These results lead us to suggest that the propensity for slow rhythmic bursting of this set of L6b neurons could be directly impeded by hcrt/orx and other wake-promoting transmitters.
Collapse
Affiliation(s)
| | - Laurence Bayer
- Département des neurosciences fondamentales, Centre Médical Universitaire, Geneva, Switzerland; Centre de médecine du sommeil, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Anouk Dupré
- Département des neurosciences fondamentales, Centre Médical Universitaire , Geneva , Switzerland
| | - Michel Mühlethaler
- Département des neurosciences fondamentales, Centre Médical Universitaire , Geneva , Switzerland
| | - Mauro Serafin
- Département des neurosciences fondamentales, Centre Médical Universitaire , Geneva , Switzerland
| |
Collapse
|
200
|
Reappraising striatal D1- and D2-neurons in reward and aversion. Neurosci Biobehav Rev 2016; 68:370-386. [PMID: 27235078 DOI: 10.1016/j.neubiorev.2016.05.021] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/16/2016] [Accepted: 05/22/2016] [Indexed: 12/31/2022]
Abstract
The striatum has been involved in complex behaviors such as motor control, learning, decision-making, reward and aversion. The striatum is mainly composed of medium spiny neurons (MSNs), typically divided into those expressing dopamine receptor D1, forming the so-called direct pathway, and those expressing D2 receptor (indirect pathway). For decades it has been proposed that these two populations exhibit opposing control over motor output, and recently, the same dichotomy has been proposed for valenced behaviors. Whereas D1-MSNs mediate reinforcement and reward, D2-MSNs have been associated with punishment and aversion. In this review we will discuss pharmacological, genetic and optogenetic studies that indicate that there is still controversy to what concerns the role of striatal D1- and D2-MSNs in this type of behaviors, highlighting the need to reconsider the early view that they mediate solely opposing aspects of valenced behaviour.
Collapse
|