151
|
Nafees M, Ullah S, Ahmed I. Modulation of drought adversities in Vicia faba by the application of plant growth promoting rhizobacteria and biochar. Microsc Res Tech 2022; 85:1856-1869. [PMID: 34994497 DOI: 10.1002/jemt.24047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 01/09/2023]
Abstract
Drought is the greatest threat to world food security, seen as the catalyst for the great famines of the past. Given that the world's water supply is limited, it is likely that future demand of food for increasing population will further exacerbate the drought effects. Therefore, the present study was aimed to investigate the effect of biochar and plant growth promoting rhizobacteria (PGPR) Sphingobacterium pakistanensis (NCCP246) and Cellulomonas pakistanensis (NCCP11) on agronomic and physiological attributes of Vicia faba two varieties Desi (V1) and Pulista (V2) under induced drought stress. The seeds were sown in earthen pots filled with 3 kg sand and soil (1:2), and biochar (0 and 5% w/w) in triplicate arranged in complete randomized design. Analysis of biochar possessed 0.49 g cm-3 bulk density, 9.6 pH; 5.4 cmol kg-1 cation exchange capacity, 3.64% organic carbon and EC 6.7 ds/m. Agronomic attributes including seed LAI, LAR, SVI, %PHSI and RWC were improved by 30.4-180.4%, 14.37-47.20%, 37.64-50.91%, 18.21-30.80, and 35.82-54.34% in both varieties by the co-application of biochar and PGPR. Stomatal physiology and epidermal vigor was successfully improved by the application of PGPR and biochar as analyzed by scanning electron microscopy (SEM). Photosynthetic pigments, flavonoids, phenols, proline and glycine betaine were amplified by 58.33-173.8%, 50.59-130.33%, 46.58-86.62%, 46.66-109.30%, 35.74-56.10%, and 21.96-77.22% in both varieties by the co-application of biochar and PGPR. So, the present work concluded that, combined application of biochar and PGPR could be an effective strategy to alleviate the adversities of drought in V. faba growing in drastic ecosystems.
Collapse
Affiliation(s)
- Muhammad Nafees
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Sami Ullah
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Iftikhar Ahmed
- National Culture Collection of Pakistan, Bio-resources Conservation Institute (BCI), National Agriculture Research Center, Islamabad, Pakistan
| |
Collapse
|
152
|
Hussein HAA, Alshammari SO, Kenawy SKM, Elkady FM, Badawy AA. Grain-Priming with L-Arginine Improves the Growth Performance of Wheat ( Triticum aestivum L.) Plants under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091219. [PMID: 35567220 PMCID: PMC9100063 DOI: 10.3390/plants11091219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 05/22/2023]
Abstract
Drought is the main limiting abiotic environmental stress worldwide. Water scarcity restricts the growth, development, and productivity of crops. Wheat (Triticum aestivum L.) is a fundamentally cultivated cereal crop. This study aimed to evaluate the effect of grain-priming with arginine (0.25, 0.5, and 1 mM) on growth performance and some physiological aspects of wheat plants under normal or drought-stressed conditions. Morphological growth parameters, photosynthetic pigments, soluble sugars, free amino acids, proline, total phenols, flavonoids, and proteins profiles were determined. Drought stress lowered plant growth parameters and chlorophyll a and b contents while increasing carotenoids, soluble sugars, free amino acids, proline, total phenols, and flavonoids. Soaking wheat grains with arginine (0.25, 0.5, and 1 mM) improves plant growth and mitigates the harmful effects of drought stress. The most effective treatment to alleviate the effects of drought stress on wheat plants was (1 mM) arginine, that increased root length (48.3%), leaves number (136%), shoot fresh weight (110.5%), root fresh weight (110.8%), root dry weight (107.7%), chlorophyll a (11.4%), chlorophyll b (38.7%), and carotenoids content (41.9%) compared to the corresponding control values. Arginine enhanced the synthesis of soluble sugars, proline, free amino acids, phenols, and flavonoids in wheat plants under normal or stressed conditions. Furthermore, the protein profile varies in response to drought stress and arginine pretreatments. Ultimately, pretreatment with arginine had a powerful potential to face the impacts of drought stress on wheat plants by promoting physiological and metabolic aspects.
Collapse
Affiliation(s)
- Hebat-Allah A. Hussein
- Botany and Microbiology Department, Faculty of Science (Girls Branch), Al-Azhar University, Cairo 11754, Egypt; (H.-A.A.H.); (S.K.M.K.)
- Biology Department, University College of Nairiyah, University of Hafr Al-Batin, Nairiyah 31991, Saudi Arabia
| | - Shifaa O. Alshammari
- Biology Department, College of Science, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia;
| | - Sahar K. M. Kenawy
- Botany and Microbiology Department, Faculty of Science (Girls Branch), Al-Azhar University, Cairo 11754, Egypt; (H.-A.A.H.); (S.K.M.K.)
| | - Fatma M. Elkady
- National Research Centre, Department of Botany, Dokki, Giza 12311, Egypt;
| | - Ali A. Badawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
- Correspondence: ; Tel.: +20-1006069161
| |
Collapse
|
153
|
Saeng-Ngam S, Jampasri K. Effects of Drought Stress on the Growth and Heavy Metal Accumulation by Chromolaena odorata Grown in Hydroponic Media. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:762-767. [PMID: 34997262 DOI: 10.1007/s00128-021-03401-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/26/2021] [Indexed: 06/14/2023]
Abstract
This study aimed to investigate the effects of drought stress on cadmium (Cd) and zinc (Zn) accumulation in Chromolaena odorata grown in an artificially contaminated nutrient solution for 15 days. Polyethylene glycol (5% PEG) was used as a drought stressor. The presence of PEG did not affect the chlorophyll content and photochemical efficiency, while drought stress induced by PEG caused a decrease in water content in the plant tissues. The bioaccumulation factor (BAF) of Cd were higher than the BAF of Zn and accumulated mainly in the roots of C. odorata. The highest concentrations (4273.7 mg/kg Cd, 2135.4 mg/kg Zn) were found in the 20 mg/L treatment. The results suggested that Cd and Zn accumulation in C. odorata was not affected by PEG, while a translocation factor (TF) value < 1 was caused by either PEG or contaminants. Based on the hydroponic BAF criterion, the study confirmed that C. odorata was useful for phytoremediation of Cd with low drought stress.
Collapse
Affiliation(s)
- Sukhumaporn Saeng-Ngam
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Kongkeat Jampasri
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand.
| |
Collapse
|
154
|
Ashrafi M, Azimi-Moqadam MR, MohseniFard E, Shekari F, Jafary H, Moradi P, Pucci M, Abate G, Mastinu A. Physiological and Molecular Aspects of Two Thymus Species Differently Sensitive to Drought Stress. BIOTECH 2022; 11:8. [PMID: 35822781 PMCID: PMC9264393 DOI: 10.3390/biotech11020008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/06/2022] [Accepted: 03/21/2022] [Indexed: 01/26/2023] Open
Abstract
Drought is one of the most important threats to plants and agriculture. Here, the effects of four drought levels (90%, 55%, 40%, and 25% field capacity) on the relative water content (RWC), chlorophyll and carotenoids levels, and mRNA gene expression of metabolic enzymes in Thymus vulgaris (as sensitive to drought) and Thymus kotschyanus (as a drought-tolerant species) were evaluated. The physiological results showed that the treatment predominantly affected the RWC, chlorophyll, and carotenoids content. The gene expression analysis demonstrated that moderate and severe drought stress had greater effects on the expression of histone deacetylase-6 (HDA-6) and acetyl-CoA synthetase in both Thymus species. Pyruvate decarboxylase-1 (PDC-1) was upregulated in Thymus vulgaris at high drought levels. Finally, succinyl CoA ligase was not affected by drought stress in either species. Data confirmed water stress is able to alter the gene expression of specific enzymes. Furthermore, our results suggest that PDC-1 expression is independent from HDA-6 and the increased expression of ACS can be due to the activation of new pathways involved in carbohydrate production.
Collapse
Affiliation(s)
- Mohsen Ashrafi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan 45195-313, Iran; (M.A.); (E.M.); (F.S.)
| | - Mohammad-Reza Azimi-Moqadam
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan 45195-313, Iran; (M.A.); (E.M.); (F.S.)
| | - Ehsan MohseniFard
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan 45195-313, Iran; (M.A.); (E.M.); (F.S.)
| | - Farid Shekari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan 45195-313, Iran; (M.A.); (E.M.); (F.S.)
| | - Hossein Jafary
- Research Division of Plant Protection, Zanjan Agricultural and Natural Resources Research and Education Centre, AREEO, Zanjan 45195-313, Iran;
| | - Parviz Moradi
- Research Division of Natural Resources, Zanjan Agricultural and Natural Resources Research and Education Centre, AREEO, Zanjan 45195-313, Iran
| | - Mariachiara Pucci
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.P.); (A.M.)
| | - Giulia Abate
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.P.); (A.M.)
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.P.); (A.M.)
| |
Collapse
|
155
|
Stress-Inducible Overexpression of SlDDF2 Gene Improves Tolerance against Multiple Abiotic Stresses in Tomato Plant. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dehydration-responsive element-binding protein 1 (DREB1)/C-repeat binding factor (CBF) family plays a key role in plant tolerance against different abiotic stresses. In this study, an orthologous gene of the DWARF AND DELAYED FLOWERING (DDF) members in Arabidopsis, SlDDF2, was identified in tomato plants. The SlDDF2 gene expression was analyzed, and a clear induction in response to ABA treatment, cold, salinity, and drought stresses was observed. Furthermore, two transgenic lines (SlDDF2-IOE#6 and SlDDF2-IOE#9) with stress-inducible overexpression of SlDDF2 under Rd29a promoter were generated. Under stress conditions, the gene expression of SlDDF2 was significantly higher in both transgenic lines. The growth performance, as well as physiological parameters, were evaluated in wild-type and transgenic plants. The transgenic lines showed growth retardation phenotypes and had higher chlorophyll content under stress conditions in plants. However, the relative decrease in growth performance (plant height, leaf number, and leaf area) in stressed transgenic lines was lower than that in stressed wild-type plants, compared with nonstressed conditions. The reduction in the relative water content and water loss rate was also lower in the transgenic lines. Compared with wild-type plants, transgenic lines showed enhanced tolerance to different abiotic stresses including water deficit, salinity, and cold. In conclusion, stress-inducible expression of SlDDF2 can be a useful tool to improve tolerance against multiple abiotic stresses in tomato plants.
Collapse
|
156
|
Abideen Z, Hanif M, Munir N, Nielsen BL. Impact of Nanomaterials on the Regulation of Gene Expression and Metabolomics of Plants under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050691. [PMID: 35270161 PMCID: PMC8912827 DOI: 10.3390/plants11050691] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 05/14/2023]
Abstract
Plant salinity resistance results from a combination of responses at the physiological, molecular, cellular, and metabolic levels. This article focuses on plant stress tolerance mechanisms for controlling ion homeostasis, stress signaling, hormone metabolism, anti-oxidative enzymes, and osmotic balance after nanoparticle applications. Nanoparticles are used as an emerging tool to stimulate specific biochemical reactions related to plant ecophysiological output because of their small size, increased surface area and absorption rate, efficient catalysis of reactions, and adequate reactive sites. Regulated ecophysiological control in saline environments could play a crucial role in plant growth promotion and survival of plants under suboptimal conditions. Plant biologists are seeking to develop a broad profile of genes and proteins that contribute to plant salt resistance. These plant metabolic profiles can be developed due to advancements in genomic, proteomic, metabolomic, and transcriptomic techniques. In order to quantify plant stress responses, transmembrane ion transport, sensors and receptors in signaling transduction, and metabolites involved in the energy supply require thorough study. In addition, more research is needed on the plant salinity stress response based on molecular interactions in response to nanoparticle treatment. The application of nanoparticles as an aspect of genetic engineering for the generation of salt-tolerant plants is a promising area of research. This review article addresses the use of nanoparticles in plant breeding and genetic engineering techniques to develop salt-tolerant crops.
Collapse
Affiliation(s)
- Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan;
| | - Maria Hanif
- Department of Biotechnology, Lahore College for Women University, Lahore 54000, Pakistan;
| | - Neelma Munir
- Department of Biotechnology, Lahore College for Women University, Lahore 54000, Pakistan;
- Correspondence: (N.M.); (B.L.N.)
| | - Brent L. Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
- Correspondence: (N.M.); (B.L.N.)
| |
Collapse
|
157
|
Abstract
On the world stage, the increase in temperatures due to global warming is already a reality that has become one of the main challenges faced by the scientific community. Since agriculture is highly dependent on climatic conditions, it may suffer a great impact in the short term if no measures are taken to adapt and mitigate the agricultural system. Plant responses to abiotic stresses have been the subject of research by numerous groups worldwide. Initially, these studies were concentrated on model plants, and, later, they expanded their studies in several economically important crops such as rice, corn, soybeans, coffee, and others. However, agronomic evaluations for the launching of cultivars and the classical genetic improvement process focus, above all, on productivity, historically leaving factors such as tolerance to abiotic stresses in the background. Considering the importance of the impact that abiotic stresses can have on agriculture in the short term, new strategies are currently being sought and adopted in breeding programs to understand the physiological, biochemical, and molecular responses to environmental disturbances in plants of agronomic interest, thus ensuring the world food security. Moreover, integration of these approaches is bringing new insights on breeding. We will discuss how water deficit, high temperatures, and salinity exert effects on plants.
Collapse
|
158
|
Uzma M, Iqbal A, Hasnain S. Drought tolerance induction and growth promotion by indole acetic acid producing Pseudomonas aeruginosa in Vigna radiata. PLoS One 2022; 17:e0262932. [PMID: 35120147 PMCID: PMC8815908 DOI: 10.1371/journal.pone.0262932] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/07/2022] [Indexed: 11/18/2022] Open
Abstract
Drought accompanied with reduced precipitation is one of the key manacles to global agricultural throughput and is expected to escalate further hence posing major challenges to future food safety. For a sustainable agricultural environment, drought resistant plant growth promoting rhizobacteria (PGPR) are new encouraging prospect, which are inexpensive and have no side effects, as those of synthetic fertilizers. In the present study, five strains of Pseudomonas aeruginosa, the strain MK513745, strain MK513746, strain MK513747, strain MK513748, and strain MK513749 were used as drought tolerant PGPR with multiple traits of IAA production, N fixation, P solubilization, siderophore producing capabilities. The strain MK513745 and strain MK513749 produced higher quantities of indole acetic acid (116±0.13 and 108±0.26 μg ml-1). MK513749 yielded 12 different indole compounds in GCMS analysis. The strain MK513748 yielded maximum S.I. (3.33mm) for phosphate solubilizing test. Maximum nitrogen concentration was produced (0.18 μg ml-1) by strain MK513746. Percent siderophore units ranged from 2.65% to 2.83% as all five pseudomonas strains were siderophore positive. In all growth experiments of plant microbe interaction two varieties of Vigna radiata (AZRI-06, NM-11) plants inoculated with P. aeruginosa strains under drought stress responded significantly (P<0.05) better than control stressed plants. Maximum shoot length was enhanced up-to 125%, pod/plant 172%, number of grains 65%, 100 seed weight 95%, 100 seed straw weight 124% and total yield 293% were recorded in plants inoculated with drought stress tolerant PGPR in both varieties as compared to respective stressed control plants. Photosynthetic activity, membrane stability (45%), water content (68%) and antioxidant efficacy (19%) were improved with PGPR inoculations. The variety NM-11 (V2) was more tolerant to drought stress with inoculations of Pseudomonas strains than AZRI-06 (V1). Inoculations with these indole acetic acid producing strains would be suitable for plant growth promotion in areas facing water deficiency.
Collapse
Affiliation(s)
- Malika Uzma
- Department of Microbiology and Molecular Genetics, The Women University, Multan, Pakistan
| | - Atia Iqbal
- Department of Microbiology and Molecular Genetics, The Women University, Multan, Pakistan
| | - Shahida Hasnain
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
159
|
Ramadan T, Sayed SA, Abd-Elaal AKA, Amro A. The combined effect of water deficit stress and TiO 2 nanoparticles on cell membrane and antioxidant enzymes in Helianthus annuus L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:391-409. [PMID: 35400884 PMCID: PMC8943097 DOI: 10.1007/s12298-022-01153-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 05/14/2023]
Abstract
UNLABELLED Nanotechnology has become one of the several approaches attempting to ameliorate the severe effect of drought on plant's production and to increase the plants tolerance against water deficit for the water economy. In this research, the effect of foliar application of TiO2, nanoparticles or ordinary TiO2, on Helianthus annuus subjected to different levels of water deficit was studied. Cell membrane injury increased by increasing the level of water deficit and TiO2 concentration, and both types of TiO2 affected the leaves in analogous manner. Ord-TiO2 increased H2O2 generation by 67-240% and lipid peroxidation by 4-67% in leaves. These increases were more than that induced by Nano-TiO2 and the effect was concentration dependent. Proline significantly increased in leaves by water deficit stress, reaching at 25% field capacity (FC) to more than fivefold compared to that in plants grown on full FC. Spraying plants with water significantly decreased the activities of enzymes in the water deficit stressed roots. The water deficit stress exerted the highest magnitude of effect on the changes of cell membrane injury, MDA, proline content, and activities of CAT and GPX. Nano-TiO2 was having the highest effect on contents of H2O2 and GPX activity. In roots, the level of water deficit causes highest effect on enzyme activities, but TiO2 influenced more on the changes of MDA and H2O2 contents. GPX activity increased by 283% in leaves of plants treated with 50 and 150 ppm Nano-TiO2, while increased by 170% in those treated with Ord-TiO2, but APX and CAT activities increased by 17-197%, in average, with Ord-TiO2. This study concluded that Nano-TiO2 didn't ameliorate the effects of drought stress on H. annuus but additively increased the stress, so its use in nano-phytotechnology mustn't be expanded without extensive studies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01153-z.
Collapse
Affiliation(s)
- Taha Ramadan
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| | - Suzan A. Sayed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| | - Amna K. A. Abd-Elaal
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| | - Ahmed Amro
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| |
Collapse
|
160
|
Ghani MI, Saleem S, Rather SA, Rehmani MS, Alamri S, Rajput VD, Kalaji HM, Saleem N, Sial TA, Liu M. Foliar application of zinc oxide nanoparticles: An effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation. CHEMOSPHERE 2022; 289:133202. [PMID: 34890613 DOI: 10.1016/j.chemosphere.2021.133202] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/27/2021] [Accepted: 12/05/2021] [Indexed: 05/19/2023]
Abstract
Drought is a major environmental threat that affects plant growth and productivity. Strategies to mitigate the detrimental impacts of drought stress on plants are under scrutiny. Nanotechnology is considered an effective tool in resolving a wide range of environmental issues by offering novel and pragmatic solutions. A pot experiment was performed to determine the efficacy of zinc oxide nanoparticles (ZnO NPs) as a foliar application (25 mg L-1 and 100 mg L-1) on the growth performance of cucumber subjected to drought stress. Applied ZnO NPs under normal conditions resulted in significant growth and biomass enhancement while reducing drought-induced decline. Photosynthetic pigments, photosynthesis, and PSII activity enhanced due to ZnO NPs application, attaining maximal values at 100 mg L-1 of ZnO NPs. Drought stress restricted growth and biomass buildup in cucumber seedlings by stimulating oxidative stress, which was manifested to excessive buildup of reactive oxygen species (ROS) and peroxidation, thereby decreasing membrane functioning. Plants exposed to ZnO NPs exhibited a reduction in ROS accumulation and lipid peroxidation. The substantial reduction in oxidative damage was manifested with the enhancement of enzymatic and non-enzymatic antioxidant components. The phenol and mineral contents were reduced due to drought stress. In addition, the content of proline, glycine betaine, free amino acids, and sugars increased due to ZnO NPs under normal and drought conditions. Furthermore, the drought-induced decline in the content of phenol and mineral nutrients was mitigated by ZnO NPs foliar application. These findings reveal that exogenous ZnO NPs application may be a pragmatic option in dealing with the drought stress of cucumber seedlings.
Collapse
Affiliation(s)
- Muhammad Imran Ghani
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sana Saleem
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Shabir A Rather
- StateKey Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Muhammad Saad Rehmani
- School of Environment and Ecology, Northwestern Polytechnical University, Xian, 710129, China
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland; Institute of Technology and Life Sciences - National Research Institute, Falenty, Al. Hrabska 3, 05-090, Raszyn, Poland
| | - Noor Saleem
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tanveer Ali Sial
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengyun Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Scientific Laboratory of Heyang Agricultural Environment and Farmland Cultivation, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Heyang, Shaanxi, 714000, China.
| |
Collapse
|
161
|
Wilmowicz E, Kućko A, Alché JDD, Czeszewska-Rosiak G, Florkiewicz AB, Kapusta M, Karwaszewski J. Remodeling of Cell Wall Components in Root Nodules and Flower Abscission Zone under Drought in Yellow Lupine. Int J Mol Sci 2022; 23:ijms23031680. [PMID: 35163603 PMCID: PMC8836056 DOI: 10.3390/ijms23031680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/29/2022] Open
Abstract
We recently showed that yellow lupine is highly sensitive to soil water deficits since this stressor disrupts nodule structure and functioning, and at the same time triggers flower separation through abscission zone (AZ) activation in the upper part of the plant. Both processes require specific transformations including cell wall remodeling. However, knowledge about the involvement of particular cell wall elements in nodulation and abscission in agronomically important, nitrogen-fixing crops, especially under stressful conditions, is still scarce. Here, we used immuno-fluorescence techniques to visualize dynamic changes in cell wall compounds taking place in the root nodules and flower AZ of Lupinus luteus following drought. The reaction of nodules and the flower AZ to drought includes the upregulation of extensins, galactans, arabinans, xylogalacturonan, and xyloglucans. Additionally, modifications in the localization of high- and low-methylated homogalacturonans and arabinogalactan proteins were detected in nodules. Collectively, we determined for the first time the drought-associated modification of cell wall components responsible for their remodeling in root nodules and the flower AZ of L. luteus. The involvement of these particular molecules and their possible interaction in response to stress is also deeply discussed herein.
Collapse
Affiliation(s)
- Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1 Street, 87-100 Toruń, Poland; (G.C.-R.); (A.B.F.); (J.K.)
- Correspondence: ; Tel.: +48-(56)-611-44-61
| | - Agata Kućko
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159 Street, 02-776 Warsaw, Poland;
| | - Juan De Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain;
| | - Grażyna Czeszewska-Rosiak
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1 Street, 87-100 Toruń, Poland; (G.C.-R.); (A.B.F.); (J.K.)
| | - Aleksandra Bogumiła Florkiewicz
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1 Street, 87-100 Toruń, Poland; (G.C.-R.); (A.B.F.); (J.K.)
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, University of Gdańsk, Wita Stwosza 59 Street, 80-308 Gdańsk, Poland;
| | - Jacek Karwaszewski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1 Street, 87-100 Toruń, Poland; (G.C.-R.); (A.B.F.); (J.K.)
| |
Collapse
|
162
|
Wang F, Wei Y, Yan T, Wang C, Chao Y, Jia M, An L, Sheng H. Sphingomonas sp. Hbc-6 alters physiological metabolism and recruits beneficial rhizosphere bacteria to improve plant growth and drought tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1002772. [PMID: 36388485 PMCID: PMC9650444 DOI: 10.3389/fpls.2022.1002772] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/12/2022] [Indexed: 05/13/2023]
Abstract
Drought poses a serious threat to plant growth. Plant growth-promoting bacteria (PGPB) have great potential to improve plant nutrition, yield, and drought tolerance. Sphingomonas is an important microbiota genus that is extensively distributed in the plant or rhizosphere. However, the knowledge of its plant growth-promoting function in dry regions is extremely limited. In this study, we investigated the effects of PGPB Sphingomonas sp. Hbc-6 on maize under normal conditions and drought stress. We found that Hbc-6 increased the biomass of maize under normal conditions and drought stress. For instance, the root fresh weight and shoot dry weight of inoculated maize increased by 39.1% and 34.8% respectively compared with non-inoculated plant, while they increased by 61.3% and 96.3% respectively under drought conditions. Hbc-6 also promoted seed germination, maintained stomatal morphology and increased chlorophyll content so as to enhance photosynthesis of plants. Hbc-6 increased antioxidant enzyme (catalase, superoxide, peroxidase) activities and osmoregulation substances (proline, soluble sugar) and up-regulated the level of beneficial metabolites (resveratrol, etc.). Moreover, Hbc-6 reshaped the maize rhizosphere bacterial community, increased its richness and diversity, and made the rhizosphere bacterial community more complex to resist stress; Hbc-6 could also recruit more potentially rhizosphere beneficial bacteria which might promote plant growth together with Hbc-6 both under normal and drought stress. In short, Hbc-6 increased maize biomass and drought tolerance through the above ways. Our findings lay a foundation for exploring the complex mechanisms of interactions between Sphingomonas and plants, and it is important that Sphingomonas sp. Hbc-6 can be used as a potential biofertilizer in agricultural production, which will assist finding new solutions for improving the growth and yield of crops in arid areas.
Collapse
Affiliation(s)
- Fang Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yali Wei
- Center for Terrestrial Biodiversity of the South China Sea, Hainan University, Haikou, China
| | - Taozhe Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Cuicui Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yinghui Chao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mingyue Jia
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- The College of Forestry, Beijing Forestry University, Beijing, China
- *Correspondence: Lizhe An, ; Hongmei Sheng,
| | - Hongmei Sheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- *Correspondence: Lizhe An, ; Hongmei Sheng,
| |
Collapse
|
163
|
Reis ADP, Carvalho RF, Costa IB, Girio RJS, Gualberto R, Spers RC, Gaion LA. Hydrogen peroxide is involved in drought stress long-distance signaling controlling early stomatal closure in tomato plants. BRAZ J BIOL 2022; 82:e267343. [DOI: 10.1590/1519-6984.267343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract It has long been hypothesized that hydrogen peroxide (H2O2) may play an essential role in root-to-shoot long-distance signaling during drought conditions. Thus, to better understand the involvement of H2O2 in drought signaling, two experiments were carried out using tomato plants. In the first experiment, a split-root scheme was used, while in the second experiment, the tomato plants were grown in a single pot and subjected to drought stress. In both experiments, H2O2 and catalase were applied together with irrigation. Control plants continued to be irrigated according to the water loss. In the split-root experiment, it was verified that the application of H2O2 to roots induced a clear reduction in plant transpiration compared to untreated or catalase-treated plants. In the second experiment, we observed that H2O2-treated plants exhibited similar transpiration when compared to untreated and catalase-treated plants under drought stress. Similarly, no difference in water use efficiency was observed. Thus, we conclude that the increase in H2O2 in the root system can act as a long-distance signal leading to reduced transpiration even when there is no water limitation in the shoot. But it has little effect when there is a reduction in the shoot water potential.
Collapse
|
164
|
Singh PK, Indoliya Y, Agrawal L, Awasthi S, Deeba F, Dwivedi S, Chakrabarty D, Shirke PA, Pandey V, Singh N, Dhankher OP, Barik SK, Tripathi RD. Genomic and proteomic responses to drought stress and biotechnological interventions for enhanced drought tolerance in plants. CURRENT PLANT BIOLOGY 2022; 29:100239. [DOI: 10.1016/j.cpb.2022.100239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
165
|
Ginsawaeng O, Heise C, Sangwan R, Karcher D, Hernández-Sánchez IE, Sampathkumar A, Zuther E. Subcellular Localization of Seed-Expressed LEA_4 Proteins Reveals Liquid-Liquid Phase Separation for LEA9 and for LEA48 Homo- and LEA42-LEA48 Heterodimers. Biomolecules 2021; 11:biom11121770. [PMID: 34944414 PMCID: PMC8698616 DOI: 10.3390/biom11121770] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/05/2021] [Accepted: 11/20/2021] [Indexed: 12/27/2022] Open
Abstract
LEA proteins are involved in plant stress tolerance. In Arabidopsis, the LEA_4 Pfam group is the biggest group with the majority of its members being expressed in dry seeds. To assess subcellular localization in vivo, we investigated 11 seed-expressed LEA_4 proteins in embryos dissected from dry seeds expressing LEA_4 fusion proteins under its native promoters with the Venus fluorescent protein (proLEA_4::LEA_4:Venus). LEA_4 proteins were shown to be localized in the endoplasmic reticulum, nucleus, mitochondria, and plastids. LEA9, in addition to the nucleus, was also found in cytoplasmic condensates in dry seeds dependent on cellular hydration level. Most investigated LEA_4 proteins were detected in 4-d-old seedlings. In addition, we assessed bioinformatic tools for predicting subcellular localization and promoter motifs of 11 seed-expressed LEA_4 proteins. Ratiometric bimolecular fluorescence complementation assays showed that LEA7, LEA29, and LEA48 form homodimers while heterodimers were formed between LEA7-LEA29 and LEA42-LEA48 in tobacco leaves. Interestingly, LEA48 homodimers and LEA42-LEA48 heterodimers formed droplets structures with liquid-like behavior. These structures, along with LEA9 cytoplasmic condensates, may have been formed through liquid-liquid phase separation. These findings suggest possible important roles of LLPS for LEA protein functions.
Collapse
|
166
|
Wu Y, Li T, Cheng Z, Zhao D, Tao J. R2R3-MYB Transcription Factor PlMYB108 Confers Drought Tolerance in Herbaceous Peony ( Paeonia lactiflora Pall.). Int J Mol Sci 2021; 22:11884. [PMID: 34769317 PMCID: PMC8584830 DOI: 10.3390/ijms222111884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
The MYB transcription factor (TF) is crucial for plant growth, development, and response to abiotic stress, but it is rarely reported in the herbaceous peony (Paeonia lactiflora Pall.). Here, an MYB TF gene was isolated, and based on our prior mRNA data from P. lactiflora samples, it was treated with drought stress (DS). Its complete cDNA structure was 1314 bp, which encoded 291 amino acids (aa). Furthermore, using sequence alignment analysis, we demonstrated that PlMYB108 was an R2R3-MYB TF. We also revealed that PlMYB108 was primarily localized in the nucleus. Its levels rose during DS, and it was positively correlated with drought tolerance (DT) in P. lactiflora. In addition, when PlMYB108 was overexpressed in tobacco plants, the flavonoid content, antioxidant enzyme activities, and photosynthesis were markedly elevated. Hence, the transgenic plants had stronger DT with a higher leaf water content and lower H2O2 accumulation compared to the wild-type (WT) plants. Based on these results, PlMYB108 is a vital gene that serves to increase flavonoid accumulation, reactive oxygen species (ROS), scavenging capacity, and photosynthesis to confer DT. The results would provide a genetic resource for molecular breeding to enhance plant DT.
Collapse
Affiliation(s)
- Yanqing Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China;
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.L.); (Z.C.); (D.Z.)
| | - Tingting Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.L.); (Z.C.); (D.Z.)
| | - Zhuoya Cheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.L.); (Z.C.); (D.Z.)
| | - Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.L.); (Z.C.); (D.Z.)
| | - Jun Tao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China;
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.L.); (Z.C.); (D.Z.)
| |
Collapse
|
167
|
Impact of Trichoderma asperellum on Chilling and Drought Stress in Tomato (Solanum lycopersicum). HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7100385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The acceleration of climate change is necessitating the adoption of shifts in farming practices and technology to ensure the sustainability of agricultural production and food security. Because abiotic stresses such as drought and chilling represent major constraints on agricultural productivity worldwide, in this study, the mitigation of such stresses by the fungus Trichoderma asperellum HK703 was evaluated. The fungus was grown on whole grain oats, kaolin and vermiculite for 5 days and then the formulation was mixed with the potting soil to colonize the roots of the plants. The effect of the bioinoculant on tomato under drought or chilling was analyzed in tomato (Solanum lycopersicum) plants. Leaf, stem and root succulence, electrolyte leakage, the relative growth rate of plant height, stem thickness and leaf area, as well new leaf emergence and chlorophyll content were determined. The results showed that drought or chilling increased electrolyte leakage and reduced plant growth and development traits and chlorophyll (a,b) content. However, inoculation with T. asperellum eliminated or reduced most of the negative impacts of drought compared to the non-stressed plants, with the exception of chlorophyll b content. Furthermore, inoculation with T. asperellum improved some of the evaluated features in chilling stressed plants but had no effect on plant height or chlorophyll (a,b) content. The results of this study indicate that T. asperellum was more effective in alleviating drought than chilling stress in tomato plants.
Collapse
|
168
|
Haddoudi L, Hdira S, Hanana M, Romero I, Haddoudi I, Mahjoub A, Ben Jouira H, Djébali N, Ludidi N, Sanchez-Ballesta MT, Abdelly C, Badri M. Evaluation of the Morpho-Physiological, Biochemical and Molecular Responses of Contrasting Medicago truncatula Lines under Water Deficit Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:2114. [PMID: 34685923 PMCID: PMC8537959 DOI: 10.3390/plants10102114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/29/2021] [Accepted: 09/10/2021] [Indexed: 12/02/2022]
Abstract
Medicago truncatula is a forage crop of choice for farmers, and it is a model species for molecular research. The growth and development and subsequent yields are limited by water availability mainly in arid and semi-arid regions. Our study aims to evaluate the morpho-physiological, biochemical and molecular responses to water deficit stress in four lines (TN6.18, JA17, TN1.11 and A10) of M. truncatula. The results showed that the treatment factor explained the majority of the variation for the measured traits. It appeared that the line A10 was the most sensitive and therefore adversely affected by water deficit stress, which reduced its growth and yield parameters, whereas the tolerant line TN6.18 exhibited the highest root biomass production, a significantly higher increase in its total protein and soluble sugar contents, and lower levels of lipid peroxidation with greater cell membrane integrity. The expression analysis of the DREB1B gene using RT-qPCR revealed a tissue-differential expression in the four lines under osmotic stress, with a higher induction rate in roots of TN6.18 and JA17 than in A10 roots, suggesting a key role for DREB1B in water deficit tolerance in M. truncatula.
Collapse
Affiliation(s)
- Loua Haddoudi
- Centre of Biotechnology of Borj Cedria, Laboratory of Extremophile Plants, B.P. 901, Hammam-Lif 2050, Tunisia; (L.H.); (S.H.); (M.H.); (A.M.); (H.B.J.); (C.A.)
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, Campus Universitaire El-Manar, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Sabrine Hdira
- Centre of Biotechnology of Borj Cedria, Laboratory of Extremophile Plants, B.P. 901, Hammam-Lif 2050, Tunisia; (L.H.); (S.H.); (M.H.); (A.M.); (H.B.J.); (C.A.)
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, Campus Universitaire El-Manar, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Mohsen Hanana
- Centre of Biotechnology of Borj Cedria, Laboratory of Extremophile Plants, B.P. 901, Hammam-Lif 2050, Tunisia; (L.H.); (S.H.); (M.H.); (A.M.); (H.B.J.); (C.A.)
| | - Irene Romero
- Laboratory of Biotechnology and Postharvest Quality, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais, 10, 28040 Madrid, Spain; (I.R.); (M.T.S.-B.)
| | - Imen Haddoudi
- Department of Ecosystem Biology, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic;
| | - Asma Mahjoub
- Centre of Biotechnology of Borj Cedria, Laboratory of Extremophile Plants, B.P. 901, Hammam-Lif 2050, Tunisia; (L.H.); (S.H.); (M.H.); (A.M.); (H.B.J.); (C.A.)
| | - Hatem Ben Jouira
- Centre of Biotechnology of Borj Cedria, Laboratory of Extremophile Plants, B.P. 901, Hammam-Lif 2050, Tunisia; (L.H.); (S.H.); (M.H.); (A.M.); (H.B.J.); (C.A.)
| | - Naceur Djébali
- Centre of Biotechnology of Borj Cedria, Laboratory of Bioactive Substances, B.P. 901, Hammam-Lif 2050, Tunisia;
| | - Ndiko Ludidi
- Plant Biotechnology Research Group, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa;
- DSI-NRF Centre of Excellence in Food Security, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
| | - Maria Teresa Sanchez-Ballesta
- Laboratory of Biotechnology and Postharvest Quality, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais, 10, 28040 Madrid, Spain; (I.R.); (M.T.S.-B.)
| | - Chedly Abdelly
- Centre of Biotechnology of Borj Cedria, Laboratory of Extremophile Plants, B.P. 901, Hammam-Lif 2050, Tunisia; (L.H.); (S.H.); (M.H.); (A.M.); (H.B.J.); (C.A.)
| | - Mounawer Badri
- Centre of Biotechnology of Borj Cedria, Laboratory of Extremophile Plants, B.P. 901, Hammam-Lif 2050, Tunisia; (L.H.); (S.H.); (M.H.); (A.M.); (H.B.J.); (C.A.)
| |
Collapse
|
169
|
Metabolomics and Molecular Approaches Reveal Drought Stress Tolerance in Plants. Int J Mol Sci 2021; 22:ijms22179108. [PMID: 34502020 PMCID: PMC8431676 DOI: 10.3390/ijms22179108] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/21/2023] Open
Abstract
Metabolic regulation is the key mechanism implicated in plants maintaining cell osmotic potential under drought stress. Understanding drought stress tolerance in plants will have a significant impact on food security in the face of increasingly harsh climatic conditions. Plant primary and secondary metabolites and metabolic genes are key factors in drought tolerance through their involvement in diverse metabolic pathways. Physio-biochemical and molecular strategies involved in plant tolerance mechanisms could be exploited to increase plant survival under drought stress. This review summarizes the most updated findings on primary and secondary metabolites involved in drought stress. We also examine the application of useful metabolic genes and their molecular responses to drought tolerance in plants and discuss possible strategies to help plants to counteract unfavorable drought periods.
Collapse
|
170
|
Liang SM, Zhang F, Zou YN, Kuča K, Wu QS. Metabolomics Analysis Reveals Drought Responses of Trifoliate Orange by Arbuscular Mycorrhizal Fungi With a Focus on Terpenoid Profile. FRONTIERS IN PLANT SCIENCE 2021; 12:740524. [PMID: 34691116 PMCID: PMC8528288 DOI: 10.3389/fpls.2021.740524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/08/2021] [Indexed: 05/18/2023]
Abstract
Soil water deficit seriously affects crop production, and soil arbuscular mycorrhizal fungi (AMF) enhance drought tolerance in crops by unclear mechanisms. Our study aimed to analyze changes in non-targeted metabolomics in roots of trifoliate orange (Poncirus trifoliata) seedlings under well-watered and soil drought after inoculation with Rhizophagus intraradices, with a focus on terpenoid profile. Root mycorrhizal fungal colonization varied from 70% under soil drought to 85% under soil well-watered, and shoot and root biomass was increased by AMF inoculation, independent of soil water regimes. A total of 643 secondary metabolites in roots were examined, and 210 and 105 differential metabolites were regulated by mycorrhizal fungi under normal water and drought stress, along with 88 and 17 metabolites being up-and down-regulated under drought conditions, respectively. KEGG annotation analysis of differential metabolites showed 38 and 36 metabolic pathways by mycorrhizal inoculation under normal water and drought stress conditions, respectively. Among them, 33 metabolic pathways for mycorrhization under drought stress included purine metabolism, pyrimidine metabolism, alanine, aspartate and glutamate metabolism, etc. We also identified 10 terpenoid substances, namely albiflorin, artemisinin (-)-camphor, capsanthin, β-caryophyllene, limonin, phytol, roseoside, sweroside, and α-terpineol. AMF colonization triggered the decline of almost all differential terpenoids, except for β-caryophyllene, which was up-regulated by mycorrhizas under drought, suggesting potential increase in volatile organic compounds to initiate plant defense responses. This study provided an overview of AMF-induced metabolites and metabolic pathways in plants under drought, focusing on the terpenoid profile.
Collapse
Affiliation(s)
- Sheng-Min Liang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Fei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, China
| | - Ying-Ning Zou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
- *Correspondence: Qiang-Sheng Wu,
| |
Collapse
|