151
|
Physical exercise increases the production of tyrosine hydroxylase and CDNF in the spinal cord of a Parkinson's disease mouse model. Neurosci Lett 2021; 760:136089. [PMID: 34182056 DOI: 10.1016/j.neulet.2021.136089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/05/2021] [Accepted: 06/23/2021] [Indexed: 02/04/2023]
Abstract
Previous research advocates that exercise is a non-pharmacological therapy for Parkinson's disease (PD). However, few studies have investigated the effects of exercise on central nervous system structures other than the nigrostriatal pathway by using PD animal models. This study investigated the effects of exercise on tyrosine hydroxylase (TH)- and cerebral dopamine neurotrophic factor (CDNF)-containing spinal-cord neurons. Male Swiss mice were divided into 4 groups: sedentary control (SEDCONT), exercise control (EXERCONT), sedentary Parkinson (SEDPD), and exercise Parkinson (EXERPD). The PD groups were submitted to a surgical procedure for stereotaxic bilateral injection of 6-hydroxydopamine into the striatum. TH- and CDNF-containing spinal-cord neurons were evaluated in all groups, using immunohistochemistry and western-blotting. TH content in the ventral horn differed notably between the SEDPD and EXERPD groups. CDNF content was highest in the EXERPD group. SEDPD and EXERPD groups differed the most, as shown by immunohistochemistry and western-blotting. The EXERPD group showed the most intense labeling in immunohistochemistry compared to the SEDCONT and EXERCONT groups. Therefore, we showed here that exercise increased the content of both TH and CDNF in the spinal-cord neurons of a bilateral PD mouse model. We may assume that the spinal cord is affected in a PD model, and therefore this central nervous system region deserves more attention from researchers dealing with PD.
Collapse
|
152
|
Mercerón-Martínez D, Ibaceta-González C, Salazar C, Almaguer-Melian W, Bergado-Rosado JA, Palacios AG. Alzheimer’s Disease, Neural Plasticity, and Functional Recovery. J Alzheimers Dis 2021; 82:S37-S50. [DOI: 10.3233/jad-201178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer’s disease (AD) is the most common and devastating neurodegenerative condition worldwide, characterized by the aggregation of amyloid-β and phosphorylated tau protein, and is accompanied by a progressive loss of learning and memory. A healthy nervous system is endowed with synaptic plasticity, among others neural plasticity mechanisms, allowing structural and physiological adaptations to changes in the environment. This neural plasticity modification sustains learning and memory, and behavioral changes and is severely affected by pathological and aging conditions, leading to cognitive deterioration. This article reviews critical aspects of AD neurodegeneration as well as therapeutic approaches that restore neural plasticity to provide functional recoveries, including environmental enrichment, physical exercise, transcranial stimulation, neurotrophin involvement, and direct electrical stimulation of the amygdala. In addition, we report recent behavioral results in Octodon degus, a promising natural model for the study of AD that naturally reproduces the neuropathological alterations observed in AD patients during normal aging, including neuronal toxicity, deterioration of neural plasticity, and the decline of learning and memory.
Collapse
Affiliation(s)
- Daymara Mercerón-Martínez
- Experimental Electrophysiology Lab, International Center for Neurological Restoration (CIREN), Havana City, Cuba
| | | | - Claudia Salazar
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - William Almaguer-Melian
- Experimental Electrophysiology Lab, International Center for Neurological Restoration (CIREN), Havana City, Cuba
| | | | - Adrian G. Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
153
|
Movement as a Positive Modulator of Aging. Int J Mol Sci 2021; 22:ijms22126278. [PMID: 34208002 PMCID: PMC8230594 DOI: 10.3390/ijms22126278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022] Open
Abstract
The aging of human populations, including those in Europe, is an indisputable fact. The challenge for the future is not simply prolonging human life at any cost or by any means but rather extending self-sufficiency and quality of life. Even in the most advanced societies, the eternal questions remain. Who will take care of the older generations? Will adult children’s own circumstances be sufficient to support family members as they age? For a range of complex reasons, including socioeconomic conditions, adult children are often unable or unwilling to assume responsibility for the care of older family members. For this reason, it is imperative that aging adults maintain their independence and self-care for as long as possible. Movement is an important part of self-sufficiency. Moreover, movement has been shown to improve patients’ clinical status. At a time when the coronavirus pandemic is disrupting the world, older people are among the most vulnerable. Our paper explores current knowledge and offers insights into the significant benefits of movement for the elderly, including improved immunity. We discuss the biochemical processes of aging and the counteractive effects of exercise and endogenous substances, such as vitamin D.
Collapse
|
154
|
Santos PCRD, Barbieri FA, Orcioli-Silva D, Beretta VS, Hortobágyi T, Gobbi LTB. Being physically active minimizes the effects of leg muscle fatigue on obstacle negotiation in people with Parkinson's disease. J Biomech 2021; 124:110568. [PMID: 34171679 DOI: 10.1016/j.jbiomech.2021.110568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 01/31/2023]
Abstract
It is challenging for people with Parkinson's disease (PwPD) to adjust their gait to perturbations, including fatigue. Obstacle negotiation increases the risk of tripping and falling in PD. Being physically active can improve gait control and the ability to negotiate obstacles while walking under fatigue state. We thus determined the effects of Parkinson's disease, fatigue, and level of physical activity on gait during the approach to and crossing an obstacle during gait. Forty participants were stratified to people with Parkinson's disease active and inactive, and control individuals active and inactive. Participants walked on an 8 m walkway and stepped over an obstacle placed at the middle (4 m). They performed three trials before and after repeated sit-to-stand (rSTS)-induced fatigue state. Maximum voluntary force was assessed before and after rSTS. We measured the length, width, duration, and velocity of the approach (stride before obstacle) and crossing (step over the obstacle) phases and the leading and trailing placements and clearance during crossing phase. Fatigue trait was determined by multidimensional fatigue inventory. Before rSTS, people with Parkinson's disease inactive vs. other subgroups approached the obstacle using 18-28% shorter, wider and slower steps and crossed the obstacle slower (all p < 0.04). After rSTS, people with Parkinson's disease inactive increased (23-34%) stride length and velocity and decreased (-21%) the step width (p < 0.01). People with Parkinson's disease approached the obstacle similarly to control individuals. Physical activity minimizes Parkinson's disease-typical gait impairments during obstacle negotiation and affords a protective effect against fatigue-effects on obstacle negotiation.
Collapse
Affiliation(s)
- Paulo Cezar Rocha Dos Santos
- São Paulo State University (UNESP), Graduate Program in Movement Sciences, Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil.
| | - Fabio Augusto Barbieri
- São Paulo State University (UNESP), Graduate Program in Movement Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, São Paulo, Brazil
| | - Diego Orcioli-Silva
- São Paulo State University (UNESP), Graduate Program in Movement Sciences, Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| | - Victor Spiandor Beretta
- São Paulo State University (UNESP), Graduate Program in Movement Sciences, Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| | - Tibor Hortobágyi
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, the Netherlands; Institute of Sport Sciences and Physical Education, Faculty of Sciences, University of Pécs, Pécs, Hungary; Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
| | - Lilian Teresa Bucken Gobbi
- São Paulo State University (UNESP), Graduate Program in Movement Sciences, Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| |
Collapse
|
155
|
Yao R, Nishii K, Aizu N, Kito T, Sakai K, Yamada K. Maintenance of the Amygdala-Hippocampal Circuit Function with Safe and Feasible Shaking Exercise Therapy in SAMP-10 Mice. Dement Geriatr Cogn Dis Extra 2021; 11:114-121. [PMID: 34178015 PMCID: PMC8215968 DOI: 10.1159/000515957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Patients with dementia show reduced adaptive, behavioral, and physiological responses to environmental threats. Physical exercise is expected to delay brain aging, maintain cognitive function and, consequently, help dementia patients face threats and protect themselves skillfully. METHODS To confirm this, we aimed to investigate the effects of the shaking exercise on the avoidance function in the senescence-accelerated mouse-prone strain-10 (SAMP-10) model at the behavioral and tissue levels. SAMP-10 mice were randomized into 2 groups: a control group and a shaking group. The avoidance response (latency) of the mice was evaluated using a passive avoidance task. The degree of amygdala and hippocampal aging was evaluated based on the brain morphology. Subsequently, the association between avoidance response and the degree of amygdala-hippocampal aging was evaluated. RESULTS Regarding the passive avoidance task, the shaking group showed a longer latency period than the control group (p < 0.05), even and low intensity staining of ubiquitinated protein, and had a higher number of and larger neurons than those of the control group. The difference between the groups was more significant in the BA region of the amygdala and the CA1 region of the hippocampus (staining degree: p < 0.05, neuron size: p < 0.01, neuron counts: p < 0.01) than in other regions. CONCLUSIONS The shaking exercise prevents nonfunctional protein (NFP) accumulation, neuron atrophy, and neuron loss; delays the aging of the amygdala and hippocampus; and maintains the function of the amygdala-hippocampal circuit. It thus enhances emotional processing and cognition functions, the memory of threats, the skillful confrontation of threats, and proper self-protection from danger.
Collapse
Affiliation(s)
| | | | | | | | | | - Kouji Yamada
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| |
Collapse
|
156
|
Nuzzo D, Picone P, Giardina C, Scordino M, Mudò G, Pagliaro M, Scurria A, Meneguzzo F, Ilharco LM, Fidalgo A, Alduina R, Presentato A, Ciriminna R, Di Liberto V. New Neuroprotective Effect of Lemon IntegroPectin on Neuronal Cellular Model. Antioxidants (Basel) 2021; 10:669. [PMID: 33923111 PMCID: PMC8145755 DOI: 10.3390/antiox10050669] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Lemon IntegroPectin obtained via hydrodynamic cavitation of organic lemon processing waste in water shows significant neuroprotective activity in vitro, as first reported in this study investigating the effects of both lemon IntegroPectin and commercial citrus pectin on cell viability, cell morphology, reactive oxygen species (ROS) production, and mitochondria perturbation induced by treatment of neuronal SH-SY5Y human cells with H2O2. Mediated by ROS, including H2O2 and its derivatives, oxidative stress alters numerous cellular processes, such as mitochondrial regulation and cell signaling, propagating cellular injury that leads to incurable neurodegenerative diseases. These results, and the absence of toxicity of this new pectic substance rich in adsorbed flavonoids and terpenes, suggest further studies to investigate its activity in preventing, retarding, or even curing neurological diseases.
Collapse
Affiliation(s)
- Domenico Nuzzo
- Istituto per la Ricerca e l’Innovazione Biomedica, CNR, via U. La Malfa 153, 90146 Palermo, Italy;
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (R.A.); (A.P.)
| | - Pasquale Picone
- Istituto per la Ricerca e l’Innovazione Biomedica, CNR, via U. La Malfa 153, 90146 Palermo, Italy;
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (R.A.); (A.P.)
| | - Costanza Giardina
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (C.G.); (M.S.); (G.M.)
| | - Miriana Scordino
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (C.G.); (M.S.); (G.M.)
| | - Giuseppa Mudò
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (C.G.); (M.S.); (G.M.)
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy; (M.P.); (A.S.)
| | - Antonino Scurria
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy; (M.P.); (A.S.)
| | - Francesco Meneguzzo
- Istituto per la Bioeconomia, CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| | - Laura M. Ilharco
- Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.M.I.); (A.F.)
| | - Alexandra Fidalgo
- Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.M.I.); (A.F.)
| | - Rosa Alduina
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (R.A.); (A.P.)
| | - Alessandro Presentato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (R.A.); (A.P.)
| | - Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy; (M.P.); (A.S.)
| | - Valentina Di Liberto
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (C.G.); (M.S.); (G.M.)
| |
Collapse
|
157
|
Felicetti G, Thoumie P, Do MC, Schieppati M. Cutaneous and muscular afferents from the foot and sensory fusion processing: Physiology and pathology in neuropathies. J Peripher Nerv Syst 2021; 26:17-34. [PMID: 33426723 DOI: 10.1111/jns.12429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
The foot-sole cutaneous receptors (section 2), their function in stance control (sway minimisation, exploratory role) (2.1), and the modulation of their effects by gait pattern and intended behaviour (2.2) are reviewed. Experimental manipulations (anaesthesia, temperature) (2.3 and 2.4) have shown that information from foot sole has widespread influence on balance. Foot-sole stimulation (2.5) appears to be a promising approach for rehabilitation. Proprioceptive information (3) has a pre-eminent role in balance and gait. Reflex responses to balance perturbations are produced by both leg and foot muscle stretch (3.1) and show complex interactions with skin input at both spinal and supra-spinal levels (3.2), where sensory feedback is modulated by posture, locomotion and vision. Other muscles, notably of neck and trunk, contribute to kinaesthesia and sense of orientation in space (3.3). The effects of age-related decline of afferent input are variable under different foot-contact and visual conditions (3.4). Muscle force diminishes with age and sarcopenia, affecting intrinsic foot muscles relaying relevant feedback (3.5). In neuropathy (4), reduction in cutaneous sensation accompanies the diminished density of viable receptors (4.1). Loss of foot-sole input goes along with large-fibre dysfunction in intrinsic foot muscles. Diabetic patients have an elevated risk of falling, and vision and vestibular compensation strategies may be inadequate (4.2). From Charcot-Marie-Tooth 1A disease (4.3) we have become aware of the role of spindle group II fibres and of the anatomical feet conditions in balance control. Lastly (5) we touch on the effects of nerve stimulation onto cortical and spinal excitability, which may participate in plasticity processes, and on exercise interventions to reduce the impact of neuropathy.
Collapse
Affiliation(s)
- Guido Felicetti
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Neuromotor Rehabilitation, Institute of Montescano, Pavia, Italy
| | - Philippe Thoumie
- Service de rééducation neuro-orthopédique, Hôpital Rothschild APHP, Université Sorbonne, Paris, France.,Agathe Lab ERL Inserm U-1150, Paris, France
| | - Manh-Cuong Do
- Université Paris-Saclay, CIAMS, Orsay, France.,Université d'Orléans, CIAMS, Orléans, France
| | | |
Collapse
|
158
|
Romero-Ortuño R, Martínez-Velilla N, Sutton R, Ungar A, Fedorowski A, Galvin R, Theou O, Davies A, Reilly RB, Claassen J, Kelly ÁM, Ivanov PC. Network Physiology in Aging and Frailty: The Grand Challenge of Physiological Reserve in Older Adults. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:712430. [PMID: 36925570 PMCID: PMC10012993 DOI: 10.3389/fnetp.2021.712430] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/25/2021] [Indexed: 12/29/2022]
Affiliation(s)
- Román Romero-Ortuño
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Mercer's Institute for Successful Ageing, St James's Hospital, Dublin, Ireland.,Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Nicolás Martínez-Velilla
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Public University of Navarra (UPNA), Navarra Health Research Institute (IdisNa), Pamplona, Spain
| | - Richard Sutton
- Faculty of Medicine, Imperial College London, Heart Science, National Heart and Lung Institute, London, United Kingdom
| | - Andrea Ungar
- Geriatric Department, University of Florence and Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Artur Fedorowski
- Department of Clinical Sciences, Lund University and Department of Cardiology, Skåne University Hospital, Malmo, Sweden
| | - Rose Galvin
- Ageing Research Centre, School of Allied Health, Health Research Institute, University of Limerick, Limerick, Ireland
| | - Olga Theou
- Physiotherapy and Geriatric Medicine, Dalhousie University, Halifax, NS, Canada
| | - Andrew Davies
- School of Medicine, Trinity College Dublin, University College Dublin and Our Lady's Hospice and Care Services, Dublin, Ireland
| | - Richard B Reilly
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Jurgen Claassen
- Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Áine M Kelly
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Plamen Ch Ivanov
- Keck Laboratory for Network Physiology, Boston University, Boston, MA, United States
| |
Collapse
|
159
|
Exercise Training of Secreted Protein Acidic and Rich in Cysteine (Sparc) KO Mice Suggests That Exercise-Induced Muscle Phenotype Changes Are SPARC-Dependent. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10249108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We previously identified secreted protein acidic and rich in cysteine (Sparc) as an exercise-induced gene in young and elderly individuals. Via this animal experiment, we aim to identify selected implications of SPARC mainly within the muscle in the contexts of exercise. Mice were divided into eight groups based on three variables (age, genotype and exercise): Old (O) or young (Y) × Sparc knock-out (KO) or wild-type (WT) × sedentary (Sed) or exercise (Ex). The exercised groups were trained for 12 weeks at the lactate threshold (LT) speed (including 4 weeks of adaptation period) and all mice were sacrificed afterwards. Body and selected tissues were weighed, and lactate levels in different conditions measured. Expression of skeletal muscle (SM) collagen type I alpha 1 chain (COL1A1) and mitochondrially encoded cytochrome c oxidase I (MT-CO1) in addition to SM strength (grip power) were also measured. Ageing increased the body and white adipose tissue (WAT) weights but decreased SM weight percentage (to body weight) and MT-CO1 expression (in WT). Exercise increased SM COL1A1 in WT mice and MT-CO1 expression, as well as weight percentage of the tibialis anterior muscle, and decreased WAT weight (trend). Compared to WT mice, Sparc KO mice had lower body, muscle and WAT weights, with a decrease in SM MT-CO1 and COL1A1 expression with no genotype effect on lactate levels in all our blood lactate measures. Sparc KO effects on body composition, adiposity and metabolic patterns are toward a reduced WAT and body weight, but with a negative metabolic and functional phenotype of SM. Whereas such negative effects on SM are worsened with ageing, they are relatively improved by exercise. Importantly, our data suggest that the exercise-induced changes in the SM phenotype, in terms of increased performance (metabolic, strength and development), including lactate-induced changes, are SPARC-dependent.
Collapse
|
160
|
Wang LY, Pei J, Zhan YJ, Cai YW. Overview of Meta-Analyses of Five Non-pharmacological Interventions for Alzheimer's Disease. Front Aging Neurosci 2020; 12:594432. [PMID: 33324194 PMCID: PMC7723835 DOI: 10.3389/fnagi.2020.594432] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory deficits, cognitive decline, and spatial disorientation. Non-pharmacological interventions to treat AD have been reported in many meta-analyses (MAs), but robust conclusions have not been made because of variations in the scope, quality, and findings of these reviews. Objective: This work aimed to review existing MAs to provide an overview of existing evidence on the effects of five non-pharmacological interventions in AD patients on three outcomes: Mini-Mental State Examination (MMSE), activities of daily living (ADL), and Alzheimer's Disease Assessment Scale-cognitive section (ADAS-cog). Methods: The databases PubMed, Cochrane Library, Embase, and Web of Science were searched to collect MAs of non-pharmacological interventions for AD. Two reviewers independently conducted literature screening, data extraction, and quality assessment. We assessed the quality of MAs with the Measurement Tool to Assess Systematic Reviews (AMSTAR) 2 and assessed the evidence quality for significant outcomes using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system. Results: We found 10 eligible MAs, which included between three (133 patients) and 15 randomized trials (1,217 patients), and five non-pharmacological interventions, namely, acupuncture therapy (40%), exercise intervention (30%), music therapy (10%), cognitive intervention (10%), and repetitive transcranial magnetic stimulation (rTMS) (10%). All the included MAs were critically low to low quality by AMSTAR 2. Acupuncture therapy and exercise intervention showed the preliminary potential to improve ADL and MMSE. rTMS and acupuncture therapy show benefits in decreasing ADAS-cog, and there were some evidence of improved MMSE with cognitive intervention. All these outcomes scored very low quality to moderate quality of evidence on the GRADE system. Conclusions: Non-pharmacological therapy shows promise for the treatment of AD, but there is still a lack of high-quality evidence. In the future, the quality of the original research needs to be improved, and strictly designed MAs should be carried out following methodological requirements.
Collapse
Affiliation(s)
- Liao-Yao Wang
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Pei
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Jun Zhan
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Wen Cai
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
161
|
The Stimulation of Neurogenesis Improves the Cognitive Status of Aging Rats Subjected to Gestational and Perinatal Deficiency of B9-12 Vitamins. Int J Mol Sci 2020; 21:ijms21218008. [PMID: 33126444 PMCID: PMC7662762 DOI: 10.3390/ijms21218008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
A deficiency in B-vitamins is known to lead to persistent developmental defects in various organs during early life. The nervous system is particularly affected with functional retardation in infants and young adults. In addition, even if in some cases no damage appears evident in the beginning of life, correlations have been shown between B-vitamin metabolism and neurodegenerative diseases. However, despite the usual treatment based on B-vitamin injections, the neurological outcomes remain poorly rescued in the majority of cases, compared with physiological functions. In this study, we explored whether a neonatal stimulation of neurogenesis could compensate atrophy of specific brain areas such as the hippocampus, in the case of B-vitamin deficiency. Using a physiological mild transient hypoxia within the first 24 h after birth, rat-pups, submitted or not to neonatal B-vitamin deficiency, were followed until 330-days-of-age for their cognitive capacities and their hippocampus status. Our results showed a gender effect since females were more affected than males by the deficiency, showing a persistent low body weight and poor cognitive performance to exit a maze. Nevertheless, the neonatal stimulation of neurogenesis with hypoxia rescued the maze performance during adulthood without modifying physiological markers, such as body weight and circulating homocysteine. Our findings were reinforced by an increase of several markers at 330-days-of-age in hypoxic animals, such as Ammon’s Horn 1hippocampus (CA1) thickness and the expression of key actors of synaptic dynamic, such as the NMDA-receptor-1 (NMDAR1) and the post-synaptic-density-95 (PSD-95). We have not focused our conclusion on the neonatal hypoxia as a putative treatment, but we have discussed that, in the case of neurologic retardation associated with a reduced B-vitamin status, stimulation of the latent neurogenesis in infants could ameliorate their quality of life during their lifespan.
Collapse
|