151
|
Jeon JS, Kwon S, Ban K, Kwon Hong Y, Ahn C, Sung JS, Choi I. Regulation of the Intracellular ROS Level Is Critical for the Antiproliferative Effect of Quercetin in the Hepatocellular Carcinoma Cell Line HepG2. Nutr Cancer 2019; 71:861-869. [PMID: 30661409 DOI: 10.1080/01635581.2018.1559929] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Quercetin, an antioxidant flavonoid, has been known that it can induce the cell cycle arrest and apoptosis of hepatocellular carcinoma (HCC) cells by the stabilization or induction of p53. Here, we found that quercetin reduced the proliferation of HepG2 cells significantly, but not Huh7 cells. Interestingly, quercetin down-regulated the intracellular ROS level in HepG2 cells, but not Huh7 cells. Functional study using siRNA showed that the proliferation of HepG2 cells was still regulated by quercetin in the absence of p53. Furthermore, we confirmed the effect of quercetin on HepG2 cells by H2O2 supplementation. This study demonstrates that the antiproliferative effect of quercetin on HCC cells can be mediated by reducing intracellular ROS, which is independent of p53 expression.
Collapse
Affiliation(s)
- Ji-Sook Jeon
- a Department of Pharmaceutical Engineering , Hoseo University , Asan , Republic of Korea
| | - Sora Kwon
- a Department of Pharmaceutical Engineering , Hoseo University , Asan , Republic of Korea
| | - Kiwon Ban
- b Department of Biomedical Sciences , City University of Hong Kong , Kowloon Tong , Hong Kong
| | - Young- Kwon Hong
- c Department of Surgery , Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California , Los Angeles , CA , USA
| | - Curie Ahn
- d Department of Internal Medicine , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Jung-Suk Sung
- e Department of Life Science , Dongguk University , Goyang , Republic of Korea
| | - Inho Choi
- a Department of Pharmaceutical Engineering , Hoseo University , Asan , Republic of Korea
| |
Collapse
|
152
|
Quercetin attenuates toosendanin-induced hepatotoxicity through inducing the Nrf2/GCL/GSH antioxidant signaling pathway. Acta Pharmacol Sin 2019; 40:75-85. [PMID: 29921882 DOI: 10.1038/s41401-018-0024-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/28/2018] [Indexed: 12/23/2022]
Abstract
Toosendanin (TSN) is the main active compound in Toosendan Fructus and Meliae Cortex, two commonly used traditional Chinese medicines. TSN has been reported to induce hepatotoxicity, but its mechanism remains unclear. In this study, we demonstrated the critical role of nuclear factor erythroid 2-related factor 2 (Nrf2) in protecting against TSN-induced hepatotoxicity in mice and human normal liver L-02 cells. In mice, administration of TSN (10 mg/kg)-induced acute liver injury evidenced by increased serum alanine/aspartate aminotransferase (ALT/AST) and alkaline phosphatase (ALP) activities, and total bilirubin (TBiL) content as well as the histological changes. Furthermore, TSN markedly increased liver reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and decreased liver glutathione (GSH) content and Nrf2 expression. In L-02 cells, TSN (2 μM) time-dependently reduced glutamate-cysteine ligase (GCL) activity and cellular expression of the catalytic/modify subunit of GCL (GCLC/GCLM). Moreover, TSN reduced cellular GSH content and the increased ROS formation, and time-dependently decreased Nrf2 expression and increased the expression of the Nrf2 inhibitor protein kelch-like ECH-associated protein-1 (Keap1). Pre-administration of quercetin (40, 80 mg/kg) effectively inhibited TSN-induced liver oxidative injury and reversed the decreased expression of Nrf2 and GCLC/GCLM in vivo and in vitro. In addition, the quercetin-provided protection against TSN-induced hepatotoxicity was diminished in Nrf2 knock-out mice. In conclusion, TSN decreases cellular GSH content by reducing Nrf2-mediated GCLC/GCLM expression via decreasing Nrf2 expression. Quercetin attenuates TSN-induced hepatotoxicity by inducing the Nrf2/GCL/GSH antioxidant signaling pathway. This study implies that inducing Nrf2 activation may be an effective strategy to prevent TSN-induced hepatotoxicity.
Collapse
|
153
|
Shi GJ, Li Y, Cao QH, Wu HX, Tang XY, Gao XH, Yu JQ, Chen Z, Yang Y. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomed Pharmacother 2019; 109:1085-1099. [DOI: 10.1016/j.biopha.2018.10.130] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/21/2018] [Accepted: 10/21/2018] [Indexed: 12/14/2022] Open
|
154
|
Yuan Z, Min J, Zhao Y, Cheng Q, Wang K, Lin S, Luo J, Liu H. Quercetin rescued TNF-alpha-induced impairments in bone marrow-derived mesenchymal stem cell osteogenesis and improved osteoporosis in rats. Am J Transl Res 2018; 10:4313-4321. [PMID: 30662673 PMCID: PMC6325508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
To investigate the effect of quercetin on promoting the proliferation of bone marrow mesenchymal stem cells (BMSCs) and improving osteoporosis in rats. Rats were randomly divided into the sham, OVX and quercetin+OVX groups. In the sham and OVX groups, rats were given carboxymethyl cellulose sodium (CMC-Na). In the quercetin+OVX group, rats were given quercetin (50 mg/kg) once a day. Eight weeks after rats were treated, femurs were subjected to micro-CT scans, and bone biomechanical properties were analysed by the three-point flexural test. In addition, BMSCs were isolated and characterised by MTT, RT-PCR and Western blot analysis. In vivo, quercetin increased bone mineral density (BMD) and improved bone biomechanical properties in postmenopausal osteoporosis rat models. In vitro, TNF-α led to the activation of nuclear factor-kappa B (NF-κB) and the degradation of β-catenin, which were significantly inhibited by quercetin. Furthermore, quercetin promoted BMSC proliferation and osteogenic differentiation. In conclusion, quercetin improved in vitro models of osteoporosis and protected against TNF-α-induced impairments in BMSC osteogenesis.
Collapse
Affiliation(s)
- Zhen Yuan
- Department of Rehabilitation, The Second Affiliated Hospital of Nanchang UniversityNanchang, Jiangxi, People’s Republic of China
| | - Jun Min
- Department of Rehabilitation, The Third Affiliated Hospital of Nanchang UniversityNanchang, Jiangxi, People’s Republic of China
| | - Yawen Zhao
- Department of Rehabilitation, The Second Affiliated Hospital of Nanchang UniversityNanchang, Jiangxi, People’s Republic of China
| | - Qingfeng Cheng
- Department of Rehabilitation, The Second Affiliated Hospital of Nanchang UniversityNanchang, Jiangxi, People’s Republic of China
| | - Kai Wang
- Department of Rehabilitation, The Second Affiliated Hospital of Nanchang UniversityNanchang, Jiangxi, People’s Republic of China
| | - Sijian Lin
- Department of Rehabilitation, The Second Affiliated Hospital of Nanchang UniversityNanchang, Jiangxi, People’s Republic of China
| | - Jun Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Nanchang UniversityNanchang, Jiangxi, People’s Republic of China
| | - Hao Liu
- Department of Rehabilitation, The Second Affiliated Hospital of Nanchang UniversityNanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
155
|
Costea T, Hudiță A, Ciolac OA, Gălățeanu B, Ginghină O, Costache M, Ganea C, Mocanu MM. Chemoprevention of Colorectal Cancer by Dietary Compounds. Int J Mol Sci 2018; 19:E3787. [PMID: 30487390 PMCID: PMC6321468 DOI: 10.3390/ijms19123787] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/18/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the leading causes of death, and the third most diagnosed type of cancer, worldwide. It is most common amongst men and women over 50 years old. Risk factors include smoking, alcohol, diet, physical inactivity, genetics, alterations in gut microbiota, and associated pathologies (diabetes, obesity, chronic inflammatory bowel diseases). This review will discuss, in detail, the chemopreventive properties of some dietary compounds (phenolic compounds, carotenoids, iridoids, nitrogen compounds, organosulfur compounds, phytosterols, essential oil compounds, polyunsaturated fatty acids and dietary fiber) against colorectal cancer. We present recent data, focusing on in vitro, laboratory animals and clinical trials with the previously mentioned compounds. The chemopreventive properties of the dietary compounds involve multiple molecular and biochemical mechanisms of action, such as inhibition of cell growth, inhibition of tumor initiation, inhibition of adhesion, migration and angiogenesis, apoptosis, interaction with gut microbiota, regulation of cellular signal transduction pathways and xenobiotic metabolizing enzymes, etc. Moreover, this review will also focus on the natural dietary compounds' bioavailability, their synergistic protective effect, as well as the association with conventional therapy. Dietary natural compounds play a major role in colorectal chemoprevention and continuous research in this field is needed.
Collapse
Affiliation(s)
- Teodora Costea
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania.
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Oana-Alina Ciolac
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Octav Ginghină
- Department of Surgery, "Sf. Ioan" Emergency Clinical Hospital, 042122 Bucharest, Romania.
- Department II, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, 030167 Bucharest, Romania.
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Constanța Ganea
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Maria-Magdalena Mocanu
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
156
|
Fang J, Liu C, Wang Q, Lin P, Cheng F. In silico polypharmacology of natural products. Brief Bioinform 2018; 19:1153-1171. [PMID: 28460068 DOI: 10.1093/bib/bbx045] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Indexed: 01/03/2025] Open
Abstract
Natural products with polypharmacological profiles have demonstrated promise as novel therapeutics for various complex diseases, including cancer. Currently, many gaps exist in our knowledge of which compounds interact with which targets, and experimentally testing all possible interactions is infeasible. Recent advances and developments of systems pharmacology and computational (in silico) approaches provide powerful tools for exploring the polypharmacological profiles of natural products. In this review, we introduce recent progresses and advances of computational tools and systems pharmacology approaches for identifying drug targets of natural products by focusing on the development of targeted cancer therapy. We survey the polypharmacological and systems immunology profiles of five representative natural products that are being considered as cancer therapies. We summarize various chemoinformatics, bioinformatics and systems biology resources for reconstructing drug-target networks of natural products. We then review currently available computational approaches and tools for prediction of drug-target interactions by focusing on five domains: target-based, ligand-based, chemogenomics-based, network-based and omics-based systems biology approaches. In addition, we describe a practical example of the application of systems pharmacology approaches by integrating the polypharmacology of natural products and large-scale cancer genomics data for the development of precision oncology under the systems biology framework. Finally, we highlight the promise of cancer immunotherapies and combination therapies that target tumor ecosystems (e.g. clones or 'selfish' sub-clones) via exploiting the immunological and inflammatory 'side' effects of natural products in the cancer post-genomics era.
Collapse
Affiliation(s)
- Jiansong Fang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuang Liu
- Alibaba Research Center for Complexity Sciences at the Hangzhou Normal University, Hangzhou, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ping Lin
- National Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Feixiong Cheng
- Department of Biomedical Informatics, Vanderbilt University Medical Center in Nashville (United States)
| |
Collapse
|
157
|
Vinayak M. Molecular Action of Herbal Antioxidants in Regulation of Cancer Growth: Scope for Novel Anticancer Drugs. Nutr Cancer 2018; 70:1199-1209. [DOI: 10.1080/01635581.2018.1539187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Manjula Vinayak
- Biochemistry & Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
158
|
Abstract
Hippocrates, the father of medicine, had said: "Wine is a thing wonderfully appropriate to man if, in health as in disease, it is administered with appropriate and just measure according to the individual constitution." Wine has always accompanied humanity, for religion or for health. Christians and Jews need wine for the liturgy. For Plato, wine was an indispensable element in society and the most important in the symposium. In this second part of the banquet, mixed with water, the wine gave the word. If the French paradox made a lot of ink flow; it was the wine that was originally responsible for it. Many researchers have tried to study alcohol and polyphenols in wine, in order to solve the mystery. Beyond its cardiovascular effects, there are also effects on longevity, metabolism, cancer prevention, and neuroprotection, and the list goes on. The purpose of this work is to make an analysis of the current knowledge on the subject. Indeed, if the paradigm of antioxidants is seductive, it is perhaps by their prooxidant effect that the polyphenols act, by an epigenetic process mediated by nrf2. Wine is a preserve of antioxidants for the winter and it is by this property that the wine acts, in an alcoholic solution. A wine without alcohol is pure heresy. Wine is the elixir that by design, over millennials, has acted as a pharmacopeia that enabled man to heal and prosper on the planet. From Alvise Cornaro to Serge Renaud, nutrition was the key to health and longevity, whether the Cretan or Okinawa diet, it is the small dose of alcohol (wine or sake) that allows the bioavailability of polyphenols. Moderate drinking gives a protection for diseases and a longevity potential. In conclusion, let us drink fewer, but drink better, to live older.
Collapse
|
159
|
Synthesis and biological evaluation of quercetin and resveratrol peptidyl derivatives as potential anticancer and antioxidant agents. Amino Acids 2018; 51:319-329. [PMID: 30392096 DOI: 10.1007/s00726-018-2668-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/16/2018] [Indexed: 12/26/2022]
Abstract
Quercetin and resveratrol are polyphenolic compounds, members of the flavonoid and the stilbene family, respectively, both medicinally important as dietary anticancer and antioxidant agents. They are present in a variety of foods-including fruits, vegetables, tea, wine, as well as other dietary supplements-and are responsible for various health benefits. Different quercetin and resveratrol esters of Leu/Met-enkephalin and tetrapeptide Leu-Ser-Lys-Leu (LSKL) were synthesized as model systems for monitoring the influence of the peptides on biological activity of resveratrol and quercetin. General formula of the main peptidyl-quercetin derivatives is 2-[3-(aa)n-4-hydroxyphenyl]-3,5,7-tri-hydroxy-4H-1-benzopyran-4-on, and the general formula of the main peptidyl-resveratrol derivatives is (E)-5-[4-(aa)n)styryl]benzene-1,3-diol. The antioxidant and anticancer activities of prepared compounds were investigated. Significant anticancer activity was obtained for the LSKL-based both quercetin and resveratrol derivatives. All prepared compounds exhibit antioxidant activity, in particular quercetin derivative containing Met-enkephalin.
Collapse
|
160
|
Şengelen A, Önay-Uçar E. Rosmarinic acid and siRNA combined therapy represses Hsp27 (HSPB1) expression and induces apoptosis in human glioma cells. Cell Stress Chaperones 2018; 23:885-896. [PMID: 29627902 PMCID: PMC6111096 DOI: 10.1007/s12192-018-0896-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/10/2018] [Accepted: 03/24/2018] [Indexed: 12/11/2022] Open
Abstract
High expression of Hsp27 in glioma cells has been closely associated with tumor cell proliferation and apoptosis inhibition. The aim of the present study was to asses the effects of rosmarinic acid (RA) on Hsp27 expression and apoptosis in non-transfected and transfected human U-87 MG cells. The effect of rosmarinic acid was compared to quercetin, which is known to be a good Hsp27 inhibitor. In order to block the expression of Hsp27 gene (HSPB1), transfection with specific siRNAs was performed. Western blotting technique was used to assess the Hsp27 expression, and caspase-3 colorimetric activity assay was performed to determine apoptosis induction. According to the results, it was found that RA and quercetin effectively silenced Hsp27 and both agents induced apoptosis by activating the caspase-3 pathway. Eighty and 215 μM RA decreased the level of Hsp27 by 28.8 and 46.7% and induced apoptosis by 30 and 54%, respectively. For the first time, we reported that rosmarinic acid has the ability to trigger caspase-3 induced apoptosis in human glioma cells. As a result of siRNA transfection, the Hsp27 gene was silenced by ~ 50% but did not cause a statistically significant change in caspase-3 activation. It was also observed that apoptosis was induced at a higher level as a result of Hsp27 siRNA and subsequent quercetin or RA treatment. siRNA transfection and 215 μM RA treatment suppressed Hsp27 expression level by 90.5% and increased caspase-3 activity by 58%. Herein, we demonstrated that RA administered with siRNA seems to be a potent combination for glioblastoma therapy.
Collapse
Affiliation(s)
- Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.
| | - Evren Önay-Uçar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey
| |
Collapse
|
161
|
Ziyatdinova G, Kozlova E, Budnikov H. Poly(gallic acid)/MWNT-modified electrode for the selective and sensitive voltammetric determination of quercetin in medicinal herbs. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
162
|
Dietary Intake of Curcumin Improves eIF2 Signaling and Reduces Lipid Levels in the White Adipose Tissue of Obese Mice. Sci Rep 2018; 8:9081. [PMID: 29899429 PMCID: PMC5998036 DOI: 10.1038/s41598-018-27105-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022] Open
Abstract
White adipose tissue (eWAT) plays a crucial role in preventing metabolic syndrome. We aimed to investigate WAT distribution and gene expression and lipidomic profiles in epididymal WAT (eWAT) in diet-induced obese mice, reflecting a Western-style diet of humans to elucidate the bioactive properties of the dietary antioxidant curcumin in preventing lifestyle-related diseases. For 16 weeks, we fed C57BL/6J mice with a control diet, a high-fat, high-sucrose and high-cholesterol Western diet or Western diet supplemented with 0.1% (w/w) curcumin. Although the dietary intake of curcumin did not affect eWAT weight or plasma lipid levels, it reduced lipid peroxidation markers’ levels in eWAT. Curcumin accumulated in eWAT and changed gene expressions related to eukaryotic translation initiation factor 2 (eIF2) signalling. Curcumin suppressed eIF2α phosphorylation, which is induced by endoplasmic reticulum (ER) stress, macrophage accumulation and nuclear factor-κB (NF-κB) p65 and leptin expression, whereas it’s anti-inflammatory effect was inadequate to decrease TNF-α and IFN-γ levels. Lipidomic and gene expression analysis revealed that curcumin decreased some diacylglycerols (DAGs) and DAG-derived glycerophospholipids levels by suppressing the glycerol-3-phosphate acyltransferase 1 and adipose triglyceride lipase expression, which are associated with lipogenesis and lipolysis, respectively. Presumably, these intertwined effects contribute to metabolic syndrome prevention by dietary modification.
Collapse
|
163
|
Drosophila larvae fed palm fruit juice (PFJ) delay pupation via expression regulation of hormetic stress response genes linked to ageing and longevity. Exp Gerontol 2018; 106:198-221. [DOI: 10.1016/j.exger.2018.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 02/06/2023]
|
164
|
Ding Y, Chen X, Wang B, Yu B, Ge J, Shi X. Quercetin suppresses the chymotrypsin-like activity of proteasome via inhibition of MEK1/ERK1/2 signaling pathway in hepatocellular carcinoma HepG2 cells. Can J Physiol Pharmacol 2018; 96:521-526. [PMID: 29394494 DOI: 10.1139/cjpp-2017-0655] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proteasomal system is a promising target for cancer treatment. Quercetin (Que), a flavonoid compound with antitumor ability, displays the inhibitory effect on proteasome activity. However, the underlying molecular mechanisms are ill defined. The present study found that Que treatment significantly reduced the chymotrypsin-like protease activity of proteasome whereas the trypsin- and caspase-like protease activities remained unchanged in HepG2 cancer cells, along with activation of p38 MAPK and JNK and reduction of ERK1/2 phosphorylation. Que-reduced proteasome activity could not be reverted by inhibition of p38 MAPK and JNK signaling pathway. In addition, MEK1 overexpression or knockdown upregulated or downregulated the chymotrypsin-like protease activity of proteasome, respectively. Both Que and MEK1/ERK1/2 inhibitor attenuated the expression levels of proteasome β subunits. These results indicate that Que-induced suppression of MEK1/ERK1/2 signaling and subsequent reduction of proteasome β subunits is responsible for its inhibitory impacts on proteasome activity.
Collapse
Affiliation(s)
- Youming Ding
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoyan Chen
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bin Wang
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bin Yu
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jianhui Ge
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaokang Shi
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
165
|
Darband SG, Kaviani M, Yousefi B, Sadighparvar S, Pakdel FG, Attari JA, Mohebbi I, Naderi S, Majidinia M. Quercetin: A functional dietary flavonoid with potential chemo-preventive properties in colorectal cancer. J Cell Physiol 2018; 233:6544-6560. [PMID: 29663361 DOI: 10.1002/jcp.26595] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/12/2018] [Indexed: 02/06/2023]
Abstract
Recently, an intense attention has been paid to the application of natural compounds as a novel therapeutic strategy for cancer treatment. Quercetin, a natural flavonol present in many commonly consumed food items, is widely demonstrated to exert inhibitory effects on cancer progression through various mechanisms. Since there is a strong association with diets containing abundant vegetables, fruits, and grains, and significant decline in the risk of colon cancer, accumulation studies have focused on the anticancer potential of quercetin in colorectal cancer. Cell cycle arrest, increase in apoptosis, antioxidant replication, modulation of estrogen receptors, regulation of signaling pathways, inhibition of and metastasis and angiogenesis are among various mechanisms underlying the chemo-preventive effects of quercetin in colorectal cancer. This review covers various therapeutic interactions of Quercetin as to how targets cellular involved in cancer treatment.
Collapse
Affiliation(s)
- Saber G Darband
- Danesh Pey Hadi Co., Health Technology, Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Firouz G Pakdel
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Javad A Attari
- Department of Neurosurgery, Urmia University of Medical Sciences, Urmia, Iran
| | - Iraj Mohebbi
- Social Determinants of Health Center, Occupational Medicine Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Somayeh Naderi
- Danesh Pey Hadi Co., Health Technology, Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
166
|
Velayutham M, Cardounel AJ, Liu Z, Ilangovan G. Discovering a Reliable Heat-Shock Factor-1 Inhibitor to Treat Human Cancers: Potential Opportunity for Phytochemists. Front Oncol 2018; 8:97. [PMID: 29682483 PMCID: PMC5897429 DOI: 10.3389/fonc.2018.00097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/20/2018] [Indexed: 01/12/2023] Open
Abstract
Heat-shock factor-1 (HSF-1) is an important transcription factor that regulates pathogenesis of many human diseases through its extensive transcriptional regulation. Especially, it shows pleiotropic effects in human cancer, and hence it has recently received increased attention of cancer researchers. After myriad investigations on HSF-1, the field has advanced to the phase where there is consensus that finding a potent and selective pharmacological inhibitor for this transcription factor will be a major break-through in the treatment of various human cancers. Presently, all reported inhibitors have their limitations, made evident at different stages of clinical trials. This brief account summarizes the advances with tested natural products as HSF-1 inhibitors and highlights the necessity of phytochemistry in this endeavor of discovering a potent pharmacological HSF-1 inhibitor.
Collapse
Affiliation(s)
- Murugesan Velayutham
- Center for Biomedical EPR Spectroscopy and Imaging, The Ohio State University, Columbus, OH, United States.,Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Arturo J Cardounel
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Zhenguo Liu
- Center for Biomedical EPR Spectroscopy and Imaging, The Ohio State University, Columbus, OH, United States.,Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Govindasamy Ilangovan
- Center for Biomedical EPR Spectroscopy and Imaging, The Ohio State University, Columbus, OH, United States.,Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
167
|
Sundar Dhilip Kumar S, Houreld NN, Abrahamse H. Therapeutic Potential and Recent Advances of Curcumin in the Treatment of Aging-Associated Diseases. Molecules 2018; 23:molecules23040835. [PMID: 29621160 PMCID: PMC6017430 DOI: 10.3390/molecules23040835] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 02/01/2023] Open
Abstract
Curcumin, a low molecular weight, lipophilic, major yellow natural polyphenolic, and the most well-known plant-derived compound, is extracted from the rhizomes of the turmeric (Curcuma longa) plant. Curcumin has been demonstrated as an effective therapeutic agent in traditional medicine for the treatment and prevention of different diseases. It has also shown a wide range of biological and pharmacological effects in drug delivery, and has actively been used for the treatment of aging-associated diseases, including cardiovascular diseases, atherosclerosis, neurodegenerative diseases, cancer, rheumatoid arthritis, ocular diseases, osteoporosis, diabetes, hypertension, chronic kidney diseases, chronic inflammation and infection. The functional application and therapeutic potential of curcumin in the treatment of aging-associated diseases is well documented in the literature. This review article focuses mainly on the potential role of plant-derived natural compounds such as curcumin, their mechanism of action and recent advances in the treatment of aging-associated diseases. Moreover, the review briefly recaps on the recent progress made in the preparation of nanocurcumins and their therapeutic potential in clinical research for the treatment of aging-associated diseases.
Collapse
Affiliation(s)
- Sathish Sundar Dhilip Kumar
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg-2028, South Africa.
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg-2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg-2028, South Africa.
| |
Collapse
|
168
|
Wang D, Sun-Waterhouse D, Li F, Xin L, Li D. MicroRNAs as molecular targets of quercetin and its derivatives underlying their biological effects: A preclinical strategy. Crit Rev Food Sci Nutr 2018; 59:2189-2201. [DOI: 10.1080/10408398.2018.1441123] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Dan Wang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, P.R. China
- Shandong Institute of Pomology, Taian, P.R. China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, P.R. China
- School of Chemical Sciences, the University of Auckland, New Zealand
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, P.R. China
| | - Li Xin
- Shandong Institute of Pomology, Taian, P.R. China
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, P.R. China
| |
Collapse
|
169
|
Li X, Zhou N, Wang J, Liu Z, Wang X, Zhang Q, Liu Q, Gao L, Wang R. Quercetin suppresses breast cancer stem cells (CD44 + /CD24 − ) by inhibiting the PI3K/Akt/mTOR-signaling pathway. Life Sci 2018; 196:56-62. [DOI: 10.1016/j.lfs.2018.01.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/05/2018] [Accepted: 01/13/2018] [Indexed: 01/23/2023]
|
170
|
Haymond A, Dowdy T, Johny C, Johnson C, Ball H, Dailey A, Schweibenz B, Villarroel K, Young R, Mantooth CJ, Patel T, Bases J, Dowd CS, Couch RD. A high-throughput screening campaign to identify inhibitors of DXP reductoisomerase (IspC) and MEP cytidylyltransferase (IspD). Anal Biochem 2018; 542:63-75. [PMID: 29180070 PMCID: PMC5817008 DOI: 10.1016/j.ab.2017.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 11/17/2022]
Abstract
The rise of antibacterial resistance among human pathogens represents a problem that could change the landscape of healthcare unless new antibiotics are developed. The methyl erythritol phosphate (MEP) pathway represents an attractive series of targets for novel antibiotic design, considering each enzyme of the pathway is both essential and has no human homologs. Here we describe a pilot scale high-throughput screening (HTS) campaign against the first and second committed steps in the pathway, catalyzed by DXP reductoisomerase (IspC) and MEP cytidylyltransferase (IspD), using compounds present in the commercially available LOPAC1280 library as well as in an in-house natural product extract library. Hit compounds were characterized to deduce their mechanism of inhibition; most function through aggregation. The HTS workflow outlined here is useful for quickly screening a chemical library, while effectively identifying false positive compounds associated with assay constraints and aggregation.
Collapse
Affiliation(s)
- Amanda Haymond
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Tyrone Dowdy
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Chinchu Johny
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Claire Johnson
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Haley Ball
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Allyson Dailey
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Brandon Schweibenz
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Karen Villarroel
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Richard Young
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Clark J Mantooth
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Trishal Patel
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Jessica Bases
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Cynthia S Dowd
- Department of Chemistry, George Washington University, Washington DC 20052, USA.
| | - Robin D Couch
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
171
|
Abstract
PURPOSE OF THE REVIEW Senescent cells have the capacity to both effect and limit fibrosis. Senotherapeutics target senescent cells to improve aging conditions. Here, we review the contexts in which senescent cells mediate wound healing and fibrotic pathology and the potential utility of senotherapeutic drugs for treatment of fibrotic disease. RECENT FINDINGS Multi-action and temporal considerations influence deleterious versus beneficial actions of senescent cells. Acutely generated senescent cells can limit proliferation, and the senescence-associated secretory phenotype (SASP) contains factors that can facilitate tissue repair. Long-lived senescent cells that evade clearance or are generated outside of programmed remodeling can deplete the progenitor pool to exhaust regenerative capacity and through the SASP, stimulate continual activation, leading to disorganized tissue architecture, fibrotic damage, sterile inflammation, and induction of bystander senescence. Senescent cells contribute to fibrotic pathogenesis in multiple tissues, including the liver, kidney, and lung. Senotherapeutics may be a viable strategy for treatment of a range of fibrotic conditions.
Collapse
|
172
|
Wang R, Yang L, Li S, Ye D, Yang L, Liu Q, Zhao Z, Cai Q, Tan J, Li X. Quercetin Inhibits Breast Cancer Stem Cells via Downregulation of Aldehyde Dehydrogenase 1A1 (ALDH1A1), Chemokine Receptor Type 4 (CXCR4), Mucin 1 (MUC1), and Epithelial Cell Adhesion Molecule (EpCAM). Med Sci Monit 2018; 24:412-420. [PMID: 29353288 PMCID: PMC5788241 DOI: 10.12659/msm.908022] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Quercetin, nature’s most common flavonoid, possesses anticarcinogenic properties against various forms of cancer. The aim of this study was to investigate the effect of quercetin on breast cancer stem cells in the MDA-MB-231 cell line, and to elucidate the possible mechanisms for those effects. Material/Methods We evaluated breast cancer stem cell proliferation, clone generation, and mammosphere formation to determine the effect of quercetin treatment on breast cancer stem cells. Results In our study, quercetin suppressed breast cancer stem cell proliferation, self-renewal, and invasiveness. It also lowered the expression levels of proteins related to tumorigenesis and cancer progression, such as aldehyde dehydrogenase 1A1, C-X-C chemokine receptor type 4, mucin 1, and epithelial cell adhesion molecules. Conclusions These results indicate that quercetin targets and destroys breast cancer stem cells, making it a potential novel drug in the fight against cancer.
Collapse
Affiliation(s)
- Rong Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Department of Pharmacy, College of Marine Science, Hainan University, Haikou, Hainan, China (mainland)
| | - Laixiu Yang
- Department of Pharmacognosy, College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Shen Li
- Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China (mainland)
| | - Dongmei Ye
- Medical College of Chifeng University, Chifeng, Inner Mongolia, China (mainland)
| | - Lihong Yang
- Medical College of Chifeng University, Chifeng, Inner Mongolia, China (mainland)
| | - Qingyan Liu
- Medical College of Chifeng University, , China (mainland)
| | - Zibo Zhao
- Medical College of Chifeng University, Chifeng, Inner Mongolia, China (mainland)
| | - Qing Cai
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Junzhen Tan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Xiuli Li
- Key Laboratory of Pharmacology, Chifeng University, Chifeng, Inner Mongolia, China (mainland)
| |
Collapse
|
173
|
Li XM, Luo XG, He JF, Wang N, Zhou H, Yang PL, Zhang TC. Induction of apoptosis in human cervical carcinoma HeLa cells by active compounds from Hypericum ascyron L. Oncol Lett 2018; 15:3944-3950. [PMID: 29556280 DOI: 10.3892/ol.2018.7812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/21/2017] [Indexed: 12/16/2022] Open
Abstract
Hypericum ascyron L. (Great St. Johnswort), which belongs to the Hypericaceae family, has been used for the treatment of hematemesis, metrorrhagia, rheumatism, swelling, stomach ache, abscesses, dysentery and irregular menstruation for >2,000 years in China. The aim of the present study was to clarify the anticancer activity compounds from H. ascyron L. and the underlying molecular mechanism. Anticancer activity of H. ascyron L. extract was evaluated using an MTT assay. To confirm the anticancer mechanism of activity compounds, Hoechst 33258, Annexin V-fluorescein isothiocyanate/propidium iodide, 2',7'-dichlorodihydrofluorescein diacetate, rhodamine 123 staining and caspase-3 activity analysis were performed. The results demonstrated that the anti-proliferative action of the mixture of kaempferol 3-O-β-(2″-acetyl) galactopyranoside (K) and quercetin (Q) (molar ratio, 1:1) was significantly increased compared with either of these two compounds separately, and the active fraction of the H. ascyron L. extract |(HALE). HALE, indicating that the anti-proliferative function of H. ascyron L. may be a synergic effect of K and Q. Furthermore, the inhibitory effect of KQ on the growth of HeLa cells was mediated by the induction of apoptosis. To the best of our knowledge, the present study is the first to identify that KQ exhibits significant anti-proliferation activity on HeLa cells via the apoptotic pathway, and is also the first to evaluate the anticancer potential of H. ascyron L. The results of the present study may provide a rational base for the use of H. ascyron L. in the clinic, and shed light on the development of novel anticancer drugs.
Collapse
Affiliation(s)
- Xiu-Mei Li
- Key Laboratory for Feed Biotechnology of The Ministry of Agriculture, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Xue-Gang Luo
- Key Laboratory of Industrial Fermentation Microbiology of The Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, Hebei 300457, P.R. China
| | - Jun-Fang He
- Key Laboratory of Industrial Fermentation Microbiology of The Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, Hebei 300457, P.R. China
| | - Nan Wang
- Key Laboratory of Industrial Fermentation Microbiology of The Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, Hebei 300457, P.R. China
| | - Hao Zhou
- Key Laboratory of Industrial Fermentation Microbiology of The Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, Hebei 300457, P.R. China
| | - Pei-Long Yang
- Key Laboratory for Feed Biotechnology of The Ministry of Agriculture, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Tong-Cun Zhang
- Key Laboratory of Industrial Fermentation Microbiology of The Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, Hebei 300457, P.R. China.,Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
174
|
Önay Uçar E, Şengelen A, Mertoğlu E, Pekmez M, Arda N. Suppression of HSP70 Expression by Quercetin and Its Therapeutic Potential Against Cancer. HSP70 IN HUMAN DISEASES AND DISORDERS 2018. [DOI: 10.1007/978-3-319-89551-2_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
175
|
Antiangiogenic Effect of Flavonoids and Chalcones: An Update. Int J Mol Sci 2017; 19:ijms19010027. [PMID: 29271940 PMCID: PMC5795978 DOI: 10.3390/ijms19010027] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022] Open
Abstract
Chalcones are precursors of flavonoid biosynthesis in plants. Both flavonoids and chalcones are intensively investigated because of a large spectrum of their biological activities. Among others, anticancer and antiangiogenic effects account for the research interest of these substances. Because of an essential role in cancer growth and metastasis, angiogenesis is considered to be a promising target for cancer treatment. Currently used antiangiogenic agents are either synthetic compounds or monoclonal antibodies. However, there are some limitations of their use including toxicity and high price, making the search for new antiangiogenic compounds very attractive. Nowadays it is well known that several natural compounds may modulate basic steps in angiogenesis. A lot of studies, also from our lab, showed that phytochemicals, including polyphenols, are potent modulators of angiogenesis. This review paper is focused on the antiangiogenic effect of flavonoids and chalcones and discusses possible underlying cellular and molecular mechanisms.
Collapse
|
176
|
Fuentes J, Atala E, Pastene E, Carrasco-Pozo C, Speisky H. Quercetin Oxidation Paradoxically Enhances its Antioxidant and Cytoprotective Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11002-11010. [PMID: 29179550 DOI: 10.1021/acs.jafc.7b05214] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Quercetin oxidation is generally believed to ultimately result in the loss of its antioxidant properties. To test this assertion, quercetin oxidation was induced, and after each of its major metabolites was identified and isolated by HPLC-DAD-ESI-MS/MS, the antioxidant (dichlorodihydrofluorescein oxidation-inhibiting) and cytoprotective (LDH leakage-preventing) properties were evaluated in Hs68 and Caco2 cells exposed to indomethacin. Compared to quercetin, the whole mixture of metabolites (QOX) displayed a 20-fold greater potency. After resolution of QOX into 12 major peaks, only one (peak 8), identified as 2,5,7,3',4'-pentahydroxy-3,4-flavandione or its 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone tautomer, could account for the antioxidant and cytoprotective effects afforded QOX. Peak 8 exerted such effects at a 50 nM concentration, revealing a potency 200-fold higher than that of quercetin. The effects of peak 8 were seen regardless of whether it was added to the cells 40 min before or simultaneously with the oxygen-reactive species-generating agent, suggesting an intracellular ability to trigger early antioxidant responses. Thus, the present study is the first to reveal that in regard to the intracellular actions of quercetin, attention should be extended toward some of its oxidation products.
Collapse
Affiliation(s)
- Jocelyn Fuentes
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile , Santiago, Chile
| | - Elías Atala
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile , Santiago, Chile
| | - Edgar Pastene
- Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Concepcion , Concepcion, Chile
| | - Catalina Carrasco-Pozo
- Nutrition Department, Faculty of Medicine, University of Chile , Santiago, Chile
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University , Nathan, Queensland 4111, Australia
| | - Hernán Speisky
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile , Santiago, Chile
- Pharmacology Department, Faculty of Chemical and Pharmaceutical Sciences, University of Chile , Santiago, Chile
| |
Collapse
|
177
|
Rizwanullah M, Amin S, Mir SR, Fakhri KU, Rizvi MMA. Phytochemical based nanomedicines against cancer: current status and future prospects. J Drug Target 2017; 26:731-752. [DOI: 10.1080/1061186x.2017.1408115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Md. Rizwanullah
- Formulation Research Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Saima Amin
- Formulation Research Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Showkat Rasool Mir
- Phytopharmaceutical Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Khalid Umar Fakhri
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | |
Collapse
|
178
|
Momtaz S, Hassani S, Khan F, Ziaee M, Abdollahi M. Cinnamon, a promising prospect towards Alzheimer's disease. Pharmacol Res 2017; 130:241-258. [PMID: 29258915 DOI: 10.1016/j.phrs.2017.12.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/10/2017] [Accepted: 12/10/2017] [Indexed: 12/25/2022]
Abstract
Over the last decades, an exponential increase of efforts concerning the treatment of Alzheimer's disease (AD) has been practiced. Phytochemicals preparations have a millenary background to combat various pathological conditions. Various cinnamon species and their biologically active ingredients have renewed the interest towards the treatment of patients with mild-to-moderate AD through the inhibition of tau protein aggregation and prevention of the formation and accumulation of amyloid-β peptides into the neurotoxic oligomeric inclusions, both of which are considered to be the AD trademarks. In this review, we presented comprehensive data on the interactions of a number of cinnamon polyphenols (PPs) with oxidative stress and pro-inflammatory signaling pathways in the brain. In addition, we discussed the potential association between AD and diabetes mellitus (DM), vis-à-vis the effluence of cinnamon PPs. Further, an upcoming prospect of AD epigenetic pathophysiological conditions and cinnamon has been sighted. Data was retrieved from the scientific databases such as PubMed database of the National Library of Medicine, Scopus and Google Scholar without any time limitation. The extract of cinnamon efficiently inhibits tau accumulations, Aβ aggregation and toxicity in vivo and in vitro models. Indeed, cinnamon possesses neuroprotective effects interfering multiple oxidative stress and pro-inflammatory pathways. Besides, cinnamon modulates endothelial functions and attenuates the vascular cell adhesion molecules. Cinnamon PPs may induce AD epigenetic modifications. Cinnamon and in particular, cinnamaldehyde seem to be effective and safe approaches for treatment and prevention of AD onset and/or progression. However, further molecular and translational research studies as well as prolonged clinical trials are required to establish the therapeutic safety and efficacy in different cinnamon spp.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazlullah Khan
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran Iran
| | - Mojtaba Ziaee
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran Iran.
| |
Collapse
|
179
|
Duranti G, Ceci R, Patrizio F, Sgrò P, Di Luigi L, Sabatini S, Felici F, Bazzucchi I. Chronic consumption of quercetin reduces erythrocytes oxidative damage: Evaluation at resting and after eccentric exercise in humans. Nutr Res 2017. [PMID: 29540274 DOI: 10.1016/j.nutres.2017.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The polyphenolic flavonoid quercetin has been shown to be a powerful antioxidant, in vitro and in murine models. However, its effect on redox status has been poorly examined in humans, particularly in combination with strenuous exercise. We hypothesized that quercetin supplementation would beneficially affect redox homeostasis in healthy individuals undergoing eccentric exercise. To test this hypothesis, the effects of chronic consumption of quercetin on glutathione system (reduced, oxidized, and reduced to oxidized glutathione ratio), oxidative damage [thiobarbituric acid reactive substances (TBARs)], antioxidant enzymatic network (catalase, glutathione peroxidase, superoxide dismutase) and resistance to lysis, were investigated in erythrocytes, a traditional model widely used to study the effects of oxidative stress as well as the protective effects of antioxidants. In a two weeks controlled, randomized, crossover, intervention trial, 14 individuals ingested 2 caps (1 g/d) of quercetin or placebo. Blood samples were collected before, after 2 weeks of supplementation and after a bout of eccentric exercise. Quercetin, reduced significantly erythrocytes lipid peroxidation levels and the susceptibility to hemolysis induced by the free radical generator AAPH, while no differences in antioxidant enzyme activities and glutathione homeostasis were found between the two groups. After a single bout of eccentric exercise, quercetin supplementation improved redox status as assessed by reduced/oxidized glutathione ratio analysis and reduced TBARs levels both in erythrocytes and plasma. In conclusion, our study provides evidences that chronic quercetin supplementation has antioxidant potential prior to and after a strenuous eccentric exercise thus making the erythrocytes capable to better cope with an oxidative insult.
Collapse
Affiliation(s)
- Guglielmo Duranti
- Università degli Studi di Roma "Foro Italico", Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, Rome, Italy
| | - Roberta Ceci
- Università degli Studi di Roma "Foro Italico", Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, Rome, Italy.
| | - Federica Patrizio
- Università degli Studi di Roma "Foro Italico", Department of Movement, Human and Health Sciences, Laboratory of Exercise Physiology, Rome, Italy
| | - Paolo Sgrò
- Università degli Studi di Roma "Foro Italico", Department of Movement, Human and Health Sciences, Unit of Endocrinology, Rome, Italy
| | - Luigi Di Luigi
- Università degli Studi di Roma "Foro Italico", Department of Movement, Human and Health Sciences, Unit of Endocrinology, Rome, Italy
| | - Stefania Sabatini
- Università degli Studi di Roma "Foro Italico", Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, Rome, Italy
| | - Francesco Felici
- Università degli Studi di Roma "Foro Italico", Department of Movement, Human and Health Sciences, Laboratory of Exercise Physiology, Rome, Italy
| | - Ilenia Bazzucchi
- Università degli Studi di Roma "Foro Italico", Department of Movement, Human and Health Sciences, Laboratory of Exercise Physiology, Rome, Italy
| |
Collapse
|
180
|
Effect of quercetin on cell protection via erythropoietin and cell injury of HepG2 cells. Arch Biochem Biophys 2017; 636:11-16. [DOI: 10.1016/j.abb.2017.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/17/2017] [Accepted: 10/22/2017] [Indexed: 02/06/2023]
|
181
|
Rothwell JA, Knaze V, Zamora-Ros R. Polyphenols: dietary assessment and role in the prevention of cancers. Curr Opin Clin Nutr Metab Care 2017; 20:512-521. [PMID: 28915128 DOI: 10.1097/mco.0000000000000424] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Polyphenols are a large and diverse family of phytochemicals widely consumed by humans. Here we summarize the latest epidemiological evidence for associations between cancer risk and polyphenol intake, taking into account difficulties in the accurate estimation of exposure. RECENT FINDINGS Flavonoids are the most studied subgroup of polyphenols with regard to cancer risk. In recent epidemiological studies, total flavonoid intake has rarely been associated with a reduction in cancer risk. However, isoflavones, whose main dietary source is soy foods, plausibly reduce the risk of colorectal, breast, and prostate cancers, especially in Asian countries. Findings depend heavily upon the assessment of polyphenol intake, which is usually measured by food frequency questionnaires coupled to databases of food polyphenol composition. To a lesser extent, nutritional biomarkers have been used whenever estimating associations of polyphenol intake with cancer. SUMMARY Polyphenol intake may mitigate cancer risk but this depends on cancer site, the subgroup of compounds under study, and accurate assessment of dietary exposure. Further work must better characterize the effects of intake of different flavonoid subclasses and begin to investigate the role of phenolic acids and other minor polyphenol classes.
Collapse
Affiliation(s)
- Joseph A Rothwell
- aNutrition and Metabolism Section, Biomarkers Group, International Agency for Research on Cancer (IARC), Lyon, France bUnit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | | | | |
Collapse
|
182
|
Meschini S, Pellegrini E, Condello M, Occhionero G, Delfine S, Condello G, Mastrodonato F. Cytotoxic and Apoptotic Activities of Prunus spinosa Trigno Ecotype Extract on Human Cancer Cells. Molecules 2017; 22:molecules22091578. [PMID: 28930188 PMCID: PMC6151690 DOI: 10.3390/molecules22091578] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/17/2017] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to demonstrate that a natural compound, not-toxic to normal cells, has cytotoxic and sensitizing effects on carcinoma cells, with the final goal of combining it with chemotherapeutic drugs to reduce the overall dose. Prunus spinosa Trigno ecotype (PsT) drupe extract with a nutraceutical activator complex (NAC) made of amino acids, vitamins and mineral salt blends, has shown in vitro anticancer activity. The cytotoxic effect of (PsT + NAC)® has been evaluated on human cancer cells, with an initial screening with colorectal, uterine cervical, and bronchoalveolar cells, and a subsequent focus on colon carcinoma cells HCT116 and SW480. The viability reduction of HCT116 and SW480 after treatment with (PsT 10 mg/mL + NAC)® was about 40% (p < 0.05), compared to control cells. The cell’s survival reduction was ineffective when the drug vehicle (NAC) was replaced with a phosphate buffer saline (PBS) or physiological solution (PS). The flow cytometry evaluation of cancer cells’ mitochondrial membrane potential showed an increase of 20% depolarized mitochondria. Cell cycle analysis showed a sub G1 (Gap 1 phase) peak appearance (HCT116: 35.1%; SW480: 11.6%), indicating apoptotic cell death induction that was confirmed by Annexin V assay (HCT116: 86%; SW480: 96%). Normal cells were not altered by (PsT + NAC)® treatments.
Collapse
Affiliation(s)
- Stefania Meschini
- National Center for Drug Research and Evaluation, Italian National Institute of Health, Rome 00161, Italy.
| | - Evelin Pellegrini
- National Center for Drug Research and Evaluation, Italian National Institute of Health, Rome 00161, Italy.
| | - Maria Condello
- National Center for Drug Research and Evaluation, Italian National Institute of Health, Rome 00161, Italy.
| | - Giovanni Occhionero
- Italian Society of Biointegrated Medicine, Bagnoli del Trigno, Isernia 86091, Italy.
| | - Sebastiano Delfine
- Department of Agriculture, Environment and Food Science, University of Molise, Campobasso 86100, Italy.
| | - Giancarlo Condello
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome 00135, Italy.
| | - Franco Mastrodonato
- Italian Society of Biointegrated Medicine, Bagnoli del Trigno, Isernia 86091, Italy.
| |
Collapse
|
183
|
Research Progress in the Modification of Quercetin Leading to Anticancer Agents. Molecules 2017; 22:molecules22081270. [PMID: 28758919 PMCID: PMC6152094 DOI: 10.3390/molecules22081270] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
The flavonoid quercetin (3,3′,4′,5,7-pentahydroxyflavone) is widely distributed in plants, foods, and beverages. This polyphenol compound exhibits varied biological actions such as antioxidant, radical-scavenging, anti-inflammatory, antibacterial, antiviral, gastroprotective, immune-modulator, and finds also application in the treatment of obesity, cardiovascular diseases and diabetes. Besides, quercetin can prevent neurological disorders and exerts protection against mitochondrial damages. Various in vitro studies have assessed the anticancer effects of quercetin, although there are no conclusive data regarding its mode of action. However, low bioavailability, poor aqueous solubility as well as rapid body clearance, fast metabolism and enzymatic degradation hamper the use of quercetin as therapeutic agent, so intense research efforts have been focused on the modification of the quercetin scaffold to obtain analogs with potentially improved properties for clinical applications. This review gives an overview of the developments in the synthesis and anticancer-related activities of quercetin derivatives reported from 2012 to 2016.
Collapse
|
184
|
Epigenetic mechanisms underlying the toxic effects associated with arsenic exposure and the development of diabetes. Food Chem Toxicol 2017; 107:406-417. [PMID: 28709971 DOI: 10.1016/j.fct.2017.07.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Exposure to inorganic arsenic (iAs) is a major threat to the human health worldwide. The consumption of arsenic in drinking water and other food products is associated with the risk of development of type-2 diabetes mellitus (T2DM). The available experimental evidence indicates that epigenetic alterations may play an important role in the development of diseases that are linked with exposure to environmental toxicants. iAs seems to be associated with the epigenetic modifications such as alterations in DNA methylation, histone modifications, and micro RNA (miRNA) abundance. OBJECTIVE This article reviewed epigenetic mechanisms underlying the toxic effects associated with arsenic exposure and the development of diabetes. METHOD Electronic databases such as PubMed, Scopus and Google scholar were searched for published literature from 1980 to 2017. Searched MESH terms were "Arsenic", "Epigenetic mechanism", "DNA methylation", "Histone modifications" and "Diabetes". RESULTS There are various factors involved in the pathogenesis of T2DM but it is assumed that arsenic consumption causes the epigenetic alterations both at the gene-specific level and generalized genome level. CONCLUSION The research indicates that exposure from low to moderate concentrations of iAs is linked with the epigenetic effects. In addition, it is evident that, arsenic can change the components of the epigenome and hence induces diabetes through epigenetic mechanisms, such as alterations in glucose transport and/or metabolism and insulin expression/secretion.
Collapse
|
185
|
Rahimifard M, Maqbool F, Moeini-Nodeh S, Niaz K, Abdollahi M, Braidy N, Nabavi SM, Nabavi SF. Targeting the TLR4 signaling pathway by polyphenols: A novel therapeutic strategy for neuroinflammation. Ageing Res Rev 2017; 36:11-19. [PMID: 28235660 DOI: 10.1016/j.arr.2017.02.004] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/11/2017] [Accepted: 02/16/2017] [Indexed: 01/08/2023]
Abstract
A wide array of cell signaling mediators and their interactions play vital roles in neuroinflammation associated with ischemia, brain trauma, developmental disorders and age-related neurodegeneration. Along with neurons, microglia and astrocytes are also affected by the inflammatory cascade by releasing pro-inflammatory cytokines, chemokines and reactive oxygen species. The release of pro-inflammatory mediators in response to neural dysfunction may be helpful, neutral or even deleterious to normal cellular survival. Moreover, the important role of NF-κB factors in the central nervous system (CNS) through toll-like receptor (TLR) activation has been well established. This review demonstrates recent findings regarding therapeutic aspects of polyphenolic compounds for the treatment of neuroinflammation, with the aim of regulating TLR4. Polyphenols including flavonoids, phenolic acids, phenolic alcohols, stilbenes and lignans, can target TLR4 signaling pathways in multiple ways. Toll interacting protein expression could be modulated by epigallocatechin-3-gallate. Resveratrol may also exert neuroprotective effects via the TLR4/NF-κB/STAT signaling cascade. Its role in activation of cascade via interfering with TLR4 oligomerization upon receptor stimulation has also been reported. Curcumin, another polyphenol, can suppress overexpression of inflammatory mediators via inhibiting the TLR4-MAPK/NF-κB pathway. It can also reduce neuronal apoptosis via a mechanism concerning the TLR4/MyD88/NF-κB signaling pathway in microglia/macrophages. Despite a symphony of in vivo and in vitro studies, many molecular and pharmacological aspects of neuroinflammation remain unclear. It is proposed that natural compounds targeting TLR4 may serve as important pharmacophores for the development of potent drugs for the treatment of neurological disorders.
Collapse
|
186
|
Quercetin and related flavonoids conserve their antioxidant properties despite undergoing chemical or enzymatic oxidation. Food Chem 2017; 234:479-485. [PMID: 28551264 DOI: 10.1016/j.foodchem.2017.05.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/28/2017] [Accepted: 05/03/2017] [Indexed: 12/30/2022]
Abstract
Oxidation of a phenolic group in quercetin is assumed to compromise its antioxidant properties. To address this assumption, the ROS-scavenging, Folin-Ciocalteau- and Fe-reducing capacities of quercetin and thirteen structurally related flavonoids were assessed and compared with those of mixtures of metabolites resulting from their chemical and enzymatic oxidation. Regardless of the oxidation mode, the metabolites mixtures largely conserved the antioxidant properties of the parent molecules. For quercetin, 95% of its ROS-scavenging and over 77% of its Folin-Ciocalteau- and Fe-reducing capacities were retained. The susceptibility of flavonoids to oxidative disappearance (monitored by HPLC-DAD) and that of the mixtures to retain their antioxidant capacity was favourably influenced by the presence of a catechol (ring-B) and enol (ring C) function. This is the first study to report that mixtures resulting from the oxidation of quercetin and its analogues largely conserve their antioxidant properties.
Collapse
|
187
|
Fang J, Cai C, Wang Q, Lin P, Zhao Z, Cheng F. Systems Pharmacology-Based Discovery of Natural Products for Precision Oncology Through Targeting Cancer Mutated Genes. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 6:177-187. [PMID: 28294568 PMCID: PMC5356618 DOI: 10.1002/psp4.12172] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 02/05/2023]
Abstract
Massive cancer genomics data have facilitated the rapid revolution of a novel oncology drug discovery paradigm through targeting clinically relevant driver genes or mutations for the development of precision oncology. Natural products with polypharmacological profiles have been demonstrated as promising agents for the development of novel cancer therapies. In this study, we developed an integrated systems pharmacology framework that facilitated identifying potential natural products that target mutated genes across 15 cancer types or subtypes in the realm of precision medicine. High performance was achieved for our systems pharmacology framework. In case studies, we computationally identified novel anticancer indications for several US Food and Drug Administration-approved or clinically investigational natural products (e.g., resveratrol, quercetin, genistein, and fisetin) through targeting significantly mutated genes in multiple cancer types. In summary, this study provides a powerful tool for the development of molecularly targeted cancer therapies through targeting the clinically actionable alterations by exploiting the systems pharmacology of natural products.
Collapse
Affiliation(s)
- J Fang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - C Cai
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Q Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - P Lin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, P.R. China
| | - Z Zhao
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - F Cheng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, P.R. China.,Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Center for Complex Networks Research, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
188
|
Targeting miRNAs by polyphenols: Novel therapeutic strategy for cancer. Semin Cancer Biol 2017; 46:146-157. [PMID: 28185862 DOI: 10.1016/j.semcancer.2017.02.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 12/18/2022]
Abstract
In the recent years, polyphenols have gained significant attention in scientific community owing to their potential anticancer effects against a wide range of human malignancies. Epidemiological, clinical and preclinical studies have supported that daily intake of polyphenol-rich dietary fruits have a strong co-relationship in the prevention of different types of cancer. In addition to direct antioxidant mechanisms, they also regulate several therapeutically important oncogenic signaling and transcription factors. However, after the discovery of microRNA (miRNA), numerous studies have identified that polyphenols, including epigallocatechin-3-gallate, genistein, resveratrol and curcumin exert their anticancer effects by regulating different miRNAs which are implicated in all the stages of cancer. MiRNAs are short, non-coding endogenous RNA, which silence the gene functions by targeting messenger RNA (mRNA) through degradation or translation repression. However, cancer associated miRNAs has emerged only in recent years to support its applications in cancer therapy. Preclinical experiments have suggested that deregulation of single miRNA is sufficient for neoplastic transformation of cells. Indeed, the widespread deregulation of several miRNA profiles of tumor and healthy tissue samples revealed the involvement of many types of miRNA in the development of numerous cancers. Hence, targeting the miRNAs using polyphenols will be a novel and promising strategy in anticancer chemotherapy. Herein, we have critically reviewed the potential applications of polyphenols on various human miRNAs, especially which are involved in oncogenic and tumor suppressor pathways.
Collapse
|
189
|
Rich GT, Buchweitz M, Winterbone MS, Kroon PA, Wilde PJ. Towards an Understanding of the Low Bioavailability of Quercetin: A Study of Its Interaction with Intestinal Lipids. Nutrients 2017; 9:nu9020111. [PMID: 28165426 PMCID: PMC5331542 DOI: 10.3390/nu9020111] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 12/23/2022] Open
Abstract
We have studied the uptake of quercetin aglycone into CaCo-2/TC7 cells in the presence and absence of mixed micelles that are present in the human small intestine. The micelles inhibited the transport of quercetin into the cells. To gain an understanding of why this is the case we examined the solubilisation of quercetin in micelles of differing composition and into pure lipid phases. We did this by using the environmental sensitivity of quercetin’s UV-visible absorption spectra and measurement of free quercetin by filtration of the micellar solutions. The nature of the micelles was also studied by pyrene fluorescence. We found that the partitioning of quercetin into simple bile salt micelles was low and for mixed micelles was inhibited by increasing the bile salt concentration. The affinity of quercetin decreased in the order egg phosphatidylcholine (PC) = lysoPC > mixed micelles > bile salts. These results, together with the innate properties of quercetin, contribute to an understanding of the low bioavailability of quercetin.
Collapse
Affiliation(s)
- Gillian T Rich
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Maria Buchweitz
- Universität Stuttgart, Analytical Food Chemistry, Allmandring 5B, 70569 Stuttgart, Germany.
| | - Mark S Winterbone
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Paul A Kroon
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Peter J Wilde
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK.
| |
Collapse
|
190
|
Gao F, Deng G, Liu W, Zhou K, Li M. Resveratrol suppresses human hepatocellular carcinoma via targeting HGF-c-Met signaling pathway. Oncol Rep 2017; 37:1203-1211. [DOI: 10.3892/or.2017.5347] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 12/27/2016] [Indexed: 01/16/2023] Open
|
191
|
Khan F, Niaz K, Ismail Hassan F, Abdollahi M. An evidence-based review of the genotoxic and reproductive effects of sulfur mustard. Arch Toxicol 2016; 91:1143-1156. [PMID: 28032143 DOI: 10.1007/s00204-016-1911-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/07/2016] [Indexed: 01/18/2023]
Abstract
Sulfur mustard (SM) is a chemical warfare agent which is cytotoxic in nature, and at the molecular level, SM acts as DNA alkylating agent leading to genotoxic and reproductive effects. Mostly, the exposed areas of the body are the main targets for SM; however, it also adversely affects various tissues of the body and ultimately exhibits long-term complications including genotoxic and reproductive effects, even in the next generations. The effect of SM on reproductive system is the reason behind male infertility. The chronic genotoxic and reproductive complications of SM have been observed in the next generation, such as reproductive hormones disturbances, testicular atrophy, deficiency of sperm cells, retarded growth of sperm and male infertility. SM exerts toxic effects through various mechanisms causing reproductive dysfunction. The key mechanisms include DNA alkylation, production of reactive oxygen species (ROS) and nicotinamide adenine dinucleotide (NAD) depletion. However, the exact molecular mechanism of such long-term effects of SM is still unclear. In general, DNA damage, cell death and defects in the cell membrane are frequently observed in SM-exposed individuals. SM can activate various cellular and molecular mechanisms related to oxidative stress (OS) and inflammatory responses throughout the reproductive system, which can cause decreased spermatogenesis and impaired sperm quality via damage to tissue function and structure. Moreover, the toxic effects of SM on the reproductive system as well as the occurrence of male infertility among exposed war troopers in the late exposure phase is still uncertain. The chronic effects of SM exposure in parents can cause congenital defects in their children. In this review, we aimed to investigate chronic genotoxic and reproductive effects of SM and their molecular mechanisms in the next generations.
Collapse
Affiliation(s)
- Fazlullah Khan
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Kamal Niaz
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Fatima Ismail Hassan
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mohammad Abdollahi
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran.
| |
Collapse
|
192
|
Proshkina E, Lashmanova E, Dobrovolskaya E, Zemskaya N, Kudryavtseva A, Shaposhnikov M, Moskalev A. Geroprotective and Radioprotective Activity of Quercetin, (-)-Epicatechin, and Ibuprofen in Drosophila melanogaster. Front Pharmacol 2016; 7:505. [PMID: 28066251 PMCID: PMC5179547 DOI: 10.3389/fphar.2016.00505] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/07/2016] [Indexed: 12/15/2022] Open
Abstract
The modulation of longevity genes and aging-associated signaling pathways using pharmacological agents is one of the potential ways to prolong the lifespan and increase the vitality of an organism. Phytochemicals flavonoids and non-steroidal anti-inflammatory drugs have a large potential as geroprotectors. The goal of the present study was to investigate the effects of long-term and short-term consumption of quercetin, (-)-epicatechin, and ibuprofen on the lifespan, resistance to stress factors (paraquat, hyperthermia, γ-radiation, and starvation), as well as age-dependent physiological parameters (locomotor activity and fecundity) of Drosophila melanogaster. The long-term treatment with quercetin and (-)-epicatechin didn't change or decreased the lifespan of males and females. In contrast, the short-term treatment with flavonoids had a beneficial effect and stimulated the resistance to paraquat and acute γ-irradiation. The short-term ibuprofen consumption had a positive effect on the lifespan of females when it was carried out at the middle age (30–40 days), and to the survival of flies under conditions of oxidative and genotoxic stresses. However, it didn't change the lifespan of males and females after the treatment during first 10 days of an imago life. Additionally, quercetin, (-)-epicatechin, and ibuprofen decreased the spontaneous locomotor activity of males, but had no effect of stimulated the physical activity and fecundity of females. Revealed quercetin, (-)-epicatechin, and ibuprofen activity can be associated with the stimulation of stress response mechanisms through the activation of pro-longevity pathways, or the induction of hormesis.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences (RAS) Syktyvkar, Russia
| | - Ekaterina Lashmanova
- Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology (MIPT) Dolgoprudny, Russia
| | - Eugenia Dobrovolskaya
- Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences (RAS) Syktyvkar, Russia
| | - Nadezhda Zemskaya
- Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences (RAS)Syktyvkar, Russia; Department of Ecology, Institute of Natural Sciences, Syktyvkar State UniversitySyktyvkar, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology (EIMB), Russian Academy of Sciences (RAS) Moscow, Russia
| | - Mikhail Shaposhnikov
- Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences (RAS)Syktyvkar, Russia; Department of Ecology, Institute of Natural Sciences, Syktyvkar State UniversitySyktyvkar, Russia
| | - Alexey Moskalev
- Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences (RAS)Syktyvkar, Russia; Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology (MIPT)Dolgoprudny, Russia; Department of Ecology, Institute of Natural Sciences, Syktyvkar State UniversitySyktyvkar, Russia; Engelhardt Institute of Molecular Biology (EIMB), Russian Academy of Sciences (RAS)Moscow, Russia
| |
Collapse
|