151
|
Daoud FC, Goncalves R, Moore N. How Long Do Implanted Triclosan Sutures Inhibit Staphylococcus aureus in Surgical Conditions? A Pharmacological Model. Pharmaceutics 2022; 14:pharmaceutics14030539. [PMID: 35335916 PMCID: PMC8953209 DOI: 10.3390/pharmaceutics14030539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Sutures with triclosan (TS) are used to reduce the risk of surgical site infections (SSI), but most clinical trials are inconclusive. The traceability of SSI risk to antimicrobial activity in operated tissues is needed. (2) Objectives: This study aimed to predict triclosan antistaphylococcal activity in operated tissues. (3) Methods: Three TS were exposed to static water for 30 days, and triclosan release was recorded. Polyglactin TS explanted from sheep seven days after cardiac surgery according to 3Rs provided ex vivo acceleration benchmarks. TS immersion up to 7 days in ethanol-water cosolvency and stirring simulated tissue implantation. Controls were 30-day immersion in static water. The release rate over time was measured and fitted to a predictive function. Antistaphylococcal activity and duration were measured by time-kill analysis with pre-immersed polyglactin TS. (4) Fifteen to 60-fold accelerated in vitro conditions reproduced the benchmarks. The rate prediction with double-exponential decay was validated. The antistaphylococcal activity was bactericidal, with TS pre-immersed for less than 12 h before then S. aureus began to grow. The residual triclosan level was more than 95% and played no detectable role. (5) Conclusions: Polyglactin, poliglecaprone, and polydioxanone TS share similar triclosan release functions with parametric differences. Polyglactin TS is antistaphylococcal in surgical conditions for 4 to 12 h.
Collapse
Affiliation(s)
- Frederic Christopher Daoud
- INSERM U1219, Bordeaux Population Health, Bordeaux University, 146 rue Léo Saignat, CEDEX, F-33076 Bordeaux, France; (R.G.); (N.M.)
- Correspondence: or ; Tel.: +33-(0)6-0300-6898
| | - Ruben Goncalves
- INSERM U1219, Bordeaux Population Health, Bordeaux University, 146 rue Léo Saignat, CEDEX, F-33076 Bordeaux, France; (R.G.); (N.M.)
- CHU de Bordeaux, Laboratoire de Pharmacologie et Toxicologie, Place Amélie Raba Léon, CEDEX, F-33076 Bordeaux, France
| | - Nicholas Moore
- INSERM U1219, Bordeaux Population Health, Bordeaux University, 146 rue Léo Saignat, CEDEX, F-33076 Bordeaux, France; (R.G.); (N.M.)
| |
Collapse
|
152
|
Chudoba D, Łudzik K, Jażdżewska M. Carbon fibres as potential bone implants with controlled doxorubicin release. Sci Rep 2022; 12:2607. [PMID: 35173195 PMCID: PMC8850544 DOI: 10.1038/s41598-022-06044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
This work presents the structural characterisation of carbon fibres obtained from the carbonization of flax tow at 400°C (CFs400°C) and 1000°C (CFs1000°C) and the thermodynamic and kinetic studies of adsorption of Doxorubicin (Dox) on the fibres. The characteristic of carbon fibres and their drug adsorption and removal mechanism were investigated and compared with that of natural flax tow. All fibres were fully characterized by scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), specific surface area analysis and Boehm titration. The results demonstrated the highest adsorption properties of CFs400°C at 323 K (qmax = 275 mg g−1). The kinetic data followed the pseudo-second-order kinetic model more closely, whereas the Dubinin–Radushkevich model suitably described isotherms for all fibres. Calculated parameters revealed that the adsorption process of Dox ions is spontaneous and mainly followed by physisorption and a pore-filling mechanism. The removal efficiency for carbon fibres is low due to the effect of pore-blocking and hydrophobic hydration. However, presented fibres can be treated with a base for further chemical surface modification, increasing the adsorption capacity and controlling the release tendency.
Collapse
Affiliation(s)
- Dorota Chudoba
- Faculty of Physics, Adam Mickiewicz University, Poznan, 61-614, Poland. .,Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, 141980, Russia.
| | - Katarzyna Łudzik
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, 141980, Russia.,Department of Physical Chemistry, University of Lodz, 90-236, Lodz, Poland
| | - Monika Jażdżewska
- Faculty of Physics, Adam Mickiewicz University, Poznan, 61-614, Poland.,Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, 141980, Russia
| |
Collapse
|
153
|
Casein Microgels as Benzydamine Hydrochloride Carriers for Prolonged Release. MATERIALS 2022; 15:ma15041333. [PMID: 35207872 PMCID: PMC8875778 DOI: 10.3390/ma15041333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022]
Abstract
This research aims to investigate the properties of nano- and micro-sized casein hydrogels crosslinked by sodium tripolyphosphate as drug delivery systems. Benzydamine hydrochloride was chosen as a model hydrophilic drug. The gels were synthesized by varying different parameters: casein concentration, casein/crosslinking ratio, and addition of ethanol as a co-solvent. The electrostatic attractive interactions between the casein and the sodium tripolyphosphate were confirmed by FTIR spectroscopy. The particle sizes was determined by dynamic light scattering and varied in the range between several hundred nanometers and several microns. The yield of the gelation process was high for all investigated samples and varied between 55.3% and 78.3%. The encapsulation efficiency of the particles was strongly influenced by the casein concentration and casein/crosslinker ratio and its values were between 4.6% and 22.4%. The release study confirmed that casein particles are useful as benzydamine carriers and ensured prolonged release over 72 h.
Collapse
|
154
|
Horkovics-Kovats S, László Galata D, Zlatoš P, Nagy B, Alexandra Mészáros L, Kristóf Nagy Z. Raman-based real-time dissolution prediction using a deterministic permeation model. Int J Pharm 2022; 617:121624. [DOI: 10.1016/j.ijpharm.2022.121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 10/19/2022]
|
155
|
Koshari SHS, Shi X, Jiang L, Chang D, Rajagopal K, Lenhoff AM, Wagner NJ. Design of PLGA-Based Drug Delivery Systems Using a Physically-Based Sustained Release Model. J Pharm Sci 2022; 111:345-357. [PMID: 34516986 PMCID: PMC8792208 DOI: 10.1016/j.xphs.2021.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/16/2021] [Accepted: 09/04/2021] [Indexed: 02/03/2023]
Abstract
An extensive data set has been developed and used to further the progress of a model-informed design of controlled drug release. An improved drug-release model with mechanistic modeling of hydrolytic polymer degradation is used and validated by comparing model predictions to in vitro experiments. Combining parameter estimates from the literature with model fits to the data set, this study can aid in achieving a priori design of controlled drug release from a model PLGA release system. A systematic series of model release systems were formulated with FITC-labeled dextran, as a surrogate for biopharmaceuticals, in PLGA rods over a broad range of compositions. While general comparisons between the model and experiments were favorable, important discrepancies were identified for several formulations with significant first-phase drug release. Supported by cross-sectional fluorescence microscopy images of the FITC-dextran distribution within the rods, this first-phase release was attributed to a combination of two main factors: (1) percolation of the drug particles and (2) swelling of and pore formation in the rods due to water uptake. These observations indicate the importance of careful selection of the PLGA polymer grade when designing drug release systems but also reflect a need for better understanding of phenomena such as pore formation. Adapting model parameters, without modifying the physical processes included in the model, enabled accurate fitting of the experimental data for all formulations, highlighting the applicability of the model.
Collapse
Affiliation(s)
- Stijn H. S. Koshari
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Xutao Shi
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Linda Jiang
- Eurofins Lancaster Laboratories Inc., Lancaster, Pennsylvania 17605, USA
| | - Debby Chang
- Pharmaceutical Development, Genentech, South San Francisco, California 94080, USA
| | - Karthikan Rajagopal
- Pharmaceutical Development, Genentech, South San Francisco, California 94080, USA
| | - Abraham M. Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA, Corresponding author at: Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA, (A.M. Lenhoff)
| | - Norman J. Wagner
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
156
|
Jafari S, Soleimani M, Badinezhad M. Application of different mathematical models for further investigation of in vitro drug release mechanisms based on magnetic nano-composite. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03537-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
157
|
Praziquantel-loaded calcite crystals: Synthesis, physicochemical characterization, and biopharmaceutical properties of inorganic biomaterials for drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
158
|
Abdel-Rashid RS, Helal DA, Alaa-Eldin AA, Abdel-Monem R. Polymeric versus lipid nanocapsules for miconazole nitrate enhanced topical delivery: in vitro and ex vivo evaluation. Drug Deliv 2022; 29:294-304. [PMID: 35037528 PMCID: PMC8765242 DOI: 10.1080/10717544.2022.2026535] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nanocapsules can be equated to other nanovesicular systems in which a drug is entrapped in a void containing liquid core surrounded by a coat. The objective of the present study was to investigate the potential of polymeric and lipid nanocapsules (LNCs) as innovative carrier systems for miconazole nitrate (MN) topical delivery. Polymeric nanocapsules and LNCs were prepared using emulsification/nanoprecipitation technique where the effect of poly(ε-caprolactone (PCL) and lipid matrix concentrations with respect to MN were assessed. The resulted nanocapsules were examined for their average particle size, zeta potential, %EE, and in vitro drug release. Optimum formulation in both polymeric and lipidic nanocapsules was further subjected to anti-fungal activity and ex vivo permeation tests. Based on the previous results, nanoencapsulation strategy into polymeric and LNCs created formulations of MN with slow biphasic release, high %EE, and improved stability, representing a good approach for the delivery of MN. PNCs were best fitted to Higuchi’s diffusion while LNCs followed Baker and Lonsdale model in release kinetics. The encapsulated MN either in PNCs or LNCs showed higher cell viability in WISH amniotic cells in comparison with free MN. PNCs showed less ex vivo permeation. PNCs were accompanied by high stability and more amount drug deposition (32.2 ± 3.52 µg/cm2) than LNCs (12.7 ± 1.52 µg/cm2). The antifungal activity of the PNCs was high 19.07 mm compared to 11.4 mm for LNCs. In conclusion, PNCs may have an advantage over LNCs by offering dual action for both superficial and deep fungal infections.
Collapse
Affiliation(s)
- Rania S. Abdel-Rashid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo, Egypt
| | - Doaa A. Helal
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, Faiyum, Egypt
| | | | - Raghda Abdel-Monem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo, Egypt
| |
Collapse
|
159
|
Nguyen NT, Bui QA, Nguyen HHN, Nguyen TT, Ly KL, Tran HLB, Doan VN, Nhi TTY, Nguyen NH, Nguyen NH, Tran NQ, Nguyen DT. Curcuminoid Co-Loading Platinum Heparin-Poloxamer P403 Nanogel Increasing Effectiveness in Antitumor Activity. Gels 2022; 8:59. [PMID: 35049594 PMCID: PMC8774475 DOI: 10.3390/gels8010059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Nanosized multi-drug delivery systems provide synergistic effects between drugs and bioactive compounds, resulting in increased overall efficiency and restricted side effects compared to conventional single-drug chemotherapy. In this study, we develop an amphiphilic heparin-poloxamer P403 (HP403) nanogel that could effectively co-load curcuminoid (Cur) and cisplatin hydrate (CisOH) (HP403@CisOH@Cur) via two loading mechanisms. The HP403 nanogels and HP403@CisOH@Cur nanogels were closely analyzed with 1H-NMR spectroscopy, FT-IR spectroscopy, TEM, and DLS, exhibiting high stability in spherical forms. In drug release profiles, accelerated behavior of Cur and CisOH at pH 5.5 compared with neutral pH was observed, suggesting effective delivery of the compounds in tumor sites. In vitro studies showed high antitumor activity of HP403@CisOH@Cur nanogels, while in vivo assays showed that the dual-drug platform prolonged the survival time of mice and prevented tail necrosis. In summary, HP403@CisOH@Cur offers an intriguing strategy to achieve the cisplatin and curcumin synergistic effect in a well-designed delivery platform that increases antitumor effectiveness and overcomes undesired consequences caused by cisplatin in breast cancer treatment.
Collapse
Affiliation(s)
- Ngoc The Nguyen
- Faculty of Medicine-Pharmacy, Tra Vinh University, Tra Vinh City 87000, Vietnam; (T.T.N.); (K.L.L.)
| | - Quynh Anh Bui
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 71500, Vietnam; (Q.A.B.); (N.H.N.); (N.Q.T.)
| | - Hoang Huong Nhu Nguyen
- Faculty of Biology and Biotechnology, University of Science—Vietnam National University, Ho Chi Minh City 72700, Vietnam; (H.H.N.N.); (H.L.B.T.); (V.N.D.)
| | - Tien Thanh Nguyen
- Faculty of Medicine-Pharmacy, Tra Vinh University, Tra Vinh City 87000, Vietnam; (T.T.N.); (K.L.L.)
| | - Khanh Linh Ly
- Faculty of Medicine-Pharmacy, Tra Vinh University, Tra Vinh City 87000, Vietnam; (T.T.N.); (K.L.L.)
| | - Ha Le Bao Tran
- Faculty of Biology and Biotechnology, University of Science—Vietnam National University, Ho Chi Minh City 72700, Vietnam; (H.H.N.N.); (H.L.B.T.); (V.N.D.)
| | - Vu Nguyen Doan
- Faculty of Biology and Biotechnology, University of Science—Vietnam National University, Ho Chi Minh City 72700, Vietnam; (H.H.N.N.); (H.L.B.T.); (V.N.D.)
| | - Tran Thi Yen Nhi
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 71500, Vietnam;
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 72800, Vietnam
| | - Ngoc Hoa Nguyen
- German Vietnamese Technology Center, HCMC University of Food Industry, Ho Chi Minh City 72000, Vietnam;
| | - Ngoc Hao Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 71500, Vietnam; (Q.A.B.); (N.H.N.); (N.Q.T.)
| | - Ngoc Quyen Tran
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 71500, Vietnam; (Q.A.B.); (N.H.N.); (N.Q.T.)
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 71500, Vietnam;
| | - Dinh Trung Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 71500, Vietnam; (Q.A.B.); (N.H.N.); (N.Q.T.)
| |
Collapse
|
160
|
State-of-the-Art Review of Artificial Neural Networks to Predict, Characterize and Optimize Pharmaceutical Formulation. Pharmaceutics 2022; 14:pharmaceutics14010183. [PMID: 35057076 PMCID: PMC8779224 DOI: 10.3390/pharmaceutics14010183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022] Open
Abstract
During the development of a pharmaceutical formulation, a powerful tool is needed to extract the key points from the complicated process parameters and material attributes. Artificial neural networks (ANNs), a promising and more flexible modeling technique, can address real intricate questions in a high parallelism and distributed pattern in the manner of biological neural networks. The data mined and analyzing based on ANNs have the ability to replace hundreds of trial and error experiments. ANNs have been used for data analysis by pharmaceutics researchers since the 1990s and it has now become a research method in pharmaceutical science. This review focuses on the latest application progress of ANNs in the prediction, characterization and optimization of pharmaceutical formulation to provide a reference for the further interdisciplinary study of pharmaceutics and ANNs.
Collapse
|
161
|
Alfei S, Spallarossa A, Lusardi M, Zuccari G. Successful Dendrimer and Liposome-Based Strategies to Solubilize an Antiproliferative Pyrazole Otherwise Not Clinically Applicable. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:233. [PMID: 35055251 PMCID: PMC8780786 DOI: 10.3390/nano12020233] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Water-soluble formulations of the pyrazole derivative 3-(4-chlorophenyl)-5-(4-nitrophenylamino)-1H-pyrazole-4-carbonitrile (CR232), which were proven to have in vitro antiproliferative effects on different cancer cell lines, were prepared by two diverse nanotechnological approaches. Importantly, without using harmful organic solvents or additives potentially toxic to humans, CR232 was firstly entrapped in a biodegradable fifth-generation dendrimer containing lysine (G5K). CR232-G5K nanoparticles (CR232-G5K NPs) were obtained with high loading (DL%) and encapsulation efficiency (EE%), which showed a complex but quantitative release profile governed by Weibull kinetics. Secondly, starting from hydrogenated soy phosphatidylcholine and cholesterol, we prepared biocompatible CR232-loaded liposomes (CR232-SUVs), which displayed DL% and EE% values increasing with the increase in the lipids/CR232 ratio initially adopted and showed a constant prolonged release profile ruled by zero-order kinetics. When relevant, attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR) and nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscopy (SEM) and dynamic light scattering (DLS) experiments, as well as potentiometric titrations completed the characterization of the prepared NPs. CR232-G5K NPs were 2311-fold more water-soluble than the pristine CR232, and the CR232-SUVs with the highest DL% were 1764-fold more soluble than the untreated CR232, thus establishing the success of both our strategies.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (A.S.); (M.L.); (G.Z.)
| | | | | | | |
Collapse
|
162
|
Fosca M, Rau JV, Uskoković V. Factors influencing the drug release from calcium phosphate cements. Bioact Mater 2022; 7:341-363. [PMID: 34466737 PMCID: PMC8379446 DOI: 10.1016/j.bioactmat.2021.05.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022] Open
Abstract
Thanks to their biocompatibility, biodegradability, injectability and self-setting properties, calcium phosphate cements (CPCs) have been the most economical and effective biomaterials of choice for use as bone void fillers. They have also been extensively used as drug delivery carriers owing to their ability to provide for a steady release of various organic molecules aiding the regeneration of defective bone, including primarily antibiotics and growth factors. This review provides a systematic compilation of studies that reported on the controlled release of drugs from CPCs in the last 25 years. The chemical, compositional and microstructural characteristics of these systems through which the control of the release rates and mechanisms could be achieved have been discussed. In doing so, the effects of (i) the chemistry of the matrix, (ii) porosity, (iii) additives, (iv) drug types, (v) drug concentrations, (vi) drug loading methods and (vii) release media have been distinguished and discussed individually. Kinetic specificities of in vivo release of drugs from CPCs have been reviewed, too. Understanding the kinetic and mechanistic correlations between the CPC properties and the drug release is a prerequisite for the design of bone void fillers with drug release profiles precisely tailored to the application area and the clinical picture. The goal of this review has been to shed light on these fundamental correlations.
Collapse
Affiliation(s)
- Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133, Rome, Italy
- I.M. Sechenov First Moscow State Medical University, Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, Trubetskaya 8, build. 2, 119991, Moscow, Russia
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano LLC, Irvine, CA 92604, United States
| |
Collapse
|
163
|
Mehata AK, Muthu MS. Development of Supramolecules in the Field of Nanomedicines. PHARMACEUTICAL APPLICATIONS OF SUPRAMOLECULES 2022:211-239. [DOI: 10.1007/978-3-031-21900-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
164
|
Optimization of supercritical carbon dioxide fluid extraction of seized cannabis and self-emulsifying drug delivery system for enhancing the dissolution of cannabis extract. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
165
|
Whitehead FA, Kasapis S. Modelling the mechanism and kinetics of ascorbic acid diffusion in genipin-crosslinked gelatin and chitosan networks at distinct pH. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
166
|
Rahdar A, Reza Hajinezhad M, Sargazi S, Barani M, Karimi P, Velasco B, Taboada P, Pandey S, Bameri Z, Zarei S. Pluronic F127/carfilzomib-based nanomicelles as promising nanocarriers: synthesis, characterization, biological, and in silico evaluations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
167
|
Kaewkroek K, Petchsomrit A, Wira Septama A, Wiwattanapatapee R. Development of starch/chitosan expandable films as a gastroretentive carrier for ginger extract-loaded solid dispersion. Saudi Pharm J 2022; 30:120-131. [PMID: 35528854 PMCID: PMC9072700 DOI: 10.1016/j.jsps.2021.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/27/2021] [Indexed: 11/09/2022] Open
Abstract
Gastroretentive expandable films were developed to provide controlled release of ginger extract (GE) for treatment of gastric diseases. The dosage form consisted of ginger extract solid dispersion (GE-SD) loaded in a starch/chitosan composite film, which was subsequently folded and inserted into a hard gelatin capsule. GE-SD was prepared by solvent evaporation using an optimum weight ratio of 1:1 for GE and PVP K30. Expandable films containing GE-SD were prepared by solvent casting combinations of chitosan and either rice-, glutinous rice - or pregelatinized maize starch with glycerin incorporated as a plasticizer. The optimized film formulation prepared from glutinous rice starch, exhibited tensile strength of 5.4 N/cm2 and high expansion in simulated gastric fluid (SGF), resulting in a 2.8-fold increase in area. The films resulted in sustained release of up to 90% of the content of 6-gingerol during 8 h exposure to SGF. Furthermore, the 6-gingerol released from the film displayed dose-dependent cytotoxic activity against AGS human gastric adenocarcinoma cells and anti-inflammatory activity by inhibiting the production of nitric oxide (NO) in LPS-stimulated RAW264.7 cells.
Collapse
|
168
|
Vlaia L, Olariu I, Muţ AM, Coneac G, Vlaia V, Anghel DF, Maxim ME, Stângă G, Dobrescu A, Suciu M, Szabadai Z, Lupuleasa D. New, Biocompatible, Chitosan-Gelled Microemulsions Based on Essential Oils and Sucrose Esters as Nanocarriers for Topical Delivery of Fluconazole. Pharmaceutics 2021; 14:75. [PMID: 35056971 PMCID: PMC8778122 DOI: 10.3390/pharmaceutics14010075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 01/11/2023] Open
Abstract
Biocompatible gel microemulsions containing natural origin excipients are promising nanocarrier systems for the safe and effective topical application of hydrophobic drugs, including antifungals. Recently, to improve fluconazole skin permeation, tolerability and therapeutic efficacy, we developed topical biocompatible microemulsions based on cinnamon, oregano or clove essential oil (CIN, ORG or CLV) as the oil phase and sucrose laurate (D1216) or sucrose palmitate (D1616) as surfactants, excipients also possessing intrinsic antifungal activity. To follow up this research, this study aimed to improve the adhesiveness of respective fluconazole microemulsions using chitosan (a biopolymer with intrinsic antifungal activity) as gellator and to evaluate the formulation variables' effect (composition and concentration of essential oil, sucrose ester structure) on the gel microemulsions' (MEGELs) properties. All MEGELs were evaluated for drug content, pH, rheological behavior, viscosity, spreadability, in vitro drug release and skin permeation and antifungal activity. The results showed that formulation variables determined distinctive changes in the MEGELs' properties, which were nevertheless in accordance with official requirements for semisolid preparations. The highest flux and release rate values and large diameters of the fungal growth inhibition zone were produced by formulations MEGEL-FZ-D1616-CIN 10%, MEGEL-FZ-D1216-CIN 10% and MEGEL-FZ-D1616-ORG 10%. In conclusion, these MEGELs were demonstrated to be effective platforms for fluconazole topical delivery.
Collapse
Affiliation(s)
- Lavinia Vlaia
- Department II—Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (L.V.); (I.O.); (A.M.M.); (G.C.)
| | - Ioana Olariu
- Department II—Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (L.V.); (I.O.); (A.M.M.); (G.C.)
| | - Ana Maria Muţ
- Department II—Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (L.V.); (I.O.); (A.M.M.); (G.C.)
| | - Georgeta Coneac
- Department II—Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (L.V.); (I.O.); (A.M.M.); (G.C.)
| | - Vicenţiu Vlaia
- Department I—Organic Chemistry, Formulation and Technology of Drugs Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Dan Florin Anghel
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, Laboratory of Colloid Chemistry, 060021 Bucharest, Romania; (D.F.A.); (M.E.M.); (G.S.)
| | - Monica Elisabeta Maxim
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, Laboratory of Colloid Chemistry, 060021 Bucharest, Romania; (D.F.A.); (M.E.M.); (G.S.)
| | - Gabriela Stângă
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, Laboratory of Colloid Chemistry, 060021 Bucharest, Romania; (D.F.A.); (M.E.M.); (G.S.)
| | - Amadeus Dobrescu
- Department X Surgery 2–Surgery 2, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Maria Suciu
- Department II—Pharmacology and Pharmacotherapy, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Zoltan Szabadai
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timişoara, Romania;
| | - Dumitru Lupuleasa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| |
Collapse
|
169
|
Chaudhari P, Naik R, Sruthi Mallela L, Roy S, Birangal S, Ghate V, Balladka Kunhanna S, Lewis SA. A supramolecular thermosensitive gel of ketoconazole for ocular applications: In silico, in vitro, and ex vivo studies. Int J Pharm 2021; 613:121409. [PMID: 34952148 DOI: 10.1016/j.ijpharm.2021.121409] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/04/2021] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
Abstract
The incidence of corneal fungal infections continues to be a growing concern worldwide. Ocular delivery of anti-fungal drugs is challenging due to the anatomical and physiological barriers of the eye. The ocular bioavailability of ketoconazole (KTZ), a widely prescribed antifungal agent, is hampered by its limited aqueous solubility and permeation. In the study, the physicochemical properties of KTZ were improved by complexation with sulfobutylether-β-cyclodextrin (SBE-β-CD).KTZ-SBE-β-CD complex was studied in silico with docking and dynamics simulations, followed by wet-lab experiments.The optimized KTZ-SBE-β-CD complex was loaded into a thermosensitivein situ gel to increase corneal bioavailability. The supramolecular complex increased the solubility of KTZ by 5-folds and exhibited a 10-fold increment in drug release compared to the pure KTZ. Owing to the diffusion, thein situ gel exhibited a more sustained drug release profile. Theex vivocorneal permeation studies showed higher permeation from KTZ-SBE-β-CD in situ gel (flux of ∼19.11 µg/cm2/h) than KTZin situ gel (flux of ∼1.17 µg/cm2/h). The cytotoxicity assays and the hen's egg chorioallantoic membrane assay (HET-CAM) confirmed the formulations' safety and non-irritancy. In silico guided design of KTZ-SBE-β-CD inclusion complexes successfully modified the physicochemical properties of KTZ. In addition, the loading of the KTZ-SBE-β-CD complex into an in situ gel significantly increased the precorneal retention and permeation of KTZ, indicating that the developed formulation is a viable modality to treat fungal keratitis.
Collapse
Affiliation(s)
- Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ranjitha Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Lakshmi Sruthi Mallela
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Sumit Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sarojini Balladka Kunhanna
- Department of Industrial Chemistry, Mangalore University, Mangalagangothri, Mangalore 574199, Karnataka, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
170
|
Huang R, Lan R, Shen C, Zhang Z, Wang Z, Bao J, Wang Z, Zhang L, Hu W, Yu Z, Zhu S, Wang L, Yang H. Remotely Controlling Drug Release by Light-Responsive Cholesteric Liquid Crystal Microcapsules Triggered by Molecular Motors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59221-59230. [PMID: 34851087 DOI: 10.1021/acsami.1c16367] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stimuli-responsive smart nanocarriers are an emerging class of materials applicable in fields including drug delivery and tissue engineering. Instead of constructing responsive polymer shells to control the release and delivery of drugs, in this work, we put forward a novel strategy to endow the internal drugs with light responsivity. The microcapsule consisted of molecular motor (MM)-doped cholesteric liquid crystals (CLCs) and drugs. The drug in gelatin-gum arabic microcapsules can protect the carried drugs for a long time with a low release speed totally resulting from drug diffusion. Under UV light, the MM isomerizes and the chirality changes, inducing the alteration of the superstructure of the CLCs. In this process, the cooperative molecular disturbance accelerates the diffusion of the drugs from the microcapsule core to the outside. As a result, thanks to the cooperative effect of liquid crystalline mesogens, molecular-scale geometric changes of motors could be amplified to the microscale disturbance of the self-organized superstructure of the CLCs, resulting in the acceleration of the drug release. This method is hoped to provide opportunities in the design and fabrication of novel functional drug delivery systems.
Collapse
Affiliation(s)
- Rui Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Ruochen Lan
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Chen Shen
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhongping Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Zichen Wang
- College of Materials Science and Opto-Electronic Technology, University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinying Bao
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Zizheng Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Lanying Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Wei Hu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhan Yu
- Beijing Anzhen Hospital of Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing 100020, P. R. China
| | - Siquan Zhu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Beijing Anzhen Hospital of Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing 100020, P. R. China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
171
|
Bezrukov A, Galyametdinov Y. Characterizing properties of polymers and colloids by their reaction-diffusion behavior in microfluidic channels. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
172
|
Santadkha T, Skolpap W, Thitapakorn V. Diffusion Modeling and In Vitro Release Kinetics Studies of Curcumin-Loaded Superparamagnetic Nanomicelles in Cancer Drug Delivery System. J Pharm Sci 2021; 111:1690-1699. [PMID: 34838781 DOI: 10.1016/j.xphs.2021.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 01/07/2023]
Abstract
The purpose of this study was to investigate in vitro drug release kinetics and to develop diffusion model of curcumin loaded Pluronic F127/Oleic acid(OA)-Fe3O4 nanoparticles. The prepared superparamagnetic nanoparticles by co-precipitation technique were characterized by the average size, size distribution, crystallinity, colloidal stability and magnetic property. The release of curcumin was triggered by an acidic environment in pH 5.0 of phosphate buffer saline. Release data of various curcumin loading (15, 25 and 30 ppm) were fitted using non-linear first-order, second-order, Higuchi and Korsmeyer-Peppas model. All the curcumin release mechanism followed Korsmeyer-Peppas model with n values less than 0.45 indicating the Fickian diffusion of curcumin from the prepared nanomicelles. The dynamic of controlled drug release of dilute curcumin loading was well described by a combination of diffusion and first-order release rate. The corresponding diffusion coefficient and kinetic rate were 9.1 × 10-7 cm2⋅min-1 and 6.51 × 10-7 min-1, which were used as controlled release to achieve the desired curcumin constant release rate in the delivery system.
Collapse
Affiliation(s)
- Tinnabhop Santadkha
- Department of Chemical Engineering, School of Engineering, Thammasat University, Pathumthani, 12120, Thailand
| | - Wanwisa Skolpap
- Department of Chemical Engineering, School of Engineering, Thammasat University, Pathumthani, 12120, Thailand; Center of Clinical Engineering, School of Engineering, Thammasat University, Pathumthani, 12120, Thailand.
| | - Veerachai Thitapakorn
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| |
Collapse
|
173
|
Drug Release Kinetics of DOX-Loaded Graphene-Based Nanocarriers for Ovarian and Breast Cancer Therapeutics. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer remains one of the leading causes of death worldwide despite extensive efforts at developing curative treatments. Chemotherapy, one of the most common forms of treatment, lacks specificity and can induce collateral damages to healthy surrounding tissues/cells and elicit off-target toxic side effects. The carbon-based nanomaterial graphene, can load aromatic drugs with high efficiency, has good biocompatibility, and can be easily functionalised with targeting ligands, antibodies, and biomolecules to increase the accuracy of targeting specific areas; graphene has therefore been explored as a nanocarrier for classical chemotherapy drugs. In this work, seventeen publications that report the release of doxorubicin (DOX) from 2D graphene-based nanohybrids (graphene oxide and reduced graphene oxide) for the treatment of breast and ovarian cancers have been identified based on a range of inclusion and exclusion criteria. To aid in the clinical translation of proof-of-concept studies, this work identifies the pre-clinical experimental protocols and analyses the release kinetics of these publications. Fifteen of the papers utilised a change in pH as the stimulus for drug release, and two utilised either near infrared (NIR) or ultrasound as the stimulus. The extracted drug release data from these publications were fit to four known kinetic models. It was found that the majority of these data best fit the Weibull kinetic model. The agreement between the kinetic data in previously published literature provides a predictable estimation of DOX release from graphene-based nanocarriers. This study demonstrates the potential conjugation of graphene and DOX in drug delivery applications, and this knowledge can help improve to the design and formulation of future graphene-based nanocarriers. In addition, the use of further experimental testing and the standardisation of experimental protocols will be beneficial for future work. The incorporation of computational modelling prior to pre-clinical testing will also aid in the development of controlled and sustained DOX release systems that offer efficient and efficacious results.
Collapse
|
174
|
Voicu V, Jiquidi M, Mircioiu C, Sandulovici R, Nicolescu A. Experimental Evaluation of 65Zn Decorporation Kinetics Following Rapid and Delayed Zn-DTPA Interventions in Rats. Biphasic Compartmental and Square-Root Law Mathematical Modeling. Pharmaceutics 2021; 13:1830. [PMID: 34834245 PMCID: PMC8623132 DOI: 10.3390/pharmaceutics13111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
The decorporation kinetics of internal radionuclide contamination is a long-term treatment raising modeling, planning, and managing problems, especially in the case of late intervention when the radiotoxic penetrated the deep compartments. The decorporation effectiveness of the highly radiotoxic 65ZnCl2 by Zn-DTPA (dosed at 3.32 mg and 5 mg/0.25 mL/100 g body weight) was investigated in Wistar male rats over a ten-day period under various treatments (i.e., as a single dose before contamination; as a single dose before and 24 h after contamination; and as daily administrations for five consecutive days starting on day 12 after contamination). The radioactivity was measured using the whole-body counting method. Mono- and bi-compartmental decorporation kinetics models proved applicable in the case of a rapid intervention. It was found that a diffusion model of the radionuclide from tissues to blood better describes the decorporation kinetics after more than ten days post treatment, and the process has been mathematically modeled as a diffusion from an infinite reservoir to a semi-finite medium. The mathematical solution led to a square-root law for describing the 65Zn decorporation. This law predicts a slower release than exponential or multiexponential equations, and could better explain the very long persistence of radionuclides in the living body. Splitting data and modeling in two steps allows a better understanding, description and prediction of the evolution of contamination, a separate approach to the treatment schemes of acute and chronic contamination.
Collapse
Affiliation(s)
- Victor Voicu
- Department of Clinical Pharmacology and Toxicology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050477 Bucharest, Romania;
| | - Marilena Jiquidi
- Army Center for Medical Research, 021051 Bucharest, Romania;
- Laboratory of Radiobiology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Constantin Mircioiu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Roxana Sandulovici
- Faculty of Pharmacy, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Adrian Nicolescu
- Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada;
| |
Collapse
|
175
|
|
176
|
Oyarzún P, Gallardo-Toledo E, Morales J, Arriagada F. Transfersomes as alternative topical nanodosage forms for the treatment of skin disorders. Nanomedicine (Lond) 2021; 16:2465-2489. [PMID: 34706575 DOI: 10.2217/nnm-2021-0335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Topical drug delivery is a promising approach to treat different skin disorders. However, it remains a challenge mainly due to the nature and rigidity of the nanosystems, which limit deep skin penetration, and the unsuccessful demonstration of clinical benefits; greater penetration by itself, does not ensure pharmacological success. In this context, transfersomes have appeared as promising nanosystems; deformability, their unique characteristic, allows them to pass through the epidermal microenvironment, improving the skin drug delivery. This review focuses on the comparison of transfersomes with other nanosystems (e.g., liposomes), discusses recent therapeutic applications for the topical treatment of different skin disorders and highlights the need for further studies to demonstrate significant clinical benefits of transfersomes compared with conventional therapies.
Collapse
Affiliation(s)
- Pablo Oyarzún
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| | - Eduardo Gallardo-Toledo
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, 8380494, Chile
| | - Javier Morales
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, 8380494, Chile
| | - Francisco Arriagada
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| |
Collapse
|
177
|
Zobir SAM, Ali A, Adzmi F, Sulaiman MR, Ahmad K. A Review on Nanopesticides for Plant Protection Synthesized Using the Supramolecular Chemistry of Layered Hydroxide Hosts. BIOLOGY 2021; 10:1077. [PMID: 34827070 PMCID: PMC8614857 DOI: 10.3390/biology10111077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
The rapid growth in the human population has triggered increased demand for food supply, and in turn has prompted a higher amount of agrochemical usage to meet the gaps between food production and consumption. The problem with conventional agro-nanochemicals is the reduced effectiveness of the active ingredient in reaching the target, along with leaching, evaporation, etc., which ultimately affect the environment and life, including humans. Fortunately, nanotechnology platforms offer a new life for conventional pesticides, which improves bioavailability through different kinetics, mechanisms and pathways on their target organisms, thus enabling them to suitably bypass biological and other unwanted resistances and therefore increase their efficacy. This review is intended to serve the scientific community for research, development and innovation (RDI) purposes, by providing an overview on the current status of the host-guest supramolecular chemistry of nanopesticides, focusing on only the two-dimensional (2D), brucite-like inorganic layered hydroxides, layered hydroxide salts and layered double hydroxides as the functional nanocarriers or as the hosts in smart nanodelivery systems of pesticides for plant protection. Zinc layered hydroxides and zinc/aluminum-layered double hydroxides were found to be the most popular choices of hosts, presumably due to their relative ease to prepare and cheap cost. Other hosts including Mg/Al-, Co/Cr-, Mg/Fe-, Mg/Al/Fe-, Zn/Cr- and Zn/Cu-LDHs were also used. This review also covers various pesticides which were used as the guest active agents using supramolecular host-guest chemistry to combat various pests for plant protection. This looks towards a new generation of agrochemicals, "agro-nanochemicals", which are more effective, and friendly to life, humans and the environment.
Collapse
Affiliation(s)
- Syazwan Afif Mohd Zobir
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
- Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia;
| | - Fariz Adzmi
- Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Mohd Roslan Sulaiman
- Department of Science and Biomedicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Khairulmazmi Ahmad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
- Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| |
Collapse
|
178
|
The Influence of Tea Tree Oil on Antifungal Activity and Pharmaceutical Characteristics of Pluronic ® F-127 Gel Formulations with Ketoconazole. Int J Mol Sci 2021; 22:ijms222111326. [PMID: 34768755 PMCID: PMC8582737 DOI: 10.3390/ijms222111326] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Fungal skin infections are currently a major clinical problem due to their increased occurrence and drug resistance. The treatment of fungal skin infections is based on monotherapy or polytherapy using the synergy of the therapeutic substances. Tea tree oil (TTO) may be a valuable addition to the traditional antifungal drugs due to its antifungal and anti-inflammatory activity. Ketoconazole (KTZ) is an imidazole antifungal agent commonly used as a treatment for dermatological fungal infections. The use of hydrogels and organogel-based formulations has been increasing for the past few years, due to the easy method of preparation and long-term stability of the product. Therefore, the purpose of this study was to design and characterize different types of Pluronic® F-127 gel formulations containing KTZ and TTO as local delivery systems that can be applied in cases of skin fungal infections. The influence of TTO addition on the textural, rheological, and bioadhesive properties of the designed formulations was examined. Moreover, the in vitro release of KTZ, its permeation through artificial skin, and antifungal activity by the agar diffusion method were performed. It was found that obtained gel formulations were non-Newtonian systems, showing a shear-thinning behaviour and thixotropic properties with adequate textural features such as hardness, compressibility, and adhesiveness. Furthermore, the designed preparations with TTO were characterized by beneficial bioadhesive properties. The presence of TTO improved the penetration and retention of KTZ through the artificial skin membrane and this effect was particularly visible in hydrogel formulation. The developed gels containing TTO can be considered as favourable formulations in terms of drug release and antifungal activity.
Collapse
|
179
|
Wang W, Ye Z, Gao H, Ouyang D. Computational pharmaceutics - A new paradigm of drug delivery. J Control Release 2021; 338:119-136. [PMID: 34418520 DOI: 10.1016/j.jconrel.2021.08.030] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023]
Abstract
In recent decades pharmaceutics and drug delivery have become increasingly critical in the pharmaceutical industry due to longer time, higher cost, and less productivity of new molecular entities (NMEs). However, current formulation development still relies on traditional trial-and-error experiments, which are time-consuming, costly, and unpredictable. With the exponential growth of computing capability and algorithms, in recent ten years, a new discipline named "computational pharmaceutics" integrates with big data, artificial intelligence, and multi-scale modeling techniques into pharmaceutics, which offered great potential to shift the paradigm of drug delivery. Computational pharmaceutics can provide multi-scale lenses to pharmaceutical scientists, revealing physical, chemical, mathematical, and data-driven details ranging across pre-formulation studies, formulation screening, in vivo prediction in the human body, and precision medicine in the clinic. The present paper provides a comprehensive and detailed review in all areas of computational pharmaceutics and "Pharma 4.0", including artificial intelligence and machine learning algorithms, molecular modeling, mathematical modeling, process simulation, and physiologically based pharmacokinetic (PBPK) modeling. We not only summarized the theories and progress of these technologies but also discussed the regulatory requirements, current challenges, and future perspectives in the area, such as talent training and a culture change in the future pharmaceutical industry.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Zhuyifan Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Hanlu Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China.
| |
Collapse
|
180
|
Alfei S, Brullo C, Caviglia D, Zuccari G. Preparation and Physicochemical Characterization of Water-Soluble Pyrazole-Based Nanoparticles by Dendrimer Encapsulation of an Insoluble Bioactive Pyrazole Derivative. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2662. [PMID: 34685102 PMCID: PMC8537834 DOI: 10.3390/nano11102662] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
2-(4-Bromo-3,5-diphenyl-pyrazol-1-yl)-ethanol (BBB4) was synthetized and successfully evaluated concerning numerous biological activities, except for antimicrobial and cytotoxic effects. Due to the antimicrobial effects possessed by pyrazole nucleus, which have been widely reported, and the worldwide need for new antimicrobial agents, we thought it would be interesting to test BBB4 and to evaluate its possible antibacterial effects. Nevertheless, since it is water-insoluble, the future clinical application of BBB4 will remain utopic unless water-soluble BBB4 formulations are developed. To this end, before implementing biological evaluations, BBB4 was herein re-synthetized and characterized, and a new water-soluble BBB4-based nano-formulation was developed by its physical entrapment in a biodegradable non-cytotoxic cationic dendrimer (G4K), without recovering harmful solvents as DMSO or surfactants. The obtained BBB4 nanoparticles (BBB4-G4K NPs) showed good drug loading (DL%), satisfying encapsulation efficiency (EE%), and a biphasic quantitative release profile governed by first-order kinetics after 24 h. Additionally, BBB4-G4K was characterized by ATR-FTIR spectroscopy, NMR, SEM, dynamic light scattering analysis (DLS), and potentiometric titration experiments. While, before the nanotechnological manipulation, BBB4 was completely water-insoluble, in the form of BBB4-G4K NPs, its water-solubility resulted in being 105-fold higher than that of the pristine form, thus establishing the feasibility of its clinical application.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.B.); (G.Z.)
| | - Chiara Brullo
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.B.); (G.Z.)
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.B.); (G.Z.)
| |
Collapse
|
181
|
Preparation and characterization of gadolinium-based thermosensitive liposomes: A potential nanosystem for selective drug delivery to cancer cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
182
|
Synthesis and characterization of inclusion complexes of rosemary essential oil with various β-cyclodextrins and evaluation of their antibacterial activity against Staphylococcus aureus. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
183
|
Vanti G, Grifoni L, Bergonzi MC, Antiga E, Montefusco F, Caproni M, Bilia AR. Development and optimisation of biopharmaceutical properties of a new microemulgel of cannabidiol for locally-acting dermatological delivery. Int J Pharm 2021; 607:121036. [PMID: 34438005 DOI: 10.1016/j.ijpharm.2021.121036] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022]
Abstract
Cannabidiol (CBD) is a pleiotropic phytocannabinoid, recently investigated to treat many skin diseases. This study aimed to develop a CBD-loaded O/A microemulsion (CBD-ME) formulated as microemulgel (CBD-MEgel), suitable for local administration. The developed CBD-ME consisted of Solutol HS 15 (20%, surfactant), Transcutol P (9%, cosolvent), isopropyl myristate (5%, oil phase), water (66%) and 1% w/w CBD. Globules had polydispersity index less than 0.23 ± 0.02 and size of 35 ± 2 nm; these values did not change after loading CBD and gelling the formulation with Sepigel 305 obtaining a clear and homogeneous formulation with a pH of 6.56 ± 0.20, suitable for cutaneous application. Viscosity properties were investigated by the rotational digital viscometer, at both 21 ± 2 °C and 35 ± 2 °C. Viscosities of CBD-MEgel were 439,000 ± 4,243 mPa·s and 391,000 ± 1,414 mPa·s respectively. The release studies displayed that 90 ± 24 μg/cm2 of CBD were released in 24 h. The CBD permeability, evaluated using Franz diffusion cells and rabbit ear skin, was 3 ± 1 μg/cm2. Skin-PAMPATM gave a CBD effective permeability of (1.67 ± 0.16) ·10-7 cm/s and an absorbed dose of 115.30 ± 16.99 µg/cm2 after 24 h. Lastly, physical and chemical stability of both CBD-ME and CBD-MEgel were evaluated over a period of 3 months, showing optimal shelf-life at the storage conditions.
Collapse
Affiliation(s)
- Giulia Vanti
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, FI, Italy
| | - Lucia Grifoni
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, FI, Italy
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, FI, Italy
| | - Emiliano Antiga
- Department of Health Sciences, Section of Dermatology, University of Florence, Viale Michelangiolo 41, 50125 Florence, Italy
| | - Francesca Montefusco
- Department of Health Sciences, Section of Dermatology, University of Florence, Viale Michelangiolo 41, 50125 Florence, Italy
| | - Marzia Caproni
- Department of Health Sciences, Section of Dermatology, USL Toscana Centro, Rare Diseases Unit, European Reference Network-Skin Member, University of Florence, Florence, Italy
| | - Anna Rita Bilia
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
184
|
In vitro efficacy of polymer coated miltefosine drug against leishmania tropica. J Parasit Dis 2021; 46:366-376. [DOI: 10.1007/s12639-021-01452-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
|
185
|
Garg NK, Tandel N, Bhadada SK, Tyagi RK. Nanostructured Lipid Carrier-Mediated Transdermal Delivery of Aceclofenac Hydrogel Present an Effective Therapeutic Approach for Inflammatory Diseases. Front Pharmacol 2021; 12:713616. [PMID: 34616297 PMCID: PMC8488093 DOI: 10.3389/fphar.2021.713616] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/09/2021] [Indexed: 02/05/2023] Open
Abstract
Aceclofenac (ACE), a cyclooxygenase-2 inhibitor, is the derivative of the diclofenac group that has been in use for the symptomatic treatment of systemic inflammatory autoimmune disease, rheumatoid arthritis (RA). Partial solubility, high lipophilic nature, and stability challenge its use in developing topical formulations. Hence, we developed and characterized nanostructured lipid carrier (NLC)-based ACE (ACE-NLC) hydrogel for an efficient transdermal delivery. NLC microemulsion was prepared using different lipids by various methods and was characterized with respect to particle size, zeta potential, surface morphology, and drug encapsulation efficiency. The optimized NLC formulation was incorporated into Carbopol® 940 gel, and this arrangement was characterized and compared with the existing marketed gel (Mkt-gel) formulation to assess in vitro drug release, rheology, texture profile, in vivo skin retention and permeation, and stability. Furthermore, prepared and characterized ACE-loaded NLC formulation was evaluated for skin integrity and fitted in a dermatokinetic model. The results of this study confirmed the spherical shape; smooth morphology and nanometric size attested by Zetasizer and scanning and transmission electron microcopy; and stability of the ACE-NLC formulation. The ACE-NLC-gel formulation showed good rheological and texture characteristics, and better skin distribution in the epidermis and dermis. Moreover, ACE-NLC permeated deeper in the skin layers and kept the skin integrity intact. Overall, NLC-based gel formulation of ACE might be a promising nanoscale lipid carrier for topical application when compared with the conventional Mkt-gel formulation.
Collapse
Affiliation(s)
- Neeraj K. Garg
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rajeev K. Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-Immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| |
Collapse
|
186
|
Maurya P, Saklani R, Singh S, Nisha R, Pal RR, Mishra N, Singh P, Kumar A, Chourasia MK, Saraf SA. Appraisal of fluoroquinolone-loaded carubinose-linked hybrid nanoparticles for glycotargeting to alveolar macrophages. Drug Deliv Transl Res 2021; 12:1640-1658. [PMID: 34476764 DOI: 10.1007/s13346-021-01055-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 01/10/2023]
Abstract
There is a curious case in Alveolar macrophages (AM), the frontline defence recruits that contain the spread of all intruding bacteria. In response to Mycobacterium tuberculosis (M.tb), AM either contain the spread or are modulated by M.tb to create a region for their replication. The M.tb containing granulomas so formed are organised structures with confined boundaries. The limited availability of drugs inside AM aid drug tolerance and poor therapeutic outcomes in diseases like tuberculosis. The present work proves the glycotargeting efficiency of levofloxacin (LVF) to AM. The optimised formulation developed displayed good safety with 2% hemolysis and a viability of 61.14% on J774A.1 cells. The physicochemical characterisations such as Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) proved that carubinose linkage was accomplished and LVF is entrapped inside carubinose-linked hybrid formulation (CHF) and hybrid formulation (HF) in amorphous form. The transmission electron microscopy (TEM) images revealed a core-shell structure of HF. The particle size of 471.5 nm estimated through dynamic light scattering (DLS) is enough to achieve active and passive targeting to AM. The nanoparticle tracking analysis (NTA) data revealed that the diluted samples were free from aggregates. Fluorescence-activated cell sorting (FACS) data exhibited excellent uptake via CHF (15 times) and HF(3 times) with reference to plain fluorescein isothiocyanate (FITC). The pharmacokinetic studies revealed that CHF and HF release the entrapped moiety LVF in a controlled manner over 72 h. The stability studies indicated that the modified formulation remains stable over 6 months at 5 ± 3℃. Hence, hybrid systems can be efficiently modified via carubinose to target AM via the parenteral route.
Collapse
Affiliation(s)
- Priyanka Maurya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University, ) Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Ravi Saklani
- Department of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Samipta Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University, ) Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Raquibun Nisha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University, ) Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University, ) Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University, ) Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University, ) Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Abhiram Kumar
- Department of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Manish K Chourasia
- Department of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University, ) Vidya Vihar, Raebareli Road, Lucknow, 226025, India.
| |
Collapse
|
187
|
Weibull Modeling of Controlled Drug Release from Ag-PMA Nanosystems. Polymers (Basel) 2021; 13:polym13172897. [PMID: 34502937 PMCID: PMC8434431 DOI: 10.3390/polym13172897] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023] Open
Abstract
Traditional pharmacotherapy suffers from multiple drawbacks that hamper patient treatment such as antibiotic resistances or low drug selectivity and toxicity during systemic applications. Some functional hybrid nanomaterials are designed to handle the drug release process under remote-control. More attention has recently been paid to synthetic polyelectrolytes for their intrinsic properties which allow them to rearrange into compact structures, ideal to be used as drug carriers or probes influencing biochemical processes. The presence of Ag nanoparticles (NPs) in the Poly methyl acrylate (PMA) matrix leads to an enhancement of drug release efficiency, even using a low-power laser whose wavelength is far from the Ag Surface Plasmon Resonance (SPR) peak. Further, compared to the colloids, the nanofiber-based drug delivery system has shown shorter response time and more precise control over the release rate. The efficiency and timing of involved drug release mechanisms has been estimated by the Weibull distribution function, whose parameters indicate that the release mechanism of nanofibers obeys Fick's first law while a non-Fickian character controlled by diffusion and relaxation of polymer chains occurs in the colloidal phase.
Collapse
|
188
|
Alfei S, Schito AM, Zuccari G. Considerable Improvement of Ursolic Acid Water Solubility by Its Encapsulation in Dendrimer Nanoparticles: Design, Synthesis and Physicochemical Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2196. [PMID: 34578512 PMCID: PMC8464973 DOI: 10.3390/nano11092196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpenoid found in many medicinal plants and aromas endowed with numerous in vitro pharmacological activities, including antibacterial effects. Unfortunately, UA is poorly administered in vivo, due to its water insolubility, low bioavailability, and residual systemic toxicity, thus making urgent the development of water-soluble UA formulations. Dendrimers are nonpareil macromolecules possessing highly controlled size, shape, and architecture. In dendrimers with cationic surface, the contemporary presence of inner cavities and of hydrophilic peripheral functions, allows to encapsulate hydrophobic non-water-soluble drugs as UA, to enhance their water-solubility and stability, and to promote their protracted release, thus decreasing their systemic toxicity. In this paper, aiming at developing a new UA-based antibacterial agent administrable in vivo, we reported the physical entrapment of UA in a biodegradable not cytotoxic cationic dendrimer (G4K). UA-loaded dendrimer nanoparticles (UA-G4K) were obtained, which showed a drug loading (DL%) much higher than those previously reported, a protracted release profile governed by diffusion mechanisms, and no cytotoxicity. Also, UA-G4K was characterized by principal components analysis (PCA)-processed FTIR spectroscopy, by NMR and elemental analyses, and by dynamic light scattering experiments (DLS). The water solubility of UA-G4K was found to be 1868-fold times higher than that of pristine UA, thus making its clinical application feasible.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4-16148 Genoa, Italy;
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6-16132 Genova, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4-16148 Genoa, Italy;
| |
Collapse
|
189
|
Park C, Lee JH, Jin G, Ngo HV, Park JB, Tran TTD, Tran PHL, Lee BJ. Release kinetics of hydroxypropyl methylcellulose governing drug release and hydrodynamic changes of matrix tablet. Curr Drug Deliv 2021; 19:520-533. [PMID: 34420504 DOI: 10.2174/1567201818666210820101549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hydrophilic hydroxypropyl methylcellulose (HPMC) matrix tablets are the standard role model of the oral controlled-release formulation. Nevertheless, the HPMC kinetics for the mechanistic understanding of drug release and hydrodynamic behaviors are rarely investigated. This study aims to investigate the release behaviors of both HPMC and paracetamol (model drug) from the hydrophilic matrix tablet. METHODS Two different viscosity grades of HPMC were used (Low viscosity: 6 cps, High viscosity: 4,000 cps). Three different ratios of drug/HPMC (H:38.08%, M:22.85%, and L:15.23% (w/w) of HPMC amounts in total weight) matrix tablets were prepared by wet granulation technique. The release profiles of the drug and HPMC in a matrix tablet were quantitatively analyzed by HPLC and 1H-nuclear magnetic resonance (NMR) spectroscopy. The hydrodynamic changes of HPMC were determined by the gravimetric behaviors such as swelling and erosion rates, gel layer thickness, front movement data,and distributive near-infrared (NIR) chemical imaging of HPMC in a matrix tablet during the dissolution process. RESULTS High viscosity HPMC tablets showed slower release of HPMC than the release rate of drug, suggesting that drug release preceded polymer release.Different hydration phenomenon was qualitatively identified and corresponded to the release profiles. The release behaviors of HPMC and drug in the tablet could be distinguished with the significant difference with fitted dissolution kinetics model (Low viscosity HPMC 6cps; Korsmeyer-Peppas model, High viscosity HPMC 4000cps; Hopfenberg model, Paracetamol; Weibull model) according to the weight of ingredients and types of HPMC. CONCLUSION The determination of HPMC polymer release correlating with drug release, hydrodynamic behavior, and NIR chemical imaging of HPMC can provide new insights into the drug release-modulating mechanism in the hydrophilic matrix system.
Collapse
Affiliation(s)
- Chulhun Park
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, Alberta. Canada
| | - Jong Hoon Lee
- College of Pharmacy, Ajou University, Suwon 16499. South Korea
| | - Gang Jin
- College of Pharmacy, Ajou University, Suwon 16499. South Korea
| | - Hai Van Ngo
- College of Pharmacy, Ajou University, Suwon 16499. South Korea
| | - Jun-Bom Park
- College of Pharmacy, Sahmyook University, Seoul 01795. South Korea
| | - Thao T D Tran
- Faculty of Pharmacy, Duy Tan University, Danang 550000. Vietnam
| | - Phuong H L Tran
- Deakin University, Geelong Australia, School of Medicine. Australia
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499. South Korea
| |
Collapse
|
190
|
Dabasinskaite L, Krugly E, Baniukaitiene O, Martuzevicius D, Ciuzas D, Jankauskaite L, Aukstikalne L, Usas A. The Effect of Ozone Treatment on the Physicochemical Properties and Biocompatibility of Electrospun Poly(ε)caprolactone Scaffolds. Pharmaceutics 2021; 13:1288. [PMID: 34452249 PMCID: PMC8400338 DOI: 10.3390/pharmaceutics13081288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/14/2021] [Indexed: 12/05/2022] Open
Abstract
Ozonation has been proved as a viable surface modification technique providing certain properties to the scaffolds that are essential in tissue engineering. However, the ozone (O3) treatment of PCL scaffolds in aqueous environments has not yet been presented. O3 treatment performed in aqueous environments is more effective compared with traditional, executed in ambient air treatment due to more abundant production of hydroxyl radicals (•OH) within the O3 reaction with water molecules. During interaction with •OH, the scaffold acquires functional groups which improve wettability properties and encapsulate growth factors. In this study, a poly(ε)caprolactone (PCL) scaffold was fabricated using solution electrospinning and was subsequently ozonated in a water reactor. The O3 treatment resulted in the expected occurrence of oxygen-containing functional groups, which improved scaffold wettability by almost 27% and enhanced cell proliferation for up to 14 days. The PCL scaffold was able to withhold 120 min of O3 treatment, maintaining fibrous morphology and mechanical properties.
Collapse
Affiliation(s)
- Lauryna Dabasinskaite
- Department of Environmental Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (E.K.); (D.M.); (D.C.)
| | - Edvinas Krugly
- Department of Environmental Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (E.K.); (D.M.); (D.C.)
| | - Odeta Baniukaitiene
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania;
| | - Dainius Martuzevicius
- Department of Environmental Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (E.K.); (D.M.); (D.C.)
| | - Darius Ciuzas
- Department of Environmental Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (E.K.); (D.M.); (D.C.)
| | - Lina Jankauskaite
- Faculty of Medicine, Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (L.J.); (L.A.); (A.U.)
| | - Lauryna Aukstikalne
- Faculty of Medicine, Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (L.J.); (L.A.); (A.U.)
| | - Arvydas Usas
- Faculty of Medicine, Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (L.J.); (L.A.); (A.U.)
| |
Collapse
|
191
|
Huang K, Yuan Y, Baojun X. A Critical Review on the Microencapsulation of Bioactive Compounds and Their Application. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1963978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kehao Huang
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
- Department Of Food Science And Agricultural Chemistry, McGill University, Quebec, Canada
| | - Yingzhi Yuan
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
- Department Of Biochemistry, University College London, London, UK
| | - Xu Baojun
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
| |
Collapse
|
192
|
Lin TF, Yeh SH. Thermosensitive Interfacial Migration of 5-FU in the Microenvironment of Pluronic Block Copolymers. Polymers (Basel) 2021; 13:polym13162705. [PMID: 34451244 PMCID: PMC8399250 DOI: 10.3390/polym13162705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/18/2023] Open
Abstract
Chemotherapy is one of the most important ways to treat cancer. At present, chemotherapy medicines are mainly administered by intravenous injection or oral administration. However, systemic medical care requires the dosage of high concentrations of drugs to defeat the malignant tumor growth. In recent years, the use of polymer composites for local and sustained drug release has become an important field of research to minimize side effects due to high-concentration chemotherapy drugs. Here, 19F-{1H} heteronuclear Overhauser enhancement spectroscopy (HOESY) was used to study the micellular environment of the F-containing chemotherapeutic drug 5-FU in Pluronic F127, Pluronic L121, and F127/L121 binary blending composites. The distribution of 5-FU in micelles is related to the PEO and PPO segment length of Pluronic polymers and the environmental temperature. The drug release tests further confirm that if 5-FU medicines were loaded in the PPO segment inside the micelles, the purpose of the prolonged drug release carrier is achieved.
Collapse
Affiliation(s)
- Tz-Feng Lin
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
- Master’s Program of Electrical and Communications Engineering, Feng Chia University, Taichung 407, Taiwan;
- Correspondence:
| | - Shih-Hsuan Yeh
- Master’s Program of Electrical and Communications Engineering, Feng Chia University, Taichung 407, Taiwan;
| |
Collapse
|
193
|
Ziemczonek P, Gosecka M, Gosecki M, Marcinkowska M, Janaszewska A, Klajnert-Maculewicz B. Star-Shaped Poly(furfuryl glycidyl ether)-Block-Poly(glyceryl glycerol ether) as an Efficient Agent for the Enhancement of Nifuratel Solubility and for the Formation of Injectable and Self-Healable Hydrogel Platforms for the Gynaecological Therapies. Int J Mol Sci 2021; 22:ijms22168386. [PMID: 34445090 PMCID: PMC8395068 DOI: 10.3390/ijms22168386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022] Open
Abstract
In this paper, we present novel well-defined unimolecular micelles constructed a on poly(furfuryl glycidyl ether) core and highly hydrophilic poly(glyceryl glycerol ether) shell, PFGE-b-PGGE. The copolymer was synthesized via anionic ring-opening polymerization of furfuryl glycidyl ether and (1,2-isopropylidene glyceryl) glycidyl ether, respectively. MTT assay revealed that the copolymer is non-cytotoxic against human cervical cancer endothelial (HeLa) cells. The copolymer thanks to furan moieties in its core is capable of encapsulation of nifuratel, a hydrophobic nitrofuran derivative, which is a drug applied in the gynaecology therapies that shows a broad antimicroorganism spectrum. The study shows high loading capacity of the copolymer, i.e., 146 mg of nifuratel per 1 g of copolymer. The load unimolecular micelles were characterized using DLS and TEM microscopy and compared with the reference glyceryl glycerol ether homopolymer sample. The presence of numerous 1,2-diol moieties in the shell of PFGE-b-PGG macromolecules enabled the formation of reversible cross-links with 2-acrylamidephenylboronic acid-based polyacrylamide. The obtained hydrogels were both injectable and self-healable, which was confirmed with a rheological study.
Collapse
Affiliation(s)
- Piotr Ziemczonek
- Centre of Molecular and Macromolecular Studies, Polymer Division, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (P.Z.); (M.G.)
| | - Monika Gosecka
- Centre of Molecular and Macromolecular Studies, Polymer Division, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (P.Z.); (M.G.)
- Correspondence:
| | - Mateusz Gosecki
- Centre of Molecular and Macromolecular Studies, Polymer Division, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (P.Z.); (M.G.)
| | - Monika Marcinkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (M.M.); (A.J.); (B.K.-M.)
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (M.M.); (A.J.); (B.K.-M.)
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (M.M.); (A.J.); (B.K.-M.)
| |
Collapse
|
194
|
Synthesis and Characterization of Gefitinib and Paclitaxel Mono and Dual Drug-Loaded Blood Cockle Shells ( Anadara granosa)-Derived Aragonite CaCO 3 Nanoparticles. NANOMATERIALS 2021; 11:nano11081988. [PMID: 34443820 PMCID: PMC8398682 DOI: 10.3390/nano11081988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022]
Abstract
Calcium carbonate has slowly paved its way into the field of nanomaterial research due to its inherent properties: biocompatibility, pH-sensitivity, and slow biodegradability. In our efforts to synthesize calcium carbonate nanoparticles (CSCaCO3NP) from blood cockle shells (Anadara granosa), we developed a simple method to synthesize CSCaCO3NP, and loaded them with gefitinib (GEF) and paclitaxel (PTXL) to produce mono drug-loaded GEF-CSCaCO3NP, PTXL-CSCaCO3NP, and dual drug-loaded GEF-PTXL-CSCaCO3NP without usage of toxic chemicals. Fourier-transform infrared spectroscopy (FTIR) results reveal that the drugs are bound to CSCaCO3NP. Scanning electron microscopy studies reveal that the CSCaCO3NP, GEF-CSCaCO3NP, PTXL-CSCaCO3NP, and GEF-PTXL-CSCaCO3NP are almost spherical nanoparticles, with a diameter of 63.9 ± 22.3, 83.9 ± 28.2, 78.2 ± 26.4, and 87.2 ± 26.7 (nm), respectively. Dynamic light scattering (DLS) and N2 adsorption-desorption experiments revealed that the synthesized nanoparticles are negatively charged and mesoporous, with surface areas ranging from ~8 to 10 (m2/g). Powder X-ray diffraction (PXRD) confirms that the synthesized nanoparticles are aragonite. The CSCaCO3NP show excellent alkalinization property in plasma simulating conditions and greater solubility in a moderately acidic pH medium. The release of drugs from the nanoparticles showed zero order kinetics with a slow and sustained release. Therefore, the physico-chemical characteristics and in vitro findings suggest that the drug loaded CSCaCO3NP represent a promising drug delivery system to deliver GEF and PTXL against breast cancer.
Collapse
|
195
|
Lemos TS, de Souza JF, Fajardo AR. Magnetic microspheres based on pectin coated by chitosan towards smart drug release. Carbohydr Polym 2021; 265:118013. [DOI: 10.1016/j.carbpol.2021.118013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/27/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022]
|
196
|
Muraca GS, Soler-Arango J, Castro GR, Islan GA, Brelles-Mariño G. Improving ciprofloxacin antimicrobial activity through lipid nanoencapsulation or non-thermal plasma on Pseudomonas aeruginosa biofilms. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
197
|
Zuccari G, Alfei S, Zorzoli A, Marimpietri D, Turrini F, Baldassari S, Marchitto L, Caviglioli G. Increased Water-Solubility and Maintained Antioxidant Power of Resveratrol by Its Encapsulation in Vitamin E TPGS Micelles: A Potential Nutritional Supplement for Chronic Liver Disease. Pharmaceutics 2021; 13:pharmaceutics13081128. [PMID: 34452090 PMCID: PMC8400607 DOI: 10.3390/pharmaceutics13081128] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Children affected by chronic liver disease exhibit impaired neurocognitive development and growth due to the low absorption and digestion of nutrients. Furthermore, malnutrition is an adverse prognostic factor in liver transplantation as it is associated with an increase in morbidity and mortality. D-α-tocopheryl-polyethylene-glycol-succinate (TPGS) is currently administered per os as a vitamin E source to improve children's survival and well-being; however, TPGS alone does not reverse spinocerebellar degeneration and lipid peroxidation. To potentiate the effects of TPGS, we loaded micelles with resveratrol (RES), a natural polyphenol, with antioxidant and antiinflammatory activities, which has demonstrated protective action in the liver. Firstly, we investigated the suitability of TPGS to encapsulate RES in micelles by means of a phase-solubility study, then RES-TPGS formulations were prepared via solvent casting and solvent diffusion evaporation methods. RES-TPGS colloidal dispersions showed small mean diameters (12 nm), low polydispersity, and quite neutral Zeta potentials. The formulations showed a sustained drug release and a good drug loading capacity, further confirmed by infrared spectroscopy and differential scanning calorimetry. RES-TPGSs exhibited unaltered antioxidant activity compared to pristine RES via the DPPH assay and a significant reduction in toxicity compared to empty TPGS on HaCaT cells. Thus, RES-TPGS micelles may overcome the challenges of current liver disease therapy by providing more protective effects thanks to the antioxidant activity of RES and by reducing the surfactant toxicity on normal cells.
Collapse
Affiliation(s)
- Guendalina Zuccari
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4-I, 16148 Genova, Italy; (S.A.); (F.T.); (S.B.); (G.C.)
- Correspondence:
| | - Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4-I, 16148 Genova, Italy; (S.A.); (F.T.); (S.B.); (G.C.)
| | - Alessia Zorzoli
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (A.Z.); (D.M.)
| | - Danilo Marimpietri
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (A.Z.); (D.M.)
| | - Federica Turrini
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4-I, 16148 Genova, Italy; (S.A.); (F.T.); (S.B.); (G.C.)
| | - Sara Baldassari
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4-I, 16148 Genova, Italy; (S.A.); (F.T.); (S.B.); (G.C.)
| | - Leonardo Marchitto
- Department of Sciences for the Quality of Life, University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy;
| | - Gabriele Caviglioli
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4-I, 16148 Genova, Italy; (S.A.); (F.T.); (S.B.); (G.C.)
| |
Collapse
|
198
|
Chen IC, Su CY, Nien WH, Huang TT, Huang CH, Lu YC, Chen YJ, Huang GC, Fang HW. Influence of Antibiotic-Loaded Acrylic Bone Cement Composition on Drug Release Behavior and Mechanism. Polymers (Basel) 2021; 13:2240. [PMID: 34300997 PMCID: PMC8309450 DOI: 10.3390/polym13142240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Periprosthetic joint infection (PJI) is a devastating complication after total joint replacement with considerable morbidity and large economic burdens. Antibiotic-Loaded Bone Cement (ALBC) has been developed as a valuable tool for local administration and is becoming one of the most effective methods for the prevention and treatment of orthopedic infections. Controlling antibiotic release from ALBC is critical to achieve effective infection control, however, the antibiotic elution rates are generally low, and the mechanisms are poorly understood. Thus, the present study aims to investigate the effects of the basic acrylic bone cement components, including liquid/powder (monomer-to-polymer) ratios, radiopacifier, initiator, and doses of antibiotics on the porosity, antibiotic elution rates and mechanical properties of polymethylmethacrylate (PMMA) based ALBC. The obtained results from the in vitro studies suggested that a reduction in the liquid/powder ratio and an increase in the radiopacifier ratio and gentamicin doses led to increased porosity and release of antibiotic, while the initiator ratio exerted no effect on elution rates. In conclusion, we hope that by varying the composition of ALBC, we could considerably enhance the antibiotic elution rates by increasing porosity, while maintaining an adequate mechanical strength of the bone cements. This finding might provide insights into controlling antibiotic release from ALBC to achieve effective infection control after total joint replacement surgery.
Collapse
Affiliation(s)
- I-Cheng Chen
- Accelerator for Happiness and Health Industry, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan;
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan; (C.-Y.S.); (W.-H.N.); (T.-T.H.)
| | - Chen-Ying Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan; (C.-Y.S.); (W.-H.N.); (T.-T.H.)
| | - Wei-Han Nien
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan; (C.-Y.S.); (W.-H.N.); (T.-T.H.)
| | - Tzu-Tien Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan; (C.-Y.S.); (W.-H.N.); (T.-T.H.)
| | - Chang-Hung Huang
- Department of Medical Research, Biomechanics Research Laboratory, Mackay Memorial Hospital, New Taipei City 251020, Taiwan; (C.-H.H.); (Y.-C.L.)
- Institute of Biomedical Engineering, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yung-Chang Lu
- Department of Medical Research, Biomechanics Research Laboratory, Mackay Memorial Hospital, New Taipei City 251020, Taiwan; (C.-H.H.); (Y.-C.L.)
- Department of Orthopaedic Surgery, Mackay Memorial Hospital, Taipei 10491, Taiwan
| | - Yu-Jen Chen
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei 10491, Taiwan;
| | - Gwo-Che Huang
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei 10491, Taiwan;
| | - Hsu-Wei Fang
- Accelerator for Happiness and Health Industry, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan;
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan; (C.-Y.S.); (W.-H.N.); (T.-T.H.)
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan
| |
Collapse
|
199
|
Man VH, Li MS, Derreumaux P, Wang J, Nguyen PH. Molecular Mechanism of Ultrasound-Induced Structural Defects in Liposomes: A Nonequilibrium Molecular Dynamics Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7945-7954. [PMID: 34161100 DOI: 10.1021/acs.langmuir.1c00555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The use of ultrasound in combination with liposomes is a promising approach to improve drug delivery. To achieve an optimal drug release rate, it is important to understand how ultrasound induces pathways on the liposome surface where drugs can be released from the liposome. To this end, we carry out large-scale ultrasound-induced molecular dynamics simulations for three single lipid component liposomes formed from the commonly used phospholipids: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dipalmitoylphosphatidylcholine (DPPC), or phosphatidylcholine (POPC). The results show that ultrasound induces the detachment of two leaflets of the DOPC surface, suggesting that the drug release pathway may be through the low lipid packing areas on the stretched surface. In contrast, ultrasound induces pore formation on the surface of DPPC and DOPC, where drugs could escape from the liposomes. While the leaflet detachment and transient pore formation are the mechanisms of DOPC and DPPC, respectively, in both liquid-ordered and liquid-disordered phases, the leaflet detachment mechanism is switched to the transient pore formation mechanism on going from the liquid-ordered phase to the liquid-disordered phase in the POPC liposome. By adding 30% mol cholesterol, the leaflet detachment mechanism is observed in all liposomes. We found that the molecular origin that determines a mechanism is the competition between the intraleaflet and interleaflet interacting energy of lipids. The connection to experimental and theoretical modeling is discussed in some detail.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Philippe Derreumaux
- CNRS, Université de Paris, UPR9080, Laboratoire de Biochimie Théorique, Paris, France, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Junmei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Phuong H Nguyen
- CNRS, Université de Paris, UPR9080, Laboratoire de Biochimie Théorique, Paris, France, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| |
Collapse
|
200
|
Viscusi G, Lamberti E, Vittoria V, Gorrasi G. Coaxial electrospun membranes of poly(ε‐caprolactone)/poly(lactic acid) with reverse
core‐shell
structures loaded with curcumin as tunable drug delivery systems. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gianluca Viscusi
- Department of Industrial Engineering University of Salerno Fisciano Italy
| | - Elena Lamberti
- Department of Industrial Engineering University of Salerno Fisciano Italy
| | - Vittoria Vittoria
- Department of Industrial Engineering University of Salerno Fisciano Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering University of Salerno Fisciano Italy
| |
Collapse
|