151
|
Rakib A, Sami SA, Mimi NJ, Chowdhury MM, Eva TA, Nainu F, Paul A, Shahriar A, Tareq AM, Emon NU, Chakraborty S, Shil S, Mily SJ, Ben Hadda T, Almalki FA, Emran TB. Immunoinformatics-guided design of an epitope-based vaccine against severe acute respiratory syndrome coronavirus 2 spike glycoprotein. Comput Biol Med 2020; 124:103967. [PMID: 32828069 PMCID: PMC7423576 DOI: 10.1016/j.compbiomed.2020.103967] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/08/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023]
Abstract
AIMS With a large number of fatalities, coronavirus disease-2019 (COVID-19) has greatly affected human health worldwide. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes COVID-19. The World Health Organization has declared a global pandemic of this contagious disease. Researchers across the world are collaborating in a quest for remedies to combat this deadly virus. It has recently been demonstrated that the spike glycoprotein (SGP) of SARS-CoV-2 is the mediator by which the virus enters host cells. MAIN METHODS Our group comprehensibly analyzed the SGP of SARS-CoV-2 through multiple sequence analysis and a phylogenetic analysis. We predicted the strongest immunogenic epitopes of the SGP for both B cells and T cells. KEY FINDINGS We focused on predicting peptides that would bind major histocompatibility complex class I. Two optimal epitopes were identified, WTAGAAAYY and GAAAYYVGY. They interact with the HLA-B*15:01 allele, which was further validated by molecular docking simulation. This study also found that the selected epitopes are able to be recognized in a large percentage of the world's population. Furthermore, we predicted CD4+ T-cell epitopes and B-cell epitopes. SIGNIFICANCE Our study provides a strong basis for designing vaccine candidates against SARS-CoV-2. However, laboratory work is required to validate our theoretical results, which would lay the foundation for the appropriate vaccine manufacturing and testing processes.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Betacoronavirus/genetics
- Betacoronavirus/immunology
- COVID-19
- COVID-19 Vaccines
- Computational Biology
- Coronavirus Infections/epidemiology
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Drug Design
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- HLA-B15 Antigen/chemistry
- HLA-B15 Antigen/metabolism
- HLA-DRB1 Chains/chemistry
- HLA-DRB1 Chains/metabolism
- Humans
- Molecular Docking Simulation
- Pandemics/prevention & control
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/immunology
- Viral Vaccines/chemistry
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Ahmed Rakib
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Nusrat Jahan Mimi
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Md Mustafiz Chowdhury
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Taslima Akter Eva
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Kota Makassar, Sulawesi Selatan, 90245, Indonesia
| | - Arkajyoti Paul
- Drug Discovery, GUSTO A Research Group, Chittagong, 4203, Bangladesh; Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Asif Shahriar
- Department of Microbiology, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka, 1217, Bangladesh
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Sajal Chakraborty
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Sagar Shil
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Sabrina Jahan Mily
- Department of Gynaecology and Obstetrics, Banshkhali Upazila Health Complex, Jaldi Union, Chittagong, 4390, Bangladesh
| | - Taibi Ben Hadda
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, University Mohammed the First, BP 524, 60000, Oujda, Morocco; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, 21955, Saudi Arabia.
| | - Faisal A Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, 21955, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| |
Collapse
|
152
|
Pandey SC, Pande V, Sati D, Upreti S, Samant M. Vaccination strategies to combat novel corona virus SARS-CoV-2. Life Sci 2020; 256:117956. [PMID: 32535078 PMCID: PMC7289747 DOI: 10.1016/j.lfs.2020.117956] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/30/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023]
Abstract
The 2019-novel coronavirus disease (COVID-19) is caused by SARS-CoV-2 is transmitted from human to human has recently reported in China. Now COVID-19 has been spread all over the world and declared epidemics by WHO. It has caused a Public Health Emergency of International Concern. The elderly and people with underlying diseases are susceptible to infection and prone to serious outcomes, which may be associated with acute respiratory distress syndrome (ARDS) and cytokine storm. Due to the rapid increase of SARS-CoV-2 infections and unavailability of antiviral therapeutic agents, developing an effective SAR-CoV-2 vaccine is urgently required. SARS-CoV-2 which is genetically similar to SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) is an enveloped, single and positive-stranded RNA virus with a genome comprising 29,891 nucleotides, which encode the 12 putative open reading frames responsible for the synthesis of viral structural and nonstructural proteins which are very similar to SARS-CoV and MERS-CoV proteins. In this review we have summarized various vaccine candidates i.e., nucleotide, subunit and vector based as well as attenuated and inactivated forms, which have already been demonstrated their prophylactic efficacy against MERS-CoV and SARS-CoV, so these candidates could be used as a potential tool for the development of a safe and effective vaccine against SARS-CoV-2.
Collapse
Affiliation(s)
- Satish Chandra Pandey
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, SSJ Campus, Almora, Uttarakhand, India; Department of Biotechnology, Kumaun University, Bhimtal Campus, Nainital, Uttarakhand, India
| | - Veni Pande
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, SSJ Campus, Almora, Uttarakhand, India; Department of Biotechnology, Kumaun University, Bhimtal Campus, Nainital, Uttarakhand, India
| | - Diksha Sati
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, SSJ Campus, Almora, Uttarakhand, India
| | - Shobha Upreti
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, SSJ Campus, Almora, Uttarakhand, India
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, SSJ Campus, Almora, Uttarakhand, India.
| |
Collapse
|
153
|
Hoque MN, Chaudhury A, Akanda MAM, Hossain MA, Islam MT. Genomic diversity and evolution, diagnosis, prevention, and therapeutics of the pandemic COVID-19 disease. PeerJ 2020; 8:e9689. [PMID: 33005486 PMCID: PMC7510477 DOI: 10.7717/peerj.9689] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/19/2020] [Indexed: 12/14/2022] Open
Abstract
The coronavirus disease 19 (COVID-19) is a highly transmittable and pathogenic viral infection caused by a novel evolutionarily divergent RNA virus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus first emerged in Wuhan, China in December 2019, and subsequently spreaded around the world. Genomic analyses revealed that this zoonotic virus may be evolved naturally but not a purposefully manipulated laboratory construct. However, currently available data are not sufficient to precisely conclude the origin of this fearsome virus. Comprehensive annotations of the whole-genomes revealed hundreds of nucleotides, and amino acids mutations, substitutions and/or deletions at different positions of the ever changing SARS-CoV-2 genome. The spike (S) glycoprotein of SARS-CoV-2 possesses a functional polybasic (furin) cleavage site at the S1-S2 boundary through the insertion of 12 nucleotides. It leads to the predicted acquisition of 3-O-linked glycan around the cleavage site. Although real-time RT-PCR methods targeting specific gene(s) have widely been used to diagnose the COVID-19 patients, however, recently developed more convenient, cheap, rapid, and specific diagnostic tools targeting antigens or CRISPR-Cas-mediated method or a newly developed plug and play method should be available for the resource-poor developing countries. A large number of candidate drugs, vaccines and therapies have shown great promise in early trials, however, these candidates of preventive or therapeutic agents have to pass a long path of trials before being released for the practical application against COVID-19. This review updates current knowledge on origin, genomic evolution, development of the diagnostic tools, and the preventive or therapeutic remedies of the COVID-19. We also discussed the future scopes for research, effective management, and surveillance of the newly emerged COVID-19 disease.
Collapse
Affiliation(s)
- M. Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | | | - Md Abdul Mannan Akanda
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - M. Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
- Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| |
Collapse
|
154
|
Abd Ellah NH, Gad SF, Muhammad K, E Batiha G, Hetta HF. Nanomedicine as a promising approach for diagnosis, treatment and prophylaxis against COVID-19. Nanomedicine (Lond) 2020; 15:2085-2102. [PMID: 32723142 PMCID: PMC7388682 DOI: 10.2217/nnm-2020-0247] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
The COVID-19 pandemic caused by the newly emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) puts the world in an unprecedented crisis, leaving behind huge human losses and deep socioeconomic damages. Due to the lack of specific treatment against SARS-CoV-2, effective vaccines and antiviral agents are urgently needed to properly restrain the COVID-19 pandemic. Repositioned drugs such as remdesivir have revealed a promising clinical efficacy against COVID-19. Interestingly, nanomedicine as a promising therapeutic approach could effectively help win the battle between coronaviruses (CoVs) and host cells. This review discusses the potential therapeutic approaches, in addition to the contribution of nanomedicine against CoVs in the fields of vaccination, diagnosis and therapy.
Collapse
Affiliation(s)
- Noura H Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Sheryhan F Gad
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
- Department of Industrial & Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gaber E Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture & Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
- Department of Pharmacology & Therapeutics, Faculty of Veterinary Medicines, Damanhour University, Damanhour, 22511, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt
- Department of Internal Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0595, USA
| |
Collapse
|
155
|
Ullrich S, Nitsche C. The SARS-CoV-2 main protease as drug target. Bioorg Med Chem Lett 2020; 30:127377. [PMID: 32738988 PMCID: PMC7331567 DOI: 10.1016/j.bmcl.2020.127377] [Citation(s) in RCA: 490] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023]
Abstract
The unprecedented pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is threatening global health. The virus emerged in late 2019 and can cause a severe disease associated with significant mortality. Several vaccine development and drug discovery campaigns are underway. The SARS-CoV-2 main protease is considered a promising drug target, as it is dissimilar to human proteases. Sequence and structure of the main protease are closely related to those from other betacoronaviruses, facilitating drug discovery attempts based on previous lead compounds. Covalently binding peptidomimetics and small molecules are investigated. Various compounds show antiviral activity in infected human cells.
Collapse
Affiliation(s)
- Sven Ullrich
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
156
|
Zhou F, Li J, Lu M, Ma L, Pan Y, Liu X, Zhu X, Hu C, Wu S, Chen L, Wang Y, Wei Y, Li Y, Xu H, Wang X, Cai L. Tracing asymptomatic SARS-CoV-2 carriers among 3674 hospital staff:a cross-sectional survey. EClinicalMedicine 2020; 26:100510. [PMID: 32954232 PMCID: PMC7490283 DOI: 10.1016/j.eclinm.2020.100510] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Asymptomatic carriers were positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) without developing symptoms, which might be a potential source of infection outbreak. Here, we aim to clarify the epidemiologic and influencing factors of asymptomatic carriers in the general population. METHODS In our hospital, all hospital staff have received throat swab RT-PCR test, plasma COVID-19 IgM/IgG antibodies test and chest CT examination. We analyzed the correlation between infection rates and gender, age, job position, work place and COVID-19 knowledge training of the staff. After that, all asymptomatic staff were re-examined weekly for 3 weeks. FINDINGS A total of 3764 hospital staff were included in this single-center cross-sectional study. Among them, 126 hospital staff had abnormal findings, and the proportion of asymptomatic infection accounted for 0.76% (28/3674). There were 26 staff with IgM+, 73 with IgG+, and 40 with ground glass shadow of chest CT. Of all staff with abnormal findings, the older they are, the more likely they are to be the staff with abnormal results, regardless of their gender. Of 3674 hospital staff, the positive rate of labor staff is obviously higher than that of health care workers (HCWs) and administrative staff (P<0.05). In the course of participating in the treatment of COVID-19, there was no statistically significant difference in positive rates between high-risk departments and low-risk departments (P>0.05). The positive rate of HCWs who participated in the COVID-19 knowledge training was lower than those did not participate in early training (P <0.01). Importantly, it was found that there was no statistical difference between the titers of IgM antibody of asymptomatic infections and confirmed patients with COVID-19 in recovery period (P>0.05). During 3 weeks follow-up, all asymptomatic patients did not present the development of clinical symptoms or radiographic abnormalities after active intervention in isolation point. INTERPRETATION To ensure the safety of resumption of work, institutions should conduct COVID-19 prevention training for staff and screening for asymptomatic patients, and take quarantine measures as soon as possible in areas with high density of population. FUNDING The Key Project for Anti-2019 novel Coronavirus Pneumonia from the Ministry of Science and Technology, China; Wuhan Emergency Technology Project of COVID-19 epidemic, China.
Collapse
Affiliation(s)
- Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Mengxin Lu
- Department of Urology, Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Xiaobin Zhu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Chao Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Sanyun Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Liangjun Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Yongchang Wei
- Department of Radiation Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Haibo Xu
- Department of Radiology, Zhongnan hospital of Wuhan university, Wuhan 430071, PR China
| | - Xinghuan Wang
- Department of Urology, Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| |
Collapse
|
157
|
Sanclemente-Alaman I, Moreno-Jiménez L, Benito-Martín MS, Canales-Aguirre A, Matías-Guiu JA, Matías-Guiu J, Gómez-Pinedo U. Experimental Models for the Study of Central Nervous System Infection by SARS-CoV-2. Front Immunol 2020; 11:2163. [PMID: 32983181 PMCID: PMC7485091 DOI: 10.3389/fimmu.2020.02163] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The response to the SARS-CoV-2 coronavirus epidemic requires increased research efforts to expand our knowledge of the disease. Questions related to infection rates and mechanisms, the possibility of reinfection, and potential therapeutic approaches require us not only to use the experimental models previously employed for the SARS-CoV and MERS-CoV coronaviruses but also to generate new models to respond to urgent questions. DEVELOPMENT We reviewed the different experimental models used in the study of central nervous system (CNS) involvement in COVID-19 both in different cell lines that have enabled identification of the virus' action mechanisms and in animal models (mice, rats, hamsters, ferrets, and primates) inoculated with the virus. Specifically, we reviewed models used to assess the presence and effects of SARS-CoV-2 on the CNS, including neural cell lines, animal models such as mouse hepatitis virus CoV (especially the 59 strain), and the use of brain organoids. CONCLUSION Given the clear need to increase our understanding of SARS-CoV-2, as well as its potential effects on the CNS, we must endeavor to obtain new information with cellular or animal models, with an appropriate resemblance between models and human patients.
Collapse
Affiliation(s)
- Inmaculada Sanclemente-Alaman
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - Lidia Moreno-Jiménez
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - María Soledad Benito-Martín
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - Alejandro Canales-Aguirre
- Preclinical Evaluation Unit, Medical and Pharmaceutical Biotechnology, CIATEJ-CONACYT, Guadalajara, Mexico
| | - Jordi A. Matías-Guiu
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - Jorge Matías-Guiu
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| | - Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
158
|
Zhu C, Sun B, Zhang X, Zhang B. Research Progress of Genetic Structure, Pathogenic Mechanism, Clinical Characteristics, and Potential Treatments of Coronavirus Disease 2019. Front Pharmacol 2020; 11:1327. [PMID: 32973534 PMCID: PMC7482523 DOI: 10.3389/fphar.2020.01327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a global pandemic infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), and currently affects more than 8 million people worldwide. SARS-CoV-2 mainly invades the cells by binding to the angiotensin converting enzyme 2 (ACE2) receptor, leading to the injury of respiratory system, cardiovascular system, digestive system, and urinary system, and even secondary to acute respiratory distress syndrome (ARDS) and systemic inflammatory response, resulting in multiple organ failure. In this review, mainly focusing on biogenesis and pathogenic mechanisms, we describe the recent progress in our understanding of SARS-CoV-2 and then summarize and discuss its crucial clinical characteristics and potential mechanism in different systems. Additionally, we discuss the potential treatments for COVID-19, aiming at a better understanding of the pathogenesis of SARS-CoV-2 and providing new ideas for the personalized treatment of COVID-19.
Collapse
Affiliation(s)
- Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaochuan Zhang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bing Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
159
|
Saha RP, Sharma AR, Singh MK, Samanta S, Bhakta S, Mandal S, Bhattacharya M, Lee SS, Chakraborty C. Repurposing Drugs, Ongoing Vaccine, and New Therapeutic Development Initiatives Against COVID-19. Front Pharmacol 2020; 11:1258. [PMID: 32973505 PMCID: PMC7466451 DOI: 10.3389/fphar.2020.01258] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
As the COVID-19 is still growing throughout the globe, a thorough investigation into the specific immunopathology of SARS-CoV-2, its interaction with the host immune system and pathogen evasion mechanism may provide a clear picture of how the pathogen can breach the host immune defenses in elderly patients and patients with comorbid conditions. Such studies will also reveal the underlying mechanism of how children and young patients can withstand the disease better. The study of the immune defense mechanisms and the prolonged immune memory from patients population with convalescent plasma may help in designing a suitable vaccine candidate not only for the current outbreak but also for similar outbreaks in the future. The vital drug candidates, which are being tested as potential vaccines or therapeutics against COVID-19, include live attenuated vaccine, inactivated or killed vaccine, subunit vaccine, antibodies, interferon treatment, repurposing existing drugs, and nucleic acid-based vaccines. Several organizations around the world have fast-tracked the development of a COVID-19 vaccine, and some drugs already went to phase III of clinical trials. Hence, here, we have tried to take a quick glimpse of the development stages of vaccines or therapeutic approaches to treat this deadly disease.
Collapse
Affiliation(s)
- Rudra P. Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | - Manoj K. Singh
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Saikat Samanta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Swarnav Bhakta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Snehasish Mandal
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| |
Collapse
|
160
|
Chen JM. SARS-CoV-2 replicating in nonprimate mammalian cells probably have critical advantages for COVID-19 vaccines due to anti-Gal antibodies: A minireview and proposals. J Med Virol 2020; 93:351-356. [PMID: 32681650 PMCID: PMC7404575 DOI: 10.1002/jmv.26312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022]
Abstract
Glycoproteins of enveloped viruses replicating in nonprimate mammalian cells carry α‐1,3‐galactose (α‐Gal) glycans, and can bind to anti‐Gal antibodies which are abundant in humans. The antibodies have protected humans and their ancestors for millions of years, because they inhibit replication of many kinds of microbes carrying αGal glycans and aid complements and macrophages to destroy them. Therefore, severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) replicating in nonprimate mammalian cells (eg, PK‐15 cells) carry αGal glycans and could be employed as a live vaccine for corona virus 2019 (COVID‐19). The live vaccine safety could be further enhanced through intramuscular inoculation to bypass the fragile lungs, like the live unattenuated adenovirus vaccine safely used in US recruits for decades. Moreover, the immune complexes of SARS‐CoV‐2 and anti‐Gal antibodies could enhance the efficacy of COVID‐19 vaccines, live or inactivated, carrying α‐Gal glycans. Experiments are imperatively desired to examine these novel vaccine strategies which probably have the critical advantages for defeating the pandemic of COVID‐19 and preventing other viral infectious diseases. Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) replicating in nonprimate mammalian cells carries α‐1,3‐galactose (α‐Gal) glycans which can bind to anti‐Gal antibodies abundant in humans. Anti‐Gal antibodies inhibit replication of various α‐Gal‐carrying pathogens and aid complements and macrophages to destroy them. α‐Gal‐carrying SARS‐CoV‐2 could be used as a live vaccine for corona virus 2019 (COVID‐19). The live vaccine safety could be enhanced through intramuscular inoculation to bypass the fragile lungs. Live and inactivated COVID‐19 vaccines could be more effective if produced using PK‐15 rather than Vero cells.
Collapse
Affiliation(s)
- Ji-Ming Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China.,Qingdao Six-Eight Nearby Sci-Tech Company, Qingdao, China
| |
Collapse
|
161
|
Nuche J, Segura de la Cal T, Jiménez López Guarch C, López-Medrano F, Delgado CPO, Ynsaurriaga FA, Delgado JF, Ibáñez B, Oliver E, Subías PE. Effect of Coronavirus Disease 2019 in Pulmonary Circulation. The Particular Scenario of Precapillary Pulmonary Hypertension. Diagnostics (Basel) 2020; 10:E548. [PMID: 32752129 PMCID: PMC7459745 DOI: 10.3390/diagnostics10080548] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
The Coronavirus Disease of 2019 (COVID-19) has supposed a global health emergency affecting millions of people, with particular severity in the elderly and patients with previous comorbidities, especially those with cardiovascular disease. Patients with pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) could represent an especially vulnerable population because of the high mortality rates reported for respiratory infections. However, the number of COVID-19 cases reported among PAH and CTEPH patients is surprisingly low. Furthermore, the clinical picture that has been described in these patients is far from the severity that experts would expect. Endothelial dysfunction is a common feature between patients with PAH/CTEPH and COVID-19, leading to ventilation/perfusion mismatch, vasoconstriction, thrombosis and inflammation. In this picture, the angiotensin-converting enzyme 2 plays an essential role, being directly involved in the pathophysiology of both clinical entities. Some of these common characteristics could explain the good adaptation of PAH and CTEPH patients to COVID-19, who could also have obtained a benefit from the disease's specific treatments (anticoagulant and pulmonary vasodilators), probably due to its protective effect on the endothelium. Additionally, these common features could also lead to PAH/CTEPH as a potential sequelae of COVID-19. Throughout this comprehensive review, we describe the similarities and differences between both conditions and the possible pathophysiological and therapeutic-based mechanisms leading to the low incidence and severity of COVID-19 reported in PAH/CTEPH patients to date. Nevertheless, international registries should look carefully into this population for better understanding and management.
Collapse
Affiliation(s)
- Jorge Nuche
- Centro de Investigaciones Biomédicas En Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (C.J.L.G.); (F.A.Y.); (J.F.D.); (B.I.)
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28041 Madrid, Spain; (T.S.d.l.C.); (C.P.-O.D.)
- Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Teresa Segura de la Cal
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28041 Madrid, Spain; (T.S.d.l.C.); (C.P.-O.D.)
| | - Carmen Jiménez López Guarch
- Centro de Investigaciones Biomédicas En Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (C.J.L.G.); (F.A.Y.); (J.F.D.); (B.I.)
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28041 Madrid, Spain; (T.S.d.l.C.); (C.P.-O.D.)
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Francisco López-Medrano
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Department of Infectious Diseases, Hospital Universitario 12 de Octubre, Instituto de Investigacioón Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Carmen Pérez-Olivares Delgado
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28041 Madrid, Spain; (T.S.d.l.C.); (C.P.-O.D.)
| | - Fernando Arribas Ynsaurriaga
- Centro de Investigaciones Biomédicas En Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (C.J.L.G.); (F.A.Y.); (J.F.D.); (B.I.)
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28041 Madrid, Spain; (T.S.d.l.C.); (C.P.-O.D.)
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Juan F. Delgado
- Centro de Investigaciones Biomédicas En Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (C.J.L.G.); (F.A.Y.); (J.F.D.); (B.I.)
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28041 Madrid, Spain; (T.S.d.l.C.); (C.P.-O.D.)
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Borja Ibáñez
- Centro de Investigaciones Biomédicas En Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (C.J.L.G.); (F.A.Y.); (J.F.D.); (B.I.)
- Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
- IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Eduardo Oliver
- Centro de Investigaciones Biomédicas En Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (C.J.L.G.); (F.A.Y.); (J.F.D.); (B.I.)
- Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Pilar Escribano Subías
- Centro de Investigaciones Biomédicas En Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (C.J.L.G.); (F.A.Y.); (J.F.D.); (B.I.)
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28041 Madrid, Spain; (T.S.d.l.C.); (C.P.-O.D.)
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| |
Collapse
|
162
|
Speiser DE, Bachmann MF. COVID-19: Mechanisms of Vaccination and Immunity. Vaccines (Basel) 2020; 8:E404. [PMID: 32707833 PMCID: PMC7564472 DOI: 10.3390/vaccines8030404] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023] Open
Abstract
Vaccines are needed to protect from SARS-CoV-2, the virus causing COVID-19. Vaccines that induce large quantities of high affinity virus-neutralizing antibodies may optimally prevent infection and avoid unfavorable effects. Vaccination trials require precise clinical management, complemented with detailed evaluation of safety and immune responses. Here, we review the pros and cons of available vaccine platforms and options to accelerate vaccine development towards the safe immunization of the world's population against SARS-CoV-2. Favorable vaccines, used in well-designed vaccination strategies, may be critical for limiting harm and promoting trust and a long-term return to normal public life and economy.
Collapse
Affiliation(s)
- Daniel E. Speiser
- Department of Oncology, University Hospital and University of Lausanne, 1066 Lausanne, Switzerland
| | - Martin F. Bachmann
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, China
- Department of Rheumatology, Immunology and Allergology, Inselspital, University of Bern, 3010 Bern, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
163
|
Frederiksen LSF, Zhang Y, Foged C, Thakur A. The Long Road Toward COVID-19 Herd Immunity: Vaccine Platform Technologies and Mass Immunization Strategies. Front Immunol 2020; 11:1817. [PMID: 32793245 PMCID: PMC7385234 DOI: 10.3389/fimmu.2020.01817] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
There is an urgent need for effective countermeasures against the current emergence and accelerating expansion of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Induction of herd immunity by mass vaccination has been a very successful strategy for preventing the spread of many infectious diseases, hence protecting the most vulnerable population groups unable to develop immunity, for example individuals with immunodeficiencies or a weakened immune system due to underlying medical or debilitating conditions. Therefore, vaccination represents one of the most promising counter-pandemic measures to COVID-19. However, to date, no licensed vaccine exists, neither for SARS-CoV-2 nor for the closely related SARS-CoV or Middle East respiratory syndrome-CoV. In addition, a few vaccine candidates have only recently entered human clinical trials, which hampers the progress in tackling COVID-19 infection. Here, we discuss potential prophylactic interventions for SARS-CoV-2 with a focus on the challenges existing for vaccine development, and we review pre-clinical progress and ongoing human clinical trials of COVID-19 vaccine candidates. Although COVID-19 vaccine development is currently accelerated via so-called fast-track programs, vaccines may not be timely available to have an impact on the first wave of the ongoing COVID-19 pandemic. Nevertheless, COVID-19 vaccines will be essential in the future for reducing morbidity and mortality and inducing herd immunity, if SARS-CoV-2 becomes established in the population like for example influenza virus.
Collapse
Affiliation(s)
| | - Yibang Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
164
|
Cabello F, Sánchez F, Farré JM, Montejo AL. Consensus on Recommendations for Safe Sexual Activity during the COVID-19 Coronavirus Pandemic. J Clin Med 2020; 9:E2297. [PMID: 32698369 PMCID: PMC7408907 DOI: 10.3390/jcm9072297] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 01/17/2023] Open
Abstract
Sexual activity offers numerous advantages for physical and mental health but maintains inherent risks in a pandemic situation, such as the current one caused by SARS-CoV-2. A group of experts from the Spanish Association of Sexuality and Mental Health (AESexSAME) has reached a consensus on recommendations to maintain lower-risk sexual activity, depending on one's clinical and partner situations, based on the current knowledge of SARS-CoV-2. Different situations are included in the recommendations: a sexual partner passing quarantine without any symptoms, a sexual partner that has not passed quarantine, a sexual partner with some suspicious symptoms of COVID-19, a positive sexual partner with COVID-19, a pregnant sexual partner, a health professional partner in contact with COVID-19 patients, and people without a sexual partner. The main recommendations include returning to engaging in safe sex after quarantine is over (28 days based on the duration one can carry SARS-CoV-2, or 33 days for those who are >60 years old) and all parties are asymptomatic. In all other cases (for those under quarantine, those with some clinical symptoms, health professionals in contact with COVID-19 patients, and during pregnancy), abstaining from coital/oral/anal sex, substituting it with masturbatory or virtual sexual activity to provide maximum protection from the contagion, and increasing the benefits inherent to sexual activity are recommended. For persons without a partner, not initiating sexual activity with a sporadic partner is strongly recommended.
Collapse
Affiliation(s)
- Francisco Cabello
- Instituto Andaluz de Sexología y Psicología, Alameda Principal 21, 5º, 29001 Malaga, Spain;
| | - Froilán Sánchez
- Centro de Salud de Xàtiva, Avenida de Ausìas March s/n. Xàtiva, 46800 Valencia, Spain;
| | - Josep M. Farré
- Department of Psychiatry, Psychology and Psychosomatics, Dexeus University Hospital, Carrer de Sabino Arana, 5, 08028 Barcelona, Spain;
| | - Angel L. Montejo
- Hospital Universitario Psychiatry Department, University of Salamanca Nursing School, Institute of Biomedical Research (IBSAL). Av., Donantes de Sangre SN, 37007 Salamanca, Spain
| |
Collapse
|
165
|
Estrada E. COVID-19 and SARS-CoV-2. Modeling the present, looking at the future. PHYSICS REPORTS 2020; 869:1-51. [PMID: 32834430 PMCID: PMC7386394 DOI: 10.1016/j.physrep.2020.07.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 05/21/2023]
Abstract
Since December 2019 the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has produced an outbreak of pulmonary disease which has soon become a global pandemic, known as COronaVIrus Disease-19 (COVID-19). The new coronavirus shares about 82% of its genome with the one which produced the 2003 outbreak (SARS CoV-1). Both coronaviruses also share the same cellular receptor, which is the angiotensin-converting enzyme 2 (ACE2) one. In spite of these similarities, the new coronavirus has expanded more widely, more faster and more lethally than the previous one. Many researchers across the disciplines have used diverse modeling tools to analyze the impact of this pandemic at global and local scales. This includes a wide range of approaches - deterministic, data-driven, stochastic, agent-based, and their combinations - to forecast the progression of the epidemic as well as the effects of non-pharmaceutical interventions to stop or mitigate its impact on the world population. The physical complexities of modern society need to be captured by these models. This includes the many ways of social contacts - (multiplex) social contact networks, (multilayers) transport systems, metapopulations, etc. - that may act as a framework for the virus propagation. But modeling not only plays a fundamental role in analyzing and forecasting epidemiological variables, but it also plays an important role in helping to find cures for the disease and in preventing contagion by means of new vaccines. The necessity for answering swiftly and effectively the questions: could existing drugs work against SARS CoV-2? and can new vaccines be developed in time? demands the use of physical modeling of proteins, protein-inhibitors interactions, virtual screening of drugs against virus targets, predicting immunogenicity of small peptides, modeling vaccinomics and vaccine design, to mention just a few. Here, we review these three main areas of modeling research against SARS CoV-2 and COVID-19: (1) epidemiology; (2) drug repurposing; and (3) vaccine design. Therefore, we compile the most relevant existing literature about modeling strategies against the virus to help modelers to navigate this fast-growing literature. We also keep an eye on future outbreaks, where the modelers can find the most relevant strategies used in an emergency situation as the current one to help in fighting future pandemics.
Collapse
Affiliation(s)
- Ernesto Estrada
- Instituto Universitario de Matemáticas y Aplicaciones, Universidad de Zaragoza, 50009 Zaragoza, Spain
- ARAID Foundation, Government of Aragón, 50018 Zaragoza, Spain
| |
Collapse
|
166
|
Scheller C, Krebs F, Minkner R, Astner I, Gil‐Moles M, Wätzig H. Physicochemical properties of SARS-CoV-2 for drug targeting, virus inactivation and attenuation, vaccine formulation and quality control. Electrophoresis 2020; 41:1137-1151. [PMID: 32469436 PMCID: PMC7283733 DOI: 10.1002/elps.202000121] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
The material properties of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its proteins are discussed. We review the viral structure, size, rigidity, lipophilicity, isoelectric point, buoyant density and centrifugation conditions, stability against pH, temperature, UV light, gamma radiation, and susceptibility to various chemical agents including solvents and detergents. Possible inactivation, downstream, and formulation conditions are given including suitable buffers and some first ideas for quality-control methods. This information supports vaccine development and discussion with competent authorities during vaccine approval and is certainly related to drug-targeting strategies and hygienics. Several instructive tables are given, including the pI and grand average of hydropathicity (GRAVY) of SARS-CoV-1 and -2 proteins in comparison. SARS-CoV-1 and SARS-CoV-2 are similar in many regards, so information can often be derived. Both are unusually stable, but sensitive at their lipophilic membranes. However, since seemingly small differences can have strong effects, for example, on immunologically relevant epitope settings, unevaluated knowledge transfer from SARS-CoV-1 to SARS-CoV-2 cannot be advised. Published knowledge regarding downstream processes, formulations and quality assuring methods is, as yet, limited. However, standard approaches employed for other viruses and vaccines seem to be feasible including virus inactivation, centrifugation conditions, and the use of adjuvants.
Collapse
Affiliation(s)
- Christin Scheller
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Finja Krebs
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Robert Minkner
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Isabel Astner
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Maria Gil‐Moles
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
167
|
Belete TM. A review on Promising vaccine development progress for COVID-19 disease. VACUNAS 2020; 21:121-128. [PMID: 32837460 PMCID: PMC7293477 DOI: 10.1016/j.vacun.2020.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 12/28/2022]
Abstract
The emergence of the strain of coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) that causes corona virus disease 2019 (COVID-19) and its impact on in the world have made imperative progress to develop an effective and safe vaccine. Despite several measures undertaken, the spread of this virus is ongoing. So far, more than 1,560,000 cases and 1000,000 deaths occurred in the world. Efforts have been made to develop vaccines against human coronavirus (CoV) infections such as MERS and SARS. However, currently, no approved vaccine exists for these coronavirus strains. Such Previous research efforts to develop a coronavirus vaccine in the years following the 2003 pandemic have opened the door for the scientist to design a new vaccine for the COVID-19. Both SARS-CoV and SARS-CoV-2 has a high degree of genetic similarity and bind to the same host cell ACE2 receptor. By using different vaccine development platforms including whole virus vaccines, recombinant protein subunit vaccines, and nucleic acid vaccines several candidates displayed efficacy in vitro studies but few progressed to clinical trials. This review provides a brief introduction of the general features of SARS-CoV-2 and discusses the current progress of ongoing advances in designing vaccine development efforts to counter COVID-19.
Collapse
Affiliation(s)
- Tafere Mulaw Belete
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, P.o. box 196, Gondar, Ethiopia
| |
Collapse
|
168
|
Abstract
The emergence of the strain of coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) that causes corona virus disease 2019 (COVID-19) and its impact on in the world have made imperative progress to develop an effective and safe vaccine. Despite several measures undertaken, the spread of this virus is ongoing. So far, more than 1,560,000 cases and 1000,000 deaths occurred in the world. Efforts have been made to develop vaccines against human coronavirus (CoV) infections such as MERS and SARS. However, currently, no approved vaccine exists for these coronavirus strains. Such Previous research efforts to develop a coronavirus vaccine in the years following the 2003 pandemic have opened the door for the scientist to design a new vaccine for the COVID-19. Both SARS-CoV and SARS-CoV-2 has a high degree of genetic similarity and bind to the same host cell ACE2 receptor. By using different vaccine development platforms including whole virus vaccines, recombinant protein subunit vaccines, and nucleic acid vaccines several candidates displayed efficacy in vitro studies but few progressed to clinical trials. This review provides a brief introduction of the general features of SARS-CoV-2 and discusses the current progress of ongoing advances in designing vaccine development efforts to counter COVID-19.
Collapse
|
169
|
Lin L, Ting S, Yufei H, Wendong L, Yubo F, Jing Z. Epitope-based peptide vaccines predicted against novel coronavirus disease caused by SARS-CoV-2. Virus Res 2020; 288:198082. [PMID: 32621841 PMCID: PMC7328648 DOI: 10.1016/j.virusres.2020.198082] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022]
Abstract
Linear B-cell epitopes in RBD of S protein predicted against SARS-CoV-2. Discontinuous B-cell epitopes from S protein predicted against SARS-CoV-2. T-cell epitopes from S, M and N protein predicted against SARS-CoV-2.
The outbreak of the 2019 novel coronavirus (SARS-CoV-2) has infected millions of people with a large number of deaths across the globe. The existing therapies are limited in dealing with SARS-CoV-2 due to the sudden appearance of the virus. Therefore, vaccines and antiviral medicines are in desperate need. We took immune-informatics approaches to identify B- and T-cell epitopes for surface glycoprotein (S), membrane glycoprotein (M) and nucleocapsid protein (N) of SARS-CoV-2, followed by estimating their antigenicity and interactions with the human leukocyte antigen (HLA) alleles. Allergenicity, toxicity, physiochemical properties analysis and stability were examined to confirm the specificity and selectivity of the epitope candidates. We identified a total of five B cell epitopes in RBD of S protein, seven MHC class-I, and 18 MHC class-II binding T-cell epitopes from S, M and N protein which showed non-allergenic, non-toxic and highly antigenic features and non-mutated in 55,179 SARS-CoV-2 virus strains until June 25, 2020. The epitopes identified here can be a potentially good candidate repertoire for vaccine development.
Collapse
Affiliation(s)
- Li Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China; School of Biological Science and Medical Engineering, Beihang University, Beijing China
| | - Sun Ting
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China; School of Biological Science and Medical Engineering, Beihang University, Beijing China
| | - He Yufei
- School of Biological Science and Medical Engineering, Beihang University, Beijing China
| | - Li Wendong
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China; School of Biological Science and Medical Engineering, Beihang University, Beijing China
| | - Fan Yubo
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China; School of Biological Science and Medical Engineering, Beihang University, Beijing China.
| | - Zhang Jing
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.
| |
Collapse
|
170
|
TopuzoĞullari M, Acar T, Pelİt Arayici P, UÇar B, UĞurel E, Abamor EŞ, ArasoĞlu T, Turgut-Balik D, Derman S. An insight into the epitope-based peptide vaccine design strategy and studies against COVID-19. Turk J Biol 2020; 44:215-227. [PMID: 32595358 PMCID: PMC7314509 DOI: 10.3906/biy-2006-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
SARS-CoV-2 is a new member of the coronavirus family and caused the pandemic of coronavirus disease 2019 (COVID-19) in 2020. It is crucial to design and produce an effective vaccine for the prevention of rapid transmission and possible deaths wcaused by the disease. Although intensive work and research are being carried out all over the world to develop a vaccine, an effective and approved formulation that can prevent the infection and limit the outbreak has not been announced yet. Among all types of vaccines, epitope-based peptide vaccines outshine with their low-cost production, easy modification in the structure, and safety. In this review, vaccine studies against COVID-19 have been summarized and detailed information about the epitope-based peptide vaccines against COVID-19 has been provided. We have not only compared the peptide vaccine with other types of vaccines but also presented comprehensive literature information about development steps for an effective and protective formulation to give an insight into on-going peptide vaccine studies against SARS-CoV-2.
Collapse
Affiliation(s)
- Murat TopuzoĞullari
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Tayfun Acar
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Pelin Pelİt Arayici
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Burcu UÇar
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Erennur UĞurel
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Emrah Şefik Abamor
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Tülin ArasoĞlu
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yıldız Technical University, İstanbul Turkey
| | - Dilek Turgut-Balik
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Serap Derman
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| |
Collapse
|
171
|
Chen JW, Chen JM. Potential of live pathogen vaccines for defeating the COVID-19 pandemic: History and mechanism. J Med Virol 2020; 92:1469-1474. [PMID: 32320059 PMCID: PMC7264677 DOI: 10.1002/jmv.25920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022]
Abstract
The whole world has entered a terrible crisis with a huge and increasing number of human deaths and economic losses in fighting the pandemic of COVID‐19 caused by the novel coronavirus termed SARS‐CoV‐2. The live pathogen vaccine (LPV) strategy, which originated in ancient China for fighting smallpox, has been applied successfully by US military recruits for decades to control acute respiratory diseases caused by types 4 and 7 adenoviruses. This strategy has also been widely employed in veterinary medicine. These facts suggest a fast way out of the current pandemic crisis, namely that SARS‐CoV‐2 could be directly used as a live vaccine. Beyond the two traditional mechanisms to guarantee the LPV's safety (the LPV seed strain is properly selected; the LPV is inoculated bypassing the respiratory sites of pathology), three novel mechanisms to further ensure the LPV's safety are available (the virus replication is inhibited with early use of an antiviral drug; symptomatic LPV recipients are cured with convalescent plasma; the LPV is inoculated in the hot season). This LPV strategy has multiple potential advantages over other options and could reduce morbidity and mortality greatly as well as the economic loss caused by the pandemic. The safety and efficacy of this strategy should be investigated strictly using animal experiments and clinical trials, and even if the experiments and trials all support the strategy, it should be implemented with enough caution. The world has entered a terrible crisis in fighting the COVID‐19 pandemic. Live pathogen vaccines (LPV) have defeated infectious diseases caused by adenoviruses. The LPV strategy has been widely employed in veterinary medicine. The LPV strategy could be a way out of the COVID‐19 pandemic crisis. Five mechanisms can be employed to ensure the safety of the LPV of SARS‐CoV‐2. The LPV strategy should be examined with animal experiments and clinical trials.
Collapse
Affiliation(s)
- Ji-Wang Chen
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ji-Ming Chen
- Qingdao Six-Eight Nearby Sci-Tech Company, Qingdao, China
| |
Collapse
|
172
|
Simon HU, Karaulov AV, Bachmann MF. Strategies to Prevent SARS-CoV-2-Mediated Eosinophilic Disease in Association with COVID-19 Vaccination and Infection. Int Arch Allergy Immunol 2020; 181:624-628. [PMID: 32544911 PMCID: PMC7360494 DOI: 10.1159/000509368] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023] Open
Abstract
A vaccine to protect against COVID-19 is urgently needed. Such a vaccine should efficiently induce high-affinity neutralizing antibodies which neutralize SARS-CoV-2, the cause of COVID-19. However, there is a concern regarding both vaccine-induced eosinophilic lung disease and eosinophil-associated Th2 immunopotentiation following infection after vaccination. Here, we review the anticipated characteristics of a COVID-19 vaccine to avoid vaccine-associated eosinophil immunopathology.
Collapse
Affiliation(s)
- Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland, .,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russian Federation,
| | - Alexander V Karaulov
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russian Federation
| | - Martin F Bachmann
- Department of Rheumatology, Immunology and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
173
|
The immune system and COVID-19: Friend or foe? Life Sci 2020; 256:117900. [PMID: 32502542 PMCID: PMC7266583 DOI: 10.1016/j.lfs.2020.117900] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/21/2022]
Abstract
AIM Coronavirus disease 2019 (COVID-19) is a novel highly contagious infection caused by SARS-CoV-2, which has been became a global public health challenge. The pathogenesis of this virus is not yet clearly understood, but there is evidence of a hyper-inflammatory immune response in critically ill patients, which leads to acute respiratory distress syndrome (ARDS) and multi-organ failure. MATERIAL AND METHODS A literature review was performed to identify relevant articles on COVID-19 published up to April 30, 2020. The search resulted in 361 total articles. After reviewing the titles and abstracts for inclusion, some irrelevant papers were excluded. Additional relevant articles were identified from a review of citations referenced. KEY FINDINGS SARS-CoV-2, directly and indirectly, affects the immune system and avoids being eliminated in early stages. On the other hand, the secretion of inflammatory cytokines creates critical conditions that lead to multi-organ failure. SIGNIFICANCE The immune system which is affected by the virus tries to respond via a cytokine storm and hyperinflammation, which itself leads to further multi-organ damage and even death.
Collapse
|
174
|
Research Progress of Coronavirus Based on Bibliometric Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17113766. [PMID: 32466477 PMCID: PMC7312058 DOI: 10.3390/ijerph17113766] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/10/2020] [Accepted: 05/23/2020] [Indexed: 01/08/2023]
Abstract
Background: COVID-19 has become one of the most serious global epidemics in the 21st Century. This study aims to explore the distribution of research capabilities of countries, institutions, and researchers, and the hotspots and frontiers of coronavirus research in the past two decades. In it, references for funding support of urgent projects and international cooperation among research institutions are provided. Method: the Web of Science core collection database was used to retrieve the documents related to coronavirus published from 2003 to 2020. Citespace.5.6.R2, VOSviewer1.6.12, and Excel 2016 were used for bibliometric analysis. Results: 11,036 documents were retrieved, of which China and the United States have contributed the most coronavirus studies, Hong Kong University being the top contributor. Regarding journals, the Journal of Virology has contributed the most, while in terms of researchers, Yuen Kwok Yung has made the most contributions. The proportion of documents published by international cooperation has been rising for decades. Vaccines for SARS-CoV-2 are under development, and clinical trials of several drugs are ongoing. Conclusions: international cooperation is an important way to accelerate research progress and achieve success. Developing corresponding vaccines and drugs are the current hotspots and research directions.
Collapse
|
175
|
Clemente-Suárez VJ, Hormeño-Holgado A, Jiménez M, Benitez-Agudelo JC, Navarro-Jiménez E, Perez-Palencia N, Maestre-Serrano R, Laborde-Cárdenas CC, Tornero-Aguilera JF. Dynamics of Population Immunity Due to the Herd Effect in the COVID-19 Pandemic. Vaccines (Basel) 2020; 8:E236. [PMID: 32438622 PMCID: PMC7349986 DOI: 10.3390/vaccines8020236] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
The novel Coronavirus 2 Severe Acute Respiratory Syndrome (SARS-Cov-2) has led to the Coronavirus Disease 2019 (COVID-19) pandemic, which has surprised health authorities around the world, quickly producing a global health crisis. Different actions to cope with this situation are being developed, including confinement, different treatments to improve symptoms, and the creation of the first vaccines. In epidemiology, herd immunity is presented as an area that could also solve this new global threat. In this review, we present the basis of herd immunology, the dynamics of infection transmission that induces specific immunity, and how the application of immunoepidemiology and herd immunology could be used to control the actual COVID-19 pandemic, along with a discussion of its effectiveness, limitations, and applications.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain;
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
- Studies Centre in Applied Combat (CESCA), Toledo 45007, Spain;
| | | | - Manuel Jiménez
- Departamento de Didáctica de la Educación Física y Salud, Universidad Internacional de La Rioja, Logroño 26006, Spain;
| | | | - Eduardo Navarro-Jiménez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (E.N.-J.); (R.M.-S.)
| | | | - Ronald Maestre-Serrano
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (E.N.-J.); (R.M.-S.)
| | | | - Jose Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain;
- Studies Centre in Applied Combat (CESCA), Toledo 45007, Spain;
| |
Collapse
|
176
|
Abstract
The world is currently facing an unprecedented global pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Predicting the next source of the pandemic can be very challenging. As vaccination is the best way to prevent an infectious disease, the development of an effective vaccine against SARS-CoV-2 can not only reduce the morbidity and mortality associated with it, but can also lessen the economic impact. As the traditional method of vaccine development takes many years for a vaccine to be available to the society, the vaccine development for SARS-CoV-2 should be speeded up using a pandemic approach with fast-track approvals from the regulatory authorities. Various challenges associated with developing a vaccine during the pandemic such as technological hurdles, clinical development pathways, regulatory issues, and support from global funding agencies are expressed here.
Collapse
Affiliation(s)
- Krishna M Ella
- Bharat Biotech International Limited, Genome Valley, Shamirpet, Hyderabad, Telangana, India
| | - V Krishna Mohan
- Bharat Biotech International Limited, Genome Valley, Shamirpet, Hyderabad, Telangana, India. Address for correspondence: V Krishna Mohan, Executive Director, Bharat Biotech International Limited, Genome Valley, Shamirpet, Hyderabad, Telangana, India.
| |
Collapse
|
177
|
Jiang C, Yao X, Zhao Y, Wu J, Huang P, Pan C, Liu S, Pan C. Comparative review of respiratory diseases caused by coronaviruses and influenza A viruses during epidemic season. Microbes Infect 2020; 22:236-244. [PMID: 32405236 PMCID: PMC7217786 DOI: 10.1016/j.micinf.2020.05.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to sweep the world, causing infection of millions and death of hundreds of thousands. The respiratory disease that it caused, COVID-19 (stands for coronavirus disease in 2019), has similar clinical symptoms with other two CoV diseases, severe acute respiratory syndrome and Middle East respiratory syndrome (SARS and MERS), of which causative viruses are SARS-CoV and MERS-CoV, respectively. These three CoVs resulting diseases also share many clinical symptoms with other respiratory diseases caused by influenza A viruses (IAVs). Since both CoVs and IAVs are general pathogens responsible for seasonal cold, in the next few months, during the changing of seasons, clinicians and public heath may have to distinguish COVID-19 pneumonia from other kinds of viral pneumonia. This is a discussion and comparison of the virus structures, transmission characteristics, clinical symptoms, diagnosis, pathological changes, treatment and prevention of the two kinds of viruses, CoVs and IAVs. It hopes to provide information for practitioners in the medical field during the epidemic season.
Collapse
Affiliation(s)
- Chao Jiang
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd, Guangzhou, 511400, China; School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Xingang Yao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Zhao
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd, Guangzhou, 511400, China
| | - Jianmin Wu
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd, Guangzhou, 511400, China
| | - Pan Huang
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd, Guangzhou, 511400, China
| | - Chunhua Pan
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510000, China.
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Chungen Pan
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd, Guangzhou, 511400, China.
| |
Collapse
|
178
|
Ullah MA, Islam H, Rahman A, Masud J, Shweta DS, Araf Y, Sium SMA, Sarkar B. A Generalized Overview of SARS-CoV-2: Where Does the Current Knowledge Stand? ELECTRONIC JOURNAL OF GENERAL MEDICINE 2020. [DOI: 10.29333/ejgm/8258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
179
|
Danchin A, Marlière P. Cytosine drives evolution of SARS-CoV-2. Environ Microbiol 2020; 22:1977-1985. [PMID: 32291894 PMCID: PMC7262064 DOI: 10.1111/1462-2920.15025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Antoine Danchin
- Kodikos Labs, 24 rue Jean Baldassini, 69007 Lyon/Institut Cochin, 75013 Paris, France
| | - Philippe Marlière
- TESSSI, The European Syndicate of Synthetic Scientists and Industrialists, 81 rue Réaumur, 75002, Paris, France
| |
Collapse
|