151
|
Aqil M, Naqvi AR, Mallik S, Bandyopadhyay S, Maulik U, Jameel S. The HIV Nef protein modulates cellular and exosomal miRNA profiles in human monocytic cells. J Extracell Vesicles 2014; 3:23129. [PMID: 24678387 PMCID: PMC3967016 DOI: 10.3402/jev.v3.23129] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/28/2014] [Accepted: 02/15/2014] [Indexed: 12/15/2022] Open
Abstract
Introduction The HIV Nef protein is a multifunctional virulence factor that perturbs intracellular membranes and signalling and is secreted into exosomes. While Nef-containing exosomes have a distinct proteomic profile, no comprehensive analysis of their miRNA cargo has been carried out. Since Nef functions as a viral suppressor of RNA interference and disturbs the distribution of RNA-induced silencing complex proteins between cells and exosomes, we hypothesized that it might also affect the export of miRNAs into exosomes. Method Exosomes were purified from human monocytic U937 cells that stably expressed HIV-1 Nef. The RNA from cells and exosomes was profiled for 667 miRNAs using a Taqman Low Density Array. Selected miRNAs and their mRNA targets were validated by quantitative RT-PCR. Bioinformatics analyses were used to identify targets and predict pathways. Results Nef expression affected a significant fraction of miRNAs in U937 cells. Our analysis showed 47 miRNAs to be selectively secreted into Nef exosomes and 2 miRNAs to be selectively retained in Nef-expressing cells. The exosomal miRNAs were predicted to target several cellular genes in inflammatory cytokine and other pathways important for HIV pathogenesis, and an overwhelming majority had targets within the HIV genome. Conclusions This is the first study to report miRnome analysis of HIV Nef expressing monocytes and exosomes. Our results demonstrate that Nef causes large-scale dysregulation of cellular miRNAs, including their secretion through exosomes. We suggest this to be a novel viral strategy to affect pathogenesis and to limit the effects of RNA interference on viral replication and persistence.
Collapse
Affiliation(s)
- Madeeha Aqil
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Afsar Raza Naqvi
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Saurav Mallik
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India
| | | | - Ujjwal Maulik
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| | - Shahid Jameel
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
152
|
Mast cells, basophils and B cell connection network. Mol Immunol 2014; 63:94-103. [PMID: 24671125 DOI: 10.1016/j.molimm.2014.02.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 12/27/2022]
Abstract
It has been proven that both resting and activated mast cells (MCs) and basophils are able to induce a significant increase in proliferation and survival of naïve and activated B cells, and their differentiation into antibody-producing cells. The immunological context in which this regulation occurs is of particular interest and the idea that these innate cells induce antibody class switching and production is increasingly gaining ground. This direct role of MCs and basophils in acquired immunity requires cell to cell contact as well as soluble factors and exosomes. Here, we review our current understanding of the interaction between B cells and MCs or basophils as well as the evidence supporting B lymphocyte-MC/basophil crosstalk in pathological settings. Furthermore, we underline the obscure aspects of this interaction that could serve as important starting points for future research in the field of MC and basophil biology in the peculiar context of the connection between innate and adaptive immunity.
Collapse
|
153
|
Impact of extracellular RNA on endothelial barrier function. Cell Tissue Res 2014; 355:635-45. [DOI: 10.1007/s00441-014-1850-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/13/2014] [Indexed: 11/25/2022]
|
154
|
Jia S, Zocco D, Samuels ML, Chou MF, Chammas R, Skog J, Zarovni N, Momen-Heravi F, Kuo WP. Emerging technologies in extracellular vesicle-based molecular diagnostics. Expert Rev Mol Diagn 2014; 14:307-21. [PMID: 24575799 DOI: 10.1586/14737159.2014.893828] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, have been shown to carry a variety of biomacromolecules including mRNA, microRNA and other non-coding RNAs. Within the past 5 years, EVs have emerged as a promising minimally invasive novel source of material for molecular diagnostics. Although EVs can be easily identified and collected from biological fluids, further research and proper validation is needed in order for them to be useful in the clinical setting. In addition, innovative and more efficient means of nucleic acid profiling are needed to facilitate investigations into the cellular and molecular mechanisms of EV function and to establish their potential as useful clinical biomarkers and therapeutic tools. In this article, we provide an overview of recent technological improvements in both upstream EV isolation and downstream analytical technologies, including digital PCR and next generation sequencing, highlighting future prospects for EV-based molecular diagnostics.
Collapse
Affiliation(s)
- Shidong Jia
- Oncology Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Simsekyilmaz S, Cabrera-Fuentes HA, Meiler S, Kostin S, Baumer Y, Liehn EA, Weber C, Boisvert WA, Preissner KT, Zernecke A. Role of extracellular RNA in atherosclerotic plaque formation in mice. Circulation 2013; 129:598-606. [PMID: 24201302 DOI: 10.1161/circulationaha.113.002562] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Atherosclerosis and vascular remodeling after injury are driven by inflammation and mononuclear cell infiltration. Extracellular RNA (eRNA) has recently been implicated to become enriched at sites of tissue damage and to act as a proinflammatory mediator. Here, we addressed the role of eRNA in high-fat diet-induced atherosclerosis and neointima formation after injury in atherosclerosis-prone mice. METHODS AND RESULTS The presence of eRNA was revealed in atherosclerotic lesions from high-fat diet-fed low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice in a time-progressive fashion. RNase activity in plasma increased within the first 2 weeks (44±9 versus 70±7 mU/mg protein; P=0.0012), followed by a decrease to levels below baseline after 4 weeks of high-fat diet (44±9 versus 12±2 mU/mg protein; P<0.0001). Exposure of bone marrow-derived macrophages to eRNA resulted in a concentration-dependent upregulation of the proinflammatory mediators tumor necrosis factor-α, arginase-2, interleukin-1β, interleukin-6, and interferon-γ. In a model of accelerated atherosclerosis after arterial injury in apolipoprotein E-deficient (ApoE(-/-)) mice, treatment with RNase1 diminished the increased plasma level of eRNA evidenced after injury. Likewise, RNase1 administration reduced neointima formation in comparison with vehicle-treated ApoE(-/-) controls (25.0±6.2 versus 46.9±6.9×10(3) μm(2), P=0.0339) and was associated with a significant decrease in plaque macrophage content. Functionally, RNase1 treatment impaired monocyte arrest on activated smooth muscle cells under flow conditions in vitro and inhibited leukocyte recruitment to injured carotid arteries in vivo. CONCLUSIONS Because eRNA is associated with atherosclerotic lesions and contributes to inflammation-dependent plaque progression in atherosclerosis-prone mice, its targeting with RNase1 may serve as a new treatment option against atherosclerosis.
Collapse
Affiliation(s)
- Sakine Simsekyilmaz
- Institute for Molecular Cardiovascular Research, RWTH University Hospital Aachen, Aachen, Germany (S.S., E.A.L.); Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany (H.A.C.-F., K.T.P.); Department of Microbiology, Kazan Federal University, Kazan, Russian Federation (H.A.C.-F.); Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI (S.M., Y.B., W.A.B.); Core Lab for Molecular and Structural Biology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (S.K.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (C.W.); DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (C.W., A.Z.); Rudolf Virchow Center and Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, University of Würzburg, Würzburg, Germany (A.Z.); and Department of Vascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany (A.Z.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Ekström K, Omar O, Granéli C, Wang X, Vazirisani F, Thomsen P. Monocyte exosomes stimulate the osteogenic gene expression of mesenchymal stem cells. PLoS One 2013; 8:e75227. [PMID: 24058665 PMCID: PMC3776724 DOI: 10.1371/journal.pone.0075227] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/11/2013] [Indexed: 12/12/2022] Open
Abstract
Inflammation and regeneration at the implant-bone interface are intimately coupled via cell-cell communication. In contrast to the prevailing view that monocytes/macrophages orchestrate mesenchymal stem cells (MSCs) and progenitor cells via the secretion of soluble factors, we examined whether communication between these different cell types also occurs via exosomes. LPS-stimulated human monocytes released exosomes, positive for CD9, CD63, CD81, Tsg101 and Hsp70, as determined by flow cytometry and Western blot. These exosomes also contained wide size distribution of RNA, including RNA in the size of microRNAs. The exosomes were shown to interact with human mesenchymal stem cells. After 24 h of culture, a considerable portion of the MSCs had internalised PKH67-labelled exosomes. Furthermore, after 72 h, the gene expression of the osteogenic markers runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein-2 (BMP-2) had increased in comparison with control medium, whereas no significant difference in osteocalcin (OC) expression was demonstrated. The present results show that, under given experimental conditions, monocytes communicate with MSCs via exosomes, resulting in the uptake of exosomes in MSCs and the stimulation of osteogenic differentiation. The present observations suggest that exosomes constitute an additional mode of cell-cell signalling with an effect on MSC differentiation during the transition from injury and inflammation to bone regeneration.
Collapse
Affiliation(s)
- Karin Ekström
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
- * E-mail:
| | - Omar Omar
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Cecilia Granéli
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Xiaoqin Wang
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Forugh Vazirisani
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| |
Collapse
|
157
|
Crescitelli R, Lässer C, Szabó TG, Kittel A, Eldh M, Dianzani I, Buzás EI, Lötvall J. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles 2013; 2:20677. [PMID: 24223256 PMCID: PMC3823106 DOI: 10.3402/jev.v2i0.20677] [Citation(s) in RCA: 745] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/31/2013] [Accepted: 08/16/2013] [Indexed: 12/12/2022] Open
Abstract
Introduction In recent years, there has been an exponential increase in the number of studies aiming to understand the biology of exosomes, as well as other extracellular vesicles. However, classification of membrane vesicles and the appropriate protocols for their isolation are still under intense discussion and investigation. When isolating vesicles, it is crucial to use systems that are able to separate them, to avoid cross-contamination. Method EVs released from three different kinds of cell lines: HMC-1, TF-1 and BV-2 were isolated using two centrifugation-based protocols. In protocol 1, apoptotic bodies were collected at 2,000×g, followed by filtering the supernatant through 0.8 µm pores and pelleting of microvesicles at 12,200×g. In protocol 2, apoptotic bodies and microvesicles were collected together at 16,500×g, followed by filtering of the supernatant through 0.2 µm pores and pelleting of exosomes at 120,000×g. Extracellular vesicles were analyzed by transmission electron microscopy, flow cytometry and the RNA profiles were investigated using a Bioanalyzer®. Results RNA profiles showed that ribosomal RNA was primary detectable in apoptotic bodies and smaller RNAs without prominent ribosomal RNA peaks in exosomes. In contrast, microvesicles contained little or no RNA except for microvesicles collected from TF-1 cell cultures. The different vesicle pellets showed highly different distribution of size, shape and electron density with typical apoptotic body, microvesicle and exosome characteristics when analyzed by transmission electron microscopy. Flow cytometry revealed the presence of CD63 and CD81 in all vesicles investigated, as well as CD9 except in the TF-1-derived vesicles, as these cells do not express CD9. Conclusions Our results demonstrate that centrifugation-based protocols are simple and fast systems to distinguish subpopulations of extracellular vesicles. Different vesicles show different RNA profiles and morphological characteristics, but they are indistinguishable using CD63-coated beads for flow cytometry analysis.
Collapse
Affiliation(s)
- Rossella Crescitelli
- Department of Internal Medicine and Clinical Nutrition, Krefting Research Centre, University of Gothenburg, Gothenburg, Sweden ; Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Fischer S, Gesierich S, Griemert B, Schänzer A, Acker T, Augustin HG, Olsson AK, Preissner KT. Extracellular RNA liberates tumor necrosis factor-α to promote tumor cell trafficking and progression. Cancer Res 2013; 73:5080-9. [PMID: 23774209 DOI: 10.1158/0008-5472.can-12-4657] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extracellular RNA (eRNA) released from injured cells promotes tissue permeability, thrombosis, and inflammation in vitro and in vivo, and RNase1 pretreatment can reduce all these effects. In this study, we investigated the role of the eRNA/RNase1 system in tumor progression and metastasis. Under quiescent and stimulatory conditions, tumor cells released much higher levels of endogenous extracellular RNA (eRNA) than nontumor cells. In glioblastomas, eRNA was detected at higher levels in tumors than nontumor tissue. eRNA induced tumor cells to adhere to and migrate through human cerebral microvascular endothelial cells (HCMEC/D3), in a manner requiring activation of VEGF signaling. In addition, eRNA liberated TNF-α from macrophages in a manner requiring activation of the TNF-α-converting enzyme TACE. Accordingly, supernatants derived from eRNA-treated macrophages enhanced tumor cell adhesion to HCMEC/D3. TNF-α release evoked by eRNA relied upon signaling activation of mitogen-activated protein kinases and the NF-κB pathway. In subcutaneous xenograft models of human cancer, administration of RNase1 but not DNase decreased tumor volume and weight. Taken together, these results suggest that eRNA released from tumor cells has the capacity to promote tumor cell invasion through endothelial barriers by both direct and indirect mechanisms, including through a mechanism involving TNF-α release from tumor-infiltrating monocytes/macrophages. Our findings establish a crucial role for eRNA in driving tumor progression, and they suggest applications for extracellular RNase1 as an antiinvasive regimen for cancer treatment.
Collapse
Affiliation(s)
- Silvia Fischer
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, Nolte-'t Hoen EN, Piper MG, Sivaraman S, Skog J, Théry C, Wauben MH, Hochberg F. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2013; 2:20360. [PMID: 24009894 PMCID: PMC3760646 DOI: 10.3402/jev.v2i0.20360] [Citation(s) in RCA: 1753] [Impact Index Per Article: 146.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/05/2013] [Accepted: 04/11/2013] [Indexed: 12/13/2022] Open
Abstract
The emergence of publications on extracellular RNA (exRNA) and extracellular vesicles (EV) has highlighted the potential of these molecules and vehicles as biomarkers of disease and therapeutic targets. These findings have created a paradigm shift, most prominently in the field of oncology, prompting expanded interest in the field and dedication of funds for EV research. At the same time, understanding of EV subtypes, biogenesis, cargo and mechanisms of shuttling remains incomplete. The techniques that can be harnessed to address the many gaps in our current knowledge were the subject of a special workshop of the International Society for Extracellular Vesicles (ISEV) in New York City in October 2012. As part of the “ISEV Research Seminar: Analysis and Function of RNA in Extracellular Vesicles (evRNA)”, 6 round-table discussions were held to provide an evidence-based framework for isolation and analysis of EV, purification and analysis of associated RNA molecules, and molecular engineering of EV for therapeutic intervention. This article arises from the discussion of EV isolation and analysis at that meeting. The conclusions of the round table are supplemented with a review of published materials and our experience. Controversies and outstanding questions are identified that may inform future research and funding priorities. While we emphasize the need for standardization of specimen handling, appropriate normative controls, and isolation and analysis techniques to facilitate comparison of results, we also recognize that continual development and evaluation of techniques will be necessary as new knowledge is amassed. On many points, consensus has not yet been achieved and must be built through the reporting of well-controlled experiments.
Collapse
Affiliation(s)
- Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Kim DK, Kang B, Kim OY, Choi DS, Lee J, Kim SR, Go G, Yoon YJ, Kim JH, Jang SC, Park KS, Choi EJ, Kim KP, Desiderio DM, Kim YK, Lötvall J, Hwang D, Gho YS. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles 2013; 2:20384. [PMID: 24009897 PMCID: PMC3760654 DOI: 10.3402/jev.v2i0.20384] [Citation(s) in RCA: 366] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 02/13/2013] [Accepted: 02/20/2013] [Indexed: 02/06/2023] Open
Abstract
Secretion of extracellular vesicles is a general cellular activity that spans the range from simple unicellular organisms (e.g. archaea; Gram-positive and Gram-negative bacteria) to complex multicellular ones, suggesting that this extracellular vesicle-mediated communication is evolutionarily conserved. Extracellular vesicles are spherical bilayered proteolipids with a mean diameter of 20–1,000 nm, which are known to contain various bioactive molecules including proteins, lipids, and nucleic acids. Here, we present EVpedia, which is an integrated database of high-throughput datasets from prokaryotic and eukaryotic extracellular vesicles. EVpedia provides high-throughput datasets of vesicular components (proteins, mRNAs, miRNAs, and lipids) present on prokaryotic, non-mammalian eukaryotic, and mammalian extracellular vesicles. In addition, EVpedia also provides an array of tools, such as the search and browse of vesicular components, Gene Ontology enrichment analysis, network analysis of vesicular proteins and mRNAs, and a comparison of vesicular datasets by ortholog identification. Moreover, publications on extracellular vesicle studies are listed in the database. This free web-based database of EVpedia (http://evpedia.info) might serve as a fundamental repository to stimulate the advancement of extracellular vesicle studies and to elucidate the novel functions of these complex extracellular organelles.
Collapse
Affiliation(s)
- Dae-Kyum Kim
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Fischer S, Preissner KT. Extracellular nucleic acids as novel alarm signals in the vascular system. Mediators of defence and disease. Hamostaseologie 2013; 33:37-42. [PMID: 23328880 DOI: 10.5482/hamo-13-01-0001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 01/08/2013] [Indexed: 01/13/2023] Open
Abstract
Upon vascular injury or tissue damage, the exposed intracellular material such as nucleic acids, histones and other macromolecules may come into contact with vessel wall cells and circulating blood cells and may thus, have an enduring influence on wound healing and body defence processes. This short review summarizes recent work related to extracellular DNA and RNA and their role as prominent alarm signals and inducers of different defence reactions related to innate immunity and thrombus formation. Of particular importance are DNA-histone complexes (nucleosome material) that, having been expelled during stimulation of the neutrophils, not only trap and eliminate bacteria but also promote thrombus formation in the arterial and venous system. Consequently therefore, the administration of DNase exhibits strong antithrombotic functions. Similarly, extracellular RNA provokes activation of the contact phase system of blood coagulation and, by interacting with specific proteins and cytokines, it promotes vascular permeability and oedema formation. The development of RNA-mediated thrombosis, vasogenic oedema or proinflammatory responses are counteracted by the administration of RNase1 in several pathogenetic animal models. Thus, extracellular nucleic acids appear not only to function as host alarm signals that serve to amplify the defence response, but they also provide important links to thrombus formation as part of the innate immune system.
Collapse
Affiliation(s)
- S Fischer
- Department of Biochemistry, Medical School, Justus-Liebig-Universität, Friedrichstr. 24, 35392 Giessen, Germany
| | | |
Collapse
|
162
|
Araldi E, Krämer-Albers EM, Hoen EN', Peinado H, Psonka-Antonczyk KM, Rao P, van Niel G, Yáñez-Mó M, Nazarenko I. International Society for Extracellular Vesicles: first annual meeting, April 17-21, 2012: ISEV-2012. J Extracell Vesicles 2012; 1:19995. [PMID: 26082071 PMCID: PMC3760652 DOI: 10.3402/jev.v1i0.19995] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 11/13/2012] [Accepted: 11/16/2012] [Indexed: 01/12/2023] Open
Abstract
Extracellular micro- and nano-scale membrane vesicles produced by different cells are recognised as an essential entity of physiological fluids in a variety of organisms and function as mediators of intercellular communication employed for the regulation of multiple systemic and local processes. In the last decade, an exponential amount of experimental work was dedicated to exploring the biogenesis and secretion mechanisms, physiological and pathological functions and potential applications of the extracellular vesicles (EVs). Noteworthy is the large heterogeneity of in vitro and in vivo models applied, technical approaches developed in these studies and the diversity of designations assigned to different or similar types of EVs. Hence, there is a clear necessity for a uniform nomenclature and standardisation of methods to isolate and characterise these vesicles. In April 2012, the first meeting of the International Society for Extracellular Vesicles (ISEV) took place bringing together this exponentially grown scientific community. The University of Gothenburg (Krefting Research Centre) together with the Interim Board of the Society created in September 2011 (Jan Lötvall, Clotilde Théry, Xandra Breakefield, Marca Wauben, Yong Song Gho, Lawrence Rajendran, Graça Raposo, Douglas Taylor, Margareta Sjöstrand and Esbjörn Telemo) organised this fantastic event that counted 488 registered and contributing participants. This meeting report provides a retrospective summary of the broad spectrum of ISEV-2012 sessions. Again, we emphasise novel findings, discussions and decisions met by the community during the meeting.
Collapse
Affiliation(s)
- Elisa Araldi
- Department of Medicine and Cell Biology, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, USA
| | | | - Esther Nolte-'t Hoen
- Department of Biochemistry and Cell Biology, Utrecht University, Utrecht, The Netherlands
| | - Hector Peinado
- Departments of Pediatrics, Cell and Developmental Biology, Weill Cornell Medical College, New York, USA
| | | | - Pooja Rao
- Laboratory for Aging and Cognitive Diseases, European Neuroscience Institute, Göttingen, Germany
| | | | - María Yáñez-Mó
- Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Irina Nazarenko
- Department of Environmental Health Sciences, University Medical Centre, Freiburg, Germany;
| |
Collapse
|
163
|
Lee Y, El Andaloussi S, Wood MJA. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 2012; 21:R125-34. [PMID: 22872698 DOI: 10.1093/hmg/dds317] [Citation(s) in RCA: 713] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exosomes and microvesicles are extracellular nanovesicles released by most but not all cells. They are specifically equipped to mediate intercellular communication via the transfer of genetic information, including the transfer of both coding and non-coding RNAs, to recipient cells. As a result, both exosomes and microvesicles play a fundamental biological role in the regulation of normal physiological as well as aberrant pathological processes, via altered gene regulatory networks and/or via epigenetic programming. For example, microvesicle-mediated genetic transfer can regulate the maintenance of stem cell plasticity and induce beneficial cell phenotype modulation. Alternatively, such vesicles play a role in tumor pathogenesis and the spread of neurodegenerative diseases via the transfer of specific microRNAs and pathogenic proteins. Given this natural property for genetic information transfer, the possibility of exploiting these vesicles for therapeutic purposes is now being investigated. Stem cell-derived microvesicles appear to be naturally equipped to mediate tissue regeneration under certain conditions, while recent evidence suggests that exosomes might be harnessed for the targeted delivery of human genetic therapies via the introduction of exogenous genetic cargoes such as siRNA. Thus, extracellular vesicles are emerging as potent genetic information transfer agents underpinning a range of biological processes and with therapeutic potential.
Collapse
Affiliation(s)
- Yi Lee
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | |
Collapse
|
164
|
Fischer S, Grantzow T, Pagel JI, Tschernatsch M, Sperandio M, Preissner KT, Deindl E. Extracellular RNA promotes leukocyte recruitment in the vascular system by mobilising proinflammatory cytokines. Thromb Haemost 2012; 108:730-41. [PMID: 22836360 DOI: 10.1160/th12-03-0186] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/16/2012] [Indexed: 12/31/2022]
Abstract
Extracellular RNA (eRNA), released from cells under conditions of injury or vascular disease, acts as potent prothrombotic factor and promotes vascular hyperpermeability related to oedema formation in vivo. In this study, we aimed to investigate the mechanism by which eRNA triggers inflammatory processes, particularly associated with different steps of leukocyte recruitment. Using intravital microscopy of murine cremaster muscle venules, eRNA (but not DNA) significantly induced leukocyte adhesion and transmigration in vivo, which was comparable in its effects to the function of tumour-necrosis-factor-α (TNF-α). In vitro, eRNA promoted adhesion and transmigration of monocytic cells on and across endothelial cell monolayers. eRNA-induced monocyte adhesion in vitro was mediated by activation of the vascular endothelial growth factor (VEGF)/VEGF-receptor-2 system and was abolished by neutralising antibodies against intercellular adhesion molecule-1 or the β2-integrin Mac-1. Additionally, eRNA induced the release of TNF-α from monocytic cells in a time- and concentration-dependent manner, which involved activation of TNF-α-converting enzyme (TACE) as well as the nuclear factor κB signalling machinery. In vivo, inhibiton of TACE significantly reduced eRNA-induced leukocyte adhesion. Our findings present evidence that eRNA in connection with tissue/vascular damage provokes a potent inflammatory response by inducing leukocyte recruitment and by mobilising proinflammatory cytokines from monocytes.
Collapse
Affiliation(s)
- Silvia Fischer
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
165
|
Ekström K, Valadi H, Sjöstrand M, Malmhäll C, Bossios A, Eldh M, Lötvall J. Characterization of mRNA and microRNA in human mast cell-derived exosomes and their transfer to other mast cells and blood CD34 progenitor cells. J Extracell Vesicles 2012; 1:18389. [PMID: 24009880 PMCID: PMC3760639 DOI: 10.3402/jev.v1i0.18389] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 02/06/2023] Open
Abstract
Background Exosomes are nanosized vesicles of endocytic origin that are released into the extracellular environment by many different cells. It has been shown that exosomes from various cellular origins contain a substantial amount of RNA (mainly mRNA and microRNA). More importantly, exosomes are capable of delivering their RNA content to target cells, which is a novel way of cell-to-cell communication. The aim of this study was to evaluate whether exosomal shuttle RNA could play a role in the communication between human mast cells and between human mast cells and human CD34+ progenitor cells. Methods The mRNA and microRNA content of exosomes from a human mast cell line, HMC-1, was analysed by using microarray technology. Co-culture experiments followed by flow cytometry analysis and confocal microscopy as well as radioactive labeling experiments were performed to examine the uptake of these exosomes and the shuttle of the RNA to other mast cells and CD34+ progenitor cells. Results In this study, we show that human mast cells release RNA-containing exosomes, with the capacity to shuttle RNA between cells. Interestingly, by using microRNA microarray analysis, 116 microRNAs could be identified in the exosomes and 134 microRNAs in the donor mast cells. Furthermore, DNA microarray experiments revealed the presence of approximately 1800 mRNAs in the exosomes, which represent 15% of the donor cell mRNA content. In addition, transfer experiments revealed that exosomes can shuttle RNA between human mast cells and to CD34+ hematopoietic progenitor cells. Conclusion These findings suggest that exosomal shuttle RNA (esRNA) can play a role in the communication between cells, including mast cells and CD34+ progenitor cells, implying a role in cells maturation process.
Collapse
Affiliation(s)
- Karin Ekström
- Krefting Research Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ; Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
166
|
Lötvall J, Rajendran L, Gho YS, Thery C, Wauben M, Raposo G, Sjöstrand M, Taylor D, Telemo E, Breakefield XO. The launch of Journal of Extracellular Vesicles (JEV), the official journal of the International Society for Extracellular Vesicles - about microvesicles, exosomes, ectosomes and other extracellular vesicles. J Extracell Vesicles 2012; 1:18514. [PMID: 24009885 PMCID: PMC3760649 DOI: 10.3402/jev.v1i0.18514] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|