151
|
Hu Q, Yang C, Wang Q, Zeng H, Qin W. Demethylzeylasteral (T-96) Treatment Ameliorates Mice Lupus Nephritis Accompanied by Inhibiting Activation of NF-κB Pathway. PLoS One 2015. [PMID: 26208003 PMCID: PMC4514757 DOI: 10.1371/journal.pone.0133724] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Inflammation plays a vital role in the pathogenesis in lupus nephritis (LN), which is largely attributable to the activation of nuclear factor kappa B (NF-κB) signal pathway. NF-κB up-regulates pro-inflammatory mediators, such as TNF-α, cyclo-oxygenase-2 (COX-2) and ICAM-1, and promotes macrophage infiltration into renal tissue, further inducing the progression of LN. Over the past 30 years, research has demonstrated that Tripterygium wilfordii Hook F (TWHF) possesses potent anti-inflammatory and immunosuppressive activities, and that demethylzeylasteral (T-96), an extract of TWHF, may be one of the responsible compounds. Here, we investigate the pharmacodynamic role and therapeutic mechanism by which T-96 suppresses inflammation and reduces renal pathology in the lupus-prone MRL/lpr mice. Methods Forty-eight MRL/lpr mice were equally randomly divided into 6 groups (1.2, 0.6 or 0.3 mg/10g T-96, 0.022 pills/10g kang lang chuang san (one of Traditional Chinese herb as positive control), 0.125 mg/10g prednisone and 0.1 ml/10g normal saline as the LN disease control group). Also, eight WT C57BL/6 mice were used as normal control. After treatment by gavage with 0.10 ml/10g/day volumes for 8 weeks, all mice were sacrificed and renal tissues were collected. The amount of 24 h proteinuria and the levels of anti-dsDNA antibody in serum were assessed respectively at weeks 0, 4 and 8. Inflammation, cytokines and NF-κB levels were assessed by histological examinations, immunohistochemical analyses and Western blot analyses. Results In comparison with untreated MRL/lpr mice, mice treated with 1.2 and 0.6 mg/10g of T-96 showed a significant improvement in 24 h proteinuria and the levels of anti-dsDNA antibody in serum. In addition, T-96 reduced the secretion of pro-inflammatory mediators such as TNF-α, COX-2 and ICAM-1, and the infiltration of macrophages in renal tissue. Moreover, T-96 significantly suppressed phosphorylations of cytoplasmic IKK and nuclear p65. Conclusion This study suggests that T-96 exhibits reno-protective effects in LN accompanied by inhibiting the activation of NF-κB, reducing the downstream pro-inflammatory mediators and thus restricting macrophage infiltration. Because of these potent properties, T-96 should be considered as a promising therapeutic drug for LN.
Collapse
Affiliation(s)
- Qiongyi Hu
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Chunxin Yang
- Department of Pharmaceutical Chemistry, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- * E-mail: (CXY); (QW)
| | - Qiang Wang
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- * E-mail: (CXY); (QW)
| | - Haiying Zeng
- Department of Pathology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Wanzhang Qin
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| |
Collapse
|
152
|
Bates MA, Brandenberger C, Langohr I, Kumagai K, Harkema JR, Holian A, Pestka JJ. Silica Triggers Inflammation and Ectopic Lymphoid Neogenesis in the Lungs in Parallel with Accelerated Onset of Systemic Autoimmunity and Glomerulonephritis in the Lupus-Prone NZBWF1 Mouse. PLoS One 2015; 10:e0125481. [PMID: 25978333 PMCID: PMC4433215 DOI: 10.1371/journal.pone.0125481] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/18/2015] [Indexed: 01/02/2023] Open
Abstract
Genetic predisposition and environmental factors influence the development of human autoimmune disease. Occupational exposure to crystalline silica (cSiO2) has been etiologically linked to increased incidence of autoimmunity, including systemic lupus erythematosus (SLE), but the underlying mechanisms are poorly understood. The purpose of this study was to test the hypothesis that early repeated short-term cSiO2 exposure will modulate both latency and severity of autoimmunity in the lupus-prone female NZBWF1 mouse. Weekly intranasal exposure to cSiO2 (0.25 and 1.0 mg) for 4 wk beginning at 9 wk of age both reduced latency and increased intensity of glomerulonephritis. cSiO2 elicited robust inflammatory responses in the lungs as evidenced by extensive perivascular and peribronchial lymphoplasmacytic infiltration consisting of IgG-producing plasma cells, and CD45R+ and CD3+ lymphocytes that were highly suggestive of ectopic lymphoid tissue (ELT). In addition, there were elevated concentrations of immunoglobulins and the cytokines MCP-1, TNF-α and IL-6 in bronchoalveolar lavage fluid. cSiO2-associated kidney and lung effects paralleled dose-dependent elevations of autoantibodies and proinflammatory cytokines in plasma. Taken together, cSiO2-induced pulmonary inflammation and ectopic lymphoid neogenesis in the NZBWF1 mouse corresponded closely to systemic inflammatory and autoimmune responses as well as the early initiation of pathological outcomes in the kidney. These findings suggest that following airway exposure to crystalline silica, in mice genetically prone to SLE, the lung serves as a platform for triggering systemic autoimmunity and glomerulonephritis.
Collapse
Affiliation(s)
- Melissa A. Bates
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, United States of America
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Christina Brandenberger
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, United States of America
- Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Ingeborg Langohr
- Department of Pathobiological Studies, School of Veterinary Medicine, Louisiana State University, Baton Rogue, Louisiana, United States of America
| | - Kazuyoshi Kumagai
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, United States of America
| | - Jack R. Harkema
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, United States of America
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, Montana, United States of America
| | - James J. Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, United States of America
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
153
|
Kim KJ, Lee S, Kim WU. Applications of systems approaches in the study of rheumatic diseases. Korean J Intern Med 2015; 30:148-60. [PMID: 25750554 PMCID: PMC4351319 DOI: 10.3904/kjim.2015.30.2.148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/23/2014] [Indexed: 12/27/2022] Open
Abstract
The complex interaction of molecules within a biological system constitutes a functional module. These modules are then acted upon by both internal and external factors, such as genetic and environmental stresses, which under certain conditions can manifest as complex disease phenotypes. Recent advances in high-throughput biological analyses, in combination with improved computational methods for data enrichment, functional annotation, and network visualization, have enabled a much deeper understanding of the mechanisms underlying important biological processes by identifying functional modules that are temporally and spatially perturbed in the context of disease development. Systems biology approaches such as these have produced compelling observations that would be impossible to replicate using classical methodologies, with greater insights expected as both the technology and methods improve in the coming years. Here, we examine the use of systems biology and network analysis in the study of a wide range of rheumatic diseases to better understand the underlying molecular and clinical features.
Collapse
Affiliation(s)
- Ki-Jo Kim
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Saseong Lee
- POSTECH-CATHOLIC BioMedical Engineering Institute, The Catholic University of Korea, Seoul, Korea
| | - Wan-Uk Kim
- POSTECH-CATHOLIC BioMedical Engineering Institute, The Catholic University of Korea, Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
154
|
Daikh DI. Animal models of lupus. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
155
|
Liu N, Shi J, Xiao Y, Yasue M, Takei Y, Sanefuji H, Tsujimoto G, Hirasawa A. Effects of a Tricaprylin Emulsion on Anti-glomerular Basement Membrane Glomerulonephritis in Rats: In Vivo and in Silico Studies. Biol Pharm Bull 2015; 38:1175-84. [DOI: 10.1248/bpb.b15-00124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ning Liu
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Junfeng Shi
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Ying Xiao
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Misato Yasue
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yoshinori Takei
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University
| | | | - Gozoh Tsujimoto
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Akira Hirasawa
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University
- Institute for Integrated Medical Sciences, Tokyo Women’s Medical University
| |
Collapse
|
156
|
Sahu R, Bethunaickan R, Singh S, Davidson A. Structure and function of renal macrophages and dendritic cells from lupus-prone mice. Arthritis Rheumatol 2014; 66:1596-607. [PMID: 24866269 DOI: 10.1002/art.38410] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 02/11/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To characterize renal macrophages and dendritic cells (DCs) in 2 murine models of lupus nephritis. METHODS We used a bead-based enrichment step followed by cell sorting to isolate populations of interest from young mice and nephritic mice. Cell morphology was examined by microscopy. Arginase and nitrite production was examined using biochemical assays. The antigen-presenting functions of the cells were determined using mixed lymphocyte reactions. Selected cytokine, chemokine, and Toll-like receptor (TLR) profiles were examined using real-time quantitative polymerase chain reaction. RESULTS We identified 2 populations of macrophages and 3 populations of DCs in both of our murine models of lupus (NZB/NZW and [NZW × BXSB]F1 mice). F4/80(high) macrophages, which were resident in normal kidneys and found to be increased in number during nephritis, did not produce either arginase or nitrite upon cytokine stimulation and acquired a mixed proinflammatory and antiinflammatory functional phenotype during nephritis that resembles the constitutively activated phenotype of gut F4/80(high) macrophages. The various cell types differed in their expression of chemokine receptors and TLRs, consistent with variability in their renal location. Resident renal CD103+ DCs were the best antigen-presenting cells and could easily be distinguished from CD11c(high) myeloid DCs that accumulated in large numbers during nephritis. CONCLUSION Our study highlights the heterogeneity of the macrophage/DC infiltrate in chronic lupus nephritis and provides an initial phenotypic and functional analysis of the different cellular components that can now be used to define the role of each cell subset in nephritis progression or amelioration. Of note, the dominant macrophage population that accumulates during nephritis has an acquired phenotype that is neither M1 nor M2 and may reflect failure of resolution of inflammation.
Collapse
Affiliation(s)
- Ranjit Sahu
- Feinstein Institute for Medical Research, Manhasset, New York
| | | | | | | |
Collapse
|
157
|
Bethunaickan R, Berthier CC, Zhang W, Eksi R, Li HD, Guan Y, Kretzler M, Davidson A. Identification of stage-specific genes associated with lupus nephritis and response to remission induction in (NZB × NZW)F1 and NZM2410 mice. Arthritis Rheumatol 2014; 66:2246-2258. [PMID: 24757019 PMCID: PMC4554534 DOI: 10.1002/art.38679] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 04/17/2014] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To elucidate the molecular mechanisms involved in renal inflammation during the progression, remission, and relapse of nephritis in murine lupus models using transcriptome analysis. METHODS Kidneys from (NZB × NZW)F1 (NZB/NZW) and NZM2410 mice were harvested at intervals during the disease course or after remission induction. Genome-wide expression profiles were obtained from microarray analysis of perfused kidneys. Real-time polymerase chain reaction (PCR) analysis for selected genes was used to validate the microarray data. Comparisons between groups using SAM, and unbiased analysis of the entire data set using singular value decomposition and self-organizing maps were performed. RESULTS Few changes in the renal molecular profile were detected in prenephritic kidneys, but a significant shift in gene expression, reflecting inflammatory cell infiltration and complement activation, occurred at proteinuria onset. Subsequent changes in gene expression predominantly affected mitochondrial dysfunction and metabolic stress pathways. Endothelial cell activation, tissue remodeling, and tubular damage were the major pathways associated with loss of renal function. Remission induction reversed most, but not all, of the inflammatory changes, and progression toward relapse was associated with recurrence of inflammation, mitochondrial dysfunction, and metabolic stress signatures. CONCLUSION Immune cell infiltration and activation is associated with proteinuria onset and is reversed by immunosuppressive therapy, but disease progression is associated with renal hypoxia and metabolic stress. Optimal therapy for lupus nephritis may therefore need to target both immune and nonimmune disease mechanisms. In addition, the overlap of a substantial subset of molecular markers with those expressed in the kidneys of lupus patients suggests potential new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ramalingam Bethunaickan
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, NY 11030
| | - Celine C. Berthier
- Department of Internal Medicine, Nephrology, University of Michigan, Ann Arbor, MI 48109
| | - Weijia Zhang
- Department of Medicine, Mount Sinai Medical Center, New York, NY 10029
| | | | - Hong-Dong Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - Matthias Kretzler
- Department of Internal Medicine, Nephrology, University of Michigan, Ann Arbor, MI 48109
| | - Anne Davidson
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, NY 11030
| |
Collapse
|
158
|
Kahlenberg JM, Kaplan MJ. Reply. Arthritis Rheumatol 2014; 66:2311-2. [DOI: 10.1002/art.38677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Mariana J. Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Disorders, NIH; Bethesda MD
| |
Collapse
|
159
|
Martini S, Nair V, Keller BJ, Eichinger F, Hawkins JJ, Randolph A, Böger CA, Gadegbeku CA, Fox CS, Cohen CD, Kretzler M. Integrative biology identifies shared transcriptional networks in CKD. J Am Soc Nephrol 2014; 25:2559-72. [PMID: 24925724 DOI: 10.1681/asn.2013080906] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A previous meta-analysis of genome-wide association data by the Cohorts for Heart and Aging Research in Genomic Epidemiology and CKDGen consortia identified 16 loci associated with eGFR. To define how each of these single-nucleotide polymorphisms (SNPs) could affect renal function, we integrated GFR-associated loci with regulatory pathways, producing a molecular map of CKD. In kidney biopsy specimens from 157 European subjects representing nine different CKDs, renal transcript levels for 18 genes in proximity to the SNPs significantly correlated with GFR. These 18 genes were mapped into their biologic context by testing coregulated transcripts for enriched pathways. A network of 97 pathways linked by shared genes was constructed and characterized. Of these pathways, 56 pathways were reported previously to be associated with CKD; 41 pathways without prior association with CKD were ranked on the basis of the number of candidate genes connected to the respective pathways. All pathways aggregated into a network of two main clusters comprising inflammation- and metabolism-related pathways, with the NRF2-mediated oxidative stress response pathway serving as the hub between the two clusters. In all, 78 pathways and 95% of the connections among those pathways were verified in an independent North American biopsy cohort. Disease-specific analyses showed that most pathways are shared between sets of three diseases, with closest interconnection between lupus nephritis, IgA nephritis, and diabetic nephropathy. Taken together, the network integrates candidate genes from genome-wide association studies into their functional context, revealing interactions and defining established and novel biologic mechanisms of renal impairment in renal diseases.
Collapse
Affiliation(s)
- Sebastian Martini
- Departments of Internal Medicine, Nephrology, and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Viji Nair
- Departments of Internal Medicine, Nephrology, and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Benjamin J Keller
- Department of Computer Science, Eastern Michigan University, Ypsilanti, Michigan
| | - Felix Eichinger
- Departments of Internal Medicine, Nephrology, and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Jennifer J Hawkins
- Departments of Internal Medicine, Nephrology, and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Ann Randolph
- Departments of Internal Medicine, Nephrology, and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Carsten A Böger
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Crystal A Gadegbeku
- Department of Medicine, Section of Nephrology and Kidney Transplantation, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Caroline S Fox
- Division of Intramural Research and Laboratory for Population and Metabolic Health, National Heart, Lung, and Blood Institute, Framingham, Massachusetts; Department of Endocrinology, Brigham and Women's Hospital, Boston, Massachusetts; and
| | - Clemens D Cohen
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Matthias Kretzler
- Departments of Internal Medicine, Nephrology, and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan;
| | | | | | | |
Collapse
|
160
|
Rovin BH, Parikh SV, Alvarado A. The kidney biopsy in lupus nephritis: is it still relevant? Rheum Dis Clin North Am 2014; 40:537-52, ix. [PMID: 25034161 DOI: 10.1016/j.rdc.2014.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The kidney biopsy is the standard of care for diagnosis of lupus nephritis and remains necessary to ensure accurate diagnosis and guide treatment. Repeat biopsy should be considered when therapy modifications are necessary, as in cases with incomplete or no response, or when stopping therapy for those in remission. There are several promising biomarkers of kidney disorders; however, these markers need to be validated in a prospective clinical trial before being applied clinically. Molecular analysis may provide the information presently lacking from current evaluation of kidney disorders and may better inform on prognosis and treatment considerations.
Collapse
Affiliation(s)
- Brad H Rovin
- Nephrology Division, Department of Internal Medicine, Ohio State University Wexner Medical Center, 395 West 12th Avenue, Columbus, OH 43210, USA.
| | - Samir V Parikh
- Nephrology Division, Department of Internal Medicine, Ohio State University Wexner Medical Center, 395 West 12th Avenue, Columbus, OH 43210, USA
| | - Anthony Alvarado
- Nephrology Division, Department of Internal Medicine, Ohio State University Wexner Medical Center, 395 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
161
|
Tampe B, Tampe D, Müller CA, Sugimoto H, LeBleu V, Xu X, Müller GA, Zeisberg EM, Kalluri R, Zeisberg M. Tet3-mediated hydroxymethylation of epigenetically silenced genes contributes to bone morphogenic protein 7-induced reversal of kidney fibrosis. J Am Soc Nephrol 2014; 25:905-12. [PMID: 24480825 DOI: 10.1681/asn.2013070723] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Methylation of CpG island promoters is an epigenetic event that can effectively silence transcription over multiple cell generations. Hypermethylation of the Rasal1 promoter contributes to activation of fibroblasts and progression of kidney fibrosis. Here, we explored whether such causative hypermethylation could be reversed through endogenous mechanisms and whether such reversal of hypermethylation is a constituent of the antifibrotic activity of bone morphogenic protein 7 (BMP7). We show that successful inhibition of experimental kidney fibrosis through administration of BMP7 associates with normalization of Rasal1 promoter hypermethylation. Furthermore, this reversal of pathologic hypermethylation was achieved specifically through Tet3-mediated hydroxymethylation. Collectively, our findings reveal a new mechanism that may be exploited to facilitate therapeutic DNA demethylation to reverse kidney fibrosis.
Collapse
Affiliation(s)
- Björn Tampe
- Departments of Nephrology and Rheumatology, and
| | | | - Claudia A Müller
- Departments of Nephrology and Rheumatology, and Department of Transplantation, Immunology and Immunohematology, Tübingen University Medical Center, Eberhard Karls University, Tübingen, Germany
| | - Hikaru Sugimoto
- Department of Cancer Biology and the Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas; and
| | - Valerie LeBleu
- Department of Cancer Biology and the Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas; and
| | - Xingbo Xu
- Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | | | - Elisabeth M Zeisberg
- Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Raghu Kalluri
- Department of Cancer Biology and the Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas; and
| | | |
Collapse
|
162
|
Affiliation(s)
- Gianfranco Ferraccioli
- Institute of Rheumatology and Affine Sciences, School of Medicine, Catholic University of the Sacred Heart, , Rome, Italy
| | | |
Collapse
|
163
|
Mina-Osorio P, LaStant J, Keirstead N, Whittard T, Ayala J, Stefanova S, Garrido R, Dimaano N, Hilton H, Giron M, Lau KY, Hang J, Postelnek J, Kim Y, Min S, Patel A, Woods J, Ramanujam M, DeMartino J, Narula S, Xu D. Suppression of glomerulonephritis in lupus-prone NZB × NZW mice by RN486, a selective inhibitor of Bruton's tyrosine kinase. ACTA ACUST UNITED AC 2013; 65:2380-91. [PMID: 23754328 DOI: 10.1002/art.38047] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 05/30/2013] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Bruton's tyrosine kinase (BTK) plays a critical role in B cell development and function. We recently described a selective BTK inhibitor, RN486, that blocks B cell receptor (BCR) and Fcγ receptor signaling and is efficacious in animal models of arthritis. The aim of this study was to examine the potential efficacy of BTK in systemic lupus erythematosus (SLE), using an NZB × NZW mouse model of spontaneous SLE. METHODS Mice received RN486 or its vehicle (administered in chow) at a final concentration of 30 mg/kg for 8 weeks, starting at 32 weeks of age. RESULTS The administration of RN486 completely stopped disease progression, as determined by histologic and functional analyses of glomerular nephritis. The efficacy was associated with striking inhibition of B cell activation, as demonstrated by a significant reduction in CD69 expression in response to BCR crosslinking. RN486 markedly reduced the secretion of IgG anti-double-stranded DNA (anti-dsDNA) secretion, as determined by enzyme-linked immunosorbent and enzyme-linked immunospot assays. Flow cytometric analysis demonstrated depletion of CD138(high) B220(low) plasma cells in the spleen. RN486 inhibited secretion of IgG anti-dsDNA but not IgM anti-dsDNA, suggesting that pharmacologic blockade of BTK resembles the reported transgenic expression of low levels of endogenous BTK in B cells. In addition, RN486 may also impact the effector function of autoantibodies, as evidenced by a significant reduction in immune complex-mediated activation of human monocytes in vitro and down-regulation of the expression of macrophage-related and interferon-inducible genes in both the kidneys and spleens of treated mice. CONCLUSION Collectively, our data suggest that BTK inhibitors may simultaneously target autoantibody-producing and effector cells in SLE, thus constituting a promising therapeutic alternative for this disease.
Collapse
|
164
|
Human systems immunology: hypothesis-based modeling and unbiased data-driven approaches. Semin Immunol 2013; 25:193-200. [PMID: 23375135 PMCID: PMC3836867 DOI: 10.1016/j.smim.2012.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/08/2012] [Indexed: 11/23/2022]
Abstract
Systems immunology is an emerging paradigm that aims at a more systematic and quantitative understanding of the immune system. Two major approaches have been utilized to date in this field: unbiased data-driven modeling to comprehensively identify molecular and cellular components of a system and their interactions; and hypothesis-based quantitative modeling to understand the operating principles of a system by extracting a minimal set of variables and rules underlying them. In this review, we describe applications of the two approaches to the study of viral infections and autoimmune diseases in humans, and discuss possible ways by which these two approaches can synergize when applied to human immunology.
Collapse
|
165
|
Bethunaickan R, Berthier CC, Zhang W, Kretzler M, Davidson A. Comparative transcriptional profiling of 3 murine models of SLE nephritis reveals both unique and shared regulatory networks. PLoS One 2013; 8:e77489. [PMID: 24167575 PMCID: PMC3805607 DOI: 10.1371/journal.pone.0077489] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/31/2013] [Indexed: 11/30/2022] Open
Abstract
Objective To define shared and unique features of SLE nephritis in mouse models of proliferative and glomerulosclerotic renal disease. Methods Perfused kidneys from NZB/W F1, NZW/BXSB and NZM2410 mice were harvested before and after nephritis onset. Affymetrix based gene expression profiles of kidney RNA were analyzed using Genomatix Pathway Systems and Ingenuity Pathway Analysis software. Gene expression patterns were confirmed using real-time PCR. Results 955, 1168 and 755 genes were regulated in the kidneys of nephritic NZB/W F1, NZM2410 and NZW/BXSB mice respectively. 263 genes were regulated concordantly in all three strains reflecting immune cell infiltration, endothelial cell activation, complement activation, cytokine signaling, tissue remodeling and hypoxia. STAT3 was the top associated transcription factor, having a binding site in the gene promoter of 60/263 regulated genes. The two strains with proliferative nephritis shared a macrophage/DC infiltration and activation signature. NZB/W and NZM2410 mice shared a mitochondrial dysfunction signature. Dominant T cell and plasma cell signatures in NZB/W mice reflected lymphoid aggregates; this was the only strain with regulatory T cell infiltrates. NZW/BXSB mice manifested tubular regeneration and NZM2410 mice had the most metabolic stress and manifested loss of nephrin, indicating podocyte loss. Conclusions These findings identify shared inflammatory mechanisms of SLE nephritis that can be therapeutically targeted. Nevertheless, the heterogeneity of effector mechanisms suggests that individualized therapy might need to be based on biopsy findings. Some common mechanisms are shared with non-immune–mediated renal diseases, suggesting that strategies to prevent tissue hypoxia and remodeling may be useful in SLE nephritis.
Collapse
Affiliation(s)
- Ramalingam Bethunaickan
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, New York, United States of America
| | - Celine C. Berthier
- Department of Internal Medicine, Nephrology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Weijia Zhang
- Department of Medicine, Mount Sinai Medical Center, New York, New York, United States of America
| | - Matthias Kretzler
- Department of Internal Medicine, Nephrology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anne Davidson
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
166
|
Frangou EA, Bertsias GK, Boumpas DT. Gene expression and regulation in systemic lupus erythematosus. Eur J Clin Invest 2013; 43:1084-96. [PMID: 23902282 DOI: 10.1111/eci.12130] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/21/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disease. Genome-wide (GW) association studies have identified more than 40 disease-associated loci, together accounting for only 10-20% of disease heritability. Gene expression represents the intermediate phenotype between DNA and disease phenotypic variation, and provides insights regarding genetic and epigenetic effects. We review data on gene expression and regulation in SLE by our group and other investigators. MATERIALS AND METHODS Systematic PubMed search for GW expression studies in SLE published since the year 2000. RESULTS Deregulation of genes involved in type I interferon signaling is a consistent finding in the peripheral blood of active and severe SLE patients. Upregulation of granulocyte-specific transcripts especially in bone marrow mononuclear cells (BMMCs), and of myeloid lineage transcripts in lupus nephritis, provide evidence for pathogenic role of these cells. Gene network analysis in BMMCs identified central gene regulators which could represent therapeutic targets and a high similarity between SLE and non-Hodgkin lymphoma providing a molecular basis for the reported association of the two diseases. Gene expression abnormalities driven by deregulated expression of certain microRNAs in SLE contribute to interferon production, T- and B-cell hyperactivity, DNA hypomethylation, and defective tissue response to injury. Methylation arrays have revealed alterations in white blood cell DNA methylation in SLE suggesting an important role of epigenetics and the environment. CONCLUSIONS Gene expression studies have contributed to the characterization of pathogenic processes in SLE. Integrated approaches utilizing genetic variation, transcriptome and epigenome profiling will facilitate efforts towards a molecular-based disease taxonomy.
Collapse
Affiliation(s)
- Eleni A Frangou
- Biomedical Research Foundation of the Academy of Athens, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | | | | |
Collapse
|
167
|
Ju W, Greene CS, Eichinger F, Nair V, Hodgin JB, Bitzer M, Lee YS, Zhu Q, Kehata M, Li M, Jiang S, Rastaldi MP, Cohen CD, Troyanskaya OG, Kretzler M. Defining cell-type specificity at the transcriptional level in human disease. Genome Res 2013; 23:1862-73. [PMID: 23950145 PMCID: PMC3814886 DOI: 10.1101/gr.155697.113] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-lineage–specific transcripts are essential for differentiated tissue function, implicated in hereditary organ failure, and mediate acquired chronic diseases. However, experimental identification of cell-lineage–specific genes in a genome-scale manner is infeasible for most solid human tissues. We developed the first genome-scale method to identify genes with cell-lineage–specific expression, even in lineages not separable by experimental microdissection. Our machine-learning–based approach leverages high-throughput data from tissue homogenates in a novel iterative statistical framework. We applied this method to chronic kidney disease and identified transcripts specific to podocytes, key cells in the glomerular filter responsible for hereditary and most acquired glomerular kidney disease. In a systematic evaluation of our predictions by immunohistochemistry, our in silico approach was significantly more accurate (65% accuracy in human) than predictions based on direct measurement of in vivo fluorescence-tagged murine podocytes (23%). Our method identified genes implicated as causal in hereditary glomerular disease and involved in molecular pathways of acquired and chronic renal diseases. Furthermore, based on expression analysis of human kidney disease biopsies, we demonstrated that expression of the podocyte genes identified by our approach is significantly related to the degree of renal impairment in patients. Our approach is broadly applicable to define lineage specificity in both cell physiology and human disease contexts. We provide a user-friendly website that enables researchers to apply this method to any cell-lineage or tissue of interest. Identified cell-lineage–specific transcripts are expected to play essential tissue-specific roles in organogenesis and disease and can provide starting points for the development of organ-specific diagnostics and therapies.
Collapse
Affiliation(s)
- Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Chiche L, Jourde-Chiche N, Pascual V, Chaussabel D. Current perspectives on systems immunology approaches to rheumatic diseases. ACTA ACUST UNITED AC 2013; 65:1407-17. [PMID: 23450649 DOI: 10.1002/art.37909] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/14/2013] [Indexed: 01/26/2023]
|
169
|
A replication study from Chinese supports association between lupus-risk allele in TNFSF4 and renal disorder. BIOMED RESEARCH INTERNATIONAL 2013; 2013:597921. [PMID: 23936824 PMCID: PMC3713374 DOI: 10.1155/2013/597921] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/10/2013] [Indexed: 12/01/2022]
Abstract
A recent phenotypic association study of genetic susceptibility loci in SLE suggested that TNFSF4 gene might be useful to predict renal disorder in lupus patients. To replicate the association, two single-nucleotide polymorphisms (SNPs: rs2205960 and rs10489265) were genotyped in 814 SLE patients. Correlations between genotypes and TNFSF4 expression were determined. The stainings of TNFSF4 in renal biopsy specimens were checked by immunohistochemistry. The SNPs of TNFSF4 were associated with renal involvement in lupus patients from the Chinese population (P values for rs2205960 and rs10489265 were 0.014 and 0.005 in additive model, resp.). An association between risk genotypes and low C3 levels was also observed (P = 0.034). Functional prediction suggested that rs2205960 had a regulatory feature. The risk alleles seemingly correlated with lower TNFSF4 expression. Strong TNFSF4 expression was detected in lymph nodes and “apparently normal” paratumor renal biopsy but not in renal biopsies from lupus nephritis. In genome-wide expression data, TNFSF4 was also observed to be downregulated in LN in both glomeruli and tubulointerstitium from kidney biopsies. However, the associations were marginally significant. Our data firstly replicated the association of TNFSF4 with renal disorder in SLE patients in the Chinese population, which supported that TNFSF4 may act as a marker of lupus nephritis. The detailed mechanisms of its role in pathogenesis will still be further needed.
Collapse
|
170
|
Martini S, Nair V, Patel SR, Eichinger F, Nelson RG, Weil EJ, Pezzolesi MG, Krolewski AS, Randolph A, Keller BJ, Werner T, Kretzler M. From single nucleotide polymorphism to transcriptional mechanism: a model for FRMD3 in diabetic nephropathy. Diabetes 2013; 62:2605-12. [PMID: 23434934 PMCID: PMC3712052 DOI: 10.2337/db12-1416] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Genome-wide association studies have proven to be highly effective at defining relationships between single nucleotide polymorphisms (SNPs) and clinical phenotypes in complex diseases. Establishing a mechanistic link between a noncoding SNP and the clinical outcome is a significant hurdle in translating associations into biological insight. We demonstrate an approach to assess the functional context of a diabetic nephropathy (DN)-associated SNP located in the promoter region of the gene FRMD3. The approach integrates pathway analyses with transcriptional regulatory pattern-based promoter modeling and allows the identification of a transcriptional framework affected by the DN-associated SNP in the FRMD3 promoter. This framework provides a testable hypothesis for mechanisms of genomic variation and transcriptional regulation in the context of DN. Our model proposes a possible transcriptional link through which the polymorphism in the FRMD3 promoter could influence transcriptional regulation within the bone morphogenetic protein (BMP)-signaling pathway. These findings provide the rationale to interrogate the biological link between FRMD3 and the BMP pathway and serve as an example of functional genomics-based hypothesis generation.
Collapse
Affiliation(s)
- Sebastian Martini
- Departments of Internal Medicine and Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Viji Nair
- Departments of Internal Medicine and Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Sanjeevkumar R. Patel
- Departments of Internal Medicine and Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Felix Eichinger
- Departments of Internal Medicine and Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Robert G. Nelson
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - E. Jennifer Weil
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Marcus G. Pezzolesi
- Research and Clinic Divisions, Joslin Diabetes Center, Boston, Massachusetts
| | | | - Ann Randolph
- Departments of Internal Medicine and Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Benjamin J. Keller
- Department of Computer Science, Eastern Michigan University, Ypsilanti, Michigan
| | - Thomas Werner
- Departments of Internal Medicine and Nephrology, University of Michigan, Ann Arbor, Michigan
- Genomatix Software GmbH, Munich, Germany
| | - Matthias Kretzler
- Departments of Internal Medicine and Nephrology, University of Michigan, Ann Arbor, Michigan
- Corresponding author: Matthias Kretzler,
| |
Collapse
|
171
|
Borchers AT, Leibushor N, Naguwa SM, Cheema GS, Shoenfeld Y, Gershwin ME. Lupus nephritis: a critical review. Autoimmun Rev 2012; 12:174-94. [PMID: 22982174 DOI: 10.1016/j.autrev.2012.08.018] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2012] [Indexed: 01/18/2023]
Abstract
Lupus nephritis remains one of the most severe manifestations of systemic lupus erythematosus associated with considerable morbidity and mortality. A better understanding of the pathogenesis of lupus nephritis is an important step in identifying more targeted and less toxic therapeutic approaches. Substantial research has helped define the pathogenetic mechanisms of renal manifestations and, in particular, the complex role of type I interferons is increasingly recognized; new insights have been gained into the contribution of immune complexes containing endogenous RNA and DNA in triggering the production of type I interferons by dendritic cells via activation of endosomal toll-like receptors. At the same time, there have been considerable advances in the treatment of lupus nephritis. Corticosteroids have long been the cornerstone of therapy, and the addition of cyclophosphamide has contributed to renal function preservation in patients with severe proliferative glomerulonephritis, though at the cost of serious adverse events. More recently, in an effort to minimize drug toxicity and achieve equal effectiveness, other immunosuppressive agents, including mycophenolate mofetil, have been introduced. Herein, we provide a detailed review of the trials that established the equivalency of these agents in the induction and/or maintenance therapy of lupus nephritis, culminating in the recent publication of new treatment guidelines by the American College of Rheumatology. Although newer biologics have been approved and continue to be a focus of research, they have, for the most part, been relatively disappointing compared to the effectiveness of biologics in other autoimmune diseases. Early diagnosis and treatment are essential for renal preservation.
Collapse
Affiliation(s)
- Andrea T Borchers
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, United States
| | | | | | | | | | | |
Collapse
|