151
|
Cui J, Xiao R, Ma M, Yuan L, Cohen Kodash R, Zhou X. Children skilled in mental abacus show enhanced non-symbolic number sense. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-020-00717-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
152
|
Ching BHH, Kong KHC. Understanding additive composition is important for symbolic numerical magnitude processing. COGNITIVE DEVELOPMENT 2022. [DOI: 10.1016/j.cogdev.2022.101170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
153
|
Ciccione L, Sablé-Meyer M, Dehaene S. Analyzing the misperception of exponential growth in graphs. Cognition 2022; 225:105112. [PMID: 35366484 DOI: 10.1016/j.cognition.2022.105112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/11/2022] [Accepted: 03/23/2022] [Indexed: 01/29/2023]
Abstract
Exponential growth is frequently underestimated, an error that can have a heavy social cost in the context of epidemics. To clarify its origins, we measured the human capacity (N = 521) to extrapolate linear and exponential trends in scatterplots. Four factors were manipulated: the function underlying the data (linear or exponential), the response modality (pointing or venturing a number), the scale on the y axis (linear or logarithmic), and the amount of noise in the data. While linear extrapolation was precise and largely unbiased, we observed a consistent underestimation of noisy exponential growth, present for both pointing and numerical responses. A biased ideal-observer model could explain these data as an occasional misperception of noisy exponential graphs as quadratic curves. Importantly, this underestimation bias was mitigated by participants' math knowledge, by using a logarithmic scale, and by presenting a noiseless exponential curve rather than a noisy data plot, thus suggesting concrete avenues for interventions.
Collapse
Affiliation(s)
- Lorenzo Ciccione
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France; Collège de France, Université Paris Sciences Lettres (PSL), 11 Place Marcelin Berthelot, 75005 Paris, France.
| | - Mathias Sablé-Meyer
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France; Collège de France, Université Paris Sciences Lettres (PSL), 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France; Collège de France, Université Paris Sciences Lettres (PSL), 11 Place Marcelin Berthelot, 75005 Paris, France
| |
Collapse
|
154
|
Pop CM, Wilson L, Browne CL. Evaluating landscape knowledge and lithic resource selection at the French Middle Paleolithic site of the Bau de l'Aubesier. J Hum Evol 2022; 166:103152. [PMID: 35338861 DOI: 10.1016/j.jhevol.2022.103152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 01/29/2023]
Abstract
We report on the application of a novel approach to exploring the degree of landscape knowledge, wayfinding abilities, and the nature of decision-making processes reflected in the utilization of stone resources in the French Middle Paleolithic. Specifically, we use data from the site of the Bau de l'Aubesier to explore the reasons why a majority of the 350 raw material sources cataloged in the surrounding region appear not to have been utilized, including several located near the site and yielding high-quality lithic materials. To this end, we focus on the spatial relationships between sources as an explanatory variable, operationalized in terms of minimum travel times. Using geographic information system software and a generalized linear model of resource selection derived from the Bau assemblages, we compute source utilization probabilities from the perspective of hominins located off-site. We do so under three optimization scenarios, factoring in the intrinsic characteristics (e.g., quality) and time required to reach each source on the way to the Bau. More generally, we find that in slightly more than 50% of cases, seemingly viable sources may have been ignored simply because the minimum cost path leading back to the Bau passes through or requires only minimal deviations to reach, higher quality options. More generally, we found that throughout the entire region, a cost/benefit analysis of competing sources favors those from source areas known to have been utilized. Virtually all the available information on lithic procurement at the Bau is consistent with a model of landscape utilization premised on detailed knowledge of a very large area, an ability to accurately estimate travel times between locations, and a pragmatic strategy of stone resource exploitation based on minimizing costs (travel and search times) and maximizing utility.
Collapse
Affiliation(s)
- Cornel Marian Pop
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany; Department of Anthropology and Sociology, Columbia College, 438 Terminal Avenue, Vancouver, B.C., V6A 0C1, Canada.
| | - Lucy Wilson
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, Saint John, N.B., E2L 4L5, Canada
| | - Constance L Browne
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, Saint John, N.B., E2L 4L5, Canada
| |
Collapse
|
155
|
Zhang D, Zhou L, Yang A, Li S, Chang C, Liu J, Zhou K. A connectome-based neuromarker of nonverbal number acuity and arithmetic skills. Cereb Cortex 2022; 33:881-894. [PMID: 35254408 PMCID: PMC9890459 DOI: 10.1093/cercor/bhac108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
The approximate number system (ANS) is vital for survival and reproduction in animals and is crucial for constructing abstract mathematical abilities in humans. Most previous neuroimaging studies focused on identifying discrete brain regions responsible for the ANS and characterizing their functions in numerosity perception. However, a neuromarker to characterize an individual's ANS acuity is lacking, especially one based on whole-brain functional connectivity (FC). Here, based on the resting-state functional magnetic resonance imaging (rs-fMRI) data obtained from a large sample, we identified a distributed brain network (i.e. a numerosity network) using a connectome-based predictive modeling (CPM) analysis. The summed FC strength within the numerosity network reliably predicted individual differences in ANS acuity regarding behavior, as measured using a nonsymbolic number-comparison task. Furthermore, in an independent dataset of the Human Connectome Project (HCP), we found that the summed FC strength within the numerosity network also specifically predicted individual differences in arithmetic skills, but not domain-general cognitive abilities. Therefore, our findings revealed that the identified numerosity network could serve as an applicable neuroimaging-based biomarker of nonverbal number acuity and arithmetic skills.
Collapse
Affiliation(s)
- Dai Zhang
- Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, China,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, No. 1066, Xueyuan Street, Nanshan District, Shenzhen 518060, China
| | - Liqin Zhou
- Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Anmin Yang
- Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Shanshan Li
- Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Chunqi Chang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, No. 1066, Xueyuan Street, Nanshan District, Shenzhen 518060, China
| | - Jia Liu
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, No. 30, Shuangqing Street, Haidian District, Beijing 100084, China
| | - Ke Zhou
- Corresponding author: Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| |
Collapse
|
156
|
Arzy S, Kaplan R. Transforming Social Perspectives with Cognitive Maps. Soc Cogn Affect Neurosci 2022; 17:939-955. [PMID: 35257155 PMCID: PMC9527473 DOI: 10.1093/scan/nsac017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/17/2021] [Accepted: 03/07/2022] [Indexed: 01/29/2023] Open
Abstract
Growing evidence suggests that cognitive maps represent relations between social knowledge similar to how spatial locations are represented in an environment. Notably, the extant human medial temporal lobe literature assumes associations between social stimuli follow a linear associative mapping from an egocentric viewpoint to a cognitive map. Yet, this form of associative social memory doesn't account for a core phenomenon of social interactions in which social knowledge learned via comparisons to the self, other individuals, or social networks are assimilated within a single frame of reference. We argue that hippocampal-entorhinal coordinate transformations, known to integrate egocentric and allocentric spatial cues, inform social perspective switching between the self and others. We present evidence that the hippocampal formation helps inform social interactions by relating self versus other social attribute comparisons to society in general, which can afford rapid and flexible assimilation of knowledge about the relationship between the self and social networks of varying proximities. We conclude by discussing the ramifications of cognitive maps in aiding this social perspective transformation process in states of health and disease.
Collapse
Affiliation(s)
- Shahar Arzy
- Faculty of Medicine and the Department of Cognitive Sciences, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem 91120, Israel
| | - Raphael Kaplan
- Correspondence should be addressed to Raphael Kaplan, Department of Basic Psychology, Clinical Psychology, and Psychobiology, Universitat Jaume I, Avinguda de Vicent Sos Baynat, Castelló de la Plana, Spain. E-mail:
| |
Collapse
|
157
|
Pitt B, Gibson E, Piantadosi ST. Exact Number Concepts Are Limited to the Verbal Count Range. Psychol Sci 2022; 33:371-381. [PMID: 35132893 PMCID: PMC9096449 DOI: 10.1177/09567976211034502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/25/2021] [Indexed: 01/29/2023] Open
Abstract
Previous findings suggest that mentally representing exact numbers larger than four depends on a verbal count routine (e.g., "one, two, three . . ."). However, these findings are controversial because they rely on comparisons across radically different languages and cultures. We tested the role of language in number concepts within a single population-the Tsimane' of Bolivia-in which knowledge of number words varies across individual adults. We used a novel data-analysis model to quantify the point at which participants (N = 30) switched from exact to approximate number representations during a simple numerical matching task. The results show that these behavioral switch points were bounded by participants' verbal count ranges; their representations of exact cardinalities were limited to the number words they knew. Beyond that range, they resorted to numerical approximation. These results resolve competing accounts of previous findings and provide unambiguous evidence that large exact number concepts are enabled by language.
Collapse
Affiliation(s)
- Benjamin Pitt
- Department of Psychology, University of
California, Berkeley
| | - Edward Gibson
- Department of Brain and Cognitive
Sciences, Massachusetts Institute of Technology
| | | |
Collapse
|
158
|
|
159
|
Szkudlarek E, Zhang H, DeWind NK, Brannon EM. Young Children Intuitively Divide Before They Recognize the Division Symbol. Front Hum Neurosci 2022; 16:752190. [PMID: 35280204 PMCID: PMC8913505 DOI: 10.3389/fnhum.2022.752190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/24/2022] [Indexed: 01/29/2023] Open
Abstract
Children bring intuitive arithmetic knowledge to the classroom before formal instruction in mathematics begins. For example, children can use their number sense to add, subtract, compare ratios, and even perform scaling operations that increase or decrease a set of dots by a factor of 2 or 4. However, it is currently unknown whether children can engage in a true division operation before formal mathematical instruction. Here we examined the ability of 6- to 9-year-old children and college students to perform symbolic and non-symbolic approximate division. Subjects were presented with non-symbolic (dot array) or symbolic (Arabic numeral) dividends ranging from 32 to 185, and non-symbolic divisors ranging from 2 to 8. Subjects compared their imagined quotient to a visible target quantity. Both children (Experiment 1 N = 89, Experiment 2 N = 42) and adults (Experiment 3 N = 87) were successful at the approximate division tasks in both dots and numeral formats. This was true even among the subset of children that could not recognize the division symbol or solve simple division equations, suggesting intuitive division ability precedes formal division instruction. For both children and adults, the ability to divide non-symbolically mediated the relation between Approximate Number System (ANS) acuity and symbolic math performance, suggesting that the ability to calculate non-symbolically may be a mechanism of the relation between ANS acuity and symbolic math. Our findings highlight the intuitive arithmetic abilities children possess before formal math instruction.
Collapse
|
160
|
Bryer MAH, Koopman SE, Cantlon JF, Piantadosi ST, MacLean EL, Baker JM, Beran MJ, Jones SM, Jordan KE, Mahamane S, Nieder A, Perdue BM, Range F, Stevens JR, Tomonaga M, Ujfalussy DJ, Vonk J. The evolution of quantitative sensitivity. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200529. [PMID: 34957840 PMCID: PMC8710878 DOI: 10.1098/rstb.2020.0529] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The ability to represent approximate quantities appears to be phylogenetically widespread, but the selective pressures and proximate mechanisms favouring this ability remain unknown. We analysed quantity discrimination data from 672 subjects across 33 bird and mammal species, using a novel Bayesian model that combined phylogenetic regression with a model of number psychophysics and random effect components. This allowed us to combine data from 49 studies and calculate the Weber fraction (a measure of quantity representation precision) for each species. We then examined which cognitive, socioecological and biological factors were related to variance in Weber fraction. We found contributions of phylogeny to quantity discrimination performance across taxa. Of the neural, socioecological and general cognitive factors we tested, cortical neuron density and domain-general cognition were the strongest predictors of Weber fraction, controlling for phylogeny. Our study is a new demonstration of evolutionary constraints on cognition, as well as of a relation between species-specific neuron density and a particular cognitive ability. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.
Collapse
Affiliation(s)
- Margaret A H Bryer
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Department of Psychology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Sarah E Koopman
- School of Psychology and Neuroscience, University of St. Andrews, St Andrews KY16 9AJ, UK
| | - Jessica F Cantlon
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Steven T Piantadosi
- Department of Psychology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Evan L MacLean
- School of Anthropology, University of Arizona, Tucson, AZ 85719, USA.,College of Veterinary Medicine, University of Arizona, Tucson, AZ 85719, USA
| | - Joseph M Baker
- Center for Interdisciplinary Brain Sciences Research, Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michael J Beran
- Department of Psychology and Language Research Center, Georgia State University, Atlanta, GA 30302, USA
| | - Sarah M Jones
- Psychology Program, Berea College, Berea, KY 40403, USA
| | - Kerry E Jordan
- Department of Psychology, Utah State University, Logan, UT 84322, USA
| | - Salif Mahamane
- Behavioral and Social Sciences Department, Western Colorado University, Gunnison, CO 81231, USA
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen 72076, Germany
| | - Bonnie M Perdue
- Department of Psychology, Agnes Scott College, Decatur, GA 30030, USA
| | - Friederike Range
- Domestication Lab, Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Savoyenstrasse 1a, Vienna 1160, Austria
| | - Jeffrey R Stevens
- Department of Psychology and Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | | - Dorottya J Ujfalussy
- MTA-ELTE Comparative Ethology Research Group, Eötvös Loránd University of Sciences (ELTE), Budapest 1117, Hungary.,Department of Ethology, Eötvös Loránd University of Sciences (ELTE), Budapest 1117, Hungary
| | - Jennifer Vonk
- Department of Psychology, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
161
|
Zhang H, Zhen Y, Yu S, Long T, Zhang B, Jiang X, Li J, Fang W, Sigman M, Dehaene S, Wang L. Working Memory for Spatial Sequences: Developmental and Evolutionary Factors in Encoding Ordinal and Relational Structures. J Neurosci 2022; 42:850-864. [PMID: 34862186 PMCID: PMC8808738 DOI: 10.1523/jneurosci.0603-21.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022] Open
Abstract
Sequence learning is a ubiquitous facet of human and animal cognition. Here, using a common sequence reproduction task, we investigated whether and how the ordinal and relational structures linking consecutive elements are acquired by human adults, children, and macaque monkeys. While children and monkeys exhibited significantly lower precision than adults for spatial location and temporal order information, only monkeys appeared to exceedingly focus on the first item. Most importantly, only humans, regardless of age, spontaneously extracted the spatial relations between consecutive items and used a chunking strategy to compress sequences in working memory. Monkeys did not detect such relational structures, even after extensive training. Monkey behavior was captured by a conjunctive coding model, whereas a chunk-based conjunctive model explained more variance in humans. These age- and species-related differences are indicative of developmental and evolutionary mechanisms of sequence encoding and may provide novel insights into the uniquely human cognitive capacities.SIGNIFICANCE STATEMENT Sequence learning, the ability to encode the order of discrete elements and their relationships presented within a sequence, is a ubiquitous facet of cognition among humans and animals. By exploring sequence-processing abilities at different human developmental stages and in nonhuman primates, we found that only humans, regardless of age, spontaneously extracted the spatial relations between consecutive items and used an internal language to compress sequences in working memory. The findings provided insights into understanding the origins of sequence capabilities in humans and how they evolve through development to identify the unique aspects of human cognitive capacity, which includes the comprehension, learning, and production of sequences, and perhaps, above all, language processing.
Collapse
Affiliation(s)
- He Zhang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yanfen Zhen
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Shijing Yu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Tenghai Long
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Bingqian Zhang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, People's Republic of China
| | - Xinjian Jiang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Junru Li
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Wen Fang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Mariano Sigman
- Laboratory Neuroscience, Universidad Torcuato di Tella, C1428 Buenos Aires, Argentina
- School of Language and Education, Universidad Nebrija, 28015 Madrid, Spain
| | - Stanislas Dehaene
- Collège de France, 75231 Paris Cedex 05, France
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, NeuroSpin Center, Université Paris Sud/Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Liping Wang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| |
Collapse
|
162
|
Yang Y, Piantadosi ST. One model for the learning of language. Proc Natl Acad Sci U S A 2022; 119:e2021865119. [PMID: 35074868 PMCID: PMC8812683 DOI: 10.1073/pnas.2021865119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/18/2021] [Indexed: 01/29/2023] Open
Abstract
A major goal of linguistics and cognitive science is to understand what class of learning systems can acquire natural language. Until recently, the computational requirements of language have been used to argue that learning is impossible without a highly constrained hypothesis space. Here, we describe a learning system that is maximally unconstrained, operating over the space of all computations, and is able to acquire many of the key structures present in natural language from positive evidence alone. We demonstrate this by providing the same learning model with data from 74 distinct formal languages which have been argued to capture key features of language, have been studied in experimental work, or come from an interesting complexity class. The model is able to successfully induce the latent system generating the observed strings from small amounts of evidence in almost all cases, including for regular (e.g., an , [Formula: see text], and [Formula: see text]), context-free (e.g., [Formula: see text], and [Formula: see text]), and context-sensitive (e.g., [Formula: see text], and xx) languages, as well as for many languages studied in learning experiments. These results show that relatively small amounts of positive evidence can support learning of rich classes of generative computations over structures. The model provides an idealized learning setup upon which additional cognitive constraints and biases can be formalized.
Collapse
Affiliation(s)
- Yuan Yang
- College of Computing, Georgia Institute of Technology, Atlanta, GA 30332
| | - Steven T Piantadosi
- Department of Psychology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
163
|
Hutchison JE, Ansari D, Zheng S, De Jesus S, Lyons IM. Extending ideas of numerical order beyond the count-list from kindergarten to first grade. Cognition 2022; 223:105019. [PMID: 35121431 DOI: 10.1016/j.cognition.2022.105019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 01/29/2023]
Abstract
Ordinal processing plays a fundamental role in both the representation and manipulation of symbolic numbers. As such, it is important to understand how children come to develop a sense of ordinality in the first place. The current study examines the role of the count-list in the development of ordinal knowledge through the investigation of two research questions: (1) Do K-1 children struggle to extend the notion of numerical order beyond the count-list, and if so (2) does this extension develop incrementally or manifest as a qualitative re-organization of how children recognize the ordinality of numerical sequences. Overall, we observed that although young children reliably identified adjacent ordered sequences (i.e., those that match the count-list; '2-3-4') as being in the correct ascending order, they performed significantly below chance on non-adjacent ordered trials (i.e., those that do not match the count-list but are in the correct order; '2-4-6') from the beginning of kindergarten to the end of first grade. Further, both qualitative and quantitative analyses supported the conclusion that the ability to extend notions of ordinality beyond the count-list emerged as a conceptual shift in ordinal understanding rather than through incremental improvements. These findings are the first to suggest that the ability to extend notions of ordinality beyond the count-list to include non-adjacent numbers is non-trivial and reflects a significant developmental hurdle that most children must overcome in order to develop a mature sense of ordinality.
Collapse
Affiliation(s)
- Jane E Hutchison
- Georgetown University, Department of Psychology, United States of America
| | - Daniel Ansari
- University of Western Ontario, Department of Psychology and Brain & Mind Institute, Canada
| | - Samuel Zheng
- Toronto District School Board, Research and Development, Canada
| | | | - Ian M Lyons
- Georgetown University, Department of Psychology, United States of America.
| |
Collapse
|
164
|
Hart Y, Mahadevan L, Dillon MR. Euclid's Random Walk: Developmental Changes in the Use of Simulation for Geometric Reasoning. Cogn Sci 2022; 46:e13070. [PMID: 35085405 DOI: 10.1111/cogs.13070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 09/04/2021] [Accepted: 11/10/2021] [Indexed: 01/29/2023]
Abstract
Euclidean geometry has formed the foundation of architecture, science, and technology for millennia, yet the development of human's intuitive reasoning about Euclidean geometry is not well understood. The present study explores the cognitive processes and representations that support the development of humans' intuitive reasoning about Euclidean geometry. One-hundred-twenty-five 7- to 12-year-old children and 30 adults completed a localization task in which they visually extrapolated missing parts of fragmented planar triangles and a reasoning task in which they answered verbal questions about the general properties of planar triangles. While basic Euclidean principles guided even young children's visual extrapolations, only older children and adults reasoned about triangles in ways that were consistent with Euclidean geometry. Moreover, a relation beteen visual extrapolation and reasoning appeared only in older children and adults. Reasoning consistent with Euclidean geometry may thus emerge when children abandon incorrect, axiomatic-based reasoning strategies and come to reason using mental simulations of visual extrapolations.
Collapse
Affiliation(s)
- Yuval Hart
- Department of Psychology, The Hebrew University of Jerusalem.,Paulson School of Engineering and Applied Sciences, Harvard University
| | - L Mahadevan
- Paulson School of Engineering and Applied Sciences, Harvard University.,Department of Physics, Harvard University.,Center for Brain Science, Harvard University.,Department of Organismic and Evolutionary Biology, Harvard University
| | | |
Collapse
|
165
|
Fargier-Bochaton O, Wang X, Dipasquale G, Laouiti M, Kountouri M, Gorobets O, Nguyen NP, Miralbell R, Vinh-Hung V. Prone versus supine free-breathing for right-sided whole breast radiotherapy. Sci Rep 2022; 12:525. [PMID: 35017568 PMCID: PMC8752750 DOI: 10.1038/s41598-021-04385-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/24/2021] [Indexed: 01/29/2023] Open
Abstract
Prone setup has been advocated to improve organ sparing in whole breast radiotherapy without impairing breast coverage. We evaluate the dosimetric advantage of prone setup for the right breast and look for predictors of the gain. Right breast cancer patients treated in 2010-2013 who had a dual supine and prone planning were retrospectively identified. A penalty score was computed from the mean absolute dose deviation to heart, lungs, breasts, and tumor bed for each patient's supine and prone plan. Dosimetric advantage of prone was assessed by the reduction of penalty score from supine to prone. The effect of patients' characteristics on the reduction of penalty was analyzed using robust linear regression. A total of 146 patients with right breast dual plans were identified. Prone compared to supine reduced the penalty score in 119 patients (81.5%). Lung doses were reduced by 70.8%, from 4.8 Gy supine to 1.4 Gy prone. Among patient's characteristics, the only significant predictors were the breast volumes, but no cutoff could identify when prone would be less advantageous than supine. Prone was associated with a dosimetric advantage in most patients. It sets a benchmark of achievable lung dose reduction.Trial registration: ClinicalTrials.gov NCT02237469, HUGProne, September 11, 2014, retrospectively registered.
Collapse
Affiliation(s)
| | - Xinzhuo Wang
- Radiation Oncology Department, Geneva University Hospitals, Geneva, Switzerland
- Radiation Oncology, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Giovanna Dipasquale
- Radiation Oncology Department, Geneva University Hospitals, Geneva, Switzerland
| | - Mohamed Laouiti
- Radiation Oncology Department, Geneva University Hospitals, Geneva, Switzerland
- Service de Radio-Oncologie, Hôpital Riviera-Chablais, Rennaz, Switzerland
| | - Melpomeni Kountouri
- Radiation Oncology Department, Geneva University Hospitals, Geneva, Switzerland
| | | | - Nam P Nguyen
- Radiation Oncology, Howard University, Washington, DC, USA
| | - Raymond Miralbell
- Radiation Oncology Department, Geneva University Hospitals, Geneva, Switzerland.
- Université de Genève, Geneva, Switzerland.
- Centro de Protonterapia Quirónsalud, Pozuelo de Alarcón, 28223, Madrid, Spain.
- Servei de Radiooncologia, Institut Oncològic Teknon, Quironsalud, Vilana 12, 08022, Barcelona, Spain.
| | - Vincent Vinh-Hung
- Radiation Oncology Department, Geneva University Hospitals, Geneva, Switzerland
- CHU de Martinique, Fort-de-France, Martinique, France
| |
Collapse
|
166
|
Abstract
A robust left digit effect arises in number line estimation such that adults' estimates for numerals with different hundreds place digits but nearly identical magnitudes are systematically different from one another (e.g., 299 is placed too far to the left of 302). In two experiments, we investigate whether brief feedback interventions designed to increase task effort can reduce or eliminate the left digit effect in a self-paced 0-1,000 number line estimation task. Participants were assigned to complete three blocks of 120 trials each where the middle block contained feedback or no feedback. Feedback was in the form of summary accuracy scores (Experiment 1; N = 153) or competitive (summary) accuracy scores (Experiment 2; N = 145). In both experiments, planned analyses revealed large left digit effects in all blocks regardless of feedback condition. Feedback did not lead to a reduction in the left digit effect in either experiment, but improvements in overall accuracy were observed. We conclude that there are no changes in the left digit effect resulting from either summary accuracy feedback or competitive accuracy feedback. Also reported are exploratory analyses of trial characteristics (e.g., whether 299 is presented before or after 302) and the left digit effect.
Collapse
|
167
|
OUP accepted manuscript. Cereb Cortex 2022; 32:4733-4745. [DOI: 10.1093/cercor/bhab513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/29/2023] Open
|
168
|
Cicchini GM, Anobile G, Chelli E, Arrighi R, Burr DC. Uncertainty and Prior Assumptions, Rather Than Innate Logarithmic Encoding, Explain Nonlinear Number-to-Space Mapping. Psychol Sci 2021; 33:121-134. [PMID: 34936846 DOI: 10.1177/09567976211034501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mapping number to space is natural and spontaneous but often nonveridical, showing a clear compressive nonlinearity that is thought to reflect intrinsic logarithmic encoding of numerical values. We asked 78 adult participants to map dot arrays onto a number line across nine trials. Combining participant data, we confirmed that on the first trial, mapping was heavily compressed along the number line, but it became more linear across trials. Responses were well described by logarithmic compression but also by a parameter-free Bayesian model of central tendency, which quantitatively predicted the relationship between nonlinearity and number acuity. To experimentally test the Bayesian hypothesis, we asked 90 new participants to complete a color-line task in which they mapped noise-perturbed color patches to a "color line." When there was more noise at the high end of the color line, the mapping was logarithmic, but it became exponential with noise at the low end. We conclude that the nonlinearity of both number and color mapping reflects contextual Bayesian inference processes rather than intrinsic logarithmic encoding.
Collapse
Affiliation(s)
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence
| | - Eleonora Chelli
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence
| | - David C Burr
- Institute of Neuroscience, National Research Council, Pisa, Italy.,Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence
| |
Collapse
|
169
|
Lopiccolo D, Chang CB. Cultural factors weaken but do not reverse left-to-right spatial biases in numerosity processing: Data from Arabic and English monoliterates and Arabic-English biliterates. PLoS One 2021; 16:e0261146. [PMID: 34914756 PMCID: PMC8675726 DOI: 10.1371/journal.pone.0261146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/24/2021] [Indexed: 01/29/2023] Open
Abstract
Directional response biases due to a conceptual link between space and number, such as a left-to-right hand bias for increasing numerical magnitude, are known as the SNARC (Spatial-Numerical Association of Response Codes) effect. We investigated how the SNARC effect for numerosities would be influenced by reading-writing direction, task instructions, and ambient visual environment in four literate populations exemplifying opposite reading-writing cultures-namely, Arabic (right-to-left script) and English (left-to-right script). Monoliterates and biliterates in Jordan and the U.S. completed a speeded numerosity comparison task to assess the directionality and magnitude of a SNARC effect in their numerosity processing. Monoliterates' results replicated previously documented effects of reading-writing direction and task instructions: the SNARC effect found in left-to-right readers was weakened in right-to-left readers, and the left-to-right group exhibited a task-dependency effect (SNARC effect in the smaller condition, reverse SNARC effect in the larger condition). Biliterates' results did not show a clear effect of environment; instead, both biliterate groups resembled English monoliterates in showing a left-to-right, task-dependent SNARC effect, albeit weaker than English monoliterates'. The absence of significant biases in all Arabic-reading groups (biliterates and Arabic monoliterates) points to a potential conflict between distinct spatial-numerical mapping codes. This view is explained in terms of the proposed Multiple Competing Codes Theory (MCCT), which posits three distinct spatial-numerical mapping codes (innate, cardinal, ordinal) during numerical processing-each involved at varying levels depending on individual and task factors.
Collapse
Affiliation(s)
- Dominique Lopiccolo
- Department of Linguistics, Boston University, Boston, Massachusetts, United States of America
| | - Charles B. Chang
- Department of Linguistics, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
170
|
Constructing rationals through conjoint measurement of numerator and denominator as approximate integer magnitudes in tradeoff relations. Behav Brain Sci 2021; 44:e204. [PMID: 34907890 DOI: 10.1017/s0140525x21001497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To investigate mechanisms of rational representation, I consider (1) construction of an ordered continuum of psychophysical scale of magnitude of sensation; (2) counting mechanism leading to an approximate numerosity scale for integers; and (3) conjoint measurement structure pitting the denominator against the numerator in tradeoff positions. Number sense of resulting rationals is neither intuitive nor expedient in their manipulation.
Collapse
|
171
|
Real models: The limits of behavioural evidence for understanding the ANS. Behav Brain Sci 2021; 44:e186. [PMID: 34907874 DOI: 10.1017/s0140525x21001151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Clarke and Beck use behavioural evidence to argue that (1) approximate ratio computations are sufficient for claiming that the approximate number system (ANS) represents the rationals, and (2) the ANS does not represent the reals. We argue that pure behaviour is a poor litmus test for this problem, and that we should trust the psychophysical models that place ANS representations within the reals.
Collapse
|
172
|
Sokolowski HM, Merkley R, Kingissepp SSB, Vaikuntharajan P, Ansari D. Children's attention to numerical quantities relates to verbal number knowledge: An introduction to the Build-A-Train task. Dev Sci 2021; 25:e13211. [PMID: 34889002 DOI: 10.1111/desc.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/24/2021] [Accepted: 12/02/2021] [Indexed: 01/29/2023]
Abstract
Which dimension of a set of objects is more salient to young children: number or size? The 'Build-A-Train' task was developed and used to examine whether children spontaneously use a number or physical size approach on an un-cued matching task. In the Build-A-Train task, an experimenter assembles a train using one to five blocks of a particular length and asks the child to build the same train. The child's blocks differ in length from the experimenter's blocks, causing the child to build a train that matches based on either the number of blocks or length of the train, as it is not possible to match on both. One hundred and nineteen children between 2 years 2 months and 6 years 0 months of age (M = 4.05, SD = 0.84) completed the Build-A-Train task, and the Give-a-Number task, a classic task used to assess children's conceptual knowledge of verbal number words. Across train lengths and verbal number knowledge levels, children used a number approach more than a size approach on the Build-A-Train task. However, children were especially likely to use a number approach over a size approach when they knew the verbal number word that corresponded to the quantity of blocks in the train, particularly for quantities smaller than four. Therefore, children's attention to number relates to their knowledge of verbal number words. The Build-A-Train task and findings from the current study set a foundation for future longitudinal research to investigate the causal relationship between children's acquisition of symbolic mathematical concepts and attention to number.
Collapse
Affiliation(s)
- H Moriah Sokolowski
- Rotman Research Institute, Baycrest Hospital, Toronto, Ontario, Canada.,Department of Psychology, Faculty of Education, Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - Rebecca Merkley
- Department of Cognitive Science, Carleton University, Ottawa, Ontario, Canada
| | - Sarah Samantha Bray Kingissepp
- Department of Psychology, Faculty of Education, Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - Praja Vaikuntharajan
- Department of Psychology, Faculty of Education, Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - Daniel Ansari
- Department of Psychology, Faculty of Education, Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
173
|
Pantsar M. On the development of geometric cognition: Beyond nature vs. nurture. PHILOSOPHICAL PSYCHOLOGY 2021. [DOI: 10.1080/09515089.2021.2014441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Markus Pantsar
- Department of Philosophy, History and Art Studies, University of Helsinki, Helsinki, Finland
- KHK Kolleg Cultures of Research, RWTH University, Aachen, Germany
| |
Collapse
|
174
|
Lõoke M, Marinelli L, Agrillo C, Guérineau C, Mongillo P. Dogs (canis familiaris) underestimate the quantity of connected items: first demonstration of susceptibility to the connectedness illusion in non-human animals. Sci Rep 2021; 11:23291. [PMID: 34857858 PMCID: PMC8639746 DOI: 10.1038/s41598-021-02791-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
In humans, numerical estimation is affected by perceptual biases, such as those originating from the spatial arrangement of elements. Different animal species can also make relative quantity judgements. This includes dogs, who have been proposed as a good model for comparative neuroscience. However, dogs do not show the same perceptual biases observed in humans. Thus, the exact perceptual/cognitive mechanisms underlying quantity estimations in dogs and their degree of similarity with humans are still a matter of debate. Here we explored whether dogs are susceptible to the connectedness illusion, an illusion based on the tendency to underestimate the quantity of interconnected items. Dogs were first trained to choose the larger of two food arrays. Then, they were presented with two arrays containing the same quantity of food, of which one had items interconnected by lines. Dogs significantly selected the array with unconnected items, suggesting that, like in humans, connectedness determines underestimation biases, possibly disrupting the perceptual system's ability to segment the display into discrete objects. The similarity in dogs' and humans' susceptibility to the connectedness, but not to other numerical illusions, suggests that different mechanisms are involved in the estimation of quantity of stimuli with different characteristics.
Collapse
Affiliation(s)
- Miina Lõoke
- Laboratory of Applied Ethology, Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Lieta Marinelli
- Laboratory of Applied Ethology, Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy.
| | - Christian Agrillo
- Department of General Psychology, University of Padua, Padua, Italy
- Padua Neuroscience Centre, University of Padua, Padua, Italy
| | - Cécile Guérineau
- Laboratory of Applied Ethology, Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Paolo Mongillo
- Laboratory of Applied Ethology, Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| |
Collapse
|
175
|
Nordt M, Gomez J, Natu VS, Rezai AA, Finzi D, Kular H, Grill-Spector K. Cortical recycling in high-level visual cortex during childhood development. Nat Hum Behav 2021; 5:1686-1697. [PMID: 34140657 PMCID: PMC8678383 DOI: 10.1038/s41562-021-01141-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Human ventral temporal cortex contains category-selective regions that respond preferentially to ecologically relevant categories such as faces, bodies, places and words and that are causally involved in the perception of these categories. How do these regions develop during childhood? We used functional magnetic resonance imaging to measure longitudinal development of category selectivity in school-age children over 1 to 5 years. We discovered that, from young childhood to the teens, face- and word-selective regions in ventral temporal cortex expand and become more category selective, but limb-selective regions shrink and lose their preference for limbs. Critically, as a child develops, increases in face and word selectivity are directly linked to decreases in limb selectivity, revealing that during childhood, limb selectivity in ventral temporal cortex is repurposed into word and face selectivity. These data provide evidence for cortical recycling during childhood development. This has important implications for understanding typical as well as atypical brain development and necessitates a rethinking of how cortical function develops during childhood.
Collapse
Affiliation(s)
- Marisa Nordt
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Jesse Gomez
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Vaidehi S Natu
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Alex A Rezai
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Dawn Finzi
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Holly Kular
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, USA.
- Neurosciences Program, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
176
|
Schneider RM, Brockbank E, Feiman R, Barner D. Counting and the ontogenetic origins of exact equality. Cognition 2021; 218:104952. [PMID: 34801862 DOI: 10.1016/j.cognition.2021.104952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 01/29/2023]
Abstract
Humans are unique in their capacity to both represent number exactly and to express these representations symbolically. This correlation has prompted debate regarding whether symbolic number systems are necessary to represent large exact number. Previous work addressing this question in innumerate adults and semi-numerate children has been limited by conflicting results and differing methodologies, and has not yielded a clear answer. We address this debate by adapting methods used with innumerate populations (a "set-matching" task) for 3- to 5-year-old US children at varying stages of symbolic number acquisition. In five studies we find that children's ability to match sets exactly is related not simply to knowing the meanings of a few number words, but also to understanding how counting is used to generate sets (i.e., the cardinal principle). However, while children were more likely to match sets after acquiring the cardinal principle, they nevertheless demonstrated failures, compatible with the hypothesis that the ability to reason about exact equality emerges sometime later. These findings provide important data on the origin of exact number concepts, and point to knowledge of a counting system, rather than number language in general, as a key ingredient in the ability to reason about large exact number.
Collapse
Affiliation(s)
- Rose M Schneider
- Department of Psychology, University of California, San Diego, CA, United States of America; Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, United States of America.
| | - Erik Brockbank
- Department of Psychology, University of California, San Diego, CA, United States of America; Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, United States of America
| | - Roman Feiman
- Department of Psychology, University of California, San Diego, CA, United States of America; Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, United States of America
| | - David Barner
- Department of Psychology, University of California, San Diego, CA, United States of America; Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, United States of America
| |
Collapse
|
177
|
Wilkey ED, Shanley L, Sabb F, Ansari D, Cohen JC, Men V, Heller NA, Clarke B. Sharpening, focusing, and developing: A study of change in nonsymbolic number comparison skills and math achievement in 1st grade. Dev Sci 2021; 25:e13194. [PMID: 34800342 DOI: 10.1111/desc.13194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 01/29/2023]
Abstract
Children's ability to discriminate nonsymbolic number (e.g., the number of items in a set) is a commonly studied predictor of later math skills. Number discrimination improves throughout development, but what drives this improvement is unclear. Competing theories suggest that it may be due to a sharpening numerical representation or an improved ability to pay attention to number and filter out non-numerical information. We investigate this issue by studying change in children's performance (N = 65) on a nonsymbolic number comparison task, where children decide which of two dot arrays has more dots, from the middle to the end of 1st grade (mean age at time 1 = 6.85 years old). In this task, visual properties of the dot arrays such as surface area are either congruent (the more numerous array has more surface area) or incongruent. Children rely more on executive functions during incongruent trials, so improvements in each congruency condition provide information about the underlying cognitive mechanisms. We found that accuracy rates increased similarly for both conditions, indicating a sharpening sense of numerical magnitude, not simply improved attention to the numerical task dimension. Symbolic number skills predicted change in congruent trials, but executive function did not predict change in either condition. No factor predicted change in math achievement. Together, these findings suggest that nonsymbolic number processing undergoes development related to existing symbolic number skills, development that appears not to be driving math gains during this period. Children's ability to discriminate nonsymbolic number improves throughout development. Competing theories suggest improvement due to sharpening magnitude representations or changes in attention and inhibition. The current study investigates change in nonsymbolic number comparison performance during first grade and whether symbolic number skills, math skills, or executive function predict change. Children's performance increased across visual control conditions (i.e., congruent or incongruent with number) suggesting an overall sharpening of number processing. Symbolic number skills predicted change in nonsymbolic number comparison performance.
Collapse
Affiliation(s)
- Eric D Wilkey
- Brain & Mind Institute, Western University, London, Ontario, Canada
| | - Lina Shanley
- Center on Teaching and Learning, University of Oregon, Eugene, Oregon, USA
| | - Fred Sabb
- Center on Teaching and Learning, University of Oregon, Eugene, Oregon, USA
| | - Daniel Ansari
- Brain & Mind Institute, Western University, London, Ontario, Canada
| | - Jason C Cohen
- Center on Teaching and Learning, University of Oregon, Eugene, Oregon, USA
| | - Virany Men
- Center on Teaching and Learning, University of Oregon, Eugene, Oregon, USA
| | - Nicole A Heller
- Center on Teaching and Learning, University of Oregon, Eugene, Oregon, USA
| | - Ben Clarke
- Center on Teaching and Learning, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
178
|
Hyde DC, Mou Y, Berteletti I, Spelke ES, Dehaene S, Piazza M. Testing the role of symbols in preschool numeracy: An experimental computer-based intervention study. PLoS One 2021; 16:e0259775. [PMID: 34780526 PMCID: PMC8592431 DOI: 10.1371/journal.pone.0259775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/27/2021] [Indexed: 01/29/2023] Open
Abstract
Numeracy is of critical importance for scholastic success and modern-day living, but the precise mechanisms that drive its development are poorly understood. Here we used novel experimental training methods to begin to investigate the role of symbols in the development of numeracy in preschool-aged children. We assigned pre-school children in the U.S. and Italy (N = 215; Mean age = 49.15 months) to play one of five versions of a computer-based numerical comparison game for two weeks. The different versions of the game were equated on basic features of gameplay and demands but systematically varied in numerical content. Critically, some versions included non-symbolic numerical comparisons only, while others combined non-symbolic numerical comparison with symbolic aids of various types. Before and after training we assessed four components of early numeracy: counting proficiency, non-symbolic numerical comparison, one-to-one correspondence, and arithmetic set transformation. We found that overall children showed improvement in most of these components after completing these short trainings. However, children trained on numerical comparisons with symbolic aids made larger gains on assessments of one-to-one correspondence and arithmetic transformation compared to children whose training involved non-symbolic numerical comparison only. Further exploratory analyses suggested that, although there were no major differences between children trained with verbal symbols (e.g., verbal counting) and non-verbal visuo-spatial symbols (i.e., abacus counting), the gains in one-to-one correspondence may have been driven by abacus training, while the gains in non-verbal arithmetic transformations may have been driven by verbal training. These results provide initial evidence that the introduction of symbols may contribute to the emergence of numeracy by enhancing the capacity for thinking about exact equality and the numerical effects of set transformations. More broadly, this study provides an empirical basis to motivate further focused study of the processes by which children’s mastery of symbols influences children’s developing mastery of numeracy.
Collapse
Affiliation(s)
- Daniel C. Hyde
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
- * E-mail:
| | - Yi Mou
- Department of Psychology, Guangdong Provincial Key Laboratory of Social Cognitive Neuroscience and Mental Health, Sun Yat-sen University, Guangzhou, China
| | - Ilaria Berteletti
- Educational Neuroscience Program, Gallaudet University, Washington, D.C, United States of America
| | - Elizabeth S. Spelke
- Department of Psychology, Harvard University, Cambridge, MA, United States of America
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, NeuroSpin Center, Université Paris-Sud, Université Paris-Saclay, Gif/Yvette, France
- Collège de France, Paris, France
| | - Manuela Piazza
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
179
|
Jayles B, Sire C, Kurvers RHJM. Crowd control: Reducing individual estimation bias by sharing biased social information. PLoS Comput Biol 2021; 17:e1009590. [PMID: 34843458 PMCID: PMC8659305 DOI: 10.1371/journal.pcbi.1009590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 12/09/2021] [Accepted: 10/25/2021] [Indexed: 01/29/2023] Open
Abstract
Cognitive biases are widespread in humans and animals alike, and can sometimes be reinforced by social interactions. One prime bias in judgment and decision-making is the human tendency to underestimate large quantities. Previous research on social influence in estimation tasks has generally focused on the impact of single estimates on individual and collective accuracy, showing that randomly sharing estimates does not reduce the underestimation bias. Here, we test a method of social information sharing that exploits the known relationship between the true value and the level of underestimation, and study if it can counteract the underestimation bias. We performed estimation experiments in which participants had to estimate a series of quantities twice, before and after receiving estimates from one or several group members. Our purpose was threefold: to study (i) whether restructuring the sharing of social information can reduce the underestimation bias, (ii) how the number of estimates received affects the sensitivity to social influence and estimation accuracy, and (iii) the mechanisms underlying the integration of multiple estimates. Our restructuring of social interactions successfully countered the underestimation bias. Moreover, we find that sharing more than one estimate also reduces the underestimation bias. Underlying our results are a human tendency to herd, to trust larger estimates than one's own more than smaller estimates, and to follow disparate social information less. Using a computational modeling approach, we demonstrate that these effects are indeed key to explain the experimental results. Overall, our results show that existing knowledge on biases can be used to dampen their negative effects and boost judgment accuracy, paving the way for combating other cognitive biases threatening collective systems.
Collapse
Affiliation(s)
- Bertrand Jayles
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
- Institute of Catastrophe Risk Management, Nanyang Technological University, Singapore, Republic of Singapore
| | - Clément Sire
- Laboratoire de Physique Théorique, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse – Paul Sabatier (UPS), Toulouse, France
| | - Ralf H. J. M. Kurvers
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
180
|
Duong S, Bachman HJ, Votruba-Drzal E, Libertus ME. What's in a question? Parents' question use in dyadic interactions and the relation to preschool-aged children's math abilities. J Exp Child Psychol 2021; 211:105213. [PMID: 34271439 PMCID: PMC8601003 DOI: 10.1016/j.jecp.2021.105213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/29/2023]
Abstract
The cognitive complexity of adults' questions, particularly during shared book reading, supports children's developing language skills. Questions can be described as having low cognitive demand (CD; e.g., labeling, matching) or high-CD (e.g., comparing, predicting). Little is known about the relation between different types of parental questioning and children's math abilities. The current study examined the quantity of low- and high-CD and domain-specific math questions that parents posed to their 4-year-old children in three structured activities and how the frequency of those questions relates to children's concurrent math and language skills. Parent-child dyads (n = 121) were observed interacting with a picture book, grocery store toys, and a puzzle for about 5 min each, and children completed math and spatial assessments. Although the frequency with which parents asked questions did not relate to children's outcomes, parents' use of high-CD questions was associated with children's spatial skills, standardized math scores, and vocabulary skills after controlling for parental utterances, child utterances, child age, and family socioeconomic status. However, domain-specific math questions were not related to any child outcomes above and beyond parents' total questions. This study suggests that domain-general questions that vary in CD (low and high) are differentially related to children's math and language abilities, which can inform the ways in which parents engage in early learning opportunities with their children.
Collapse
Affiliation(s)
- Shirley Duong
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Heather J Bachman
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Elizabeth Votruba-Drzal
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Melissa E Libertus
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
181
|
Messina A, Potrich D, Schiona I, Sovrano VA, Vallortigara G. The Sense of Number in Fish, with Particular Reference to Its Neurobiological Bases. Animals (Basel) 2021; 11:ani11113072. [PMID: 34827804 PMCID: PMC8614421 DOI: 10.3390/ani11113072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 01/29/2023] Open
Abstract
Simple Summary The ability to deal with quantity, both discrete (numerosities) and continuous (spatial or temporal extent) developed from an evolutionarily conserved system for approximating numerical magnitude. Non-symbolic number cognition based on an approximate sense of magnitude has been documented in a variety of vertebrate species, including fish. Fish, in particular zebrafish, are widely used as models for the investigation of the genetics and molecular mechanisms of behavior, and thus may be instrumental to development of a neurobiology of number cognition. We review here the behavioural studies that have permitted to identify numerical abilities in fish, and the current status of the research related to the neurobiological bases of these abilities with special reference to zebrafish. Combining behavioural tasks with molecular genetics, molecular biology and confocal microscopy, a role of the retina and optic tectum in the encoding of continuous magnitude in larval zebrafish has been reported, while the thalamus and the dorso-central subdivision of pallium in the encoding of discrete magnitude (number) has been documented in adult zebrafish. Research in fish, in particular zebrafish, may reveal instrumental for identifying and characterizing the molecular signature of neurons involved in quantity discrimination processes of all vertebrates, including humans. Abstract It is widely acknowledged that vertebrates can discriminate non-symbolic numerosity using an evolutionarily conserved system dubbed Approximate Number System (ANS). Two main approaches have been used to assess behaviourally numerosity in fish: spontaneous choice tests and operant training procedures. In the first, animals spontaneously choose between sets of biologically-relevant stimuli (e.g., conspecifics, food) differing in quantities (smaller or larger). In the second, animals are trained to associate a numerosity with a reward. Although the ability of fish to discriminate numerosity has been widely documented with these methods, the molecular bases of quantities estimation and ANS are largely unknown. Recently, we combined behavioral tasks with molecular biology assays (e.g c-fos and egr1 and other early genes expression) showing that the thalamus and the caudal region of dorso-central part of the telencephalon seem to be activated upon change in numerousness in visual stimuli. In contrast, the retina and the optic tectum mainly responded to changes in continuous magnitude such as stimulus size. We here provide a review and synthesis of these findings.
Collapse
Affiliation(s)
- Andrea Messina
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
- Correspondence: (A.M.); (G.V.)
| | - Davide Potrich
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
| | - Ilaria Schiona
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
| | - Valeria Anna Sovrano
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Giorgio Vallortigara
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
- Correspondence: (A.M.); (G.V.)
| |
Collapse
|
182
|
Planton S, Dehaene S. Cerebral representation of sequence patterns across multiple presentation formats. Cortex 2021; 145:13-36. [PMID: 34673292 DOI: 10.1016/j.cortex.2021.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/06/2021] [Accepted: 09/01/2021] [Indexed: 01/29/2023]
Abstract
The ability to detect the abstract pattern underlying a temporal sequence of events is crucial to many human activities, including language and mathematics, but its cortical correlates remain poorly understood. It is also unclear whether repeated exposure to the same sequence of sensory stimuli is sufficient to induce the encoding of an abstract amodal representation of the pattern. Using functional MRI, we probed the existence of such abstract codes for sequential patterns, their localization in the human brain, and their relation to existing language and math-responsive networks. We used a passive sequence violation paradigm, in which a given sequence is repeatedly presented before rare deviant sequences are introduced. We presented two binary patterns, AABB and ABAB, in four presentation formats, either visual or auditory, and either cued by the identity of the stimuli or by their spatial location. Regardless of the presentation format, a habituation to the repeated pattern and a response to pattern violations were seen in a set of inferior frontal, intraparietal and temporal areas. Within language areas, such pattern-violation responses were only found in the inferior frontal gyrus (IFG), whereas all math-responsive regions responded to pattern changes. Most of these regions also responded whenever the modality or the cue changed, suggesting a general sensitivity to violation detection. Thus, the representation of sequence patterns appears to be distributed, yet to include a core set of abstract amodal regions, particularly the IFG.
Collapse
Affiliation(s)
- Samuel Planton
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin center, Gif/Yvette, France.
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin center, Gif/Yvette, France; Collège de France, Université PSL Paris Sciences Lettres, Paris, France
| |
Collapse
|
183
|
Lazzaro G, Battisti A, Varuzza C, Celestini L, Pani P, Costanzo F, Vicari S, Kadosh RC, Menghini D. Boosting Numerical Cognition in Children and Adolescents with Mathematical Learning Disabilities by a Brain-Based Intervention: A Study Protocol for a Randomized, Sham-Controlled Clinical Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10969. [PMID: 34682715 PMCID: PMC8536003 DOI: 10.3390/ijerph182010969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 01/29/2023]
Abstract
Numbers are everywhere, and supporting difficulties in numerical cognition (e.g., mathematical learning disability (MLD)) in a timely, effective manner is critical for their daily use. To date, only low-efficacy cognitive-based interventions are available. The extensive data on the neurobiology of MLD have increased interest in brain-directed approaches. The overarching goal of this study protocol is to provide the scientific foundation for devising brain-based and evidence-based treatments in children and adolescents with MLD. In this double-blind, between-subject, sham-controlled, randomized clinical trial, transcranial random noise stimulation (tRNS) plus cognitive training will be delivered to participants. Arithmetic, neuropsychological, psychological, and electrophysiological measures will be collected at baseline (T0), at the end of the interventions (T1), one week (T2) and three months later (T3). We expect that tRNS plus cognitive training will significantly improve arithmetic measures at T1 and at each follow-up (T2, T3) compared with placebo and that such improvements will correlate robustly and positively with changes in the neuropsychological, psychological, and electrophysiological measures. We firmly believe that this clinical trial will produce reliable and positive results to accelerate the validation of brain-based treatments for MLD that have the potential to impact quality of life.
Collapse
Affiliation(s)
- Giulia Lazzaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (A.B.); (C.V.); (L.C.); (F.C.); (S.V.)
- Department of Human Science, LUMSA University, 00193 Rome, Italy
| | - Andrea Battisti
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (A.B.); (C.V.); (L.C.); (F.C.); (S.V.)
| | - Cristiana Varuzza
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (A.B.); (C.V.); (L.C.); (F.C.); (S.V.)
| | - Laura Celestini
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (A.B.); (C.V.); (L.C.); (F.C.); (S.V.)
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy;
| | - Floriana Costanzo
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (A.B.); (C.V.); (L.C.); (F.C.); (S.V.)
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (A.B.); (C.V.); (L.C.); (F.C.); (S.V.)
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Roi Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, 30AD04 Elizabeth Fry Building, University of Surrey, Guildford GU2 7XH, UK;
- Department of Experimental Psychology, University of Oxford, New Radcliffe House, Radcliffe Observatory Quarter, Oxford OX2 6GG, UK
| | - Deny Menghini
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (A.B.); (C.V.); (L.C.); (F.C.); (S.V.)
| |
Collapse
|
184
|
Overmann KA. Finger-Counting and Numerical Structure. Front Psychol 2021; 12:723492. [PMID: 34650482 PMCID: PMC8506119 DOI: 10.3389/fpsyg.2021.723492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/19/2021] [Indexed: 01/29/2023] Open
Abstract
Number systems differ cross-culturally in characteristics like how high counting extends and which number is used as a productive base. Some of this variability can be linked to the way the hand is used in counting. The linkage shows that devices like the hand used as external representations of number have the potential to influence numerical structure and organization, as well as aspects of numerical language. These matters suggest that cross-cultural variability may be, at least in part, a matter of whether devices are used in counting, which ones are used, and how they are used.
Collapse
Affiliation(s)
- Karenleigh A Overmann
- Center for Cognitive Archaeology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| |
Collapse
|
185
|
Kim D, Opfer JE. Dynamics Versus Development in Numerosity Estimation: A Computational Model Accurately Predicts a Developmental Reversal. Cogn Sci 2021; 45:e13049. [PMID: 34647341 DOI: 10.1111/cogs.13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 01/29/2023]
Abstract
Perceptual judgments result from a dynamic process, but little is known about the dynamics of number-line estimation. A recent study proposed a computational model that combined a model of trial-to-trial changes with a model for the internal scaling of discrete numbers. Here, we tested a surprising prediction of the model-a situation in which children's estimates of numerosity would be better than those of adults. Consistent with the model simulations, task contexts led to a clear developmental reversal: children made more adult-like, linear estimates when to-be-estimated numbers were descending over trials (i.e., backward condition), whereas adults became more like children with logarithmic estimates when numbers were ascending (i.e., forward condition). In addition, adults' estimates were subject to inter-trial differences regardless of stimulus order. In contrast, children were not able to use the trial-to-trial dynamics unless stimuli varied systematically, indicating the limited cognitive capacity for dynamic updates. Together, the model adequately predicts both developmental and trial-to-trial changes in number-line tasks.
Collapse
Affiliation(s)
- Dan Kim
- Department of Psychology, The Ohio State University
| | - John E Opfer
- Department of Psychology, The Ohio State University
| |
Collapse
|
186
|
Numerical estimation strategies are correlated with math ability in school-aged children. COGNITIVE DEVELOPMENT 2021. [DOI: 10.1016/j.cogdev.2021.101089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
187
|
White PA. The extended present: an informational context for perception. Acta Psychol (Amst) 2021; 220:103403. [PMID: 34454251 DOI: 10.1016/j.actpsy.2021.103403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 01/29/2023] Open
Abstract
Several previous authors have proposed a kind of specious or subjective present moment that covers a few seconds of recent information. This article proposes a new hypothesis about the subjective present, renamed the extended present, defined not in terms of time covered but as a thematically connected information structure held in working memory and in transiently accessible form in long-term memory. The three key features of the extended present are that information in it is thematically connected, both internally and to current attended perceptual input, it is organised in a hierarchical structure, and all information in it is marked with temporal information, specifically ordinal and duration information. Temporal boundaries to the information structure are determined by hierarchical structure processing and by limits on processing and storage capacity. Supporting evidence for the importance of hierarchical structure analysis is found in the domains of music perception, speech and language processing, perception and production of goal-directed action, and exact arithmetical calculation. Temporal information marking is also discussed and a possible mechanism for representing ordinal and duration information on the time scale of the extended present is proposed. It is hypothesised that the extended present functions primarily as an informational context for making sense of current perceptual input, and as an enabler for perception and generation of complex structures and operations in language, action, music, exact calculation, and other domains.
Collapse
|
188
|
Abstract
Psychological research in small-scale societies is crucial for what it stands to tell us about human psychological diversity. However, people in these communities, typically Indigenous communities in the global South, have been underrepresented and sometimes misrepresented in psychological research. Here I discuss the promises and pitfalls of psychological research in these communities, reviewing why they have been of interest to social scientists and how cross-cultural comparisons have been used to test psychological hypotheses. I consider factors that may be undertheorized in our research, such as political and economic marginalization, and how these might influence our data and conclusions. I argue that more just and accurate representation of people from small-scale communities around the world will provide us with a fuller picture of human psychological similarity and diversity, and it will help us to better understand how this diversity is shaped by historical and social processes. Expected final online publication date for the Annual Review of Psychology, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- H Clark Barrett
- Department of Anthropology and Center for Behavior, Evolution, and Culture, University of California, Los Angeles, California 90095, USA;
| |
Collapse
|
189
|
Response bias in numerosity perception at early judgments and systematic underestimation. Atten Percept Psychophys 2021; 84:188-204. [PMID: 34518971 DOI: 10.3758/s13414-021-02365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 01/29/2023]
Abstract
Mental number representation relies on mapping numerosity based on nonsymbolic stimuli to symbolic magnitudes. It is known that mental number representation builds on a logarithmic scale, and thus numerosity decisions result in underestimation. In the current study, we investigated the temporal dynamics of numerosity perception in four experiments by employing the response-deadline SAT procedure. We presented random number of dots and required participants to make a numerosity judgment by comparing the perceived number of dots to 50. Using temporal dynamics in numerosity perception allowed us to observe a response bias at early decisions and a systematic underestimation at late decisions. In all three experiments, providing feedback diminished the magnitude of underestimation, whereas in Experiment 3 the absence of feedback resulted in greater underestimation errors. These results were in accordance with the findings that suggested feedback is necessary for the calibration of the mental number representation.
Collapse
|
190
|
Wang L, Liang X, Yin Y, Kang J. Bidirectional Mapping Between the Symbolic Number System and the Approximate Number System. Exp Psychol 2021; 68:243-263. [DOI: 10.1027/1618-3169/a000533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract. Previous studies have discussed the symmetry of bidirectional mapping between approximate number system (ANS) and symbolic number system (SNS). However, these studies neglected the essential significance of bidirectional mapping in the development of numerical cognition. That is, with age, the connection strength between the ANS and SNS in ANS-SNS mapping could be higher than that in SNS-ANS mapping. Therefore, this study attempted to explore the symmetry of bidirectional mapping by examining whether the connection between the ANS and SNS is the same. Using two types of dot array materials (extensive and intensive) and sequence priming paradigms, this study found a stable negative priming effect in the ANS-SNS priming task, but no priming effect in the SNS-ANS priming task. In addition, although sensory cues (extensive and intensive) could affect performance in the ANS-SNS mapping task, these cues did not affect performance in the ANS-SNS priming task. In general, this study provides valuable insight into the symmetry of bidirectional mapping.
Collapse
Affiliation(s)
- Lijuan Wang
- School of Psychology, Northeast Normal University, Changchun, Jilin, PR China
| | - Xiao Liang
- School of Psychology, Northeast Normal University, Changchun, Jilin, PR China
| | - Yueyang Yin
- School of Psychology, Northeast Normal University, Changchun, Jilin, PR China
| | - Jingmei Kang
- School of Psychology, Northeast Normal University, Changchun, Jilin, PR China
| |
Collapse
|
191
|
Opfer JE, Kim D, Fazio LK, Zhou X, Siegler RS. Cognitive mediators of US-China differences in early symbolic arithmetic. PLoS One 2021; 16:e0255283. [PMID: 34432810 PMCID: PMC8386833 DOI: 10.1371/journal.pone.0255283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/13/2021] [Indexed: 01/29/2023] Open
Abstract
Chinese children routinely outperform American peers in standardized tests of mathematics knowledge. To examine mediators of this effect, 95 Chinese and US 5-year-olds completed a test of overall symbolic arithmetic, an IQ subtest, and three tests each of symbolic and non-symbolic numerical magnitude knowledge (magnitude comparison, approximate addition, and number-line estimation). Overall Chinese children performed better in symbolic arithmetic than US children, and all measures of IQ and number knowledge predicted overall symbolic arithmetic. Chinese children were more accurate than US peers in symbolic numerical magnitude comparison, symbolic approximate addition, and both symbolic and non-symbolic number-line estimation; Chinese and U.S. children did not differ in IQ and non-symbolic magnitude comparison and approximate addition. A substantial amount of the nationality difference in overall symbolic arithmetic was mediated by performance on the symbolic and number-line tests.
Collapse
Affiliation(s)
- John E. Opfer
- Department of Psychology, The Ohio State University, Columbus, Ohio, United States of America
| | - Dan Kim
- Department of Psychology, The Ohio State University, Columbus, Ohio, United States of America
| | - Lisa K. Fazio
- Psychology and Human Development, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Xinlin Zhou
- The Siegler Center for Innovative Learning, The State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Robert S. Siegler
- The Siegler Center for Innovative Learning, The State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Department of Human Development, Columbia University-Teachers College, New York, New York, United States of America
| |
Collapse
|
192
|
Jang S, Cho S. Operational momentum during children's approximate arithmetic relates to symbolic math skills and space-magnitude association. J Exp Child Psychol 2021; 213:105253. [PMID: 34419664 DOI: 10.1016/j.jecp.2021.105253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/21/2021] [Accepted: 07/03/2021] [Indexed: 01/29/2023]
Abstract
Operational momentum (OM) refers to the behavioral tendency to overestimate or underestimate the results of addition or subtraction, respectively. The cognitive mechanism of the OM effect and how it is related to the development of symbolic math abilities are not well understood. The current study examined whether individual differences in the OM effect are related to symbolic arithmetic abilities, number line estimation performance, and the space-magnitude association effect in young children. In this study, first-grade elementary school children manifested the OM effect during approximate addition and subtraction. Individual differences in the OM effect were not correlated with number line estimation error. Interestingly, children who showed a greater degree of the OM effect performed not worse, but better on the symbolic arithmetic task. In addition, the OM effect was correlated with the space-magnitude association (size congruity) effect measured with the Numerical Stroop task. More specifically, the OM bias was correlated with the ability to inhibit interference from competing information on the incongruent trials of the Numerical Stroop task. Our results suggest that the inaccuracy of numerical magnitude representations is not the source of the OM effect. Given that children with better math ability showed a greater OM bias, a stronger OM effect may reflect better intuition in arithmetic operations. Altogether, we carefully interpret these findings as suggesting that a greater OM effect reflects superior intuition or fundamental knowledge of arithmetic operations and a more adult-like maturation of the reorienting component of the attentional system.
Collapse
Affiliation(s)
- Selim Jang
- Department of Psychology, Chung-Ang University, Seoul, South Korea; Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Soohyun Cho
- Department of Psychology, Chung-Ang University, Seoul, South Korea.
| |
Collapse
|
193
|
Number is not just an illusion: Discrete numerosity is encoded independently from perceived size. Psychon Bull Rev 2021; 29:123-133. [PMID: 34379268 PMCID: PMC8356546 DOI: 10.3758/s13423-021-01979-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 01/29/2023]
Abstract
While seminal theories suggest that nonsymbolic visual numerosity is mainly extracted from segmented items, more recent views advocate that numerosity cannot be processed independently of nonnumeric continuous features confounded with the numerical set (i.e., such as the density, the convex hull, etc.). To disentangle these accounts, here we employed two different visual illusions presented in isolation or in a merged condition (e.g., combining the effects of the two illusions). In particular, in a number comparison task, we concurrently manipulated both the perceived object segmentation by connecting items with Kanizsa-like illusory lines, and the perceived convex-hull/density of the set by embedding the stimuli in a Ponzo illusion context, keeping constant other low-level features. In Experiment 1, the two illusions were manipulated in a compatible direction (i.e., both triggering numerical underestimation), whereas in Experiment 2 they were manipulated in an incompatible direction (i.e., with the Ponzo illusion triggering numerical overestimation and the Kanizsa illusion numerical underestimation). Results from psychometric functions showed that, in the merged condition, the biases of each illusion summated (i.e., largest underestimation as compared with the conditions in which illusions were presented in isolation) in Experiment 1, while they averaged and competed against each other in Experiment 2. These findings suggest that discrete nonsymbolic numerosity can be extracted independently from continuous magnitudes. They also point to the need of more comprehensive theoretical views accounting for the operations by which both discrete elements and continuous variables are computed and integrated by the visual system.
Collapse
|
194
|
Longitudinal relations between the approximate number system and symbolic number skills in preschool children. J Exp Child Psychol 2021; 212:105254. [PMID: 34352660 DOI: 10.1016/j.jecp.2021.105254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/29/2023]
Abstract
This study examined the longitudinal relation between the approximate number system (ANS) and two symbolic number skills, namely word problem-solving skill and number line skill, in a sample of 138 Chinese 4- to 6-year-old children. The ANS and symbolic number skills were measured first in the second year of preschool (Time 1 [T1], mean age = 4.98 years; SD = 0.33) and then in the third year of preschool (Time 2 [T2]). Cross-lagged analyses indicated that word problem-solving skill at T1 predicted ANS acuity at T2 but not vice versa. In addition, there were bidirectional relations between children's word problem-solving skill and number line estimation skill. The observed longitudinal relations were robust to the control of child's sex, age, maternal education, receptive vocabulary, spatial visualization, and working memory except for the relation between T1 word problem-solving skill and T2 number line estimation skill, which was explained by child's age.
Collapse
|
195
|
Marlair C, Pierret E, Crollen V. Geometry intuitions without vision? A study in blind children and adults. Cognition 2021; 216:104861. [PMID: 34333152 DOI: 10.1016/j.cognition.2021.104861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 01/29/2023]
Abstract
Geometry intuitions seem to be rooted in a non-verbal system that humans possess since early age. However, the mechanisms underlying the comprehension of basic geometric concepts remain elusive. Some authors have suggested that the starting point of geometry development could be found in the visual perception of specific features in our environment, thus conferring to vision a foundational role in the acquisition of geometric skills. To examine this assumption, a test probing intuitive understanding of basic geometric concepts was presented to congenitally blind children and adults. Participants had to detect the intruder among four different shapes, from which three instantiated a specific geometrical concept and one (the intruder) violated it. Although they performed above the chance level, the blind presented poorer performance than the sighted participants who did the task in the visual modality (i.e., with the eyes open), but performed equally well than the sighted who did the task in the tactile modality (i.e., with a blindfold). We therefore provide evidence that geometric abilities are impacted by the lack of vision.
Collapse
Affiliation(s)
- Cathy Marlair
- Institute of Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348 Louvain-la-Neuve, Belgium.
| | - Elisa Pierret
- Institute of Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348 Louvain-la-Neuve, Belgium
| | - Virginie Crollen
- Institute of Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
196
|
Saga M, Rkhaila A, Ounine K, Oubaha D. Developmental dyscalculia: the progress of cognitive modeling in the field of numerical cognition deficits for children. APPLIED NEUROPSYCHOLOGY-CHILD 2021; 11:904-914. [PMID: 34320331 DOI: 10.1080/21622965.2021.1955679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The study of dyscalculia requires an analysis of the current developed hypotheses which describe the cognitive mechanisms involved in this neurodevelopmental disorder. The objective of our review is to determine any progress in modeling developmental dyscalculia. The first hypothesis suggests that dyscalculia is the consequence of a specific deficit level number on the precise number system and the approximate system. Then, the second hypothesis states that developmental dyscalculia is linked to a failure to process non-symbolic representations of numbers. On the other hand, the third suggests that dyscalculia is caused by a lack of access to numerical quantities from symbols. However, the last hypothesis asserts that developmental dyscalculia is linked to general deficits. All these hypotheses are compatible with recent neuroimaging results and raise new horizons for experimentation, which will allow the development of precise diagnostic tools and the improvement of intervention strategies and the remediation of developmental dyscalculia.
Collapse
Affiliation(s)
- Mouhatti Saga
- Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Amine Rkhaila
- Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Khadija Ounine
- Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | | |
Collapse
|
197
|
Kochari AR, Schriefers H. Processing symbolic magnitude information conveyed by number words and by scalar adjectives. Q J Exp Psychol (Hove) 2021; 75:422-449. [PMID: 34169765 PMCID: PMC8793294 DOI: 10.1177/17470218211031158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Humans not only process and compare magnitude information such as size, duration, and number perceptually, but they also communicate about these properties using language. In this respect, a relevant class of lexical items are so-called scalar adjectives like “big,” “long,” “loud,” and so on which refer to magnitude information. It has been proposed that humans use an amodal and abstract representation format shared by different dimensions, called the generalised magnitude system (GMS). In this paper, we test the hypothesis that scalar adjectives are symbolic references to GMS representations, and, therefore, GMS gets involved in processing their meaning. Previously, a parallel hypothesis on the relation between number symbols and GMS representations has been tested with the size congruity paradigm. The results of these experiments showed interference between the processing of number symbols and the processing of physical (font-) size. In the first three experiments of the present study (total N = 150), we used the size congruity paradigm and the same/different task to look at the potential interaction between physical size magnitude and numerical magnitude expressed by number words. In the subsequent three experiments (total N = 149), we looked at a parallel potential interaction between physical size magnitude and scalar adjective meaning. In the size congruity paradigm, we observed interference between the processing of the numerical value of number words and the meaning of scalar adjectives, on the one hand, and physical (font-) size, on the other hand, when participants had to judge the number words or the adjectives (while ignoring physical size). No interference was obtained for the reverse situation, i.e., when participants judged the physical font size (while ignoring numerical value or meaning). The results of the same/different task for both number words and scalar adjectives strongly suggested that the interference that was observed in the size congruity paradigm was likely due to a response conflict at the decision stage of processing rather than due to the recruitment of GMS representations. Taken together, it can be concluded that the size congruity paradigm does not provide evidence in support the hypothesis that GMS representations are used in the processing of number words or scalar adjectives. Nonetheless, the hypothesis we put forward about scalar adjectives is still is a promising potential line of research. We make a number of suggestions for how this hypothesis can be explored in future studies.
Collapse
Affiliation(s)
- Arnold R Kochari
- FNWI, Institute for Logic, Language and Computation (ILLC), University of Amsterdam, Amsterdam, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Herbert Schriefers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
198
|
Castaldi E, Arrighi R, Cicchini GM, Andolfi A, Maduli G, Burr DC, Anobile G. Perception of geometric sequences and numerosity both predict formal geometric competence in primary school children. Sci Rep 2021; 11:14243. [PMID: 34244592 PMCID: PMC8271001 DOI: 10.1038/s41598-021-93710-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/21/2021] [Indexed: 01/29/2023] Open
Abstract
While most animals have a sense of number, only humans have developed symbolic systems to describe and organize mathematical knowledge. Some studies suggest that human arithmetical knowledge may be rooted in an ancient mechanism dedicated to perceiving numerosity, but it is not known if formal geometry also relies on basic, non-symbolic mechanisms. Here we show that primary-school children who spontaneously detect and predict geometrical sequences (non-symbolic geometry) perform better in school-based geometry tests indexing formal geometric knowledge. Interestingly, numerosity discrimination thresholds also predicted and explained a specific portion of variance of formal geometrical scores. The relation between these two non-symbolic systems and formal geometry was not explained by age or verbal reasoning skills. Overall, the results are in line with the hypothesis that some human-specific, symbolic systems are rooted in non-symbolic mechanisms.
Collapse
Affiliation(s)
- Elisa Castaldi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126, Pisa, Italy.,Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy.
| | | | - Arianna Andolfi
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy
| | - Giuseppe Maduli
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy
| | - David C Burr
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy.,CNR Neuroscience Institute, 56100, Pisa, Italy
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy
| |
Collapse
|
199
|
Mental compression of spatial sequences in human working memory using numerical and geometrical primitives. Neuron 2021; 109:2627-2639.e4. [PMID: 34228961 DOI: 10.1016/j.neuron.2021.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 11/03/2020] [Accepted: 06/07/2021] [Indexed: 01/29/2023]
Abstract
How does the human brain store sequences of spatial locations? We propose that each sequence is internally compressed using an abstract, language-like code that captures its numerical and geometrical regularities. We exposed participants to spatial sequences of fixed length but variable regularity while their brain activity was recorded using magneto-encephalography. Using multivariate decoders, each successive location could be decoded from brain signals, and upcoming locations were anticipated prior to their actual onset. Crucially, sequences with lower complexity, defined as the minimal description length provided by the formal language, led to lower error rates and to increased anticipations. Furthermore, neural codes specific to the numerical and geometrical primitives of the postulated language could be detected, both in isolation and within the sequences. These results suggest that the human brain detects sequence regularities at multiple nested levels and uses them to compress long sequences in working memory.
Collapse
|
200
|
Jayles B, Sire C, Kurvers RHJM. Impact of sharing full versus averaged social information on social influence and estimation accuracy. J R Soc Interface 2021; 18:20210231. [PMID: 34314654 PMCID: PMC8315836 DOI: 10.1098/rsif.2021.0231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/05/2021] [Indexed: 01/29/2023] Open
Abstract
The recent developments of social networks and recommender systems have dramatically increased the amount of social information shared in human communities, challenging the human ability to process it. As a result, sharing aggregated forms of social information is becoming increasingly popular. However, it is unknown whether sharing aggregated information improves people's judgments more than sharing the full available information. Here, we compare the performance of groups in estimation tasks when social information is fully shared versus when it is first averaged and then shared. We find that improvements in estimation accuracy are comparable in both cases. However, our results reveal important differences in subjects' behaviour: (i) subjects follow the social information more when receiving an average than when receiving all estimates, and this effect increases with the number of estimates underlying the average; (ii) subjects follow the social information more when it is higher than their personal estimate than when it is lower. This effect is stronger when receiving all estimates than when receiving an average. We introduce a model that sheds light on these effects, and confirms their importance for explaining improvements in estimation accuracy in all treatments.
Collapse
Affiliation(s)
- Bertrand Jayles
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
- Institute of Catastrophe Risk Management, Nanyang Technological University, Block N1, Level B1b, Nanyang Avenue 50, Singapore 639798, Republic of Singapore
| | - Clément Sire
- Laboratoire de Physique Théorique, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse—Paul Sabatier (UPS), Toulouse, France
| | - Ralf H. J. M. Kurvers
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| |
Collapse
|