151
|
Aguilar-Chaparro MA, Rivera-Pineda SA, Hernández-Galdámez HV, Piña-Vázquez C, Villa-Treviño S. The CD44std and CD44v9 subpopulations in non-tumorigenic invasive SNU-423 cells present different features of cancer stem cells. Stem Cell Res 2023; 72:103222. [PMID: 37844417 DOI: 10.1016/j.scr.2023.103222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of liver cancer, in which CD44 isoforms have been proposed as markers to identify cancer stem cells (CSCs). However, it is unclear what characteristics are associated with CSCs that exclusively express CD44 isoforms. The objective of the present study was to determine the expression of CD44 isoforms and their properties in CSCs. Analysis of transcriptomic data from HCC patient samples identified CD44v8-10 as a potential marker in HCC. In SNU-423 cells, CD44 expression was detected in over 99% of cells, and two CD44 isoforms, namely, CD44std and CD44v9, were identified in this cell line. CD44 subpopulations, including both CD44v9+ (CD44v9) and CD44v9- (CD44std) cells, were obtained by purification using a magnetic cell separation kit for human CD44v9+ cancer stem cells. CD44v9 cells showed greater potential for colony and spheroid formation, whereas CD44std cells demonstrated significant migration and invasion capabilities. These findings suggested that CD44std and CD44v9 may be used to identify features in CSC populations and provide insights into their roles in HCC.
Collapse
Affiliation(s)
- Mario Alejandro Aguilar-Chaparro
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, México City CP 07360, Mexico
| | - Sonia Andrea Rivera-Pineda
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, México City CP 07360, Mexico
| | - Hury Viridiana Hernández-Galdámez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, México City CP 07360, Mexico
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, México City CP 07360, Mexico
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, México City CP 07360, Mexico.
| |
Collapse
|
152
|
Xinyuan T, Lei Y, Jianping S, Rongwei Z, Ruiwen S, Ye Z, Jing Z, Chunfang T, Hongwei C, Haibin G. Advances in the role of gut microbiota in the regulation of the tumor microenvironment (Review). Oncol Rep 2023; 50:181. [PMID: 37615187 PMCID: PMC10485805 DOI: 10.3892/or.2023.8618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
As a protector of human health, the gut microbiota plays an important role in the development of the immune system during childhood, and the regulation of dietary habits, metabolism and immune system during adulthood. Dysregulated gut flora is not pathogenic, but it can weaken the protective effect of the immune system and cause various diseases. The tumor microenvironment is a physiological environment formed during tumor growth, which provides nutrients and growth factors necessary for tumor growth. As an important factor affecting the tumor microenvironment, the intestinal microflora affects the development of tumors through the mechanisms of gut and microflora metabolites, gene toxins and signaling pathways. The present article aimed to review the components and mechanisms of action, clinical applications, and biological targets of gut microbiota in the regulation of the tumor microenvironment. The present review provides novel insights for the future use of intestinal flora, to regulate the tumor microenvironment, to intervene in the occurrence, development, treatment and prognosis of tumors.
Collapse
Affiliation(s)
- Tian Xinyuan
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| | - Yu Lei
- Department of Pharmacy, Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region 010020, P.R. China
| | - Shi Jianping
- School of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| | - Zhao Rongwei
- Department of Obstetrics and Gynecology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Shi Ruiwen
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| | - Zhang Ye
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| | - Zhao Jing
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| | - Tian Chunfang
- Department of Oncology, Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region 010020, P.R. China
| | - Cui Hongwei
- Department of Scientific Research, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010020, P.R. China
| | - Guan Haibin
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| |
Collapse
|
153
|
Lee D, Kim S, Koo Y, Chae Y, Wang J, Kim S, Yun T, Yang MP, Kang BT, Kim H. Expression of vitamin D receptor, CYP24A1, and CYP27B1 in normal and inflamed canine pancreases. Front Vet Sci 2023; 10:1265203. [PMID: 37808100 PMCID: PMC10551448 DOI: 10.3389/fvets.2023.1265203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Vitamin D plays a role in anti-inflammatory processes, and the alteration of its metabolism is associated with the inflammatory processes of pancreatitis. This study was performed to evaluate the expression of the vitamin D receptor (VDR) and the two major enzymes that regulate vitamin D metabolism, 1α-hydroxylase (CYP27B1) and 24-hydroxylase (CYP24A1), in the canine pancreas and to compare their degrees of immunoreactivity between normal and inflamed pancreases. Five normal and inflamed pancreatic tissues each were obtained from six dogs. The expression of VDR, CYP24A1, and CYP27B1 were determined immunohistochemically, and the degree of immunostaining was assessed semiquantitatively. The VDR was expressed in the ducts, acini, and islets of Langerhans of normal pancreases and in the ducts and acini of inflamed ones. There was a significant difference in the immunoreactivity score for VDR in the islets of Langerhans between normal (median, 3 [interquartile range, 2-7.5] score) and inflamed pancreatic tissues (0 [0-0.5] score, p = 0.03). CYP24A1 was expressed in the ducts and islets of Langerhans in both normal and inflamed pancreases, whereas CYP27B1 was expressed in the ducts and acini in only some normal and inflamed pancreatic tissues. This study showed that VDR expression decreased in inflamed pancreases and demonstrated CYP24A1 and CYP27B1 expression in the canine pancreas for the first time. These findings indicate that the pancreas could regulate the metabolism and biological activity of vitamin D and suggest that a decrease in these might be related to the pathophysiology of pancreatitis.
Collapse
Affiliation(s)
- Dohee Lee
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Sanggu Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Yoonhoi Koo
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Yeon Chae
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Juwon Wang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Soochong Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Taesik Yun
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Mhan-Pyo Yang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Byeong-Teck Kang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Hakhyun Kim
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
154
|
Kavitha L, Vijayashree Priyadharsini J, Kattula D, Rao UKM, Balaji Srikanth R, Kuzhalmozhi M, Ranganathan K. Expression of CD44 in Head and Neck Squamous Cell Carcinoma-An In-Silico Study. Glob Med Genet 2023; 10:221-228. [PMID: 37593530 PMCID: PMC10431972 DOI: 10.1055/s-0043-1772459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Introduction CD44, a multistructural and multifunctional transmembrane glycoprotein, is a promising cancer stem cell (CSC) marker that regulates the properties of CSCs, including self-renewal, tumor initiation, and metastasis, and confers resistance to chemotherapy and radiotherapy. The aim of the present study was to evaluate the gene and protein expression of CD44 and explore its prognostic value in head and neck squamous cell carcinoma (HNSCC). Methodology The present observational study employs computational tools for analysis. The Cancer Genome Atlas Head-Neck Squamous Cell Carcinoma dataset (520 primary HNSCC and 44 normal tissues) from the University of Alabama at Birmingham Cancer platform was used to study the association of CD44 mRNA transcript levels with various clinicopathological characteristics of HNSCC including age, gender, tumor grade, tumor stage, human papillomavirus (HPV) status, p53 mutation status, and overall survival. The CD44 protein expression in HNSCC and normal tissues was ascertained using the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium Head-and-Neck cancer dataset (108 primary HNSCC and 71 normal tissues). Results CD44 mRNA transcript and protein expression levels were significantly higher in HNSCC tissues than in normal tissues, and high CD44 expression was correlated with poor survival. CD44 was upregulated in Stage 1 and Grade 2 HNSCC compared with other stages and grades. Overexpression of CD44 was observed in HPV-negative and TP53-positive mutant status in HNSCC. Conclusion The pleiotropic roles of CD44 in tumorigenesis urge the need to explore its differential expression in HNSCC. The study concludes that CD44 can be a potential diagnostic and prognostic biomarker for HNSCC and offer new molecular targets for CD44-targeted therapy for cancer management.
Collapse
Affiliation(s)
- Loganathan Kavitha
- Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospital, ECR, Uthandi, Chennai, Tamil Nadu, India; Affiliated to The Tamil Nadu Dr. MGR Medical University, Guindy, Chennai, Tamil Nadu, India
| | - Jayaseelan Vijayashree Priyadharsini
- Clinical Genetics Lab, Centre for Cellular and Molecular Research (The Blue lab), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences [SIMATS], Saveetha University, Chennai, Tamil Nadu, India
| | - Deepthi Kattula
- Department of Conservative Dentistry and Endodontics, Ragas Dental College and Hospital, ECR, Uthandi, Chennai, Tamil Nadu, India
| | - Umadevi Krishna Mohan Rao
- Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospital, ECR, Uthandi, Chennai, Tamil Nadu, India; Affiliated to The Tamil Nadu Dr. MGR Medical University, Guindy, Chennai, Tamil Nadu, India
| | - Rajabather Balaji Srikanth
- Department of Oral and Maxillofacial Surgery, Balaji Dental Clinic, Tambaram West, Tambaram, Chennai, Tamil Nadu, India
| | - Manogaran Kuzhalmozhi
- Department of Pathology, Aringnar Anna Memorial Cancer Research Institute, Kanchipuram, Karapettai, Tamil Nadu, India
| | - Kannan Ranganathan
- Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospital, ECR, Uthandi, Chennai, Tamil Nadu, India; Affiliated to The Tamil Nadu Dr. MGR Medical University, Guindy, Chennai, Tamil Nadu, India
| |
Collapse
|
155
|
He Y, Ling Y, Zhang Z, Mertens RT, Cao Q, Xu X, Guo K, Shi Q, Zhang X, Huo L, Wang K, Guo H, Shen W, Shen M, Feng W, Xiao P. Butyrate reverses ferroptosis resistance in colorectal cancer by inducing c-Fos-dependent xCT suppression. Redox Biol 2023; 65:102822. [PMID: 37494767 PMCID: PMC10388208 DOI: 10.1016/j.redox.2023.102822] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Ferroptosis has emerged to be a promising approach in cancer therapies; however, colorectal cancer (CRC) is relatively insensitive to ferroptosis. Exactly how the gut microenvironment impacts the ferroptotic sensitivity of CRC remains unknown. Herein, by performing metabolomics, we discovered that butyrate concentrations were significantly decreased in CRC patients. Butyrate supplementation sensitized CRC mice to ferroptosis induction, showing great in vivo translatability. Particularly, butyrate treatment reduced ferroptotic resistance of cancer stem cells. Mechanistically, butyrate inhibited xCT expression and xCT-dependent glutathione synthesis. Moreover, we identified c-Fos as a novel xCT suppressor, and further elucidated that butyrate induced c-Fos expression via disrupting class I HDAC activity. In CRC patients, butyrate negatively correlated with tumor xCT expression and positively correlated with c-Fos expression. Finally, butyrate was found to boost the pro-ferroptotic function of oxaliplatin (OXA). Immunohistochemistry data showed that OXA non-responders exhibited higher xCT expression compared to OXA responders. Hence, butyrate supplementation is a promising approach to break the ferroptosis resistance in CRC.
Collapse
Affiliation(s)
- Ying He
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Yuhang Ling
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Zhiyong Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | | | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Xutao Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ke Guo
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Qian Shi
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Xilin Zhang
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Lixia Huo
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Kan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Huihui Guo
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Weiyun Shen
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Manlu Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wenming Feng
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China; Huzhou Key Laboratory of Translational Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China.
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China; The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, 310058, China.
| |
Collapse
|
156
|
Erisik D, Ozdil B, Acikgoz E, Asker Abdikan CS, Yesin TK, Aktug H. Differences and Similarities between Colorectal Cancer Cells and Colorectal Cancer Stem Cells: Molecular Insights and Implications. ACS OMEGA 2023; 8:30145-30157. [PMID: 37636966 PMCID: PMC10448492 DOI: 10.1021/acsomega.3c02681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023]
Abstract
Malignant tumors are formed by diverse groups of cancer cells. Cancer stem cells (CSCs) are a subpopulation of heterogeneous cells identified in tumors that have the ability to self-renew and differentiate. Colorectal cancer (CRC), the third most frequent malignant tumor, is progressively being supported by evidence suggesting that CSCs are crucial in cancer development. We aim to identify molecular differences between CRC cells and CRC CSCs, as well as the effects of those differences on cell behavior in terms of migration, EMT, pluripotency, morphology, cell cycle/control, and epigenetic characteristics. The HT-29 cell line (human colorectal adenocarcinoma) and HT-29 CSCs (HT-29 CD133+/CD44+ cells) were cultured for 72 h. The levels of E-cadherin, KLF4, p53, p21, p16, cyclin D2, HDAC9, and P300 protein expression were determined using immunohistochemistry staining. The migration of cells was assessed by employing the scratch assay technique. Additionally, the scanning electron microscopy method was used to examine the morphological features of the cells, and their peripheral/central elemental ratios were compared with the help of EDS. Furthermore, a Muse cell cycle kit was utilized to determine the cell cycle analysis. The HT-29 CSC group exhibited high levels of expression for E-cadherin, p53, p21, p16, cyclin D2, HDAC9, and P300, whereas KLF4 was found to be high in the HT-29. The two groups did not exhibit any statistically significant differences in the percentages of cell cycle phases. The identification of specific CSC characteristics will allow for earlier cancer detection and the development of more effective precision oncology options.
Collapse
Affiliation(s)
- Derya Erisik
- Department
of Histology and Embryology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Berrin Ozdil
- Department
of Histology and Embryology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
- Department
of Histology and Embryology, Faculty of Medicine, Suleyman Demirel University, Isparta 32260, Turkey
| | - Eda Acikgoz
- Department
of Histology and Embryology, Faculty of Medicine, Yuzuncu Yil University, Van 65080, Turkey
| | | | - Taha Kadir Yesin
- Department
of Histology and Embryology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Huseyin Aktug
- Department
of Histology and Embryology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| |
Collapse
|
157
|
Yang K, Li X, Xie K. Senescence program and its reprogramming in pancreatic premalignancy. Cell Death Dis 2023; 14:528. [PMID: 37591827 PMCID: PMC10435572 DOI: 10.1038/s41419-023-06040-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Tumor is a representative of cell immortalization, while senescence irreversibly arrests cell proliferation. Although tumorigenesis and senescence seem contrary to each other, they have similar mechanisms in many aspects. Pancreatic ductal adenocarcinoma (PDA) is highly lethal disease, which occurs and progresses through a multi-step process. Senescence is prevalent in pancreatic premalignancy, as manifested by decreased cell proliferation and increased clearance of pre-malignant cells by immune system. However, the senescent microenvironment cooperates with multiple factors and significantly contributes to tumorigenesis. Evidently, PDA progression requires to evade the effects of cellular senescence. This review will focus on dual roles that senescence plays in PDA development and progression, the signaling effectors that critically regulate senescence in PDA, the identification and reactivation of molecular targets that control senescence program for the treatment of PDA.
Collapse
Affiliation(s)
- Kailing Yang
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Xiaojia Li
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China.
- The South China University of Technology Comprehensive Cancer Center, Guangdong, China.
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangdong, China.
| |
Collapse
|
158
|
Manabile MA, Hull R, Khanyile R, Molefi T, Damane BP, Mongan NP, Bates DO, Dlamini Z. Alternative Splicing Events and Their Clinical Significance in Colorectal Cancer: Targeted Therapeutic Opportunities. Cancers (Basel) 2023; 15:3999. [PMID: 37568815 PMCID: PMC10417810 DOI: 10.3390/cancers15153999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) ranks as one of the top causes of cancer mortality worldwide and its incidence is on the rise, particularly in low-middle-income countries (LMICs). There are several factors that contribute to the development and progression of CRC. Alternative splicing (AS) was found to be one of the molecular mechanisms underlying the development and progression of CRC. With the advent of genome/transcriptome sequencing and large patient databases, the broad role of aberrant AS in cancer development and progression has become clear. AS affects cancer initiation, proliferation, invasion, and migration. These splicing changes activate oncogenes or deactivate tumor suppressor genes by producing altered amounts of normally functional or new proteins with different, even opposing, functions. Thus, identifying and characterizing CRC-specific alternative splicing events and variants might help in designing new therapeutic splicing disrupter drugs. CRC-specific splicing events can be used as diagnostic and prognostic biomarkers. In this review, alternatively spliced events and their role in CRC development will be discussed. The paper also reviews recent research on alternatively spliced events that might be exploited as prognostic, diagnostic, and targeted therapeutic indicators. Of particular interest is the targeting of protein arginine methyltransferase (PMRT) isoforms for the development of new treatments and diagnostic tools. The potential challenges and limitations in translating these discoveries into clinical practice will also be addressed.
Collapse
Affiliation(s)
- Mosebo Armstrong Manabile
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
| | - Richard Khanyile
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa
| | - Thulo Molefi
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa;
| | - Nigel Patrick Mongan
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham NG7 2QL, UK;
| | - David Owen Bates
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Centre for Cancer Sciences, Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
| |
Collapse
|
159
|
Panawan O, Silsirivanit A, Chang C, Putthisen S, Boonnate P, Yokota T, Nishisyama‐Ikeda Y, Detarya M, Sawanyawisuth K, Kaewkong W, Muisuk K, Luang S, Vaeteewoottacharn K, Kariya R, Yano H, Komohara Y, Ohta K, Okada S, Wongkham S, Araki N. Establishment and characterization of a novel cancer stem-like cell of cholangiocarcinoma. Cancer Sci 2023; 114:3230-3246. [PMID: 37026527 PMCID: PMC10394157 DOI: 10.1111/cas.15812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive malignant tumor of bile duct epithelia. Recent evidence suggests the impact of cancer stem cells (CSC) on the therapeutic resistance of CCA; however, the knowledge of CSC in CCA is limited due to the lack of a CSC model. In this study, we successfully established a stable sphere-forming CCA stem-like cell, KKU-055-CSC, from the original CCA cell line, KKU-055. The KKU-055-CSC exhibits CSC characteristics, including: (1) the ability to grow stably and withstand continuous passage for a long period of culture in the stem cell medium, (2) high expression of stem cell markers, (3) low responsiveness to standard chemotherapy drugs, (4) multilineage differentiation, and (5) faster and constant expansive tumor formation in xenograft mouse models. To identify the CCA-CSC-associated pathway, we have undertaken a global proteomics and functional cluster/network analysis. Proteomics identified the 5925 proteins in total, and the significantly upregulated proteins in CSC compared with FCS-induced differentiated CSC and its parental cells were extracted. Network analysis revealed that high mobility group A1 (HMGA1) and Aurora A signaling through the signal transducer and activator of transcription 3 pathways were enriched in KKU-055-CSC. Knockdown of HMGA1 in KKU-055-CSC suppressed the expression of stem cell markers, induced the differentiation followed by cell proliferation, and enhanced sensitivity to chemotherapy drugs including Aurora A inhibitors. In silico analysis indicated that the expression of HMGA1 was correlated with Aurora A expressions and poor survival of CCA patients. In conclusion, we have established a unique CCA stem-like cell model and identified the HMGA1-Aurora A signaling as an important pathway for CSC-CCA.
Collapse
Affiliation(s)
- Orasa Panawan
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Department of Biochemistry, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
| | - Atit Silsirivanit
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Department of Biochemistry, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
- Cholangiocarcinoma Research Institute, Khon Kaen UniversityKhon KaenThailand
| | - Chih‐Hsiang Chang
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Siyaporn Putthisen
- Department of Biochemistry, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
| | - Piyanard Boonnate
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus InfectionKumamoto UniversityKumamotoJapan
| | - Taro Yokota
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Yuki Nishisyama‐Ikeda
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Marutpong Detarya
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Department of Biochemistry, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
- Cholangiocarcinoma Research Institute, Khon Kaen UniversityKhon KaenThailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
- Cholangiocarcinoma Research Institute, Khon Kaen UniversityKhon KaenThailand
| | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical SciencesNaresuan UniversityPhitsanulokThailand
| | - Kanha Muisuk
- Department of Forensic Medicine, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
| | - Sukanya Luang
- Department of Biochemistry, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
- Cholangiocarcinoma Research Institute, Khon Kaen UniversityKhon KaenThailand
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
- Cholangiocarcinoma Research Institute, Khon Kaen UniversityKhon KaenThailand
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus InfectionKumamoto UniversityKumamotoJapan
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus InfectionKumamoto UniversityKumamotoJapan
| | - Hiromu Yano
- Department of Cell Pathology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Kunimasa Ohta
- Department of Stem Cell Biology, Faculty of Arts and ScienceKyushu UniversityFukuokaJapan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus InfectionKumamoto UniversityKumamotoJapan
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
- Center for Translational Medicine, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
| | - Norie Araki
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
160
|
Zhang W, Xu Y, Wang X, Oikawa T, Su G, Wauthier E, Wu G, Sethupathy P, He Z, Liu J, Reid LM. Fibrolamellar carcinomas-growth arrested by paracrine signals complexed with synthesized 3-O sulfated heparan sulfate oligosaccharides. Matrix Biol 2023; 121:194-216. [PMID: 37402431 DOI: 10.1016/j.matbio.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023]
Abstract
Fibrolamellar carcinomas (FLCs), lethal tumors occurring in children to young adults, have genetic signatures implicating derivation from biliary tree stem cell (BTSC) subpopulations, co-hepato/pancreatic stem cells, involved in hepatic and pancreatic regeneration. FLCs and BTSCs express pluripotency genes, endodermal transcription factors, and stem cell surface, cytoplasmic and proliferation biomarkers. The FLC-PDX model, FLC-TD-2010, is driven ex vivo to express pancreatic acinar traits, hypothesized responsible for this model's propensity for enzymatic degradation of cultures. A stable ex vivo model of FLC-TD-2010 was achieved using organoids in serum-free Kubota's Medium (KM) supplemented with 0.1% hyaluronans (KM/HA). Heparins (10 ng/ml) caused slow expansion of organoids with doubling times of ∼7-9 days. Spheroids, organoids depleted of mesenchymal cells, survived indefinitely in KM/HA in a state of growth arrest for more than 2 months. Expansion was restored with FLCs co-cultured with mesenchymal cell precursors in a ratio of 3:7, implicating paracrine signaling. Signals identified included FGFs, VEGFs, EGFs, Wnts, and others, produced by associated stellate and endothelial cell precursors. Fifty-three, unique heparan sulfate (HS) oligosaccharides were synthesized, assessed for formation of high affinity complexes with paracrine signals, and each complex screened for biological activity(ies) on organoids. Ten distinct HS-oligosaccharides, all 10-12 mers or larger, and in specific paracrine signal complexes elicited particular biological responses. Of note, complexes of paracrine signals and 3-O sulfated HS-oligosaccharides elicited slowed growth, and with Wnt3a, elicited growth arrest of organoids for months. If future efforts are used to prepare HS-oligosaccharides resistant to breakdown in vivo, then [paracrine signal-HS-oligosaccharide] complexes are potential therapeutic agents for clinical treatments of FLCs, an exciting prospect for a deadly disease.
Collapse
Affiliation(s)
- Wencheng Zhang
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States; Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, United States; Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Tsunekazu Oikawa
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Guowei Su
- Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Eliane Wauthier
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Guoxiu Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Praveen Sethupathy
- Division of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, United States; Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Lola M Reid
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States; Program in Molecular Biology and Biotechnology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
161
|
Iske J, Cao Y, Roesel MJ, Shen Z, Nian Y. Metabolic reprogramming of myeloid-derived suppressor cells in the context of organ transplantation. Cytotherapy 2023; 25:789-797. [PMID: 37204374 DOI: 10.1016/j.jcyt.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are naturally occurring leukocytes that develop from immature myeloid cells under inflammatory conditions that were discovered initially in the context of tumor immunity. Because of their robust immune inhibitory activities, there has been growing interest in MDSC-based cellular therapies for transplant tolerance induction. Indeed, various pre-clinical studies have introduced in vivo expansion or adoptive transfer of MDSC as a promising therapeutic strategy leading to a profound extension of allograft survival due to suppression of alloreactive T cells. However, several limitations of cellular therapies using MDSCs remain to be addressed, including their heterogeneous nature and limited expansion capacity. Metabolic reprogramming plays a crucial role for differentiation, proliferation and effector function of immune cells. Notably, recent reports have focused on a distinct metabolic phenotype underlying the differentiation of MDSCs in an inflammatory microenvironment representing a regulatory target. A better understanding of the metabolic reprogramming of MDSCs may thus provide novel insights for MDSC-based treatment approaches in transplantation. In this review, we will summarize recent, interdisciplinary findings on MDSCs metabolic reprogramming, dissect the underlying molecular mechanisms and discuss the relevance for potential treatment approaches in solid-organ transplantation.
Collapse
Affiliation(s)
- Jasper Iske
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yu Cao
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Maximilian J Roesel
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Zhongyang Shen
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Yeqi Nian
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China.
| |
Collapse
|
162
|
Kayal Y, Barash U, Naroditsky I, Ilan N, Vlodavsky I. Heparanase 2 (Hpa2)- a new player essential for pancreatic acinar cell differentiation. Cell Death Dis 2023; 14:465. [PMID: 37491420 PMCID: PMC10368643 DOI: 10.1038/s41419-023-05990-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
Heparanase 2 (Hpa2, HPSE2) is a close homolog of heparanase. Hpa2, however, lacks intrinsic heparan sulfate (HS)-degrading activity, the hallmark of heparanase enzymatic activity. Mutations of HPSE2 were identified in patients diagnosed with urofacial syndrome (UFS), a rare genetic disorder that exhibits abnormal facial expression and bladder voiding dysfunction, leading to renal damage and eventually renal failure. In order to reveal the role of HPSE2 in tissue homeostasis, we established a conditional Hpa2-KO mouse. Interestingly, the lack of Hpa2 was associated with a marked decrease in the expression of key pancreatic transcription factors such as PTF1, GATA6, and Mist1. This was associated with a two-fold decrease in pancreas weight, increased pancreatic inflammation, and profound morphological alterations of the pancreas. These include massive accumulation of fat cells, possibly a result of acinar-to-adipocyte transdifferentiation (AAT), as well as acinar-to-ductal metaplasia (ADM), both considered to be pro-tumorigenic. Furthermore, exposing Hpa2-KO but not wild-type mice to a carcinogen (AOM) and pancreatic inflammation (cerulein) resulted in the formation of pancreatic intraepithelial neoplasia (PanIN), lesions that are considered to be precursors of invasive ductal adenocarcinoma of the pancreas (PDAC). These results strongly support the notion that Hpa2 functions as a tumor suppressor. Moreover, Hpa2 is shown here for the first time to play a critical role in the exocrine aspect of the pancreas.
Collapse
Affiliation(s)
- Yasmin Kayal
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Uri Barash
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Inna Naroditsky
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
163
|
Fernández-Tabanera E, García-García L, Rodríguez-Martín C, Cervera ST, González-González L, Robledo C, Josa S, Martínez S, Chapado L, Monzón S, Melero-Fernández de Mera RM, Alonso J. CD44 Modulates Cell Migration and Invasion in Ewing Sarcoma Cells. Int J Mol Sci 2023; 24:11774. [PMID: 37511533 PMCID: PMC10381016 DOI: 10.3390/ijms241411774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The chimeric EWSR1::FLI1 transcription factor is the main oncogenic event in Ewing sarcoma. Recently, it has been proposed that EWSR1::FLI1 levels can fluctuate in Ewing sarcoma cells, giving rise to two cell populations. EWSR1::FLI1low cells present a migratory and invasive phenotype, while EWSR1::FLI1high cells are more proliferative. In this work, we described how the CD44 standard isoform (CD44s), a transmembrane protein involved in cell adhesion and migration, is overexpressed in the EWSR1::FLI1low phenotype. The functional characterization of CD44s (proliferation, clonogenicity, migration, and invasion ability) was performed in three doxycycline-inducible Ewing sarcoma cell models (A673, MHH-ES1, and CADO-ES1). As a result, CD44s expression reduced cell proliferation in all the cell lines tested without affecting clonogenicity. Additionally, CD44s increased cell migration in A673 and MHH-ES1, without effects in CADO-ES1. As hyaluronan is the main ligand of CD44s, its effect on migration ability was also assessed, showing that high molecular weight hyaluronic acid (HMW-HA) blocked cell migration while low molecular weight hyaluronic acid (LMW-HA) increased it. Invasion ability was correlated with CD44 expression in A673 and MHH-ES1 cell lines. CD44s, upregulated upon EWSR1::FLI1 knockdown, regulates cell migration and invasion in Ewing sarcoma cells.
Collapse
Affiliation(s)
- Enrique Fernández-Tabanera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758, CB06/07/1009, CIBERER-ISCIII), 28029 Madrid, Spain
- Universidad Nacional de Educación a Distancia (UNED), 28015 Madrid, Spain
| | - Laura García-García
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Carlos Rodríguez-Martín
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758, CB06/07/1009, CIBERER-ISCIII), 28029 Madrid, Spain
| | - Saint T Cervera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758, CB06/07/1009, CIBERER-ISCIII), 28029 Madrid, Spain
| | - Laura González-González
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Cristina Robledo
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Santiago Josa
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Selene Martínez
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Luis Chapado
- Bioinformatics Unit, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Sara Monzón
- Bioinformatics Unit, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Raquel M Melero-Fernández de Mera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758, CB06/07/1009, CIBERER-ISCIII), 28029 Madrid, Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758, CB06/07/1009, CIBERER-ISCIII), 28029 Madrid, Spain
| |
Collapse
|
164
|
Bei Y, He J, Dong X, Wang Y, Wang S, Guo W, Cai C, Xu Z, Wei J, Liu B, Zhang N, Shen P. Targeting CD44 Variant 5 with an Antibody-Drug Conjugate Is an Effective Therapeutic Strategy for Intrahepatic Cholangiocarcinoma. Cancer Res 2023; 83:2405-2420. [PMID: 37205633 PMCID: PMC10345965 DOI: 10.1158/0008-5472.can-23-0510] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/06/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
UNLABELLED Intrahepatic cholangiocarcinoma (ICC) is the second most frequent type of primary liver cancer. ICC is among the deadliest malignancies, highlighting that novel treatments are urgently needed. Studies have shown that CD44 variant isoforms, rather than the CD44 standard isoform, are selectively expressed in ICC cells, providing an opportunity for the development of an antibody-drug conjugate (ADC)-based targeted therapeutic strategy. In this study, we observed the specific expression of CD44 variant 5 (CD44v5) in ICC tumors. CD44v5 protein was expressed on the surface of most ICC tumors (103 of 155). A CD44v5-targeted ADC, H1D8-DC (H1D8-drug conjugate), was developed that comprises a humanized anti-CD44v5 mAb conjugated to the microtubule inhibitor monomethyl auristatin E (MMAE) via a cleavable valine-citrulline-based linker. H1D8-DC exhibited efficient antigen binding and internalization in cells expressing CD44v5 on the cell surface. Because of the high expression of cathepsin B in ICC cells, the drug was preferentially released in cancer cells but not in normal cells, thus inducing potent cytotoxicity at picomolar concentrations. In vivo studies showed that H1D8-DC was effective against CD44v5-positive ICC cells and induced tumor regression in patient-derived xenograft models, whereas no significant adverse toxicities were observed. These data demonstrate that CD44v5 is a bona fide target in ICC and provide a rationale for the clinical investigation of a CD44v5-targeted ADC-based approach. SIGNIFICANCE Elevated expression of CD44 variant 5 in intrahepatic cholangiocarcinoma confers a targetable vulnerability using the newly developed antibody-drug conjugate H1D8-DC, which induces potent growth suppressive effects without significant toxicity.
Collapse
Affiliation(s)
- Yuncheng Bei
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, PR China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xuhui Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Yuxin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Sijie Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Wan Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Chengjie Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Zhiye Xu
- Department of Clinical Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, PR China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, PR China
| | - Nan Zhang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Pingping Shen
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
- Shenzhen Research Institute of Nanjing University, Shenzhen, PR China
| |
Collapse
|
165
|
Suzuki H, Goto N, Tanaka T, Ouchida T, Kaneko MK, Kato Y. Development of a Novel Anti-CD44 Variant 8 Monoclonal Antibody C 44Mab-94 against Gastric Carcinomas. Antibodies (Basel) 2023; 12:45. [PMID: 37489367 PMCID: PMC10366929 DOI: 10.3390/antib12030045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. GC with peritoneal metastasis exhibits a poor prognosis due to the lack of effective therapy. A comprehensive analysis of malignant ascites identified the genomic alterations and significant amplifications of cancer driver genes, including CD44. CD44 and its splicing variants are overexpressed in tumors, and play crucial roles in the acquisition of invasiveness, stemness, and resistance to treatments. Therefore, the development of CD44-targeted monoclonal antibodies (mAbs) is important for GC diagnosis and therapy. In this study, we immunized mice with CD44v3-10-overexpressed PANC-1 cells and established several dozens of clones that produce anti-CD44v3-10 mAbs. One of the clones (C44Mab-94; IgG1, kappa) recognized the variant-8-encoded region and peptide, indicating that C44Mab-94 is a specific mAb for CD44v8. Furthermore, C44Mab-94 could recognize CHO/CD44v3-10 cells, oral squamous cell carcinoma cell line (HSC-3), or GC cell lines (MKN45 and NUGC-4) in flow cytometric analyses. C44Mab-94 could detect the exogenous CD44v3-10 and endogenous CD44v8 in western blotting and stained the formalin-fixed paraffin-embedded gastric cancer cells. These results indicate that C44Mab-94 is useful for detecting CD44v8 in a variety of experimental methods and is expected to become usefully applied to GC diagnosis and therapy.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Tomohiro Tanaka
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Tsunenori Ouchida
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mika K Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
166
|
Li Q, Tan G, Wu F. The functions and roles of C2H2 zinc finger proteins in hepatocellular carcinoma. Front Physiol 2023; 14:1129889. [PMID: 37457025 PMCID: PMC10339807 DOI: 10.3389/fphys.2023.1129889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
C2H2 zinc finger (C2H2-ZF) proteins are the majority group of human transcription factors and they have many different molecular functions through different combinations of zinc finger domains. Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors and the main reason for cancer-related deaths worldwide. More and more findings support the abnormal expression of C2H2-ZF protein in the onset and progression of HCC. The C2H2-ZF proteins are involved in various biological functions in HCC, such as EMT, stemness maintenance, metabolic reprogramming, cell proliferation and growth, apoptosis, and genomic integrity. The study of anti-tumor drug resistance also highlights the pivotal roles of C2H2-ZF proteins at the intersection of biological functions (EMT, stemness maintenance, autophagy)and chemoresistance in HCC. The involvement of C2H2-ZF protein found recently in regulating different molecules, signal pathways and pathophysiological activities indicate these proteins as the possible therapeutic targets, and diagnostic or prognostic biomarkers for HCC.
Collapse
|
167
|
Razi S, Haghparast A, Chodari Khameneh S, Ebrahimi Sadrabadi A, Aziziyan F, Bakhtiyari M, Nabi-Afjadi M, Tarhriz V, Jalili A, Zalpoor H. The role of tumor microenvironment on cancer stem cell fate in solid tumors. Cell Commun Signal 2023; 21:143. [PMID: 37328876 PMCID: PMC10273768 DOI: 10.1186/s12964-023-01129-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/15/2023] [Indexed: 06/18/2023] Open
Abstract
In the last few decades, the role of cancer stem cells in initiating tumors, metastasis, invasion, and resistance to therapies has been recognized as a potential target for tumor therapy. Understanding the mechanisms by which CSCs contribute to cancer progression can help to provide novel therapeutic approaches against solid tumors. In this line, the effects of mechanical forces on CSCs such as epithelial-mesenchymal transition, cellular plasticity, etc., the metabolism pathways of CSCs, players of the tumor microenvironment, and their influence on the regulating of CSCs can lead to cancer progression. This review focused on some of these mechanisms of CSCs, paving the way for a better understanding of their regulatory mechanisms and developing platforms for targeted therapies. While progress has been made in research, more studies will be required in the future to explore more aspects of how CSCs contribute to cancer progression. Video Abstract.
Collapse
Affiliation(s)
- Sara Razi
- Vira Pioneers of Modern Science (VIPOMS), Tehran, Iran
| | | | | | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran
- Cytotech and Bioinformatics Research Group, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vahideh Tarhriz
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box 5163639888, Tabriz, Iran.
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran.
- Parvaz Research Ideas Supporter Institute, Tehran, Iran.
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
168
|
Liu S, Liu Z, Shang A, Xun J, Lv Z, Zhou S, Liu C, Zhang Q, Yang Y. CD44 is a potential immunotherapeutic target and affects macrophage infiltration leading to poor prognosis. Sci Rep 2023; 13:9657. [PMID: 37316699 DOI: 10.1038/s41598-023-33915-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/20/2023] [Indexed: 06/16/2023] Open
Abstract
CD44 plays a key role in the communication of CSCs with the microenvironment and the regulation of stem cell properties. UALCAN was used to analyze the expression of CD44 in bladder cancer (BLCA) and normal tissue. The UALCAN was utilized to analyze the prognostic value of CD44 in BLCA. The TIMER database was used to explore the relationship between CD44 and PD-L1; CD44 and tumor-infiltrating immune cells. The regulatory effect of CD44 on PD-L1 was verified by cell experiments in vitro. IHC confirmed the results of the bioinformatics analysis. GeneMania and Metascape were used to analyze protein-protein interaction (PPI) investigations and functional enrichment analysis. We found that BLCA patients with high CD44 expression had worse survival than those with low CD44 expression (P < 0.05). IHC and the TIMER database results showed that CD44 expression was positively correlated with PD-L1 expression (P < 0.05). At the cellular level, the expression of PD-L1 was significantly inhibited after CD44 expression was inhibited by siRNA. Immune infiltration analysis showed that CD44 expression levels in BLCA were significantly correlated with immune infiltration levels of different immune cells. IHC staining results further confirmed that the expression of CD44 in tumor cells was positively associated with the number of CD68+ macrophages and CD163+ macrophages (P < 0.05). Our results suggest that CD44 is a positive regulator of PD-L1 in BLCA and may be a key regulator of tumor macrophages infiltration and may be involved in M2 macrophage polarization. Our study provided new insights into the prognosis and immunotherapy of BLCA patients through macrophage infiltration and immune checkpoints.
Collapse
Affiliation(s)
- Shuangqing Liu
- Tianjin Medical University Nankai Hospital, Tianjin, 300070, China
| | - Zehan Liu
- Tianjin Medical University Nankai Hospital, Tianjin, 300070, China
- Section for HepatoPancreatoBiliary Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, 610031, China
| | - Aichen Shang
- Tianjin Medical University Nankai Hospital, Tianjin, 300070, China
- Department of Pathology, Sino-Singapore Eco-City Hospital of Tianjin Medical University, Tianjin, 300456, China
| | - Jing Xun
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Zongjing Lv
- Tianjin Medical University Nankai Hospital, Tianjin, 300070, China
| | - Siying Zhou
- Tianjin Medical University Nankai Hospital, Tianjin, 300070, China
| | - Cui Liu
- Tianjin Medical University Nankai Hospital, Tianjin, 300070, China
| | - Qi Zhang
- Tianjin Medical University Nankai Hospital, Tianjin, 300070, China.
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China.
| | - Yuming Yang
- Tianjin Medical University Nankai Hospital, Tianjin, 300070, China.
- Department of Pathology, Tianjin Nankai Hospital, Tianjin, China.
| |
Collapse
|
169
|
Vadevoo SMP, Gurung S, Lee HS, Gunassekaran GR, Lee SM, Yoon JW, Lee YK, Lee B. Peptides as multifunctional players in cancer therapy. Exp Mol Med 2023; 55:1099-1109. [PMID: 37258584 PMCID: PMC10318096 DOI: 10.1038/s12276-023-01016-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/02/2023] Open
Abstract
Peptides exhibit lower affinity and a shorter half-life in the body than antibodies. Conversely, peptides demonstrate higher efficiency in tissue penetration and cell internalization than antibodies. Regardless of the pros and cons of peptides, they have been used as tumor-homing ligands for delivering carriers (such as nanoparticles, extracellular vesicles, and cells) and cargoes (such as cytotoxic peptides and radioisotopes) to tumors. Additionally, tumor-homing peptides have been conjugated with cargoes such as small-molecule or chemotherapeutic drugs via linkers to synthesize peptide-drug conjugates. In addition, peptides selectively bind to cell surface receptors and proteins, such as immune checkpoints, receptor kinases, and hormone receptors, subsequently blocking their biological activity or serving as hormone analogs. Furthermore, peptides internalized into cells bind to intracellular proteins and interfere with protein-protein interactions. Thus, peptides demonstrate great application potential as multifunctional players in cancer therapy.
Collapse
Affiliation(s)
- Sri Murugan Poongkavithai Vadevoo
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Smriti Gurung
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Hyun-Su Lee
- Department of Physiology, Daegu Catholic University School of Medicine, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu, 42472, Republic of Korea
| | - Gowri Rangaswamy Gunassekaran
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Seok-Min Lee
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Jae-Won Yoon
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Yun-Ki Lee
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
| |
Collapse
|
170
|
Hanif F, Zhang Y, Dube C, Gibert MK, Saha S, Hudson K, Marcinkiewicz P, Kefas B, Guessous F, Abounader R. miR-3174 Is a New Tumor Suppressor MicroRNA That Inhibits Several Tumor-Promoting Genes in Glioblastoma. Int J Mol Sci 2023; 24:9326. [PMID: 37298284 PMCID: PMC10253284 DOI: 10.3390/ijms24119326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
microRNAs (miRNAs) play an important role in the pathology of glioblastoma (GBM), which is the most malignant and most common primary malignant brain tumor. miRNAs can target multiple genes simultaneously and are considered as potential therapeutic agents or targets. This study aimed to determine the role of miR-3174 in the pathobiology of GBM using both in vitro and in vivo approaches. This is the first study deciphering the role of miR-3174 in GBM. We studied the expression of miR-3174 and found it to be downregulated in a panel of GBM cell lines, GSCs and tissues relative to astrocytes and normal brain tissue. This finding led us to hypothesize that miR-3174 has a tumor-suppressive role in GBM. Exogenous expression of miR-3174 inhibited GBM cell growth and invasion, and hampered the neurosphere formation ability of GSCs. miR-3174 downregulated the expression of multiple tumor-promoting genes including CD44, MDM2, RHOA, PLAU and CDK6. Further, overexpression of miR-3174 reduced tumor volume in nude mice with intracranial xenografts. Immuno-histochemical study of brain sections with intracranial tumor xenografts revealed the pro-apoptotic and anti-proliferative activity of miR-3174. In conclusion, we demonstrated that miR-3174 has a tumor-suppressive role in GBM and could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Farina Hanif
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biochemistry, Dow International Medical College, Dow University of Health Sciences, OJHA Campus, SUPARCO Road, Karachi 74200, Pakistan
| | - Ying Zhang
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Collin Dube
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Myron K Gibert
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Shekhar Saha
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Kadie Hudson
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Pawel Marcinkiewicz
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Benjamin Kefas
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Fadila Guessous
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Roger Abounader
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
171
|
Gurreri E, Genovese G, Perelli L, Agostini A, Piro G, Carbone C, Tortora G. KRAS-Dependency in Pancreatic Ductal Adenocarcinoma: Mechanisms of Escaping in Resistance to KRAS Inhibitors and Perspectives of Therapy. Int J Mol Sci 2023; 24:9313. [PMID: 37298264 PMCID: PMC10253344 DOI: 10.3390/ijms24119313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is still one of the deadliest cancers in oncology because of its increasing incidence and poor survival rate. More than 90% of PDAC patients are KRAS mutated (KRASmu), with KRASG12D and KRASG12V being the most common mutations. Despite this critical role, its characteristics have made direct targeting of the RAS protein extremely difficult. KRAS regulates development, cell growth, epigenetically dysregulated differentiation, and survival in PDAC through activation of key downstream pathways, such as MAPK-ERK and PI3K-AKT-mammalian target of rapamycin (mTOR) signaling, in a KRAS-dependent manner. KRASmu induces the occurrence of acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) and leads to an immunosuppressive tumor microenvironment (TME). In this context, the oncogenic mutation of KRAS induces an epigenetic program that leads to the initiation of PDAC. Several studies have identified multiple direct and indirect inhibitors of KRAS signaling. Therefore, KRAS dependency is so essential in KRASmu PDAC that cancer cells have secured several compensatory escape mechanisms to counteract the efficacy of KRAS inhibitors, such as activation of MEK/ERK signaling or YAP1 upregulation. This review will provide insights into KRAS dependency in PDAC and analyze recent data on inhibitors of KRAS signaling, focusing on how cancer cells establish compensatory escape mechanisms.
Collapse
Affiliation(s)
- Enrico Gurreri
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (E.G.); (A.A.); (G.P.); (G.T.)
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77025, USA; (G.G.); (L.P.)
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77025, USA; (G.G.); (L.P.)
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77025, USA
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77025, USA
- Translational Research to Advance Therapeutics and Innovation in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77025, USA
| | - Luigi Perelli
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77025, USA; (G.G.); (L.P.)
| | - Antonio Agostini
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (E.G.); (A.A.); (G.P.); (G.T.)
| | - Geny Piro
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (E.G.); (A.A.); (G.P.); (G.T.)
| | - Carmine Carbone
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (E.G.); (A.A.); (G.P.); (G.T.)
| | - Giampaolo Tortora
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (E.G.); (A.A.); (G.P.); (G.T.)
- Medical Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
172
|
Borlongan MC, Wang H. Profiling and targeting cancer stem cell signaling pathways for cancer therapeutics. Front Cell Dev Biol 2023; 11:1125174. [PMID: 37305676 PMCID: PMC10247984 DOI: 10.3389/fcell.2023.1125174] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Tumorigenic cancer stem cells (CSCs) represent a subpopulation of cells within the tumor that express genetic and phenotypic profiles and signaling pathways distinct from the other tumor cells. CSCs have eluded many conventional anti-oncogenic treatments, resulting in metastases and relapses of cancers. Effectively targeting CSCs' unique self-renewal and differentiation properties would be a breakthrough in cancer therapy. A better characterization of the CSCs' unique signaling mechanisms will improve our understanding of the pathology and treatment of cancer. In this paper, we will discuss CSC origin, followed by an in-depth review of CSC-associated signaling pathways. Particular emphasis is given on CSC signaling pathways' ligand-receptor engagement, upstream and downstream mechanisms, and associated genes, and molecules. Signaling pathways associated with regulation of CSC development stand as potential targets of CSC therapy, which include Wnt, TGFβ (transforming growth factor-β)/SMAD, Notch, JAK-STAT (Janus kinase-signal transducers and activators of transcription), Hedgehog (Hh), and vascular endothelial growth factor (VEGF). Lastly, we will also discuss milestone discoveries in CSC-based therapies, including pre-clinical and clinical studies featuring novel CSC signaling pathway cancer therapeutics. This review aims at generating innovative views on CSCs toward a better understanding of cancer pathology and treatment.
Collapse
Affiliation(s)
- Mia C. Borlongan
- Master Program of Pharmaceutical Science College of Graduate Studies, Elk Grove, CA, United States
| | - Hongbin Wang
- Master Program of Pharmaceutical Science College of Graduate Studies, Elk Grove, CA, United States
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, Elk Grove, CA, United States
- Department of Basic Science College of Medicine, California Northstate University, Elk Grove, CA, United States
| |
Collapse
|
173
|
Wang S, Fan R, Gao H, Ma X, Wu Y, Xing Y, Wang Y, Jia Y. STAT5A modulates gastric cancer progression via upregulation of CD44. Genomics 2023; 115:110638. [PMID: 37196931 DOI: 10.1016/j.ygeno.2023.110638] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/31/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVE Signal transduction and transcriptional activator 5A (STAT5A), which has been reported to be frequently phosphorylated in tumors, plays pivotal roles in tumor progression. However, the role of STAT5A in gastric cancer (GC) progression and the downstream targets of STAT5A remain largely unknown. METHODS The expression of STAT5A and CD44 were assessed. GC cells were treated with altered STAT5A and CD44 to evaluate their biological functions. Nude mice were given injections of genetically manipulated GC cells and growth of xenograft tumors and metastases was measured. RESULTS The increased level of p-STAT5A is associated with tumor invasion and poor prognosis in GC. STAT5A promoted GC cell proliferation by upregulating CD44 expression. STAT5A directly binds to the CD44 promoter and promotes its transcription. CONCLUSIONS The STAT5A/CD44 pathway plays a critical role in GC progression, promising potential clinical applications for improving treatment of GC.
Collapse
Affiliation(s)
- Shanglin Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China; Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766# Jingshi Road, Jinan, Shandong 250014, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China
| | - Rong Fan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China
| | - Huayu Gao
- Department of pediatric surgery, The first affiliated hospital of Shandong First Medical University, 16766# Jingshi Road, Jinan, Shandong 250014, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China
| | - Yufei Wu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China.
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, 56# Shanda South Road, Jinan, Shandong 250013, People's Republic of China.
| |
Collapse
|
174
|
Li Z, Chen Z, Li S, Qian X, Zhang L, Long G, Xie J, Huang X, Zheng Z, Pan W, Li H, Zhang D. Circ_0020256 induces fibroblast activation to drive cholangiocarcinoma development via recruitment of EIF4A3 protein to stabilize KLF4 mRNA. Cell Death Discov 2023; 9:161. [PMID: 37179359 PMCID: PMC10183031 DOI: 10.1038/s41420-023-01439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a kind of stromal cells in the cholangiocarcinoma (CCA) microenvironment, playing crucial roles in cancer development. However, the potential mechanisms of the interaction between CCA cells and CAFs remain obscure. This work investigated the role of circ_0020256 in CAFs activation. We proved circ_0020256 was up-regulated in CCA. High circ_0020256 expression facilitated TGF-β1 secretion from CCA cells, which activated CAFs via the phosphorylation of Smad2/3. Mechanistically, circ_0020256 recruited EIF4A3 protein to stabilize KLF4 mRNA and upregulate its expression, then KLF4 bound to TGF-β1 promoter and induced its transcription in CCA cells. KLF4 overexpression abrogated the inhibition of circ_0020256 silencing in TGF-β1/Smad2/3-induced CAFs activation. Furthermore, CCA cell growth, migration, and epithelial-mesenchymal transition were favored by CAFs-secreted IL-6 via autophagy inhibition. We also found circ_0020256 accelerated CCA tumor growth in vivo. In conclusion, circ_0020256 promoted fibroblast activation to facilitate CCA progression via EIF4A3/KLF4 pathway, providing a potential intervention for CCA progression.
Collapse
Affiliation(s)
- Zongyan Li
- Department of Pancreatic Hepatobiliary Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510650, Guangdong Province, P.R. China
| | - Zuxiao Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong Province, P.R. China
| | - Shiying Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, P.R. China
| | - Xiangjun Qian
- Department of Pancreatic Hepatobiliary Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510650, Guangdong Province, P.R. China
| | - Lei Zhang
- Department of Pancreatic Hepatobiliary Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510650, Guangdong Province, P.R. China
| | - Guojie Long
- Department of Pancreatic Hepatobiliary Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510650, Guangdong Province, P.R. China
| | - Jiancong Xie
- Department of Pancreatic Hepatobiliary Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510650, Guangdong Province, P.R. China
| | - Xiaoming Huang
- Department of Pancreatic Hepatobiliary Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510650, Guangdong Province, P.R. China
| | - Zheyu Zheng
- Department of Pancreatic Hepatobiliary Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510650, Guangdong Province, P.R. China
| | - Weidong Pan
- Department of Pancreatic Hepatobiliary Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510650, Guangdong Province, P.R. China
| | - Haiyan Li
- Department of Breast Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510650, Guangdong Province, P.R. China.
| | - Dawei Zhang
- Department of Pancreatic Hepatobiliary Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510650, Guangdong Province, P.R. China.
| |
Collapse
|
175
|
Giarrizzo M, LaComb JF, Bialkowska AB. The Role of Krüppel-like Factors in Pancreatic Physiology and Pathophysiology. Int J Mol Sci 2023; 24:ijms24108589. [PMID: 37239940 DOI: 10.3390/ijms24108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Krüppel-like factors (KLFs) belong to the family of transcription factors with three highly conserved zinc finger domains in the C-terminus. They regulate homeostasis, development, and disease progression in many tissues. It has been shown that KLFs play an essential role in the endocrine and exocrine compartments of the pancreas. They are necessary to maintain glucose homeostasis and have been implicated in the development of diabetes. Furthermore, they can be a vital tool in enabling pancreas regeneration and disease modeling. Finally, the KLF family contains proteins that act as tumor suppressors and oncogenes. A subset of members has a biphasic function, being upregulated in the early stages of oncogenesis and stimulating its progression and downregulated in the late stages to allow for tumor dissemination. Here, we describe KLFs' function in pancreatic physiology and pathophysiology.
Collapse
Affiliation(s)
- Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph F LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
176
|
Suzuki H, Kitamura K, Goto N, Ishikawa K, Ouchida T, Tanaka T, Kaneko MK, Kato Y. A Novel Anti-CD44 Variant 3 Monoclonal Antibody C 44Mab-6 Was Established for Multiple Applications. Int J Mol Sci 2023; 24:8411. [PMID: 37176118 PMCID: PMC10179237 DOI: 10.3390/ijms24098411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Cluster of differentiation 44 (CD44) promotes tumor progression through the recruitment of growth factors and the acquisition of stemness, invasiveness, and drug resistance. CD44 has multiple isoforms including CD44 standard (CD44s) and CD44 variants (CD44v), which have common and unique functions in tumor development. Therefore, elucidating the function of each CD44 isoform in a tumor is essential for the establishment of CD44-targeting tumor therapy. We have established various anti-CD44s and anti-CD44v monoclonal antibodies (mAbs) through the immunization of CD44v3-10-overexpressed cells. In this study, we established C44Mab-6 (IgG1, kappa), which recognized the CD44 variant 3-encoded region (CD44v3), as determined via an enzyme-linked immunosorbent assay. C44Mab-6 reacted with CD44v3-10-overexpressed Chinese hamster ovary (CHO)-K1 cells (CHO/CD44v3-10) or some cancer cell lines (COLO205 and HSC-3) via flow cytometry. The apparent KD of C44Mab-6 for CHO/CD44v3-10, COLO205, and HSC-3 was 1.5 × 10-9 M, 6.3 × 10-9 M, and 1.9 × 10-9 M, respectively. C44Mab-6 could detect the CD44v3-10 in Western blotting and stained the formalin-fixed paraffin-embedded tumor sections in immunohistochemistry. These results indicate that C44Mab-6 is useful for detecting CD44v3 in various experiments and is expected for the application of tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Kaishi Kitamura
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
| | - Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
| | - Kenichiro Ishikawa
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
| | - Tsunenori Ouchida
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Tomohiro Tanaka
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mika K. Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
177
|
Gasmi A, Gasmi Benahmed A, Shanaida M, Chirumbolo S, Menzel A, Anzar W, Arshad M, Cruz-Martins N, Lysiuk R, Beley N, Oliinyk P, Shanaida V, Denys A, Peana M, Bjørklund G. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds. Crit Rev Food Sci Nutr 2023; 64:8054-8072. [PMID: 37129118 DOI: 10.1080/10408398.2023.2195493] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The use of natural bioactive constituents from various food sources for anticancer purposes has become increasingly popular worldwide. Broccoli (Brassica oleracea var. italica) is on the top of the consumed vegetables by the masses. Its raw matrix contains a plethora of phytochemicals, such as glucosinolates and phenolic compounds, along with rich amounts of vitamins, and minerals. Consumption of broccoli-derived phytochemicals provides strong antioxidant effects, particularly due to its sulforaphane content, while modulating numerous molecules involved in cell cycle regulation, control of apoptosis, and tuning enzyme activity. Thus, the inclusion of broccoli in the daily diet lowers the susceptibility to developing cancers. Numerous studies have underlined the undisputable role of broccoli in the diet as a chemopreventive raw food, owing to the content in sulforaphane, an isothiocyanate produced as a result of hydrolysis of precursor glucosinolates called glucoraphanin. This review will provide evidence supporting the specific role of fresh florets and sprouts of broccoli and its key bioactive constituents in the prevention and treatment of different cancers; a number of studies carried out in the in vitro and in vivo conditions as well as clinical trials were analyzed.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
- International Congress of Nutritional Sciences, Casablanca, Morocco
- Société Marocaine de Micronutrition et de Nutrigénétique Appliquée, Casablanca, Morocco
| | | | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| | | | - Wajiha Anzar
- Dow University of Health Sciences, Karachi, Pakistan
| | - Mehreen Arshad
- National University of Sciences and Technology, Islamabad, Pakistan
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, Gandra PRD, Portugal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Nataliya Beley
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Volodymyr Shanaida
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
| | | | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
178
|
Zeng L, Zhu Y, Moreno CS, Wan Y. New insights into KLFs and SOXs in cancer pathogenesis, stemness, and therapy. Semin Cancer Biol 2023; 90:29-44. [PMID: 36806560 PMCID: PMC10023514 DOI: 10.1016/j.semcancer.2023.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/04/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Despite the development of cancer therapies, the success of most treatments has been impeded by drug resistance. The crucial role of tumor cell plasticity has emerged recently in cancer progression, cancer stemness and eventually drug resistance. Cell plasticity drives tumor cells to reversibly convert their cell identity, analogous to differentiation and dedifferentiation, to adapt to drug treatment. This phenotypical switch is driven by alteration of the transcriptome. Several pluripotent factors from the KLF and SOX families are closely associated with cancer pathogenesis and have been revealed to regulate tumor cell plasticity. In this review, we particularly summarize recent studies about KLF4, KLF5 and SOX factors in cancer development and evolution, focusing on their roles in cancer initiation, invasion, tumor hierarchy and heterogeneity, and lineage plasticity. In addition, we discuss the various regulation of these transcription factors and related cutting-edge drug development approaches that could be used to drug "undruggable" transcription factors, such as PROTAC and PPI targeting, for targeted cancer therapy. Advanced knowledge could pave the way for the development of novel drugs that target transcriptional regulation and could improve the outcome of cancer therapy.
Collapse
Affiliation(s)
- Lidan Zeng
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA
| | - Yueming Zhu
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Department of Biomedical Informatics, Winship Cancer Institute, Emory University School of Medicine, USA.
| | - Yong Wan
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA.
| |
Collapse
|
179
|
Reddy I, Yadav Y, Dey CS. Cellular and Molecular Regulation of Exercise-A Neuronal Perspective. Cell Mol Neurobiol 2023; 43:1551-1571. [PMID: 35986789 PMCID: PMC11412429 DOI: 10.1007/s10571-022-01272-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
The beneficial effects of exercise on the proper functioning of the body have been firmly established. Multi-systemic metabolic regulation of exercise is the consequence of multitudinous changes that occur at the cellular level. The exercise responsome comprises all molecular entities including exerkines, miRNA species, growth factors, signaling proteins that are elevated and activated by physical exercise. Exerkines are secretory molecules released by organs such as skeletal muscle, adipose tissue, liver, and gut as a function of acute/chronic exercise. Exerkines such as FNDC5/irisin, Cathepsin B, Adiponectin, and IL-6 circulate through the bloodstream, cross the blood-brain barrier, and modulate the expression of important signaling molecules such as AMPK, SIRT1, PGC1α, BDNF, IGF-1, and VEGF which further contribute to improved energy metabolism, glucose homeostasis, insulin sensitivity, neurogenesis, synaptic plasticity, and overall well-being of the body and brain. These molecules are also responsible for neuroprotective adaptations that exercise confers on the brain and potentially ameliorate neurodegeneration. This review aims to detail important cellular and molecular species that directly or indirectly mediate exercise-induced benefits in the body, with an emphasis on the central nervous system.
Collapse
Affiliation(s)
- Ishitha Reddy
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Yamini Yadav
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
180
|
Poh AR, Ernst M. Functional roles of SRC signaling in pancreatic cancer: Recent insights provide novel therapeutic opportunities. Oncogene 2023:10.1038/s41388-023-02701-x. [PMID: 37120696 DOI: 10.1038/s41388-023-02701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignant disease with a 5-year survival rate of <10%. Aberrant activation or elevated expression of the tyrosine kinase c-SRC (SRC) is frequently observed in PDAC and is associated with a poor prognosis. Preclinical studies have revealed a multifaceted role for SRC activation in PDAC, including promoting chronic inflammation, tumor cell proliferation and survival, cancer cell stemness, desmoplasia, hypoxia, angiogenesis, invasion, metastasis, and drug resistance. Strategies to inhibit SRC signaling include suppressing its catalytic activity, inhibiting protein stability, or by interfering with signaling components of the SRC signaling pathway including suppressing protein interactions of SRC. In this review, we discuss the molecular and immunological mechanisms by which aberrant SRC activity promotes PDAC tumorigenesis. We also provide a comprehensive update of SRC inhibitors in the clinic, and discuss the clinical challenges associated with targeting SRC in pancreatic cancer.
Collapse
Affiliation(s)
- Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Melbourne, VIC, 3084, Australia.
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Melbourne, VIC, 3084, Australia.
| |
Collapse
|
181
|
Kudo Y, Suzuki H, Tanaka T, Kaneko MK, Kato Y. Development of a Novel Anti-CD44 Variant 5 Monoclonal Antibody C 44Mab-3 for Multiple Applications against Pancreatic Carcinomas. Antibodies (Basel) 2023; 12:antib12020031. [PMID: 37218897 DOI: 10.3390/antib12020031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Pancreatic cancer exhibits a poor prognosis due to the lack of early diagnostic biomarkers and the resistance to conventional chemotherapy. CD44 has been known as a cancer stem cell marker and plays tumor promotion and drug resistance roles in various cancers. In particular, the splicing variants are overexpressed in many carcinomas and play essential roles in the cancer stemness, invasiveness or metastasis, and resistance to treatments. Therefore, the understanding of each CD44 variant's (CD44v) function and distribution in carcinomas is essential for the establishment of CD44-targeting tumor therapy. In this study, we immunized mice with CD44v3-10-overexpressed Chinese hamster ovary (CHO)-K1 cells and established various anti-CD44 monoclonal antibodies (mAbs). One of the established clones (C44Mab-3; IgG1, kappa) recognized peptides of the variant-5-encoded region, indicating that C44Mab-3 is a specific mAb for CD44v5. Moreover, C44Mab-3 reacted with CHO/CD44v3-10 cells or pancreatic cancer cell lines (PK-1 and PK-8) by flow cytometry. The apparent KD of C44Mab-3 for CHO/CD44v3-10 and PK-1 was 1.3 × 10-9 M and 2.6 × 10-9 M, respectively. C44Mab-3 could detect the exogenous CD44v3-10 and endogenous CD44v5 in Western blotting and stained the formalin-fixed paraffin-embedded pancreatic cancer cells but not normal pancreatic epithelial cells in immunohistochemistry. These results indicate that C44Mab-3 is useful for detecting CD44v5 in various applications and is expected to be useful for the application of pancreatic cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yuma Kudo
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Mika K Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|
182
|
Shi M, An G, Chen N, Jia J, Cui X, Zhan T, Ji D. UVRAG Promotes Tumor Progression through Regulating SP1 in Colorectal Cancer. Cancers (Basel) 2023; 15:2502. [PMID: 37173968 PMCID: PMC10177159 DOI: 10.3390/cancers15092502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer. The ultraviolet radiation resistance-associated gene (UVRAG) plays a role in autophagy and has been implicated in tumor progression and prognosis. However, the role of UVRAG expression in CRC has remained elusive. In this study, the prognosis was analyzed via immunohistochemistry, and the genetic changes were compared between the high UVRAG expression group and the low UVRAG expression group using RNA sequencing (RNA-seq) and single-cell RNA-seq (scRNA-seq) data, and genetic changes were then identified by in vitro experiments. It was found that UVRAG could enhance tumor migration, drug resistance, and CC motif chemokine ligand 2 (CCL2) expression to recruit macrophages by upregulating SP1 expression, resulting in poor prognosis of CRC patients. In addition, UVRAG could upregulate the expression of programmed death-ligand 1 (PD-L1). In summary, the relationship between UVRAG expression and the prognosis of CRC patients as well as the potential mechanisms in CRC were explored, providing evidence for the treatment of CRC.
Collapse
Affiliation(s)
- Mengyuan Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Guo An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Nan Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jinying Jia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xinxin Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Tiancheng Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Dengbo Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
183
|
Tawara M, Suzuki H, Goto N, Tanaka T, Kaneko MK, Kato Y. A Novel Anti-CD44 Variant 9 Monoclonal Antibody C 44Mab-1 Was Developed for Immunohistochemical Analyses against Colorectal Cancers. Curr Issues Mol Biol 2023; 45:3658-3673. [PMID: 37185762 PMCID: PMC10137259 DOI: 10.3390/cimb45040238] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Cluster of differentiation 44 (CD44) is a type I transmembrane glycoprotein and has been shown to be a cell surface marker of cancer stem-like cells in various cancers. In particular, the splicing variants of CD44 (CD44v) are overexpressed in cancers and play critical roles in cancer stemness, invasiveness, and resistance to chemotherapy and radiotherapy. Therefore, the understanding of the function of each CD44v is indispensable for CD44-targeting therapy. CD44v9 contains the variant 9-encoded region, and its expression predicts poor prognosis in patients with various cancers. CD44v9 plays critical roles in the malignant progression of tumors. Therefore, CD44v9 is a promising target for cancer diagnosis and therapy. Here, we developed sensitive and specific monoclonal antibodies (mAbs) against CD44 by immunizing mice with CD44v3-10-overexpressed Chinese hamster ovary-K1 (CHO/CD44v3-10) cells. We first determined their critical epitopes using enzyme-linked immunosorbent assay and characterized their applications as flow cytometry, western blotting, and immunohistochemistry. One of the established clones, C44Mab-1 (IgG1, kappa), reacted with a peptide of the variant 9-encoded region, indicating that C44Mab-1 recognizes CD44v9. C44Mab-1 could recognize CHO/CD44v3-10 cells or colorectal cancer cell lines (COLO201 and COLO205) in flow cytometric analysis. The apparent dissociation constant (KD) of C44Mab-1 for CHO/CD44v3-10, COLO201, and COLO205 was 2.5 × 10-8 M, 3.3 × 10-8 M, and 6.5 × 10-8 M, respectively. Furthermore, C44Mab-1 was able to detect the CD44v3-10 in western blotting and the endogenous CD44v9 in immunohistochemistry using colorectal cancer tissues. These results indicated that C44Mab-1 is useful for detecting CD44v9 not only in flow cytometry or western blotting but also in immunohistochemistry against colorectal cancers.
Collapse
Affiliation(s)
- Mayuki Tawara
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
| | - Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
| | - Tomohiro Tanaka
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
| | - Mika K. Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
184
|
Wei D, Wang L, Liu Y, Hafley MA, Tan L, Lorenzi PL, Yang P, Zuo X, Bresalier RS. Activation of Vitamin D/VDR Signaling Reverses Gemcitabine Resistance of Pancreatic Cancer Cells Through Inhibition of MUC1 Expression. Dig Dis Sci 2023:10.1007/s10620-023-07931-3. [PMID: 37071246 DOI: 10.1007/s10620-023-07931-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/14/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) has a poor prognosis due to its therapeutic resistance. Inactivation of vitamin D/vitamin D receptor (VDR) signaling may contribute to the malignant phenotype of PDA and altered expression of oncoprotein mucin 1 (MUC1) may be involved in drug resistance of cancer cells. AIM To determine whether vitamin D/VDR signaling regulates the expression and function of MUC1 and its effect on acquired gemcitabine resistance of pancreatic cancer cells. METHODS Molecular analyses and animal models were used to determine the impact of vitamin D/VDR signaling on MUC1 expression and response to gemcitabine treatment. RESULTS RPPA analysis indicated that MUC1 protein expression was significantly reduced in human PDA cells after treatment with vitamin D3 or its analog calcipotriol. VDR regulated MUC1 expression in both gain- and loss-of-function assays. Vitamin D3 or calcipotriol significantly induced VDR and inhibited MUC1 expression in acquired gemcitabine-resistant PDA cells and sensitized the resistant cells to gemcitabine treatment, while siRNA inhibition of MUC1 was associated with paricalcitol-associated sensitization of PDA cells to gemcitabine treatment in vitro. Administration of paricalcitol significantly enhanced the therapeutic efficacy of gemcitabine in xenograft and orthotopic mouse models and increased the intratumoral concentration of dFdCTP, the active metabolite of gemcitabine. CONCLUSION These findings demonstrate a previously unidentified vitamin D/VDR-MUC1 signaling axis involved in the regulation of gemcitabine resistance in PDA and suggests that combinational therapies that include targeted activation of vitamin D/VDR signaling may improve the outcomes of patients with PDA.
Collapse
Affiliation(s)
- Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Liang Wang
- Department of Gastroenterology, Hepatology, and Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Yi Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Margarete A Hafley
- Department of Gastroenterology, Hepatology, and Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peiying Yang
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert S Bresalier
- Department of Gastroenterology, Hepatology, and Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
185
|
Xi Y, Song L, Wang S, Zhou H, Ren J, Zhang R, Fu F, Yang Q, Duan G, Wang J. Identification of basement membrane-related prognostic signature for predicting prognosis, immune response and potential drug prediction in papillary renal cell carcinoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:10694-10724. [PMID: 37322956 DOI: 10.3934/mbe.2023474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Papillary renal cell carcinoma (PRCC) is a malignant neoplasm of the kidney and is highly interesting due to its increasing incidence. Many studies have shown that the basement membrane (BM) plays an important role in the development of cancer, and structural and functional changes in the BM can be observed in most renal lesions. However, the role of BM in the malignant progression of PRCC and its impact on prognosis has not been fully studied. Therefore, this study aimed to explore the functional and prognostic value of basement membrane-associated genes (BMs) in PRCC patients. We identified differentially expressed BMs between PRCC tumor samples and normal tissue and systematically explored the relevance of BMs to immune infiltration. Moreover, we constructed a risk signature based on these differentially expressed genes (DEGs) using Lasso regression analysis and demonstrated their independence using Cox regression analysis. Finally, we predicted 9 small molecule drugs with the potential to treat PRCC and compared the differences in sensitivity to commonly used chemotherapeutic agents between high and low-risk groups to better target patients for more precise treatment planning. Taken together, our study suggested that BMs might play a crucial role in the development of PRCC, and these results might provide new insights into the treatment of PRCC.
Collapse
Affiliation(s)
- Yujia Xi
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Liying Song
- Second School of Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Shuang Wang
- Second School of Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Haonan Zhou
- First School of Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Jieying Ren
- School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Ran Zhang
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Feifan Fu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Qian Yang
- School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Guosheng Duan
- Second School of Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Jingqi Wang
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
186
|
Yang X, Jia Q, Zou Z, Liu X, Li X, Chen H, Ma H, Chen L. INHBB promotes tumor aggressiveness and stemness of glioblastoma via activating EGFR signaling. Pathol Res Pract 2023; 245:154460. [PMID: 37116368 DOI: 10.1016/j.prp.2023.154460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND As most common primary tumor in adult's brain, the glioblastoma (GBM) still ends up with poor survival period. Little progress has been made in recent decades in terms of improving prognosis. There's still an urgent need for novel targets and strategies to overcome such malignancy. METHODS Both the Cancer Genome Atlas and Gene Expression Omnibus databases were used to analyze expression differences and correlations. The immunohistochemistry and survival analysis were used to verify expression differences. Tumorigenesis was assessed using cholecystokinin and the orthotopic xenograft model. Metastasis was determined by the transwell assay and the tail vein xenograft model. RESULTS Inhibin subunit beta B (INHBB) was upregulated in GBM and predicted poor survival. It promoted tumor growth, invasion and stemness in GBM. INHBB expression correlated with the epidermal growth factor receptor (EGFR) expression and downstream AKT and ERK expression levels. The increased tumor progression induced by INHBB could be inhibited by afatinib. CONCLUSION This study revealed INHBB as a tumor progression and independent prognostic factor in GBM, which could be a potential upper stream molecular of EGFR/ERK/AKT signaling.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Qingge Jia
- Department of Reproductive Endocrinology, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China
| | - Zheng Zou
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Xuantong Liu
- Department of Pathology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xinning Li
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - He Chen
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Hongxin Ma
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Ligang Chen
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
187
|
He Z, He J, Xie K. KLF4 transcription factor in tumorigenesis. Cell Death Discov 2023; 9:118. [PMID: 37031197 PMCID: PMC10082813 DOI: 10.1038/s41420-023-01416-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023] Open
Abstract
Krüppel-like transcriptional factor is important in maintaining cellular functions. Deletion of Krüppel-like transcriptional factor usually causes abnormal embryonic development and even embryonic death. KLF4 is a prominent member of this family, and embryonic deletion of KLF4 leads to alterations in skin permeability and postnatal death. In addition to its important role in embryo development, it also plays a critical role in inflammation and malignancy. It has been investigated that KLF4 has a regulatory role in a variety of cancers, including lung, breast, prostate, colorectal, pancreatic, hepatocellular, ovarian, esophageal, bladder and brain cancer. However, the role of KLF4 in tumorigenesis is complex, which may link to its unique structure with both transcriptional activation and transcriptional repression domains, and to the regulation of its upstream and downstream signaling molecules. In this review, we will summarize the structural and functional aspects of KLF4, with a focus on KLF4 as a clinical biomarker and therapeutic target in different types of tumors.
Collapse
Affiliation(s)
- Zhihong He
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
- The South China University of Technology Comprehensive Cancer Center, Guangdong, China
| | - Jie He
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangdong, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China.
- The South China University of Technology Comprehensive Cancer Center, Guangdong, China.
| |
Collapse
|
188
|
Zhou Y, Wang W, Todorov P, Pei C, Isachenko E, Rahimi G, Mallmann P, Nawroth F, Isachenko V. RNA Transcripts in Human Ovarian Cells: Two-Time Cryopreservation Does Not Affect Developmental Potential. Int J Mol Sci 2023; 24:ijms24086880. [PMID: 37108043 PMCID: PMC10139221 DOI: 10.3390/ijms24086880] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Sometimes, for medical reasons, when a frozen tissue has already thawed, an operation by re-transplantation may be cancelled, and ovarian tissues should be re-frozen for transplantation next time. Research about the repeated cryopreservation of ovarian cells is rarely reported. It has been published that there is no difference in the follicle densities, proportions of proliferation of early preantral follicles, appearance of atretic follicles, or ultrastructural quality of frozen-thawed and re-frozen-rethawed tissue. However, the molecular mechanisms of a repeated cryopreservation effect on the developmental potential of ovarian cells are unknown. The aim of our experiments was to investigate the effect of re-freezing and re-thawing ovarian tissue on gene expression, gene function annotation, and protein-protein interactions. The morphological and biological activity of primordial, primary, and secondary follicles, aimed at using these follicles for the formation of artificial ovaries, was also detected. Second-generation mRNA sequencing technology with a high throughput and accuracy was adopted to determine the different transcriptome profiles in the cells of four groups: one-time cryopreserved (frozen and thawed) cells (Group 1), two-time cryopreserved (re-frozen and re-thawed after first cryopreservation) cells (Group 2), one-time cryopreserved (frozen and thawed) and in vitro cultured cells (Group 3), and two times cryopreserved (re-frozen and re-thawed after first cryopreservation) and in vitro cultured cells (Group 4). Some minor changes in the primordial, primary, and secondary follicles in terms of the morphology and biological activity were detected, and finally, the availability of these follicles for the formation of artificial ovaries was explored. It was established that during cryopreservation, the CEBPB/CYP19A1 pathway may be involved in regulating estrogen activity and CD44 is crucial for the development of ovarian cells. An analysis of gene expression in cryopreserved ovarian cells indicates that two-time (repeated) cryopreservation does not significantly affect the developmental potential of these cells. For medical reasons, when ovarian tissue is thawed but cannot be transplanted, it can be immediately re-frozen again.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany
| | - Wanxue Wang
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany
| | - Plamen Todorov
- Institute of Biology and Immunology of Reproduction of Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Cheng Pei
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany
| | - Evgenia Isachenko
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany
| | - Gohar Rahimi
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany
| | - Peter Mallmann
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany
| | - Frank Nawroth
- Center for Infertility, Prenatal Medicine, Endocrinology and Osteology, Amedes Medical Center MVZ Hamburg, 20095 Hamburg, Germany
| | - Volodimir Isachenko
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany
| |
Collapse
|
189
|
Suzuki H, Ozawa K, Tanaka T, Kaneko MK, Kato Y. Development of a Novel Anti-CD44 Variant 7/8 Monoclonal Antibody, C44Mab-34, for Multiple Applications against Oral Carcinomas. Biomedicines 2023; 11:biomedicines11041099. [PMID: 37189717 DOI: 10.3390/biomedicines11041099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Cluster of differentiation 44 (CD44) has been investigated as a cancer stem cell (CSC) marker as it plays critical roles in tumor malignant progression. The splicing variants are overexpressed in many carcinomas, especially squamous cell carcinomas, and play critical roles in the promotion of tumor metastasis, the acquisition of CSC properties, and resistance to treatments. Therefore, each CD44 variant (CD44v) function and distribution in carcinomas should be clarified for the establishment of novel tumor diagnosis and therapy. In this study, we immunized mouse with a CD44 variant (CD44v3–10) ectodomain and established various anti-CD44 monoclonal antibodies (mAbs). One of the established clones (C44Mab-34; IgG1, kappa) recognized a peptide that covers both variant 7- and variant 8-encoded regions, indicating that C44Mab-34 is a specific mAb for CD44v7/8. Moreover, C44Mab-34 reacted with CD44v3–10-overexpressed Chinese hamster ovary-K1 (CHO) cells or the oral squamous cell carcinoma (OSCC) cell line (HSC-3) by flow cytometry. The apparent KD of C44Mab-34 for CHO/CD44v3–10 and HSC-3 was 1.4 × 10−9 and 3.2 × 10−9 M, respectively. C44Mab-34 could detect CD44v3–10 in Western blotting and stained the formalin-fixed paraffin-embedded OSCC in immunohistochemistry. These results indicate that C44Mab-34 is useful for detecting CD44v7/8 in various applications and is expected to be useful in the application of OSCC diagnosis and therapy.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Kazuki Ozawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|
190
|
Li S, Zhang Y, Xu W, Lv Z, Xu L, Zhao Z, Zhu D, Song Y. C Allele of the PPARδ+294T>C Polymorphism Confers a Higher Risk of Hypercholesterolemia, but not Obesity and Insulin Resistance: A Systematic Review and Meta-Analysis. Horm Metab Res 2023; 55:355-366. [PMID: 37011890 DOI: 10.1055/a-2043-7707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The relationships of the PPARα Leu162Val and PPARδ+294 T>C polymorphisms with metabolic indexes have been reported to be inconsistent and even contradictory. The meta-analysis was conducted to clarify the relationships between the two variants and the indexes of obesity, insulin resistance, and blood lipids. PubMed, Google Scholar, Embase, and Cochrane Library were searched for eligible studies. Standardized mean difference with 95% confidence interval was calculated to estimate the differences in the metabolic indexes between the genotypes of the Leu162Val and+294 T>C polymorphisms. Heterogeneity among studies was assessed by Cochran's x2-based Q-statistic test. Publication bias was identified by using Begg's test. Forty-one studies (44 585 subjects) and 33 studies (23 018 subjects) were identified in the analyses for the Leu162Val and+294 T>C polymorphisms, respectively. C allele carriers of the+294 T>C polymorphism had significantly higher levels of total cholesterol and low-density lipoprotein cholesterol than TT homozygotes in the whole population. Notably, C allele carriers of the+294 T>C polymorphism had significantly higher levels of triglycerides and total cholesterol in East Asians, but lower levels of triglycerides in West Asians than TT homozygotes. Regarding the Leu162Val polymorphism, it was found that Val allele carriers had significantly higher levels of blood glucose than Leu/Leu homozygotes only in European Caucasians. The meta-analysis demonstrates that C allele of the+294 T>C polymorphism in PPARδ gene confers a higher risk of hypercholesterolemia, which may partly explain the relationship between this variant and coronary artery disease.
Collapse
Affiliation(s)
- Shujin Li
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| | - Youjin Zhang
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| | - Wenhao Xu
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Zhimin Lv
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Luying Xu
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Zixuan Zhao
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Dan Zhu
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Yongyan Song
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| |
Collapse
|
191
|
Ning S, Zhang T, Lyu M, Lam JWY, Zhu D, Huang Q, Tang BZ. A type I AIE photosensitiser-loaded biomimetic nanosystem allowing precise depletion of cancer stem cells and prevention of cancer recurrence after radiotherapy. Biomaterials 2023; 295:122034. [PMID: 36746049 DOI: 10.1016/j.biomaterials.2023.122034] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
Radioresistance of Cancer stem cell (CSC) is an important cause of tumor recurrence after radiotherapy (RT). Herein, we designed a type I aggregation-induced emission (AIE) photosensitiser-loaded biomimetic mesoporous organosilicon nanosystem (PMT) for precise depletion of CSC to prevent tumor recurrence after RT. This PMT system is composed of a type I AIE photosensitiser (TBP-2) loaded mesoporous organosilicon nanoparticles (MON) with an outer platelet membrane. The PMT system is able to specifically target CSC. Intracellular glutathione activity leads to MON degradation and the release of TBP-2. Type I photodynamic therapy is activated by exposure to white light, producing a large amount of hydroxyl radicals to promote CSC death. The results of in vivo experiments demonstrated specific removal of CSC following PMT treatment, with no tumor recurrence observed when combined with RT. However, tumor recurrence was observed in mice that received RT only. The expression of CSC markers was significantly reduced following PMT treatment. We demonstrate the development of a system for the precise removal of CSC with good biosafety and high potential for clinical translation. We believe the PMT nanosystem represents a novel idea in the prevention of tumor recurrence.
Collapse
Affiliation(s)
- Shipeng Ning
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, PR China; Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530000, China; Guangxi Clinical Research Center for Anesthesiology, Nanning, 530000, China
| | - Tianfu Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China; Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Meng Lyu
- Department of Gastrointestinal Surgery & Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Jacky Wing Yip Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Daoming Zhu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Qinqin Huang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, PR China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China; Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, 999077, China.
| |
Collapse
|
192
|
Kang KT, Shin MJ, Moon HJ, Choi KU, Suh DS, Kim JH. TRRAP Enhances Cancer Stem Cell Characteristics by Regulating NANOG Protein Stability in Colon Cancer Cells. Int J Mol Sci 2023; 24:ijms24076260. [PMID: 37047234 PMCID: PMC10094283 DOI: 10.3390/ijms24076260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
NANOG, a stemness-associated transcription factor, is highly expressed in many cancers and plays a critical role in regulating tumorigenicity. Transformation/transcription domain-associated protein (TRRAP) has been reported to stimulate the tumorigenic potential of cancer cells and induce the gene transcription of NANOG. This study aimed to investigate the role of the TRRAP-NANOG signaling pathway in the tumorigenicity of cancer stem cells. We found that TRRAP overexpression specifically increases NANOG protein stability by interfering with NANOG ubiquitination mediated by FBXW8, an E3 ubiquitin ligase. Mapping of NANOG-binding sites using deletion mutants of TRRAP revealed that a domain of TRRAP (amino acids 1898–2400) is responsible for binding to NANOG and that the overexpression of this TRRAP domain abrogated the FBXW8-mediated ubiquitination of NANOG. TRRAP knockdown decreased the expression of CD44, a cancer stem cell marker, and increased the expression of P53, a tumor suppressor gene, in HCT-15 colon cancer cells. TRRAP depletion attenuated spheroid-forming ability and cisplatin resistance in HCT-15 cells, which could be rescued by NANOG overexpression. Furthermore, TRRAP knockdown significantly reduced tumor growth in a murine xenograft transplantation model, which could be reversed by NANOG overexpression. Together, these results suggest that TRRAP plays a pivotal role in the regulation of the tumorigenic potential of colon cancer cells by modulating NANOG protein stability.
Collapse
Affiliation(s)
- Kyung-Taek Kang
- Department of Physiology, College of Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea
| | - Min-Joo Shin
- Department of Physiology, College of Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea
| | - Hye-Ji Moon
- Department of Physiology, College of Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea
| | - Kyung-Un Choi
- Department of Pathology, College of Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea
| | - Dong-Soo Suh
- Department of Obstetrics and Gynecology, School of Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea
| | - Jae-Ho Kim
- Department of Physiology, College of Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea
- Correspondence: ; Tel.: +82-51-510-8073; Fax: +82-51-510-8076
| |
Collapse
|
193
|
Leone P, Solimando AG, Prete M, Malerba E, Susca N, Derakhshani A, Ditonno P, Terragna C, Cavo M, Silvestris N, Racanelli V. Unraveling the Role of Peroxisome Proliferator-Activated Receptor β/Δ (PPAR β/Δ) in Angiogenesis Associated with Multiple Myeloma. Cells 2023; 12:cells12071011. [PMID: 37048084 PMCID: PMC10093382 DOI: 10.3390/cells12071011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Growing evidence suggests a role for peroxisome proliferator-activated receptor β/δ (PPAR β/δ) in the angiogenesis, growth, and metastasis of solid tumors, but little is known about its role in multiple myeloma (MM). Angiogenesis in the bone marrow (BM) is characteristic of disease transition from monoclonal gammopathy of undetermined significance (MGUS) to MM. We examined the expression and function of PPAR β/δ in endothelial cells (EC) from the BM of MGUS (MGEC) and MM (MMEC) patients and showed that PPAR β/δ was expressed at higher levels in MMEC than in MGEC and that the overexpression depended on myeloma plasma cells. The interaction between myeloma plasma cells and MMEC promoted the release of the PPAR β/δ ligand prostaglandin I2 (PGI2) by MMEC, leading to the activation of PPAR β/δ. We also demonstrated that PPAR β/δ was a strong stimulator of angiogenesis in vitro and that PPAR β/δ inhibition by a specific antagonist greatly impaired the angiogenic functions of MMEC. These findings define PGI2-PPAR β/δ signaling in EC as a potential target of anti-angiogenic therapy. They also sustain the use of PPAR β/δ inhibitors in association with conventional drugs as a new therapeutic approach in MM.
Collapse
|
194
|
Jian FX, Bao PX, Li WF, Cui YH, Hong HG. Negative regulation of CD44st by miR-138-5p affects the invasive ability of breast cancer cells and patient prognosis after breast cancer surgery. BMC Cancer 2023; 23:269. [PMID: 36964570 PMCID: PMC10037889 DOI: 10.1186/s12885-023-10738-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 03/26/2023] Open
Abstract
OBJECTIVE To investigate how the negative regulation of CD44st by miR-138-5p affects the invasive ability of breast cancer cell lines and prognosis in postoperative breast cancer patients. METHODS RT-PCR, qRT-PCR, and western blot assays were used to detect the expression of CD44s, CD44v6, and CD44st at both mRNA and protein levels. The expression of miR-138-5p in breast cancer cell lines was also evaluated. The binding ability of miR-138-5p to CD44st was determined via a dual-luciferase assay. The CD44 protein expression in breast cancer tissues was detected using immunohistochemistry. A Transwell assay was used to detect the invasive ability of tumor cells. The correlation between CD44st and miR-138-5p mRNA expression in breast cancer tissues was evaluated using qRT-PCR, and the relationship between clinicopathological features was statistically analyzed. RESULTS CD44s and CD44v6 were highly expressed in MDAMB-231 cell line, while CD44st was highly expressed in MCF-7/Adr and Skbr-3 cells. None of the CD44 isoforms were expressed in MCF-7 cells. The miR-138-5p was highly expressed in MCF-7 cells, but not in MCF-7/Adr, Skbr-3, and MDAMB-231 cells. The dual-luciferase assay suggested that miR-138-5p could bind to wild-type CD44st 3'-UTR, miR-138-5p overexpression significantly inhibited the expression level of CD44 protein in MCF-7/Adr cells, and miR-138-5p + CD44st (3'-UTR)-treated MCF-7/Adr and Skbr-3 cells were significantly less invasive than those in the control group (P < 0.05). RT-PCR results for 80 postoperative breast cancer patients showed that the mRNA expression rate for CD44st was higher in cancer tissues than in paracancerous tissues, and the expression rate of miR-138-5p was higher in paracancerous tissues than in cancerous tissues (P < 0.01). In cancer tissues, CD44st was negatively correlated with miR-138-5p expression, with correlation coefficient r = -0.76 (Pearson's correlation), coefficient of determination R2 = 0.573, F = 106.89, and P < 0.001. The median overall survival value for patients in the low miR-138-5p expression group was 40.39 months [95% confidence interval (CI): 35.59-45.18 months] and 56.30 months (95% CI: 54.38-58.21 months) for patients in the high-expression group, with a log rank (Mantel-Cox) of 13.120, one degree of freedom, and P < 0.001. CONCLUSION In breast cancer cell lines, miR-138-5p negatively regulated expression of CD44st and affected the invasive ability of tumor cells and patient prognosis after breast cancer surgery.
Collapse
Affiliation(s)
- Fang Xin Jian
- Department of Oncology, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, China
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, No.41, Hailian East Road, Lianyungang, 222000, Jiangsu, China
| | - Peng Xiao Bao
- Department of Oncology, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, China
| | | | - Yan Hai Cui
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, No.41, Hailian East Road, Lianyungang, 222000, Jiangsu, China.
| | - Hang Guan Hong
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, No.41, Hailian East Road, Lianyungang, 222000, Jiangsu, China.
| |
Collapse
|
195
|
Yang C, Qiu H, Lv M, Yang J, Wu K, Huang J, Jiang Q. Gastrodin protects endothelial cells against high glucose-induced injury through up-regulation of PPARβ and alleviation of nitrative stress. Microvasc Res 2023; 148:104531. [PMID: 36963481 DOI: 10.1016/j.mvr.2023.104531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
In diabetes mellitus (DM), high glucose can result in endothelial cell injury, and then lead to diabetic vascular complications. Gastrodin, as the mainly components of Chinese traditional herb Tianma (Gastrodia elata Bl.), has been widely used for cardiovascular diseases. However, the known of the effect of gastrodin on endothelial cell injury is still limited. In this study, we aimed to investigate the effect and possible mechanism of gastrodin on high glucose-injured human umbilical vein endothelial cells (HUVEC). High glucose (30 mmol/L) treatment caused HUVEC injury. After gastrodin (0.1, 1, 10 μmol/L) treatment, compared with the high glucose group, the cell proliferation ability increased in a dose-dependent manner. Meanwhile, gastrodin (10 μmol/L) up-regulated the mRNA and protein expressions of PPARβ and eNOS, decreased the expressions of iNOS, also reduced the protein expression of 3-nitrotyrosine, and lowed the level of ONOO-, increased NO content. Both the PPARβ antagonist GSK0660 (1 μmol/L) and the eNOS inhibitor L-NAME (10 μmol/L) were able to block the above effects of gastrodin. In conclusion, gastrodin protectes vascular endothelial cells from high glucose injury, which may be, at least partly, mediated by up-regulating the expression of PPARβ and negatively regulating nitrative stress.
Collapse
Affiliation(s)
- Chuang Yang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Hongmei Qiu
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Mingqi Lv
- Experimental Teaching Management Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Junxia Yang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Ke Wu
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jiajun Huang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Qingsong Jiang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
196
|
TWEAK/Fn14 Signalling Regulates the Tissue Microenvironment in Chronic Pancreatitis. Cancers (Basel) 2023; 15:cancers15061807. [PMID: 36980694 PMCID: PMC10046490 DOI: 10.3390/cancers15061807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Chronic pancreatitis increases the risk of developing pancreatic cancer through the upregulation of pathways favouring proliferation, fibrosis, and sustained inflammation. We established in previous studies that the ligand tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) signals through its cognate receptor fibroblast growth factor-inducible 14 (Fn14) to regulate these underlying cellular processes in the chronic liver injury niche. However, the role of the TWEAK/Fn14 signalling pathway in pancreatic disease is entirely unknown. An analysis of publicly available datasets demonstrated that the TWEAK receptor Fn14 is upregulated in pancreatitis and pancreatic adenocarcinoma, with single cell RNA sequencing revealing pancreatic ductal cells as the main Fn14 producers. We then used choline-deficient, ethionine-supplemented (CDE) diet feeding of wildtype C57BL/6J and Fn14 knockout littermates to (a) confirm CDE treatment as a suitable model of chronic pancreatitis and (b) to investigate the role of the TWEAK/Fn14 signalling pathway in pancreatic ductal proliferation, as well as fibrotic and inflammatory cell dynamics. Our time course data obtained at three days, three months, and six months of CDE treatment reveal that a lack of TWEAK/Fn14 signalling significantly inhibits the establishment and progression of the tissue microenvironment in CDE-induced chronic pancreatitis, thus proposing the TWEAK/Fn14 pathway as a novel therapeutic target.
Collapse
|
197
|
Nordin AH, Husna SMN, Ahmad Z, Nordin ML, Ilyas RA, Azemi AK, Ismail N, Siti NH, Ngadi N, Azami MSM, Mohamad Norpi AS, Reduan MFH, Osman AY, Pratama DAOA, Nabgan W, Shaari R. Natural Polymeric Composites Derived from Animals, Plants, and Microbes for Vaccine Delivery and Adjuvant Applications: A Review. Gels 2023; 9:227. [PMID: 36975676 PMCID: PMC10048722 DOI: 10.3390/gels9030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
A key element in ensuring successful immunization is the efficient delivery of vaccines. However, poor immunogenicity and adverse inflammatory immunogenic reactions make the establishment of an efficient vaccine delivery method a challenging task. The delivery of vaccines has been performed via a variety of delivery methods, including natural-polymer-based carriers that are relatively biocompatible and have low toxicity. The incorporation of adjuvants or antigens into biomaterial-based immunizations has demonstrated better immune response than formulations that just contain the antigen. This system may enable antigen-mediated immunogenicity and shelter and transport the cargo vaccine or antigen to the appropriate target organ. In this regard, this work reviews the recent applications of natural polymer composites from different sources, such as animals, plants, and microbes, in vaccine delivery systems.
Collapse
Affiliation(s)
- Abu Hassan Nordin
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia
| | - Siti Muhamad Nur Husna
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia
| | - Zuliahani Ahmad
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia
| | - Muhammad Luqman Nordin
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
- Centre for Veterinary Vaccinology (VetVaCC), Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Rushdan Ahmad Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Ahmad Khusairi Azemi
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia
| | - Nordin Hawa Siti
- Pharmacology Unit, School of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia
| | - Norzita Ngadi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | | | - Abdin Shakirin Mohamad Norpi
- Faculty Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia
| | - Mohd Farhan Hanif Reduan
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
- Centre for Veterinary Vaccinology (VetVaCC), Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Abdinasir Yusuf Osman
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, Hertfordshire, UK
- National Institutes of Health (NIH), Ministry of Health, Corso Somalia Street, Shingani, Mogadishu P.O. Box 22, Somalia
| | | | - Walid Nabgan
- Departament d’Enginyeria Química, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Rumaizi Shaari
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| |
Collapse
|
198
|
Turi M, Anilkumar Sithara A, Hofmanová L, Žihala D, Radhakrishnan D, Vdovin A, Knápková S, Ševčíková T, Chyra Z, Jelínek T, Šimíček M, Gullà A, Anderson KC, Hájek R, Hrdinka M. Transcriptome Analysis of Diffuse Large B-Cell Lymphoma Cells Inducibly Expressing MyD88 L265P Mutation Identifies Upregulated CD44, LGALS3, NFKBIZ, and BATF as Downstream Targets of Oncogenic NF-κB Signaling. Int J Mol Sci 2023; 24:ijms24065623. [PMID: 36982699 PMCID: PMC10057398 DOI: 10.3390/ijms24065623] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
During innate immune responses, myeloid differentiation primary response 88 (MyD88) functions as a critical signaling adaptor protein integrating stimuli from toll-like receptors (TLR) and the interleukin-1 receptor (IL-1R) family and translates them into specific cellular outcomes. In B cells, somatic mutations in MyD88 trigger oncogenic NF-κB signaling independent of receptor stimulation, which leads to the development of B-cell malignancies. However, the exact molecular mechanisms and downstream signaling targets remain unresolved. We established an inducible system to introduce MyD88 to lymphoma cell lines and performed transcriptomic analysis (RNA-seq) to identify genes differentially expressed by MyD88 bearing the L265P oncogenic mutation. We show that MyD88L265P activates NF-κB signaling and upregulates genes that might contribute to lymphomagenesis, including CD44, LGALS3 (coding Galectin-3), NFKBIZ (coding IkBƺ), and BATF. Moreover, we demonstrate that CD44 can serve as a marker of the activated B-cell (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) and that CD44 expression is correlated with overall survival in DLBCL patients. Our results shed new light on the downstream outcomes of MyD88L265P oncogenic signaling that might be involved in cellular transformation and provide novel therapeutical targets.
Collapse
Affiliation(s)
- Marcello Turi
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Anjana Anilkumar Sithara
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Lucie Hofmanová
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - David Žihala
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Dhwani Radhakrishnan
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Alexander Vdovin
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Sofija Knápková
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Tereza Ševčíková
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Zuzana Chyra
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Tomáš Jelínek
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Michal Šimíček
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Annamaria Gullà
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Kenneth Carl Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Roman Hájek
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Matouš Hrdinka
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
- Correspondence:
| |
Collapse
|
199
|
Sarabia-Sánchez MA, Moreno-Londoño AP, Castañeda-Patlán MC, Alvarado-Ortiz E, Martínez-Morales JC, Robles-Flores M. Non-canonical Wnt/Ca2+ signaling is essential to promote self-renewal and proliferation in colon cancer stem cells. Front Oncol 2023; 13:1121787. [PMID: 36969011 PMCID: PMC10036746 DOI: 10.3389/fonc.2023.1121787] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionCancer Stem Cells (CSC) are responsible for maintaining tumor growth, chemoresistance, and metastasis. Therefore, understanding their characteristics is critical to progress in cancer therapy. While the contribution of the canonical Wnt/b-catenin signaling in both normal and CSCs had been well established, the function of non-canonical Wnt signaling cascades in stem cells is unclear. Recently, we reported that Wnt ligands trigger complex signaling in which the canonical and non-canonical responses can be simultaneously activated by one ligand in colon cancer cells, suggesting, therefore, that noncanonical Wnt pathways may also be important in CSCs.MethodsThe present work aimed to know the role of the Wnt/Ca2+ pathway in colon CSCs. We used tumorspheres as a model of CSCs enrichment of CRC cell lines with different Wnt/b-catenin contexts.ResultsUsing Wnt3a and Wnt5a as prototype ligands to activate the canonical or the non-canonical pathways, respectively, we found that both Wnt3a and Wnt5a promote sphere-formation capacity and proliferation without stimulating b-catenin-dependent transcription. Upregulation of sphere formation by Wnt5a or Wnt3a requires the downstream activation of Phospholipase C and transcriptional factor NFAT. Moreover, the single specific inhibition of PLC or NFAT, using U73122 and 11R-VIVIT, respectively, leads to impaired sphere formation.DiscussionOur results indicate that both types of ligands activate the Wnt/Ca2+ signaling axis to induce/maintain the self-renewal efficiency of CSCs, demonstrating to be essential for the functions of CSC in colon cancer.
Collapse
|
200
|
Canonical Wnt Pathway Is Involved in Chemoresistance and Cell Cycle Arrest Induction in Colon Cancer Cell Line Spheroids. Int J Mol Sci 2023; 24:ijms24065252. [PMID: 36982333 PMCID: PMC10049556 DOI: 10.3390/ijms24065252] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
The presence of cancer stem cells (CSCs) has been associated with the induction of drug resistance and disease recurrence after therapy. 5-Fluorouracil (5FU) is widely used as the first-line treatment of colorectal cancer (CRC). However, its effectiveness may be limited by the induction of drug resistance in tumor cells. The Wnt pathway plays a key role in the development and CRC progression, but it is not clearly established how it is involved in CSCs resistance to treatment. This work aimed to investigate the role played by the canonical Wnt/β-catenin pathway in CSCs resistance to 5FU treatment. Using tumor spheroids as a model of CSCs enrichment of CRC cell lines with different Wnt/β-catenin contexts, we found that 5FU induces in all CRC spheroids tested cell death, DNA damage, and quiescence, but in different proportions for each one: RKO spheroids were very sensitive to 5FU, while SW480 were less susceptible, and the SW620 spheroids, the metastatic derivative of SW480 cells, displayed the highest resistance to death, high clonogenic capacity, and the highest ability for regrowth after 5FU treatment. Activating the canonical Wnt pathway with Wnt3a in RKO spheroids decreased the 5FU-induced cell death. But the Wnt/β-catenin pathway inhibition with Adavivint alone or in combination with 5FU in spheroids with aberrant activation of this pathway produced a severe cytostatic effect compromising their clonogenic capacity and diminishing the stem cell markers expression. Remarkably, this combined treatment also induced the survival of a small cell subpopulation that could exit the arrest, recover SOX2 levels, and re-grow after treatment.
Collapse
|