1951
|
Cho SF, Anderson KC, Tai YT. BCMA CAR T-cell therapy arrives for multiple myeloma: a reality. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:S93. [PMID: 30740414 DOI: 10.21037/atm.2018.11.14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shih-Feng Cho
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, China.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan, China
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yu-Tzu Tai
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
1952
|
Dourthe MÉ, Yakouben K, Chaillou D, Lesprit E, Dalle JH, Baruchel A. CAR-T cells : indications actuelles en pédiatrie et perspectives de développement. Bull Cancer 2018; 105 Suppl 2:S147-S157. [DOI: 10.1016/s0007-4551(19)30045-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
1953
|
Jain T, Litzow MR. No free rides: management of toxicities of novel immunotherapies in ALL, including financial. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:25-34. [PMID: 30504288 PMCID: PMC6246022 DOI: 10.1182/asheducation-2018.1.25] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Therapeutic options for acute lymphoblastic leukemia, especially in the relapsed/refractory setting, have expanded significantly in recent times. However, this comes at the cost of toxicities: medical as well as financial. We highlight some of the unique toxicities associated with the novel agents to apprise our readers about what to expect, how to recognize them, and how to manage these toxicities. One of the toxicities seen with inotuzumab, a CD22 antibody drug conjugate, is sinusoidal obstruction syndrome, which can be fatal in >80% of patients if associated with multiorgan failure. Blinatumomab, a monoclonal antibody targeting CD19, is associated with cytokine release syndrome (CRS) and neurotoxicity, both of which require prompt recognition and management primarily with corticosteroids. CRS and neurotoxicity are more common and more severe with chimeric antigen receptor T-cell therapy (CAR-T). The fact that CAR-T cannot be discontinued on demand adds a layer of complexity to the management of related toxicities of this therapy. Tocilizumab, an interleukin-6 receptor blocker, is used to treat severe CRS from CAR-T, whereas corticosteroids remain the mainstay for neurotoxicity management. Although effective, these drugs carry a high price tag, and we review the available data on cost-effectiveness of these agents, keeping in mind that median follow-up on most of these studies is limited and that long-term data on durability of response remain to be seen.
Collapse
MESH Headings
- Antibodies, Bispecific/economics
- Antibodies, Bispecific/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/economics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Costs and Cost Analysis
- Hepatic Veno-Occlusive Disease/chemically induced
- Hepatic Veno-Occlusive Disease/economics
- Hepatic Veno-Occlusive Disease/pathology
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/economics
- Immunotherapy, Adoptive/methods
- Inotuzumab Ozogamicin
- Neurotoxicity Syndromes/economics
- Neurotoxicity Syndromes/immunology
- Neurotoxicity Syndromes/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/economics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
- Receptors, Chimeric Antigen
Collapse
Affiliation(s)
- Tania Jain
- Adult Bone Marrow Transplantation Service, Memorial Sloan-Kettering Cancer Center, New York, NY; and
| | - Mark R. Litzow
- Division of Hematology and Bone Marrow Transplant, Mayo Clinic, Rochester, MN
| |
Collapse
|
1954
|
Morandi F, Horenstein AL, Costa F, Giuliani N, Pistoia V, Malavasi F. CD38: A Target for Immunotherapeutic Approaches in Multiple Myeloma. Front Immunol 2018; 9:2722. [PMID: 30546360 PMCID: PMC6279879 DOI: 10.3389/fimmu.2018.02722] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/05/2018] [Indexed: 11/22/2022] Open
Abstract
Multiple Myeloma (MM) is a hematological cancer characterized by proliferation of malignant plasma cells in the bone marrow (BM). MM represents the second most frequent hematological malignancy, accounting 1% of all cancer and 13% of hematological tumors, with ~9,000 new cases per year. Patients with monoclonal gammopathy of undetermined significance (MGUS) and asymptomatic smoldering MM (SMM) usually evolve to active MM in the presence of increased tumor burden, symptoms and organ damage. Despite the role of high dose chemotherapy in combination with autologous stem cell transplantation and the introduction of new treatments, the prognosis of MM patients is still poor, and novel therapeutic approaches have been tested in the last years, including new immunomodulatory drugs, proteasome inhibitors and monoclonal antibodies (mAbs). CD38 is a glycoprotein with ectoenzymatic functions, which is expressed on plasma cells and other lymphoid and myeloid cell populations. Since its expression is very high and uniform on myeloma cells, CD38 is a good target for novel therapeutic strategies. Among them, immunotherapy represents a promising approach. Here, we summarized recent findings regarding CD38-targeted immunotherapy of MM in pre-clinical models and clinical trials, including (i) mAbs (daratumumab and isatuximab), (ii) radioimmunotherapy, and (iii) adoptive cell therapy, using chimeric antigen receptor (CAR)-transfected T cells specific for CD38. Finally, we discussed the efficacy and possible limitations of these therapeutic approaches for MM patients.
Collapse
Affiliation(s)
- Fabio Morandi
- Stem Cell Laboratory and Cell Therapy Center, Istituto Giannina Gaslini, Genoa, Italy
| | - Alberto L. Horenstein
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino, Italy
- CeRMS, University of Torino, Torino, Italy
| | - Federica Costa
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Vito Pistoia
- Immunology Area, Pediatric Hospital Bambino Gesù, Rome, Italy
| | - Fabio Malavasi
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino, Italy
- CeRMS, University of Torino, Torino, Italy
| |
Collapse
|
1955
|
Jain T, Litzow MR. No free rides: management of toxicities of novel immunotherapies in ALL, including financial. Blood Adv 2018; 2:3393-3403. [PMID: 30482769 PMCID: PMC6258912 DOI: 10.1182/bloodadvances.2018020198] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/13/2018] [Indexed: 12/27/2022] Open
Abstract
Therapeutic options for acute lymphoblastic leukemia, especially in the relapsed/refractory setting, have expanded significantly in recent times. However, this comes at the cost of toxicities: medical as well as financial. We highlight some of the unique toxicities associated with the novel agents to apprise our readers about what to expect, how to recognize them, and how to manage these toxicities. One of the toxicities seen with inotuzumab, a CD22 antibody drug conjugate, is sinusoidal obstruction syndrome, which can be fatal in >80% of patients if associated with multiorgan failure. Blinatumomab, a monoclonal antibody targeting CD19, is associated with cytokine release syndrome (CRS) and neurotoxicity, both of which require prompt recognition and management primarily with corticosteroids. CRS and neurotoxicity are more common and more severe with chimeric antigen receptor T-cell therapy (CAR-T). The fact that CAR-T cannot be discontinued on demand adds a layer of complexity to the management of related toxicities of this therapy. Tocilizumab, an interleukin-6 receptor blocker, is used to treat severe CRS from CAR-T, whereas corticosteroids remain the mainstay for neurotoxicity management. Although effective, these drugs carry a high price tag, and we review the available data on cost-effectiveness of these agents, keeping in mind that median follow-up on most of these studies is limited and that long-term data on durability of response remain to be seen.
Collapse
Affiliation(s)
- Tania Jain
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Mark R Litzow
- Division of Hematology and Bone Marrow Transplant, Mayo Clinic, Rochester, MN
| |
Collapse
|
1956
|
Zhao J, Lin Q, Song Y, Liu D. Universal CARs, universal T cells, and universal CAR T cells. J Hematol Oncol 2018; 11:132. [PMID: 30482221 PMCID: PMC6257951 DOI: 10.1186/s13045-018-0677-2] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
Currently, the two approved T cell products with chimeric antigen receptors (CAR) are from autologous T cells. These CAR T cells approved for clinical use must be generated on a custom-made basis. This case-by-case autologous T cell production platform remains a significant limiting factor for large-scale clinical application due to the costly and lengthy production process. There is also an inherent risk of production failure. The individualized, custom-made autologous CAR T cell production process also posts constriction on the wide application on diverse tumor types. Therefore, universal allogeneic T cells are needed for the preparation of universal CAR T cells that can serve as the “off-the-shelf” ready-to-use therapeutic agents for large-scale clinical applications. Genome-editing technologies including ZFN (zinc finger nuclease), TALEN (transcription activator-like effector nuclease), and CRISPR-Cas9 are being used to generate the universal third-party T cells. In addition, split, universal, and programmable (SUPRA) CARs are being developed to enhance the flexibility and controllability of CAR T cells. The engineered universal T cells and universal CARs are paving the road for a totally new generation of CAR T cells capable of targeting multiple antigens and/ or being delivered to multiple recipients without re-editing of T cells. This may escalate to a new wave of revolution in cancer immunotherapy. This review summarized the latest advances on designs and development of universal CARs, universal T cells, and clinical application of universal CAR T cells.
Collapse
Affiliation(s)
- Juanjuan Zhao
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008, China
| | - Quande Lin
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008, China
| | - Yongping Song
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008, China
| | - Delong Liu
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008, China.
| |
Collapse
|
1957
|
Adoptive cellular therapies: the current landscape. Virchows Arch 2018; 474:449-461. [PMID: 30470934 PMCID: PMC6447513 DOI: 10.1007/s00428-018-2484-0] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
For many cancer types, the immune system plays an essential role in their development and growth. Based on these rather novel insights, immunotherapeutic strategies have been developed. In the past decade, immune checkpoint blockade has demonstrated a major breakthrough in cancer treatment and has currently been approved for the treatment of multiple tumor types. Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TIL) or gene-modified T cells expressing novel T cell receptors (TCR) or chimeric antigen receptors (CAR) is another strategy to modify the immune system to recognize tumor cells and thus carry out an anti-tumor effector function. These treatments have shown promising results in various tumor types, and multiple clinical trials are being conducted worldwide to further optimize this treatment modality. Most successful results were obtained in hematological malignancies with the use of CD19-directed CAR T cell therapy and already led to the commercial approval by the FDA. This review provides an overview of the developments in ACT, the associated toxicity, and the future potential of ACT in cancer treatment.
Collapse
|
1958
|
Xia AL, Xu Y, Lu XJ. Cancer immunotherapy: challenges and clinical applications. J Med Genet 2018; 56:1-3. [PMID: 30464054 DOI: 10.1136/jmedgenet-2018-105852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022]
Affiliation(s)
- An-Liang Xia
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Hepatobiliary Surgery, The Affliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yong Xu
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xiao-Jie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
1959
|
Shifrut E, Carnevale J, Tobin V, Roth TL, Woo JM, Bui CT, Li PJ, Diolaiti ME, Ashworth A, Marson A. Genome-wide CRISPR Screens in Primary Human T Cells Reveal Key Regulators of Immune Function. Cell 2018; 175:1958-1971.e15. [PMID: 30449619 DOI: 10.1016/j.cell.2018.10.024] [Citation(s) in RCA: 366] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
Abstract
Human T cells are central effectors of immunity and cancer immunotherapy. CRISPR-based functional studies in T cells could prioritize novel targets for drug development and improve the design of genetically reprogrammed cell-based therapies. However, large-scale CRISPR screens have been challenging in primary human cells. We developed a new method, single guide RNA (sgRNA) lentiviral infection with Cas9 protein electroporation (SLICE), to identify regulators of stimulation responses in primary human T cells. Genome-wide loss-of-function screens identified essential T cell receptor signaling components and genes that negatively tune proliferation following stimulation. Targeted ablation of individual candidate genes characterized hits and identified perturbations that enhanced cancer cell killing. SLICE coupled with single-cell RNA sequencing (RNA-seq) revealed signature stimulation-response gene programs altered by key genetic perturbations. SLICE genome-wide screening was also adaptable to identify mediators of immunosuppression, revealing genes controlling responses to adenosine signaling. The SLICE platform enables unbiased discovery and characterization of functional gene targets in primary cells.
Collapse
Affiliation(s)
- Eric Shifrut
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Julia Carnevale
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Victoria Tobin
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Theodore L Roth
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jonathan M Woo
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christina T Bui
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - P Jonathan Li
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Morgan E Diolaiti
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
1960
|
Guo ZS. The 2018 Nobel Prize in medicine goes to cancer immunotherapy (editorial for BMC cancer). BMC Cancer 2018; 18:1086. [PMID: 30415640 PMCID: PMC6231274 DOI: 10.1186/s12885-018-5020-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022] Open
Affiliation(s)
- Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA. .,University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
1961
|
|
1962
|
Pfeiffer A, Thalheimer FB, Hartmann S, Frank AM, Bender RR, Danisch S, Costa C, Wels WS, Modlich U, Stripecke R, Verhoeyen E, Buchholz CJ. In vivo generation of human CD19-CAR T cells results in B-cell depletion and signs of cytokine release syndrome. EMBO Mol Med 2018; 10:e9158. [PMID: 30224381 PMCID: PMC6220327 DOI: 10.15252/emmm.201809158] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells brought substantial benefit to patients with B-cell malignancies. Notwithstanding, CAR T-cell manufacturing requires complex procedures impeding the broad supply chain. Here, we provide evidence that human CD19-CAR T cells can be generated directly in vivo using the lentiviral vector CD8-LV specifically targeting human CD8+ cells. Administration into mice xenografted with Raji lymphoma cells and human peripheral blood mononuclear cells led to CAR expression solely in CD8+ T cells and efficacious elimination of CD19+ B cells. Further, upon injection of CD8-LV into mice transplanted with human CD34+ cells, induction of CAR T cells and CD19+ B-cell depletion was observed in 7 out of 10 treated animals. Notably, three mice showed elevated levels of human cytokines in plasma. Tissue-invading CAR T cells and complete elimination of the B-lymphocyte-rich zones in spleen were indicative of a cytokine release syndrome. Our data demonstrate the feasibility of in vivo reprogramming of human CD8+ CAR T cells active against CD19+ cells, yet with similar adverse effects currently notorious in the clinical practice.
Collapse
Affiliation(s)
- Anett Pfeiffer
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Annika M Frank
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Ruben R Bender
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Simon Danisch
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH and German Centre for Infection Research (DZIF), partner site Hannover, Hannover, Germany
| | - Caroline Costa
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, University of Lyon, Lyon, France
| | - Winfried S Wels
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ute Modlich
- Division of Veterinary Medicine, Research Group for Gene Modification in Stem Cells, Paul-Ehrlich-Institut, Langen, Germany
| | - Renata Stripecke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH and German Centre for Infection Research (DZIF), partner site Hannover, Hannover, Germany
| | - Els Verhoeyen
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, University of Lyon, Lyon, France
- INSERM, C3M, Université Côte d'Azur, Nice, France
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany
| |
Collapse
|
1963
|
Buerki RA, Chheda ZS, Okada H. Immunotherapy of Primary Brain Tumors: Facts and Hopes. Clin Cancer Res 2018; 24:5198-5205. [PMID: 29871908 PMCID: PMC6214775 DOI: 10.1158/1078-0432.ccr-17-2769] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/28/2022]
Abstract
The field of cancer immunotherapy has made exciting progress for some cancer types in recent years. However, recent failures of late-phase clinical trials evaluating checkpoint blockade in patients with glioblastoma (GBM) represent continued challenges for brain cancer immunotherapy. This is likely due to multiple factors including but not limited to marked genetic and antigenic heterogeneity, relatively low mutational loads, and paucity of GBM-infiltrating T cells. We review recent and ongoing studies targeting the checkpoint molecules as monotherapy or in combination with other modalities, and discuss the mechanisms underlying the unresponsiveness of GBM to single-modality immunotherapy approaches. We also discuss other novel immunotherapy approaches that may promote T-cell responses and overcome the "cold tumor" status of GBM, including oncolytic viruses and adoptive T-cell therapy. Clin Cancer Res; 24(21); 5198-205. ©2018 AACR.
Collapse
Affiliation(s)
- Robin A Buerki
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Zinal S Chheda
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.
- The Parker Institute for Cancer Immunotherapy, San Francisco, California
- Cancer Immunotherapy Program, University of California, San Francisco, San Francisco, California
| |
Collapse
|
1964
|
Cassetta L, Kitamura T. Macrophage targeting: opening new possibilities for cancer immunotherapy. Immunology 2018; 155:285-293. [PMID: 29963704 PMCID: PMC6187207 DOI: 10.1111/imm.12976] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Tumour-infiltrating immune cells regulate tumour development and progression either negatively or positively. For example, cytotoxic lymphocytes (CTL) such as CD8+ T and natural killer (NK) cells can recognize and eliminate cancer cells, and thereby restrict the tumour growth and metastasis, if they exert full cytotoxicity. In contrast, tumour-infiltrating myeloid cells such as tumour-associated macrophages (TAM) promote the expansion and dissemination of cancer cells depending on their functional states. Given the tumour-killing ability of CTL, the augmentation of CTL-induced antitumour immune reactions has been considered as an attractive therapeutic modality for lethal solid tumours and several promising strategies have emerged, which include immune checkpoint inhibitors, cancer vaccines and adoptive CTL transfer. These immunotherapies are now tested in clinical trials and have shown significant antitumour effects in patients with lymphoma and some solid tumours such as melanoma and lung cancer. Despite these encouraging results, these therapies are not efficient in a certain fraction of patients and tumour types with tumour cell-intrinsic mechanisms such as impaired antigen presentation and/or tumour cell-extrinsic mechanisms including the accumulation of immunosuppressive cells. Several animal studies suggest that tumour-infiltrating myeloid cells, especially TAM, are one of the key targets to improve the efficacy of immunotherapies as these cells can suppress the functions of CD8+ T and NK cells. In this review, we will summarize recent animal studies regarding the involvement of TAM in the immune checkpoint, cancer vaccination and adoptive CTL transfer therapies, and discuss the therapeutic potential of TAM targeting to improve the immunotherapies.
Collapse
Affiliation(s)
- Luca Cassetta
- MRC Centre for Reproductive HealthQueen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Takanori Kitamura
- MRC Centre for Reproductive HealthQueen's Medical Research InstituteThe University of EdinburghEdinburghUK
- Royal (Dick) School of Veterinary Studies and the Roslin InstituteThe University of EdinburghEdinburghUK
| |
Collapse
|
1965
|
Alcantara M, Tesio M, June CH, Houot R. CAR T-cells for T-cell malignancies: challenges in distinguishing between therapeutic, normal, and neoplastic T-cells. Leukemia 2018; 32. [PMID: 30315238 PMCID: PMC7433349 DOI: 10.1038/s41375-018-0285-8 10.1038/s41375-018-0285-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chimeric antigen receptor (CAR) T-cells targeting CD19 demonstrated remarkable efficacy for the treatment of B-cell malignancies. The development of CAR T-cells against T-cell malignancies appears more challenging due to the similarities between the therapeutic, normal and malignant T-cells. The obstacles include CAR T-cell fratricide, T-cell aplasia, and contamination of CAR T-cell products with malignant T-cells. Here, we review these challenges and propose solutions to overcome these limitations.
Collapse
Affiliation(s)
- Marion Alcantara
- Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France,Institut Necker Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France
| | - Melania Tesio
- Institut Necker Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France
| | - Carl H. June
- Center for Cellular Immunotherapies, Perlman School of Medicine, Philadelphia, PA, USA,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA,Department of Pathology and Laboratory Medicine, Perlman School of Medicine, Philadelphia, PA, USA
| | - Roch Houot
- CHU Rennes, Service Hématologie Clinique, 35033 Rennes, France,INSERM, U1236, 35043 Rennes, France,INSERM 0203, Unité d’Investigation Clinique, 35033 Rennes, France
| |
Collapse
|
1966
|
Altmann DM. A Nobel Prize-worthy pursuit: cancer immunology and harnessing immunity to tumour neoantigens. Immunology 2018; 155:283-284. [PMID: 30320408 PMCID: PMC6187215 DOI: 10.1111/imm.13008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The field of cancer immunology stepped into the limelight this year when James P. Allison and Tasuku Honjo received the Nobel Prize in Physiology or Medicine for their discovery of cancer therapy by inhibition of negative immune regulation. Among many exciting advances contributing to the coming of age of tumour immunology as a viable clinical specialty has been the ability to progress from the initial elucidation of tumour antigens, such as the melanoma antigen, MAGE-1, to high-throughput sequencing facilitating identification of T cell epitopes from diverse tumour neoantigens. This has resulted from the convergence of expertise in tumour biology, next-generation sequencing, T cell and structural immunology, and predictive algorithms. Among many examples, immunotherapy for ovarian cancer has been one of the beneficiaries of these advances, leading to a number of recent and ongoing clinical trials.
Collapse
|
1967
|
T lymphocytes as therapeutic arsenal for patients with hematological malignancies. Curr Opin Oncol 2018; 30:425-434. [DOI: 10.1097/cco.0000000000000481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
1968
|
Abstract
Bispecific antibodies that recruit and redirect T cells to attack tumor cells have tremendous potential for the treatment of various malignancies. In general, this class of therapeutics, known as CD3 bispecifics, promotes tumor cell killing by cross-linking a CD3 component of the T cell receptor complex with a tumor-associated antigen on the surface of the target cell. Importantly, this mechanism does not rely on a cognate interaction between the T cell receptor and a peptide:HLA complex, thereby circumventing HLA (human leukocyte antigen) restriction. Hence, CD3 bispecifics may find a key role in addressing tumors with low neoantigen content and/or low inflammation, and this class of therapeutics may productively combine with checkpoint blockade. A wide array of formats and optimization approaches has been developed, and a wave of CD3 bispecifics is proceeding into human clinical trials for a range of indications, with promising signs of therapeutic activity.
Collapse
|
1969
|
Bucktrout SL, Bluestone JA, Ramsdell F. Recent advances in immunotherapies: from infection and autoimmunity, to cancer, and back again. Genome Med 2018; 10:79. [PMID: 30376867 PMCID: PMC6208073 DOI: 10.1186/s13073-018-0588-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
For at least 300 years the immune system has been targeted to improve human health. Decades of work advancing immunotherapies against infection and autoimmunity paved the way for the current explosion in cancer immunotherapies. Pathways targeted for therapeutic intervention in autoimmune diseases can be modulated in the opposite sense in malignancy and infectious disease. We discuss the basic principles of the immune response, how these are co-opted in chronic infection and malignancy, and how these can be harnessed to treat disease. T cells are at the center of immunotherapy. We consider the complexity of T cell functional subsets, differentiation states, and extrinsic and intrinsic influences in the design, success, and lessons from immunotherapies. The integral role of checkpoints in the immune response is highlighted by the rapid advances in FDA approvals and the use of therapeutics that target the CTLA-4 and PD-1/PD-L1 pathways. We discuss the distinct and overlapping mechanisms of CTLA-4 and PD-1 and how these can be translated to combination immunotherapy treatments. Finally, we discuss how the successes and challenges in cancer immunotherapies, such as the collateral damage of immune-related adverse events following checkpoint inhibition, are informing treatment of autoimmunity, infection, and malignancy.
Collapse
Affiliation(s)
- Samantha L Bucktrout
- Parker Institute of Cancer Immunotherapy, 1 Letterman Drive, San Francisco, CA, USA.
| | - Jeffrey A Bluestone
- Parker Institute of Cancer Immunotherapy, 1 Letterman Drive, San Francisco, CA, USA.,Diabetes Center, University of California, San Francisco, San Francisco, CA, 94129, USA
| | - Fred Ramsdell
- Parker Institute of Cancer Immunotherapy, 1 Letterman Drive, San Francisco, CA, USA.
| |
Collapse
|
1970
|
Guha-Thakurta N, Wierda WG. Cerebral edema secondary to chimeric antigen receptor T-cell immunotherapy. Neurology 2018; 91:843. [PMID: 30373920 DOI: 10.1212/wnl.0000000000006436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Nandita Guha-Thakurta
- From the Departments of Diagnostic Imaging (N.G.-T.) and Leukemia (W.G.W.), MD Anderson Cancer Center, Houston, TX.
| | - William G Wierda
- From the Departments of Diagnostic Imaging (N.G.-T.) and Leukemia (W.G.W.), MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
1971
|
Goddard ET, Bozic I, Riddell SR, Ghajar CM. Dormant tumour cells, their niches and the influence of immunity. Nat Cell Biol 2018; 20:1240-1249. [PMID: 30361702 DOI: 10.1038/s41556-018-0214-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
Despite increased focus on the clinical relevance of dormant metastatic disease, our understanding of dormant niches, mechanisms underlying emergence from dormancy, and the immune system's role in this phenomenon, remains in its infancy. Here, we discuss key work that has shaped our current understanding of these topics. Because tumour dormancy provides a unique therapeutic window to prevent metastatic disease, we discuss on-going clinical trials and weigh the potential for immunotherapy to eradicate dormant disease.
Collapse
Affiliation(s)
- Erica T Goddard
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ivana Bozic
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Stanley R Riddell
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. .,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
1972
|
Blomberg OS, Spagnuolo L, de Visser KE. Immune regulation of metastasis: mechanistic insights and therapeutic opportunities. Dis Model Mech 2018; 11:11/10/dmm036236. [PMID: 30355585 PMCID: PMC6215427 DOI: 10.1242/dmm.036236] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Metastatic disease is the leading cause of death in cancer patients. Metastasis formation involves a cascade of events for which the underlying mechanisms are still poorly understood. During the metastatic cascade, cancer cells tightly interact with the immune system and they influence each other, both in the tumor microenvironment and systemically. The crosstalk between cancer and immune cells adds another layer of complexity to our understanding of metastasis formation, but at the same time opens new therapeutic opportunities for cancer patients. The intensifying development of immunotherapeutic strategies calls for a better understanding of immune regulation of metastasis in order to maximize the therapeutic benefit for patients with metastatic disease. In this Review and accompanying poster, we describe the main mechanisms of immune regulation of metastasis that have been reported to date, and present promising immunotherapeutic options that are currently available, or may become so in the near future, to tackle metastasis.
Collapse
Affiliation(s)
- Olga S Blomberg
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Lorenzo Spagnuolo
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Karin E de Visser
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
1973
|
Willadsen M, Chaise M, Yarovoy I, Zhang AQ, Parashurama N. Engineering molecular imaging strategies for regenerative medicine. Bioeng Transl Med 2018; 3:232-255. [PMID: 30377663 PMCID: PMC6195904 DOI: 10.1002/btm2.10114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022] Open
Abstract
The reshaping of the world's aging population has created an urgent need for therapies for chronic diseases. Regenerative medicine offers a ray of hope, and its complex solutions include material, cellular, or tissue systems. We review basics of regenerative medicine/stem cells and describe how the field of molecular imaging, which is based on quantitative, noninvasive, imaging of biological events in living subjects, can be applied to regenerative medicine in order to interrogate tissues in innovative, informative, and personalized ways. We consider aspects of regenerative medicine for which molecular imaging will benefit. Next, genetic and nanoparticle-based cell imaging strategies are discussed in detail, with modalities like magnetic resonance imaging, optical imaging (near infra-red, bioluminescence), raman microscopy, and photoacoustic microscopy), ultrasound, computed tomography, single-photon computed tomography, and positron emission tomography. We conclude with a discussion of "next generation" molecular imaging strategies, including imaging host tissues prior to cell/tissue transplantation.
Collapse
Affiliation(s)
- Matthew Willadsen
- Department of Chemical and Biological Engineering University at Buffalo, State University of New York, Furnas Hall Buffalo New York 14228
| | - Marc Chaise
- Jacobs School of Medicine and Biomedical Sciences University at Buffalo State University of New York 955 Main St., Buffalo, New York 14203
| | - Iven Yarovoy
- Department of Chemical and Biological Engineering University at Buffalo, State University of New York, Furnas Hall Buffalo New York 14228
| | - An Qi Zhang
- Department of Chemical and Biological Engineering University at Buffalo, State University of New York, Furnas Hall Buffalo New York 14228
| | - Natesh Parashurama
- Department of Chemical and Biological Engineering University at Buffalo, State University of New York, Furnas Hall Buffalo New York 14228.,Department of Biomedical Engineering University at Buffalo, State University of New York, Bonner Hall Buffalo New York 14228.,Clinical and Translation Research Center (CTRC) University at Buffalo, State University of New York 875 Ellicott St., Buffalo, New York 14203
| |
Collapse
|
1974
|
Carter SR, Warner CM. Trends in Synthetic Biology Applications, Tools, Industry, and Oversight and Their Security Implications. Health Secur 2018; 16:320-333. [PMID: 30339097 DOI: 10.1089/hs.2018.0067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent developments in synthetic biology tools and techniques are driving commercialization of a wide range of products for human health, agriculture, environmental stewardship, and other purposes. This article reviews some of the trends in synthetic biology applications as well as some of the tools enabling these and future advances. These tools and capabilities are being developed in the context of a rapidly changing industry, which may have an impact on the rate and direction of progress. Final products are subject to a regulatory framework that is being challenged by the pace, scale, and novelty of this new era of biotechnology. This article includes discussion of these factors and how they may affect product design and the types of applications that are most likely to be supported and pursued commercially. The final section provides perspective on the security implications of these advances, with a focus on US interests.
Collapse
Affiliation(s)
- Sarah R Carter
- Sarah R. Carter, PhD, is a Principal at Science Policy Consulting, LLC, Arlington, Virginia. Christopher M. Warner, PhD, is a Research Biologist, US Army Corps , Environmental Lab, Vicksburg, Mississippi
| | - Christopher M Warner
- Sarah R. Carter, PhD, is a Principal at Science Policy Consulting, LLC, Arlington, Virginia. Christopher M. Warner, PhD, is a Research Biologist, US Army Corps , Environmental Lab, Vicksburg, Mississippi
| |
Collapse
|
1975
|
Raschellà G, Melino G, Gambacurta A. Cell death in cancer in the era of precision medicine. Genes Immun 2018; 20:529-538. [PMID: 30341419 DOI: 10.1038/s41435-018-0048-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022]
Abstract
Tumors constitute a large class of diseases that affect different organs and cell lineages. The molecular characterization of cancers of a given type has revealed an extraordinary heterogeneity in terms of genetic alterations and DNA mutations; heterogeneity that is further highlighted by single-cell DNA sequencing of individual patients. To address these issues, drugs that specifically target genes or altered pathways in cancer cells are continuously developed. Indeed, the genetic fingerprint of individual tumors can direct the modern therapeutic approaches to selectively hit the tumor cells while sparing the healthy ones. In this context, the concept of precision medicine finds a vast field of application. In this review, we will briefly list some classes of target drugs (Bcl-2 family modulators, Tyrosine Kinase modulators, PARP inhibitors, and growth factors inhibitors) and discuss the application of immunotherapy in tumors (T cell-mediated immunotherapy and CAR-T cells) that in recent years has drastically changed the prognostic outlook of aggressive cancers. We will also consider how apoptosis could represent a primary end point in modern cancer therapy and how "classic" chemotherapeutic drugs that induce apoptosis are still utilized in therapeutic schedules that involve the use of target drugs or immunotherapy to optimize the antitumor response.
Collapse
Affiliation(s)
- Giuseppe Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Via Anguillarese, 301, 00123, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine TOR, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,Medical Research Council, Toxicology Unit, Hodgkin Building, University of Cambridge, Leicester, LE1 9HN, UK
| | - Alessandra Gambacurta
- Department of Experimental Medicine TOR, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
1976
|
Frank AM, Buchholz CJ. Surface-Engineered Lentiviral Vectors for Selective Gene Transfer into Subtypes of Lymphocytes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:19-31. [PMID: 30417026 PMCID: PMC6216101 DOI: 10.1016/j.omtm.2018.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lymphocytes have always been among the prime targets in gene therapy, even more so since chimeric antigen receptor (CAR) T cells have reached the clinic. However, other gene therapeutic approaches hold great promise as well. The first part of this review provides an overview of current strategies in lymphocyte gene therapy. The second part highlights the importance of precise gene delivery into B and T cells as well as distinct subtypes of lymphocytes. This can be achieved with lentiviral vectors (LVs) pseudotyped with engineered glycoproteins recognizing lymphocyte surface markers as entry receptors. Different strategies for envelope glycoprotein engineering and selection of the targeting ligand are discussed. With a CD8-targeted LV that was recently used to achieve proof of principle for the in vivo reprogramming of CAR T cells, these vectors are becoming a key tool to genetically engineer lymphocytes directly in vivo.
Collapse
Affiliation(s)
- Annika M Frank
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Christian J Buchholz
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany.,Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
1977
|
CAR T-cells for T-cell malignancies: challenges in distinguishing between therapeutic, normal, and neoplastic T-cells. Leukemia 2018; 32:2307-2315. [PMID: 30315238 DOI: 10.1038/s41375-018-0285-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/24/2018] [Accepted: 09/12/2018] [Indexed: 12/20/2022]
Abstract
Chimeric antigen receptor (CAR) T-cells targeting CD19 demonstrated remarkable efficacy for the treatment of B-cell malignancies. The development of CAR T-cells against T-cell malignancies appears more challenging due to the similarities between the therapeutic, normal and malignant T-cells. The obstacles include CAR T-cell fratricide, T-cell aplasia, and contamination of CAR T-cell products with malignant T-cells. Here, we review these challenges and propose solutions to overcome these limitations.
Collapse
|
1978
|
Liu F, Liu Y, Chen Z. Tim-3 expression and its role in hepatocellular carcinoma. J Hematol Oncol 2018; 11:126. [PMID: 30309387 PMCID: PMC6182863 DOI: 10.1186/s13045-018-0667-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common tumors in the world, and its mortality is still on the rise. Limited treatments and low chemotherapy sensitivity of HCC make new therapeutic strategies urgently needed. With the rise of immune checkpoint blockade, anti-CTLA-4 antibodies and anti-PD-1 antibodies have shown therapeutic effects in various tumors. T cell immunoglobulin mucin-3 (Tim-3), a newly discovered immune checkpoint molecule, plays a major role in the development of HCC. Tim-3 can be used to evaluate the prognosis and therapeutic effects in HCC, and Tim-3 intervention has shown anti-tumor effects in preclinical experiments. This review summarizes findings regarding Tim-3 and HCC in recent years and discusses the rationale of Tim-3 as a therapeutic target for HCC.
Collapse
Affiliation(s)
- Feifei Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| |
Collapse
|
1979
|
Smith M, García-Martínez E, Pitter MR, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Toll-like receptor agonists in cancer immunotherapy. Oncoimmunology 2018; 7:e1526250. [PMID: 30524908 PMCID: PMC6279325 DOI: 10.1080/2162402x.2018.1526250] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptor (TLR) agonists demonstrate therapeutic promise as immunological adjuvants for anticancer immunotherapy. To date, three TLR agonists have been approved by US regulatory agencies for use in cancer patients. Additionally, the potential of hitherto experimental TLR ligands to mediate clinically useful immunostimulatory effects has been extensively investigated over the past few years. Here, we summarize recent preclinical and clinical advances in the development of TLR agonists for cancer therapy.
Collapse
Affiliation(s)
- Melody Smith
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elena García-Martínez
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Michael R. Pitter
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jitka Fucikova
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- INSERM, U1015, Villejuif, France
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/ Paris V, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- INSERM, U1138, Paris, France
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/ Paris V, Paris, France
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
1980
|
Zhang W, Jordan KR, Schulte B, Purev E. Characterization of clinical grade CD19 chimeric antigen receptor T cells produced using automated CliniMACS Prodigy system. Drug Des Devel Ther 2018; 12:3343-3356. [PMID: 30323566 PMCID: PMC6181073 DOI: 10.2147/dddt.s175113] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cell therapy is highly effective for treating acute lymphoblastic leukemia and non-Hodgkin's lymphoma with high rate complete responses. However, the broad clinical application of CAR T-cell therapy has been challenging, largely due to the lack of widespread ability to produce and high cost of CAR T-cell products using traditional methods of production. Automated cell processing in a closed system has emerged as a potential method to increase the feasibility of producing CAR T cells locally at academic centers due to its minimal reliance on experienced labor, thereby making the process less expensive and more consistent than traditional methods of production. METHOD In this study, we describe the successful production of clinical grade CD19 CAR T cells using the Miltenyi CliniMACS Prodigy Automated Cell Processor at University of Colorado Anschutz Medical Campus in a rapid manner with a high frequent CD19 CAR expression. RESULTS The final CAR T-cell product is highly active, low in immune suppression, and absent in exhaustion. Full panel cytokine assays also showed elevated production of Th1 cytokines upon IL-2 stimulation when specifically killing CD19+ target cells. CONCLUSION These results demonstrate the feasibility of producing CAR T cells locally in a university hospital setting using automated cell processor for future clinical applications.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA,
| | - Kimberly R Jordan
- Division of Immunology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian Schulte
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Enkhtsetseg Purev
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA,
| |
Collapse
|
1981
|
Gautam S, Sharma L, Dela Cruz CS, Spiegel DA. A Slick Solution to a Sticky Problem. Biochemistry 2018; 57:5923-5924. [PMID: 30289246 DOI: 10.1021/acs.biochem.8b00916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Samir Gautam
- Internal Medicine, Section of Pulmonary and Critical Care , Yale University School of Medicine , 333 Cedar Street , New Haven , Connecticut 06520 , United States.,Department of Chemistry , Yale University , 225 Prospect Street , P.O. Box 208107, New Haven , Connecticut 06520 , United States
| | - Lokesh Sharma
- Internal Medicine, Section of Pulmonary and Critical Care , Yale University School of Medicine , 333 Cedar Street , New Haven , Connecticut 06520 , United States
| | - Charles S Dela Cruz
- Internal Medicine, Section of Pulmonary and Critical Care , Yale University School of Medicine , 333 Cedar Street , New Haven , Connecticut 06520 , United States
| | - David Adam Spiegel
- Department of Chemistry , Yale University , 225 Prospect Street , P.O. Box 208107, New Haven , Connecticut 06520 , United States
| |
Collapse
|
1982
|
VandenDriessche T. Gene and Cell Therapy: Tearing Down Walls. Hum Gene Ther 2018; 29:1071-1073. [PMID: 30280978 DOI: 10.1089/hum.2018.29074.tva] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Thierry VandenDriessche
- 1 European Editor-Human Gene Therapy; Department of Cardiovascular Sciences, University of Leuven , Leuven, Belgium .,2 Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel (VUB) , Brussels, Belgium; and Department of Cardiovascular Sciences, University of Leuven , Leuven, Belgium .,3 Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven , Leuven, Belgium
| |
Collapse
|
1983
|
Graham K, Unger E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int J Nanomedicine 2018; 13:6049-6058. [PMID: 30323592 PMCID: PMC6177375 DOI: 10.2147/ijn.s140462] [Citation(s) in RCA: 391] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hypoxia exists to some degree in most solid tumors due to inadequate oxygen delivery of the abnormal vasculature which cannot meet the demands of the rapidly proliferating cancer cells. The levels of oxygenation within the same tumor are highly variable from one area to another and can change over time. Tumor hypoxia is an important impediment to effective cancer therapy. In radiotherapy, the primary mechanism is the creation of reactive oxygen species; hypoxic tumors are therefore radiation resistant. A number of chemotherapeutic drugs have been shown to be less effective when exposed to a hypoxic environment which can lead to further disease progression. Hypoxia is also a potent barrier to effective immunotherapy in cancer treatment. Because of the recognition of hypoxia as an important barrier to cancer treatment, a variety of approaches have been undertaken to overcome or reverse tumor hypoxia. Such approaches have included breathing hyperbaric oxygen, artificial hemoglobins, allosteric hemoglobin modifiers, hypoxia activated prodrugs and fluorocarbons (FCs). These approaches have largely failed due to limited efficacy and/or adverse side effects. Oxygen therapeutics, based on liquid FCs, can potentially increase the oxygen-carrying capacity of the blood to reverse tumor hypoxia. Currently, at least two drugs are in clinical trials to reverse tumor hypoxia; one of these is designed to improve permeability of oxygen into the tumor tissue and the other is based upon a low boiling point FC that transports higher amounts of oxygen per gram than previously tested FCs.
Collapse
|
1984
|
Guo X, Jiang H, Shi B, Zhou M, Zhang H, Shi Z, Du G, Luo H, Wu X, Wang Y, Sun R, Li Z. Disruption of PD-1 Enhanced the Anti-tumor Activity of Chimeric Antigen Receptor T Cells Against Hepatocellular Carcinoma. Front Pharmacol 2018; 9:1118. [PMID: 30327605 PMCID: PMC6174208 DOI: 10.3389/fphar.2018.01118] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/13/2018] [Indexed: 12/26/2022] Open
Abstract
Cancer immunotherapy has made unprecedented breakthrough in the fields of chimeric antigen receptor-redirected T (CAR T) cell therapy and immune modulation. Combination of CAR modification and the disruption of endogenous inhibitory immune checkpoints on T cells represent a promising immunotherapeutic modality for cancer treatment. However, the potential for the treatment of hepatocellular carcinoma (HCC) has not been explored. In this study, the gene expressing the programmed death 1 receptor (PD-1) on the Glypican-3 (GPC3)-targeted second-generation CAR T cells employing CD28 as the co-stimulatory domain was disrupted using the CRISPR/Cas9 gene-editing system. It was found that, in vitro, the CAR T cells with the deficient PD-1 showed the stronger CAR-dependent anti-tumor activity against native programmed death 1 ligand 1-expressing HCC cell PLC/PRF/5 compared with the wild-type CAR T cells, and meanwhile, the CD4 and CD8 subsets, and activation status of CAR T cells were stable with the disruption of endogenous PD-1. Additionally, the disruption of PD-1 could protect the GPC3-CAR T cells from exhaustion when combating with native PD-L1-expressing HCC, as the levels of Akt phosphorylation and anti-apoptotic protein Bcl-xL expression in PD-1 deficient GPC3-CAR T cells were significantly higher than those in wild-type GPC3-CAR T cells after coculturing with PLC/PRF/5. Furthermore, the in vivo anti-tumor activity of the CAR T cells with the deficient PD-1 was investigated using the subcutaneous xenograft tumor model established by the injection of PLC/PRF/5 into NOD-scid-IL-2Rγ-/- (NSG) mice. The results indicated that the disruption of PD-1 enhanced the in vivo anti-tumor activity of CAR T cells against HCC, improved the persistence and infiltration of CAR T cells in the NSG mice bearing the tumor, and strengthened the inhibition of tumor-related genes expression in the xenograft tumors caused by the GPC3-CAR T cells. This study indicates the enhanced anti-tumor efficacy of PD-1-deficient CAR T cells against HCC and suggests the potential of precision gene editing on the immune checkpoints to enhance the CAR T cell therapies against HCC.
Collapse
Affiliation(s)
- Xingliang Guo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bizhi Shi
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - Guoxiu Du
- CARsgen Therapeutics, Shanghai, China
| | - Hong Luo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuqi Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixin Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CARsgen Therapeutics, Shanghai, China
| |
Collapse
|
1985
|
Liu D, Zhao J. Cytokine release syndrome: grading, modeling, and new therapy. J Hematol Oncol 2018; 11:121. [PMID: 30249264 PMCID: PMC6154787 DOI: 10.1186/s13045-018-0653-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022] Open
Abstract
Genetically modified T cells that express a chimeric antigen receptor (CAR) are opening a new frontier in cancer immunotherapy. CAR T cells currently are in clinical trials for many cancer types. Cytokine release syndrome (CRS) and neurotoxicities (CAR-related encephalopathy syndrome, CRES) are major adverse events limiting wide deployment of the CAR T cell treatment. Major efforts are ongoing to characterize the pathogenesis and etiology of CRS and CRES. Mouse models have been established to facilitate the study of pathogenesis of the major toxicities of CAR T cells. Myeloid cells including macrophages and monocytes, not the CAR T cells, were found to be the major cells mediating CRS and CRES by releasing IL-1 and IL-6 among other cytokines. Blocking IL-1 or depletion of monocytes abolished both CRS and CRES, whereas IL-6 blocker can ameliorate CRS but not CRES. Therefore, both IL-1 and IL-6 are major cytokines for CRS, though IL-1 is responsible for CRES. It was also demonstrated in the mouse models that blocking CRS does not interfere with the CAR T cell antitumor functions. We summarized new developments in the grading, modeling, and possible new therapeutic approaches for CRS and CRES in this review.
Collapse
Affiliation(s)
- Delong Liu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Juanjuan Zhao
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008, China
| |
Collapse
|
1986
|
Galluzzi L, Chan TA, Kroemer G, Wolchok JD, López-Soto A. The hallmarks of successful anticancer immunotherapy. Sci Transl Med 2018; 10:10/459/eaat7807. [DOI: 10.1126/scitranslmed.aat7807] [Citation(s) in RCA: 317] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/27/2018] [Indexed: 12/25/2022]
Abstract
Immunotherapy is revolutionizing the clinical management of multiple tumors. However, only a fraction of patients with cancer responds to immunotherapy, and currently available immunotherapeutic agents are expensive and generally associated with considerable toxicity, calling for the identification of robust predictive biomarkers. The overall genomic configuration of malignant cells, potentially favoring the emergence of immunogenic tumor neoantigens, as well as specific mutations that compromise the ability of the immune system to recognize or eradicate the disease have been associated with differential sensitivity to immunotherapy in preclinical and clinical settings. Along similar lines, the type, density, localization, and functional orientation of the immune infiltrate have a prominent impact on anticancer immunity, as do features of the tumor microenvironment linked to the vasculature and stroma, and systemic factors including the composition of the gut microbiota. On the basis of these considerations, we outline the hallmarks of successful anticancer immunotherapy.
Collapse
|
1987
|
Dourthe MÉ, Yakouben K, Chaillou D, Lesprit E, Dalle JH, Baruchel A. WITHDRAWN: CAR T cells : indications actuelles en pédiatrie et perspectives de développement. Bull Cancer 2018:S0007-4551(18)30223-6. [PMID: 30236479 DOI: 10.1016/j.bulcan.2018.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 11/23/2022]
Affiliation(s)
- Marie Émilie Dourthe
- Assistance publique des hôpitaux de Paris (AP-HP), hôpital universitaire Robert-Debré, service d'hématologie pédiatrique, 48, boulevard Sérurier, 75019 Paris, France; Université Paris Diderot, 75010 Paris, France
| | - Karima Yakouben
- Assistance publique des hôpitaux de Paris (AP-HP), hôpital universitaire Robert-Debré, service d'hématologie pédiatrique, 48, boulevard Sérurier, 75019 Paris, France
| | - Delphine Chaillou
- Assistance publique des hôpitaux de Paris (AP-HP), hôpital universitaire Robert-Debré, service d'hématologie pédiatrique, 48, boulevard Sérurier, 75019 Paris, France
| | - Emmanuelle Lesprit
- Hôpital universitaire Robert-Debré, établissement français du sang, 75019 Paris, France
| | - Jean-Hugues Dalle
- Assistance publique des hôpitaux de Paris (AP-HP), hôpital universitaire Robert-Debré, service d'hématologie pédiatrique, 48, boulevard Sérurier, 75019 Paris, France; Université Paris Diderot, 75010 Paris, France; UMR 1149, 75890 Paris, France
| | - André Baruchel
- Assistance publique des hôpitaux de Paris (AP-HP), hôpital universitaire Robert-Debré, service d'hématologie pédiatrique, 48, boulevard Sérurier, 75019 Paris, France; Université Paris Diderot, 75010 Paris, France; Institut universitaire d'hématologie, EA 3518, 75010 Paris, France.
| |
Collapse
|
1988
|
Bezu L, Kepp O, Cerrato G, Pol J, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Peptide-based vaccines in anticancer therapy. Oncoimmunology 2018; 7:e1511506. [PMID: 30524907 PMCID: PMC6279318 DOI: 10.1080/2162402x.2018.1511506] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
Peptide-based anticancer vaccination aims at stimulating an immune response against one or multiple tumor-associated antigens (TAAs) following immunization with purified, recombinant or synthetically engineered epitopes. Despite high expectations, the peptide-based vaccines that have been explored in the clinic so far had limited therapeutic activity, largely due to cancer cell-intrinsic alterations that minimize antigenicity and/or changes in the tumor microenvironment that foster immunosuppression. Several strategies have been developed to overcome such limitations, including the use of immunostimulatory adjuvants, the co-treatment with cytotoxic anticancer therapies that enable the coordinated release of damage-associated molecular patterns, and the concomitant blockade of immune checkpoints. Personalized peptide-based vaccines are also being explored for therapeutic activity in the clinic. Here, we review recent preclinical and clinical progress in the use of peptide-based vaccines as anticancer therapeutics.Abbreviations: CMP: carbohydrate-mimetic peptide; CMV: cytomegalovirus; DC: dendritic cell; FDA: Food and Drug Administration; HPV: human papillomavirus; MDS: myelodysplastic syndrome; MHP: melanoma helper vaccine; NSCLC: non-small cell lung carcinoma; ODD: orphan drug designation; PPV: personalized peptide vaccination; SLP: synthetic long peptide; TAA: tumor-associated antigen; TNA: tumor neoantigen
Collapse
Affiliation(s)
- Lucillia Bezu
- Faculty of Medicine, University of Paris Sud/Paris XI, Le Kremlin-Bicêtre, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Giulia Cerrato
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Jonathan Pol
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic.,Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic.,Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Faculty of Medicine, University of Paris Sud/Paris XI, Le Kremlin-Bicêtre, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,INSERM, U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
1989
|
Liu M, Guo F. Recent updates on cancer immunotherapy. PRECISION CLINICAL MEDICINE 2018; 1:65-74. [PMID: 30687562 PMCID: PMC6333045 DOI: 10.1093/pcmedi/pby011] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 02/05/2023] Open
Abstract
Traditional cancer therapies include surgery, radiation, and chemotherapy, all of which are typically non-specific approaches. Cancer immunotherapy is a type of cancer treatment that helps the immune system fight cancer. Cancer immunotherapy represents a standing example of precision medicine: immune checkpoint inhibitors precisely target the checkpoints; tumor infiltrating lymphocytes, TCR T cells, and CAR T cells precisely kill cancer cells through tumor antigen recognition; and cancer vaccines are made from patient-derived dendritic cells, tumor cell DNA, or RNA, or oncolytic viruses, thus offering a type of personalized medicine. This review will highlight up-to-date advancement in most, if not all, of the immunotherapy strategies.
Collapse
Affiliation(s)
- Ming Liu
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
1990
|
Abstract
From basic studies in understanding the role of signaling pathways to therapeutic applications in engineering new cellular functions, efficient and safe techniques to monitor and modulate molecular targets from cells to organs have been extensively developed. The developmental advancement of engineering devices such as microscope and ultrasonic transducers allows us to investigate biological processes at different scales. Synthetic biology has further emerged recently as a powerful platform for the development of new diagnostic and therapeutic molecular tools. The synergetic amalgamation between engineering tools and synthetic biology has rapidly become a new front in the field of bioengineering and biotechnology. In this review, ultrasound and its generated mechanical perturbation are introduced to serve as a non-invasive engineering approach and, integrated with synthetic biology, to remotely control signaling and genetic activities for the guidance of cellular functions deep inside tissue with high spatiotemporal resolutions. This ultrasound-based approach together with synthetic biology has been applied in immunotherapy, neuroscience, and gene delivery, paving the way for the development of next-generation therapeutic tools.
Collapse
Affiliation(s)
- Yijia Pan
- Department of Bioengineering, University of California, San Diego
| | - Sangpil Yoon
- Department of Aerospace and Mechanical Engineering, University of Notre Dame
- Department of Biomedical Engineering, University of Southern California
| | - Linshan Zhu
- Department of Bioengineering, University of California, San Diego
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego
| |
Collapse
|
1991
|
Jarry U, Joalland N, Chauvin C, Clemenceau B, Pecqueur C, Scotet E. Stereotactic Adoptive Transfer of Cytotoxic Immune Cells in Murine Models of Orthotopic Human Glioblastoma Multiforme Xenografts. J Vis Exp 2018. [PMID: 30222164 DOI: 10.3791/57870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most frequent and aggressive primary brain cancer in adults, is generally associated with a poor prognosis, and scarce efficient therapies have been proposed over the last decade. Among the promising candidates for designing novel therapeutic strategies, cellular immunotherapies have been targeted to eliminate highly invasive and chemo-radioresistant tumor cells, likely involved in a rapid and fatal relapse of this cancer. Thus, administration(s) of allogeneic GBM-reactive immune cell effectors, such as human Vϒ9Vδ2 T lymphocytes, in the vicinity of the tumor would represents a unique opportunity to deliver efficient and highly concentrated therapeutic agents directly into the site of brain malignancies. Here, we present a protocol for the preparation and the stereotaxic administration of allogeneic human lymphocytes in immunodeficient mice carrying orthotopic human primary brain tumors. This study provides a preclinical proof-of-concept for both the feasibility and the antitumor efficacy of these cellular immunotherapies that rely on stereotactic injections of allogeneic human lymphocytes within intrabrain tumor beds.
Collapse
Affiliation(s)
- Ulrich Jarry
- INSERM, CNRS, Université d'Angers, Université de Nantes, CRCINA; Immunotherapy, Graft, Oncology, LabEx IGO
| | - Noémie Joalland
- INSERM, CNRS, Université d'Angers, Université de Nantes, CRCINA; Immunotherapy, Graft, Oncology, LabEx IGO
| | - Cynthia Chauvin
- INSERM, CNRS, Université d'Angers, Université de Nantes, CRCINA; Immunotherapy, Graft, Oncology, LabEx IGO
| | - Béatrice Clemenceau
- INSERM, CNRS, Université d'Angers, Université de Nantes, CRCINA; Immunotherapy, Graft, Oncology, LabEx IGO; Hopital de Nantes, Hotel Dieu
| | - Claire Pecqueur
- INSERM, CNRS, Université d'Angers, Université de Nantes, CRCINA; Immunotherapy, Graft, Oncology, LabEx IGO
| | - Emmanuel Scotet
- INSERM, CNRS, Université d'Angers, Université de Nantes, CRCINA; Immunotherapy, Graft, Oncology, LabEx IGO;
| |
Collapse
|
1992
|
Immune tumor board: integral part in the multidisciplinary management of cancer patients treated with cancer immunotherapy. Virchows Arch 2018; 474:485-495. [PMID: 30143868 DOI: 10.1007/s00428-018-2435-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/26/2022]
Abstract
Recent progress in the understanding of immune responses to cancer and how tumor cells evade immune control have led to the successful introduction of cancer immunotherapy, in particular immune checkpoint inhibitors (ICI). Treatment of cancer patients with immunotherapy such as ICIs has led to new challenges, including starting and stopping rules for immunotherapy, the management of immune-related adverse events, and logistic issues for the production of cellular therapies and viral delivery vectors. These challenges are not disease- or organ-specific and several potential biomarkers to predict response to ICI are under investigation. We installed an interdisciplinary discussion platform for managing patient-specific challenges associated with cancer immunotherapy in our institution. Here, we describe an immune tumor board for the management of cancer patients treated with immunotherapy and provide an outlook on how such a platform could be potentially used in the future to discuss rational and personalized combination therapies, and how to improve the management of side effects occurring under immunotherapy.
Collapse
|
1993
|
Tao K, He M, Tao F, Xu G, Ye M, Zheng Y, Li Y. Development of NKG2D-based chimeric antigen receptor-T cells for gastric cancer treatment. Cancer Chemother Pharmacol 2018; 82:815-827. [PMID: 30132099 DOI: 10.1007/s00280-018-3670-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/11/2018] [Indexed: 12/22/2022]
Abstract
Gastric cancer is the third leading cause of cancer-related mortalities worldwide and mostly incurable. It remains an urgent need for novel strategies in the management of patients with advanced gastric cancer. Chimeric antigen receptor (CAR) T therapy has shown unprecedented clinical success in hematological malignancies and potential utility is going on various solid tumors like gastric cancer. In this study, a broad expression of NKG2D ligands was observed in gastric cancer cell lines, making them suitable targets for gastric cancer therapy. T cells were engineered with an NKG2D-based second-generation CAR and the resulting NKG2D-CAR-T cells showed significantly increased cytolytic activity against gastric cancer compared to untransduced T cells. In vivo, these cells can significantly suppressed the growth of established gastric cancer xenografts. Besides, cisplatin was shown to upregulate NKG2D ligand expression in gastric cancer cells and enhance the susceptibility to NKG2D-CAR-T-cell-mediated cytotoxicity. In conclusion, NKG2D-based CAR-T cells have potent in vivo and in vitro anti-tumor activities against gastric cancer and could be a new paradigm for patients with gastric cancer, either used alone or combined with chemotherapy.
Collapse
Affiliation(s)
- Kelong Tao
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Meng He
- Department of Respiratory Medicine, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, People's Republic of China
| | - Feng Tao
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Guangen Xu
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Minfeng Ye
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, People's Republic of China
| | - Yaoqing Li
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, People's Republic of China.
| |
Collapse
|
1994
|
Han X, Vesely MD. Stimulating T Cells Against Cancer With Agonist Immunostimulatory Monoclonal Antibodies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 342:1-25. [PMID: 30635089 DOI: 10.1016/bs.ircmb.2018.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Elimination of cancer cells through antitumor immunity has been a long-sought after goal since Sir F. Macfarlane Burnet postulated the theory of immune surveillance against tumors in the 1950s. Finally, the use of immunotherapeutics against established cancer is becoming a reality in the past 5years. Most notable are the monoclonal antibodies (mAbs) directed against inhibitory T-cell receptors cytotoxic T lymphocyte antigen-4 and programmed death-1. The next generation of mAbs targeting T cells is designed to stimulate costimulatory receptors on T cells. Here we review the recent progress on these immunostimulatory agonist antibodies against the costimulatory receptors CD137, GITR, OX40, and CD27.
Collapse
Affiliation(s)
- Xue Han
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Matthew D Vesely
- Department of Dermatology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
1995
|
Zhang L, Sosinowski T, Cox AR, Cepeda JR, Sekhar NS, Hartig SM, Miao D, Yu L, Pietropaolo M, Davidson HW. Chimeric antigen receptor (CAR) T cells targeting a pathogenic MHC class II:peptide complex modulate the progression of autoimmune diabetes. J Autoimmun 2018; 96:50-58. [PMID: 30122420 DOI: 10.1016/j.jaut.2018.08.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022]
Abstract
A primary initiating epitope in the NOD mouse model of Type 1 Diabetes (T1D) lies between residues 9 and 23 of the insulin B chain. The B:9-23 peptide can bind to the NOD MHC class II molecule (I-Ag7) in multiple registers, but only one, (register 3, R3), creates complexes able to stimulate the majority of pathogenic B:9-23-specific CD4+ T cells. Previously we generated a monoclonal antibody (mAb287) that targets this critical I-Ag7-B:9-23(R3) complex. When given weekly to pre-diabetic mice at either early or late stages of disease, mAb287 was able to delay or prevent T1D in the treated animals. Although the precise mechanism of action of mAb287 remains unclear, we hypothesized that it may involve deletion of antigen presenting cells (APCs) bearing the pathogenic IAg7-B:9-23(R3) complexes, and that this process might be rendered more efficient by re-directing cytotoxic T cells using a mAb287 chimeric antigen receptor (287-CAR). As anticipated, 287-CAR T cells secreted IFN-γ in response to stimulation by I-Ag7-B:9-23(R3) complexes expressed on artificial APCs, but not I-Ag7 loaded with other peptides, and killed the presenting cells in vitro. A single infusion of 287-CAR CD8+ T cells to young (5 week old) NOD mice significantly delayed the onset of overt hyperglycemia compared to untreated animals (p = 0.022). None of the 287-CAR CD8+ T cell treated mice developed diabetes before 18 weeks of age, while 29% of control-CAR T cell treated mice (p = 0.044) and 52% of the un-treated mice (p = 0.0001) had developed T1D by this time. However, the protection provided by 287-CAR CD8+ T cells declined with time, and no significant difference in overall incidence by 30 weeks between the 3 groups was observed. Mechanistic studies indicated that the adoptively transferred 287-CAR T cells selectively homed to pancreatic lymph nodes, and in some animals could persist for at least 1-2 weeks post-transfer, but were essentially undetectable 10-15 weeks later. Our study demonstrates that CAR T cells specific for a pathogenic MHC class II:peptide complex can be effective in vivo, but that a single infusion of the current iteration can only delay, but not prevent, the development of T1D. Future studies should therefore be directed towards optimizing strategies designed to improve the longevity of the transferred cells.
Collapse
Affiliation(s)
- Li Zhang
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine, Houston, TX, United States.
| | - Tomasz Sosinowski
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, United States
| | - Aaron R Cox
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Joseph Ray Cepeda
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Nitin S Sekhar
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Sean M Hartig
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Dongmei Miao
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, United States
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, United States
| | - Massimo Pietropaolo
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Howard W Davidson
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
1996
|
Miron M, Kumar BV, Meng W, Granot T, Carpenter DJ, Senda T, Chen D, Rosenfeld AM, Zhang B, Lerner H, Friedman AL, Hershberg U, Shen Y, Rahman A, Luning Prak ET, Farber DL. Human Lymph Nodes Maintain TCF-1 hi Memory T Cells with High Functional Potential and Clonal Diversity throughout Life. THE JOURNAL OF IMMUNOLOGY 2018; 201:2132-2140. [PMID: 30111633 DOI: 10.4049/jimmunol.1800716] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/23/2018] [Indexed: 11/19/2022]
Abstract
Translating studies on T cell function and modulation from mouse models to humans requires extrapolating in vivo results on mouse T cell responses in lymphoid organs (spleen and lymph nodes [LN]) to human peripheral blood T cells. However, our understanding of T cell responses in human lymphoid sites and their relation to peripheral blood remains sparse. In this study, we used a unique human tissue resource to study human T cells in different anatomical compartments within individual donors and identify a subset of memory CD8+ T cells in LN, which maintain a distinct differentiation and functional profile compared with memory CD8+ T cells in blood, spleen, bone marrow, and lungs. Whole-transcriptome and high-dimensional cytometry by time-of-flight profiling reveals that LN memory CD8+ T cells express signatures of quiescence and self-renewal compared with corresponding populations in blood, spleen, bone marrow, and lung. LN memory T cells exhibit a distinct transcriptional signature, including expression of stem cell-associated transcription factors TCF-1 and LEF-1, T follicular helper cell markers CXCR5 and CXCR4, and reduced expression of effector molecules. LN memory T cells display high homology to a subset of mouse CD8+ T cells identified in chronic infection models that respond to checkpoint blockade immunotherapy. Functionally, human LN memory T cells exhibit increased proliferation to TCR-mediated stimulation and maintain higher TCR clonal diversity compared with memory T cells from blood and other sites. These findings establish human LN as reservoirs for memory T cells with high capacities for expansion and diverse recognition and important targets for immunotherapies.
Collapse
Affiliation(s)
- Michelle Miron
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032.,Department of Microbiology and Immunology, Columbia University, New York, NY 10032
| | - Brahma V Kumar
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19102
| | - Tomer Granot
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032
| | - Dustin J Carpenter
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032
| | - Takashi Senda
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032
| | - Dora Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19102
| | - Aaron M Rosenfeld
- School of Biomedical Engineering, Drexel University, Philadelphia, PA 19104
| | - Bochao Zhang
- School of Biomedical Engineering, Drexel University, Philadelphia, PA 19104
| | | | | | - Uri Hershberg
- School of Biomedical Engineering, Drexel University, Philadelphia, PA 19104
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, NY 10032.,Department of Biomedical Informatics, Columbia University, New York, NY 10032
| | - Adeeb Rahman
- Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19102
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032; .,Department of Microbiology and Immunology, Columbia University, New York, NY 10032.,Department of Surgery, Columbia University, New York, NY 10032
| |
Collapse
|
1997
|
Cheng B, Yuan WE, Su J, Liu Y, Chen J. Recent advances in small molecule based cancer immunotherapy. Eur J Med Chem 2018; 157:582-598. [PMID: 30125720 DOI: 10.1016/j.ejmech.2018.08.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/29/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023]
Abstract
Immunotherapy has been increasingly utilized for the treatment of cancer. Currently available cancer immunotherapies mainly involve the use of antibodies, which have advantages in terms of pharmacodynamics such as efficacy and specificity, however, they exhibit disadvantages in regard to the pharmacokinetics including but not limited to poor tissue and tumor penetration, very long half-life, and the lack of oral bioavailability. Also they are immunogenic and may cause undesired side effects. In addition, they are difficult and expensive to produce. In contrast to therapeutic antibodies, small molecule immuno-oncology agents generally have favorable pharmacokinetics, for example, better oral bioavailability, higher tissue and tumor penetration, reasonable half-lives etc. Furthermore, some small molecules are highly selective and efficacious with benign toxicity profiles. Therefore, small molecule immuno-oncology agents have the potential to overcome the drawbacks of therapeutic antibodies, and they can complement existing therapeutic antibodies and may also be used in combination with antibodies to achieve synergistic effects. In this article, we summarize the current advances in the field of small molecule approaches in tumor immunology which include the small molecules in clinical trials and preclinical studies, and the reported crystal structures of small molecules and their target proteins as well as the binding interactions between small molecules and the targets. The tumorigenesis mechanism of different targets (the programmed cell death 1/programmed cell death ligand 1(PD1/PD-L1), retinoic acid-related orphan receptor-gamma t (RORγt), Chemokine receptor, Stimulator of Interferon Genes (Sting), Indoleamine 2,3-dioxygenase (IDO), toll-like receptors (TLR) etc.) are also elucidated.
Collapse
Affiliation(s)
- Binbin Cheng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wei-En Yuan
- School of Pharmacy, Shanghai Jiao Tong Univerisity, Shanghai, 200240, China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong Univerisity, Shanghai, 200240, China
| | - Yao Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
1998
|
Tuwahatu CA, Yeung CC, Lam YW, Roy VAL. The molecularly imprinted polymer essentials: curation of anticancer, ophthalmic, and projected gene therapy drug delivery systems. J Control Release 2018; 287:24-34. [PMID: 30110614 DOI: 10.1016/j.jconrel.2018.08.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 02/06/2023]
Abstract
The development of polymeric materials as drug delivery systems has advanced from systems that rely on classical passive targeting to carriers that can sustain the precisely controlled release of payloads upon physicochemical triggers in desired microenvironment. Molecularly imprinted polymers (MIP), materials designed to capture specific molecules based on their molecular shape and charge distribution, are attractive candidates for fulfilling these purposes. In particular, drug-imprinted polymers coupled with active targeting mechanisms have been explored as potential drug delivery systems. In this review, we have curated important recent efforts in the development of drug-imprinted polymers in a variety of clinical applications, especially oncology and ophthalmology. MIP possesses properties that may complement the traditional delivery systems of these two disciplines, such as passive enhanced permeability and retention effect (EPR) in cancer tumors, and passive drug diffusion in delivering ophthalmic therapeutics. Furthermore, the prospects of MIP integration with the emerging gene therapies will be discussed.
Collapse
Affiliation(s)
- Christian Antonio Tuwahatu
- Department of Materials Science and Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chi Chung Yeung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Vellaisamy Arul Lenus Roy
- Department of Materials Science and Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
1999
|
Assoun S, Benderra MA, Géraud A, Bayle A, Boilève A, Grazziotin-Soares D, Lotz JP. Congrès de l’association américaine de recherche contre le cancer — AACR 2018. ONCOLOGIE 2018. [DOI: 10.3166/onco-2018-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2000
|
Jiang Z, Liu Z, Li M, Chen C, Wang X. Immunogenomics Analysis Reveals that TP53 Mutations Inhibit Tumor Immunity in Gastric Cancer. Transl Oncol 2018; 11:1171-1187. [PMID: 30059832 PMCID: PMC6078052 DOI: 10.1016/j.tranon.2018.07.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/23/2022] Open
Abstract
Although immunotherapy continues to demonstrate efficacy in a variety of refractory cancers, currently, no any immunotherapeutic strategy is clinically used for gastric cancer (GC) except its microsatellite instable subtype. Thus, it is important to identify molecular biomarkers for predicting the responders to GC immunotherapy. TP53 mutations frequently occur in GC and are associated with unfavorable clinical outcomes in GC. We performed a comprehensive characterization of the associations between TP53 mutations and immune activities in GC based on two large-scale GC cancer genomics data. We compared expression and enrichment levels of 787 immune-related genes and 23 immune gene-sets among TP53-mutated GCs, TP53‐wildtype GCs, and normal tissue, and explored the correlations between p53-mediated pathways and immune activities in GC. Strikingly, almost all analyzed immune gene-sets were significantly downregulated in enrichment levels in TP53-mutated GCs compared to TP53‐wildtype GCs. These less active immune pathways and cell types in TP53-mutated GCs included 15 immune cell types and function, tumor-infiltrating lymphocytes, regulatory T cells, immune checkpoint, cytokine and cytokine receptor, human leukocyte antigen, pro‐inflammatory, and parainflammation. Moreover, we identified a number of p53-mediated pathways and proteins that were significantly associated with immune activities in GC. Furthermore, we demonstrated that the TP53 mutation itself could result in the depressed immune activities in GC and other cancer types. We revealed that chromosomal instability was an important mechanism for the depressed tumor immunity in TP53-mutated cancers. Finally, we showed that immune cell infiltration and immune activities were likely positively associated with survival prognosis in GC. Our findings suggest that p53 may play an important role in activating tumor immunity in GC and other cancer types and that the TP53 mutation status could be useful in stratifying cancer patients responsive to a certain immunotherapy.
Collapse
Affiliation(s)
- Zehang Jiang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, Nanjing 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| | - Zhixian Liu
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, Nanjing 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| | - Mengyuan Li
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, Nanjing 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| | - Cai Chen
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, Nanjing 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|