2001
|
Wang S, Liu JC, Ju Y, Pellecchia G, Voisin V, Wang DY, Leha L R, Ben-David Y, Bader GD, Zacksenhaus E. microRNA-143/145 loss induces Ras signaling to promote aggressive Pten-deficient basal-like breast cancer. JCI Insight 2017; 2:93313. [PMID: 28768903 DOI: 10.1172/jci.insight.93313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/23/2017] [Indexed: 11/17/2022] Open
Abstract
The tumor suppressor PTEN is frequently inactivated in breast and other cancers; yet, germ-line mutations in this gene induce nonmalignant hamartomas, indicating dependency on additional cooperating events. Here we show that most tumors derived from conditional deletion of mouse pten in mammary epithelium are highly differentiated and lack transplantable tumor-initiating cells (TICs) capable of seeding new tumors following orthotopic injection of FACS-sorted or tumorsphere cells. A rare group of poorly differentiated tumors did harbor transplantable TICs. These transplantable tumors exhibited distinct molecular classification, signaling pathways, chromosomal aberrations, and mutational landscape, as well as reduced expression of microRNA-143/145 (miR-143/145). Stable knockdown of miR-143/145 conferred tumorigenic potential upon poorly transplantable pten-deficient tumor cells through a mechanism involving induction of RAS signaling, leading to increased sensitivity to MEK inhibition. In humans, miR-145 deficiency significantly correlated with elevated RAS-pathway activity in basal-like breast cancer, and patients with combined PTEN/miR-145 loss or PTEN-loss/high RAS-pathway activity exhibited poor clinical outcome. These results underscore a selective pressure for combined PTEN loss together with RAS-pathway activation, either through miR-145 loss or other mechanisms, in basal-like breast cancer, and a need to identify and prioritize these tumors for aggressive therapy.
Collapse
Affiliation(s)
- Sharon Wang
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada.,Laboratory Medicine & Pathobiology, and
| | - Jeff C Liu
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - YoungJun Ju
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | | | - Veronique Voisin
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Dong-Yu Wang
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Rajwinder Leha L
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Yaacov Ben-David
- The Key laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, and State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, and
| | - Eldad Zacksenhaus
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada.,Laboratory Medicine & Pathobiology, and.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2002
|
Zhou J, Li H, Li N, Li X, Zhang H, Song Q, Peng M. MicroRNA-641 inhibits lung cancer cells proliferation, metastasis but promotes apoptosis in cells by targeting PDCD4. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8211-8221. [PMID: 31966672 PMCID: PMC6965428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/19/2017] [Indexed: 06/10/2023]
Abstract
Dysregulation of microRNAs (miRNAs) are found in various human cancers, but the roles of miR-641 in lung cancer are still unclear. Our purpose is to explore miR-641 effects on the cellular behavior of A549 cells and the related molecular mechanisms. RT-qPCR assay was conducted to examine the expression of miR-641 in lung cancer and normal lung cell lines. A549 cells were transfected with miR-641 mimic and inhibitor, programmed cell death 4 (PDCD4) targeted siRNA and corresponding controls. Then, cell viability, migration, invasion and apoptosis were analyzed by Cell Counting Kit-8 (CCK-8), Transwell and flow cytometry assays. The expression of apoptosis-related factors and epithelial mesenchymal transition (EMT)-related factors were detected by western blot and RT-qPCR. A target gene of miR-641 was validated by dual-luciferase assay. Besides, the main factors expressions of JAK/STAT and PI3K/AKT signal pathways were measured by western blot. Results showed that miR-641 was low expressed in A549, H1650 and H1299 cells compared to WI-38 and HEL-1 cells. MiR-641 overexpression inhibited cell viability, migration, invasion but promoted apoptosis and apoptosis-related factors levels. Moreover, miR-641 overexpression inhibited TGF-β1-induced EMT in A549 cells. Additionally, PDCD4 was a direct target of miR-641 and PDCD4 silencing notably induced apoptosis, and relieved miR-641 suppressing promoted cell viability, migration and invasion. Finally, PDCD4 silencing blocked miR-641 suppression-induced activations of JAK/STAT and PI3K/AKT signal pathways. In conclusion, miR-641 inhibited cell proliferation and metastasis but promoted apoptosis in lung cancer cells by targeting PDCD4 and blocking JAK/STAT and PI3K/AKT signal pathways.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Oncology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei Province, China
| | - Hao Li
- Department of Orthopedics, People’s Hospital of Tianmen CityTianmen 431707, Hubei Province, China
| | - Na Li
- Department of Oncology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei Province, China
| | - Xiangpan Li
- Department of Oncology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei Province, China
| | - Huibo Zhang
- Department of Oncology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei Province, China
| | - Qibin Song
- Department of Oncology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei Province, China
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei Province, China
| |
Collapse
|
2003
|
Zhang Q, Feng Y, Liu P, Yang J. MiR-143 inhibits cell proliferation and invasion by targeting DNMT3A in gastric cancer. Tumour Biol 2017; 39:1010428317711312. [PMID: 28718369 DOI: 10.1177/1010428317711312] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence has suggested that MircroRNAs (miRNAs) dysregulated in pathogenesis and tumorigenicity in human cancers including gastric cancer (GC). MiR-143 had been reported to function as tumor suppressor in GC progression, however, the underlying function of miR-143 in GC still need to be well known. In the study, we revealed that miR-143 was significantly down-regulated in GC cell lines. Upregulation of miR-143 inhibited cell proliferation, invasion, S phase cell proportion and cell cycle related protein levels of Cyclin D1, CDK4 and CDK6 in GC. Furthermore, luciferase reporter assays demonstrated that DNMT3A was a direct target of miR-143 and Upregulation of miR-143 inhibited the DNMT3A mRNA and protein expression levels in GC cells. Moreover, we demonstrated that DNMT3A knockdown rescued the promoting effect of miR-143 inhibitor on cell proliferation in GC. Thus, these results demonstrated that miR-143 targeted DNMT3A in GC cells and inhibit GC tumorigenesis and progression, which may provide a novel therapeutic target of GC.
Collapse
Affiliation(s)
- Quan Zhang
- 1 Department of Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China.,2 Department of Radiation Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Yong Feng
- 1 Department of Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China.,3 Department of Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Ping Liu
- 1 Department of Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Yang
- 4 Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| |
Collapse
|
2004
|
Liu Z, Sun F, Hong Y, Liu Y, Fen M, Yin K, Ge X, Wang F, Chen X, Guan W. MEG2 is regulated by miR-181a-5p and functions as a tumour suppressor gene to suppress the proliferation and migration of gastric cancer cells. Mol Cancer 2017; 16:133. [PMID: 28747184 PMCID: PMC5530520 DOI: 10.1186/s12943-017-0695-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Protein-tyrosine phosphatase MEG2 (MEG2) is a classic tyrosine-specific protein tyrosine phosphatase (PTP). It has been reported that MEG2 participates in the carcinogenesis of the breast and liver. However, functions of MEG2 in gastric cancer remain poorly understood. METHODS We examined the expression of MEG2 protein by western blotting and that of miR-181a-5p by qRT-PCR. We used bioinformatic analyses to search for miRNAs that potentially target MEG2. We performed a luciferase reporter assay to investigate the interaction between miR-181a-5p and MEG2. In addition, we assessed the effects of MEG2 and miR-181a-5p on gastric cancer cells in vitro and in vivo. RESULTS We found that MEG2 is downregulated in human gastric cancer and that miR-181a-5p is predicted to be a potential regulator of MEG2. We also observed that expression of MEG2 is reversely correlated with that of miR-181a-5p in gastric cancer. Moreover, we observed that MEG2 regulation by miR-181a-5p significantly suppresses the proliferation and migration of gastric cancer cells in vitro and decelerates tumour growth in vivo. CONCLUSIONS Our results revealed that MEG2 is a tumour suppressor gene and negatively regulated by miR-181a-5p in gastric cancer.
Collapse
Affiliation(s)
- Zhijian Liu
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China
| | - Feng Sun
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China
| | - Yeting Hong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Yanqing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Min Fen
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China
| | - Kai Yin
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China
| | - Xiaolong Ge
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, East Qingchun Road, Hangzhou, 310016, China
| | - Feng Wang
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China.
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China.
| | - Wenxian Guan
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
2005
|
Li B, Huang M, Liu M, Wen S, Sun F. MicroRNA‑329 serves a tumor suppressive role in colorectal cancer by directly targeting transforming growth factor beta‑1. Mol Med Rep 2017; 16:3825-3832. [PMID: 29067459 DOI: 10.3892/mmr.2017.7077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 05/31/2017] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common type of diagnosed cancer and the fourth leading cause of cancer‑associated mortalities worldwide. Increasing studies have demonstrated that the deregulation of microRNAs (miRNAs or miRs) is associated with the occurrence and development of multiple types of human cancer, including CRC. miR‑329 has been identified to be downregulated in various types of cancer; however, its expression pattern, functions and mechanisms in CRC remain unclear. The present study demonstrated that miR‑329 was lowly expressed in CRC tissue samples and cell lines. Low expression of miR‑329 was correlated with tumor‑node‑metastasis stage and lymph node metastasis in patients with CRC. In vitro experiments revealed that resumption expression of miR‑329 suppressed cell proliferation and invasion in CRC. Furthermore, the results of the present study indicated that miR‑329 targets transforming growth factor‑β1 (TGF‑β1) directly in vitro. TGF‑β1 was demonstrated to be upregulated in CRC tissue samples and inversely correlated with miR‑329 expression. Upregulation of TGF‑β1 was able to partially counteract the antitumor roles of miR‑329 on CRC cell proliferation and invasion. The results of the current study revealed that miR‑329 suppresses CRC cell proliferation and invasion through targeting TGF‑β1, thus suggesting that targeting miR‑329/TGF‑β1 may provide a novel effective therapeutic approach for the treatment of patients with CRC.
Collapse
Affiliation(s)
- Baohuan Li
- Department of Gastroenterology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Miaomiao Huang
- Health Management Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Meiying Liu
- Health Management Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shiling Wen
- Department of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Fang Sun
- Department of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
2006
|
Zhao L, Zhao Y, He Y, Mao Y. miR-19b promotes breast cancer metastasis through targeting MYLIP and its related cell adhesion molecules. Oncotarget 2017; 8:64330-64343. [PMID: 28969074 PMCID: PMC5610006 DOI: 10.18632/oncotarget.19278] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/19/2017] [Indexed: 01/28/2023] Open
Abstract
miR-19b is a key molecule for cancer development, however its crucial roles in breast cancer metastasis are rarely studied right now. In this study, using several bioinformatics databases to predict the downstream targets for miR-19b, we verified that a novel target gene, myosin regulatory light chain interacting protein (MYLIP), could be directly down-regulated by miR-19b through its 3′-UTR region. MYLIP belongs to the cytoskeletal protein clusters and is involved in the regulation of cell movement and migration. We further explored that miR-19b was highly expressed and negatively correlated with MYLIP expression in breast cancer patient samples from the TCGA database. And the over-expression of miR-19b or inhibition of MYLIP facilitated the migration and metastasis of breast cancer cells, through conducting the wound healing assay and transwell invasion assay. Additionally, miR-19b could obviously promote breast tumor growth in mouse models and affect the expressions of cell adhesion molecules (including E-Cadherin, ICAM-1 and Integrin β1) by down-regulating E-Cadherin expression and up-regulating ICAM-1 and Integrin β1 expressions in vitro and in vivo. Meanwhile, miR-19b effectively activated the Integrin β downstream signaling pathways (such as the Ras-MAPK pathway and the PI3K-AKT pathway) and elevated the expression levels of essential genes in these two pathways. Taken together, these findings comprehensively illustrate the regulatory mechanisms ofmiR-19b in breast cancer metastasis, and provide us new insights for exploring MYLIP and its related cell adhesion molecules as promising therapeutic targets to interfere breast cancer development.
Collapse
Affiliation(s)
- Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yuelong Zhao
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yanong He
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
2007
|
Yang J, Fan B, Zhao Y, Fang J. MicroRNA-202 inhibits cell proliferation, migration and invasion of glioma by directly targeting metadherin. Oncol Rep 2017; 38:1670-1678. [PMID: 28714009 DOI: 10.3892/or.2017.5815] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 06/02/2017] [Indexed: 11/06/2022] Open
Abstract
Glioma is the most common and aggressive type of primary malignant brain tumour. Increasing evidence has revealed that microRNAs play important roles in multiple biological processes related to glioma occurrence, development, diagnosis, treatment and prognosis. MicroRNA-202 (miR-202) has been studied in several types of human cancer, whereas the biological roles of miR-202 in glioma remain unknown. The present study, aimed to investigate the expression, clinical significance and biological roles of miR-202 in glioma, as well as its underlying molecular mechanism. We found that miR-202 was significantly downregulated in glioma tissues and cell lines. Low miR-202 expression was associated with Karnofsky performance status (KPS) score and World Health Organization (WHO) grade of glioma patients. Functional assays revealed that ectopic expression of miR-202 inhibited cell proliferation, migration and invasion of glioma. In addition, metadherin (MTDH) was identified as a direct target gene of miR-202 in glioma through bioinformatic analysis, luciferase reporter assay, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. Furthermore, MTDH expression was upregulated and negatively correlated with miR-202 expression in clinical glioma tissues. MTDH knockdown had similar roles to miR-202 overexpression in glioma cells. Rescue experiments revealed that upregulation of MTDH reversed the suppression of glioma cell growth and metastasis by miR-202. Moreover, miR-202 impaired the PI3K/Akt and Wnt/β-catenin pathways. These results highlight the tumour-suppressive effect of miR-202 in glioma, thereby suggesting that miR-202 may be a potential therapeutic target for the treatment of patients with this malignancy.
Collapse
Affiliation(s)
- Jinsheng Yang
- Department of Neurosurgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Bo Fan
- Department of Neurosurgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yachao Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Junchao Fang
- Department of Neurosurgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
2008
|
Chan SY, Snow JW. Formidable challenges to the notion of biologically important roles for dietary small RNAs in ingesting mammals. GENES AND NUTRITION 2017; 12:13. [PMID: 29308096 PMCID: PMC5753850 DOI: 10.1186/s12263-017-0561-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
The notion of uptake of active diet-derived small RNAs (sRNAs) in recipient organisms could have significant implications for our understanding of oral therapeutics and nutrition, for the safe use of RNA interference (RNAi) in agricultural biotechnology, and for ecological relationships. Yet, the transfer and subsequent regulation of gene activity by diet-derived sRNAs in ingesting mammals are still heavily debated. Here, we synthesize current information based on multiple independent studies of mammals, invertebrates, and plants. Rigorous assessment of these data emphasize that uptake of active dietary sRNAs is neither a robust nor a prevalent mechanism to maintain steady-state levels in higher organisms. While disagreement still continues regarding whether such transfer may occur in specialized contexts, concerns about technical difficulties and a lack of consensus on appropriate methods have led to questions regarding the reproducibility and biologic significance of some seemingly positive results. For any continuing investigations, concerted efforts should be made to establish a strong mechanistic basis for potential effects of dietary sRNAs and to agree on methodological guidelines for realizing such proof. Such processes would ensure proper interpretation of studies aiming to prove dietary sRNA activity in mammals and inform potential for application in therapeutics and agriculture.
Collapse
Affiliation(s)
- Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, BST 1704.2, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - Jonathan W Snow
- Department of Biology, Barnard College, New York, NY 10027 USA
| |
Collapse
|
2009
|
Li RK, Gao J, Guo LH, Huang GQ, Luo WH. PTENP1 acts as a ceRNA to regulate PTEN by sponging miR-19b and explores the biological role of PTENP1 in breast cancer. Cancer Gene Ther 2017; 24:309-315. [PMID: 28731027 DOI: 10.1038/cgt.2017.29] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/26/2017] [Accepted: 06/06/2017] [Indexed: 02/05/2023]
Abstract
This study aimed to investigate role of long noncoding RNA PTENP1 regulating PTEN expression via miR-19b to affect breast cancer (BC) progression. We measured expressions of PTENP1, miR-19b and PTEN in 65 matched BC cancerous and noncancerous tissues by quantitative real-time fluorescence PCR (qRT-PCR) and investigated the biological effects of PTENP1 in BC MDA-MB-231 cells by several in vitro experiments including CCK8, wound healing, transwell and Annexin V-FITC/PI analysis. Besides, the competing endogenous RNA (ceRNA) activity of PTENP1 on miR-19b was detected by luciferase reporter assay, and the expressions of related genes and proteins were determined by western blot assay and qRT-PCR. Increased PTENP1 and PTEN and decreased miR-19b were observed in BC tissues and cell lines. Further, PTENP1 and PTEN are direct targets of miR-19b, and overexpressed PTENP1 in MDA-MB-231 cells could supress cell proliferation, migration and invasion and promote cell apoptosis. Moreover, PTENP1 could upregulate PTEN via its ceRNA interaction on miR-19b, as well as induced the upregulation of p53 and downregulation of p-AKT. Enhanced PTENP1 could inhibit BC cell growth, metastasis and tumourigenicity by inhibiting miR-19b and facilitating PTEN in BC, thereby may represent a novel target for diagnosis and treatment of BC.
Collapse
Affiliation(s)
- R-K Li
- Department of Clinical Laboratory, Shantou University Medical College, Shantou, Guangdong, China
- Department of Clinical Laboratory, The Second People's Hospital of Baoan District of Shenzhen, Shenzhen, Guangdong, China
| | - J- Gao
- Department of Clinical Laboratory, The Second People's Hospital of Baoan District of Shenzhen, Shenzhen, Guangdong, China
| | - L-H Guo
- Department of Clinical Laboratory, People's Hospital of New District Longhua, Shenzhen, Guangdong, China
| | - G-Q Huang
- Department of Clinical Laboratory, People's Hospital of New District Longhua, Shenzhen, Guangdong, China
| | - W-H Luo
- Department of Clinical Laboratory, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
2010
|
Karimi L, Mansoori B, shanebandi D, Mohammadi A, Aghapour M, Baradaran B. Function of microRNA-143 in different signal pathways in cancer: New insights into cancer therapy. Biomed Pharmacother 2017; 91:121-131. [DOI: 10.1016/j.biopha.2017.04.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 01/05/2023] Open
|
2011
|
Wei WR, Zeng GJ, Liu C, Zou BW, Li L. Overexpression of miR-96 promotes cell proliferation by targeting FOXF2 in prostate cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:7596-7602. [PMID: 31966604 PMCID: PMC6965223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/23/2017] [Indexed: 06/10/2023]
Abstract
Prostate cancer (PC) is one of the most common cancers in males. MicroRNAs (miRNAs) are demonstrated to be involved in prostate cancer development and progression. Recently, miR-96 was identified to play a tumor promoting role in several tumors including PC, however, the underlying function of miR-96 in PC still need to be known. In the study, our results demonstrated that miR-96 was higher in prostate cancer tissues compared with adjacent normal tissues. Higher miR-96 was association with higher PSA level, lymph node metastasis, pathologic stage and distant metastasis in prostate cancer patients. Lose-of-function studies showed that down-regulated expression of miR-96 inhibited cell proliferation and cell cycle by regulating down-regulating CyclinA1, CDK2 and CDK4 expression in PC cells. Furthermore, we found that FOXF2 was a target of miR-96 in PC cells and miR-96 promoted cell proliferation by suppressing FOXF2 expression. Thus, these results showed that inhibition of miR-96 may be a target for prostate cancer treatment.
Collapse
Affiliation(s)
- Wu-Ran Wei
- Institute of Urology, Department of Urology, West China Hospital, Sichuan UniversityChengdu, China
| | - Guo-Jun Zeng
- Department of Vascular Surgery, West China Hospital, Sichuan UniversityChengdu, China
| | - Chang Liu
- Department of Liver Surgery, West China Hospital, Sichuan UniversityChengdu, China
| | - Bing-Wen Zou
- Department of Oncology, West China Hospital, Sichuan UniversityChengdu, China
| | - Li Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan UniversityChengdu, China
| |
Collapse
|
2012
|
Hou YH, Jeyaraj A, Zhang X, Wei CL. Absolute quantification of microRNAs in green tea (Camellia sinensis) by stem-loop quantitative real-time PCR. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2975-2981. [PMID: 27861949 DOI: 10.1002/jsfa.8137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/03/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND There are some studies to show that food-derived plant microRNAs (miRNAs) may be detected in mammals. The research evidence has provoked a considerable debate whether plant-derived miRNAs exert the same regulatory functions as endogenous animal miRNAs. To test the hypothesis, methods of highly sensitive absolute quantification miRNAs have been developed. However, absolute miRNA quantification of green tea has not yet been reported. This study is the first to build an absolute quantification method to detect miRNAs level in green tea using stem-loop quantitative real-time PCR (qRT-PCR). RESULTS Two miRNAs, csn-miR164 (a conserved miRNA) and csn-miRn329 (a tea-specific miRNA), were selected as examples for the detection and absolute quantification of miRNAs in green tea samples using stem-loop qRT-PCR. The content of csn-miR164 was significantly higher in the Yuexi Cuilan (YX) samples than in the Shucheng Orchid (SC) samples. The content of csn-miRn329 was found to be high at the start of processing in leaf tissues in both the withering and soaking experiments, after which it gradually decreased with time. CONCLUSION To the best of our knowledge, this is the first report to absolutely quantify the miRNAs present in green tea. This method will help to further investigate the possibility that tea-derived miRNAs may play an important role on defending against various diseases in humans. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying-Hui Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, P.R. China
| | - Anburaj Jeyaraj
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, P.R. China
| | - Xiao Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, P.R. China
| | - Chao-Ling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, P.R. China
| |
Collapse
|
2013
|
Witwer KW, Zhang CY. Diet-derived microRNAs: unicorn or silver bullet? GENES AND NUTRITION 2017; 12:15. [PMID: 28694875 PMCID: PMC5501113 DOI: 10.1186/s12263-017-0564-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 01/09/2023]
Abstract
In ancient lore, a bullet cast from silver is the only effective weapon against monsters. The uptake of active diet-derived microRNAs (miRNAs) in consumers may be the silver bullet long sought after in nutrition and oral therapeutics. However, the majority of scientists consider the transfer and regulation of consumer’s gene activity by these diet-derived miRNAs to be a fantasy akin to spotting a unicorn. Nevertheless, groups like Dr. Chen-Yu Zhang’s lab in Nanjing University have stockpiled breathtaking amounts of data to shoot down these naysayers. Meanwhile, Dr. Ken Witwer at John Hopkins has steadfastly cautioned the field to beware of fallacies caused by contamination, technical artifacts, and confirmation bias. Here, Dr. Witwer and Dr. Zhang share their realities of dietary miRNAs by answering five questions related to this controversial field.
Collapse
Affiliation(s)
- Kenneth W Witwer
- Departments of Molecular and Comparative Pathobiology and Neurology, Johns Hopkins University, Baltimore, USA.,School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Chen-Yu Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
2014
|
Li Z, Yao Q, Zhao S, Wang Y, Li Y, Wang Z. Comprehensive analysis of differential co-expression patterns reveal transcriptional dysregulation mechanism and identify novel prognostic lncRNAs in esophageal squamous cell carcinoma. Onco Targets Ther 2017; 10:3095-3105. [PMID: 28790843 PMCID: PMC5488755 DOI: 10.2147/ott.s135312] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies worldwide and occurs at a relatively high frequency in People's Republic of China. However, the molecular mechanism underlying ESCC is still unclear. In this study, the mRNA and long non-coding RNA (lncRNA) expression profiles of ESCC were downloaded from the Gene Expression Omnibus database, and then differential co-expression analysis was used to reveal the altered co-expression relationship of gene pairs in ESCC tumors. A total of 3,709 mRNAs and 923 lncRNAs were differentially co-expressed between normal and tumor tissues, and we found that most of the gene pairs lost associations in the tumor tissues. The differential regulatory networking approach deciphered that transcriptional dysregulation was ubiquitous in ESCC, and most of the differentially regulated links were modulated by 37 TFs. Our study also found that two novel lncRNAs (ADAMTS9-AS1 and AP000696.2) might be essential in the development of ectoderm and epithelial cells, which could significantly stratify ESCC patients into high-risk and low-risk groups, and were much better than traditional clinical tumor markers. Further inspection of two risk groups showed that the changes in TF-target regulation in the high-risk patients were significantly higher than those in the low-risk patients. In addition, four signal transduction-related DCmRNAs (ERBB3, ENSA, KCNK7, MFSD5), which were differentially co-expressed with the two lncRNAs, might also have the predictive capacity. Our findings will enhance the understanding of ESCC transcriptional dysregulation from a view of cross-link of lncRNA and mRNA, and the two-lncRNA combination may serve as a novel prognostic biomarker for clinical applications of ESCC.
Collapse
Affiliation(s)
- Zhen Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | - Qianlan Yao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | - Songjian Zhao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
| | - Yin Wang
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology.,Collaborative Innovation Center for Genetics and Development, Fudan University
| | - Yixue Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University.,Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Zhen Wang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
2015
|
Ning T, Zhang H, Wang X, Li S, Zhang L, Deng T, Zhou L, Wang X, Liu R, Bai M, Ge S, Li H, Huang D, Ying G, Ba Y. miR-221 and miR-222 synergistically regulate hepatocyte growth factor activator inhibitor type 1 to promote cell proliferation and migration in gastric cancer. Tumour Biol 2017; 39:1010428317701636. [PMID: 28618968 DOI: 10.1177/1010428317701636] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Tao Ning
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Haiyang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xinyi Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Shuang Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Le Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Ting Deng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Likun Zhou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xia Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Ming Bai
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Shaohua Ge
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Hongli Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Dingzhi Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Guoguang Ying
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yi Ba
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
2016
|
Zhu J, Li H, Ma J, Huang H, Qin J, Li Y. PTPN9 promotes cell proliferation and invasion in Eca109 cells and is negatively regulated by microRNA-126. Oncol Lett 2017; 14:1419-1426. [PMID: 28789358 PMCID: PMC5529898 DOI: 10.3892/ol.2017.6315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 04/13/2017] [Indexed: 12/23/2022] Open
Abstract
Protein tyrosine phosphatase non-receptor type 9 (PTPN9), also named PTP-MEG2, is an important member of the protein tyrosine phosphatase family that is involved in variety of human diseases. However, the role of PTPN9 in esophageal squamous cell carcinoma (ESCC) remains to be established. The present evaluated the potential effect and underlying mechanism of action of PTPN9 in ESCC. Immunohistochemistry was performed to detect PTPN9 protein expression in 84 ESCC tumor specimens and 30 normal esophageal tissues. The association between positive expression of PTPN9 and clinicopathological features and prognosis was analyzed. The prognostic role of PTPN9 was further investigated using multivariate regression analysis. PTPN9-small interfering RNA and microRNA (miR-126)-mimics were transfected into Eca109 cells to construct PTPN9 silencing and an miR-126 ectopic expression cell model. Reverse transcription-quantitative polymerase chain reaction, western blot analysis, cell counting kit-8, Transwell assays and flow cytometry were used to investigate the role of PTPN9 in the process of ESCC progression and its potential downstream signaling pathway. Immunohistochemical analysis revealed that PTPN9 was upregulated in ESCC tumor specimens compared with normal esophageal tissues. The χ2 test indicated that positive expression of PTPN9 was correlated with tumor node metastasis stage, tumor classification and node classification. Patients with PTPN9 positive expression had shorter survival time, compared with those that were PTPN9 negative. Multivariate regression analysis with the Cox proportional hazards regression model revealed that PTPN9 expression was a prognostic factor of overall survival for patients with ESCC. Using RNA interference, the present study demonstrated that knockdown of PTPN9 significantly suppressed cell proliferation and invasion in Eca109. Additionally, it was hypothesized that miR-126, described as a tumor suppressor in ESCC, may act at least in part via its inhibition of PTPN9 at the post-transcriptional level. To the best of our knowledge, this is the first study to demonstrate that PTPN9 is overexpressed in ESCC and associated with poor survival, and may therefore be important in the pathogenesis of ESCC.
Collapse
Affiliation(s)
- Junwei Zhu
- Department of Thoracic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Haomiao Li
- Department of Thoracic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Jun Ma
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Haibo Huang
- Department of Thoracic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Jianjun Qin
- Department of Thoracic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Yin Li
- Department of Thoracic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| |
Collapse
|
2017
|
Cross-Kingdom Regulation of Putative miRNAs Derived from Happy Tree in Cancer Pathway: A Systems Biology Approach. Int J Mol Sci 2017; 18:ijms18061191. [PMID: 28587194 PMCID: PMC5486014 DOI: 10.3390/ijms18061191] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/17/2017] [Accepted: 05/27/2017] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are well-known key regulators of gene expression primarily at the post-transcriptional level. Plant-derived miRNAs may pass through the gastrointestinal tract, entering into the body fluid and regulate the expression of endogenous mRNAs. Camptotheca acuminata, a highly important medicinal plant known for its anti-cancer potential was selected to investigate cross-kingdom regulatory mechanism and involvement of miRNAs derived from this plant in cancer-associated pathways through in silico systems biology approach. In this study, total 33 highly stable putative novel miRNAs were predicted from the publically available 53,294 ESTs of C. acuminata, out of which 14 miRNAs were found to be regulating 152 target genes in human. Functional enrichment, gene-disease associations and network analysis of these target genes were carried out and the results revealed their association with prominent types of cancers like breast cancer, leukemia and lung cancer. Pathways like focal adhesion, regulation of lipolysis in adipocytes and mTOR signaling pathways were found significantly associated with the target genes. The regulatory network analysis showed the association of some important hub proteins like GSK3B, NUMB, PEG3, ITGA2 and DLG2 with cancer-associated pathways. Based on the analysis results, it can be suggested that the ingestion of the C. acuminata miRNAs may have a functional impact on tumorigenesis in a cross-kingdom way and may affect the physiological condition at genetic level. Thus, the predicted miRNAs seem to hold potentially significant role in cancer pathway regulation and therefore, may be further validated using in vivo experiments for a better insight into their mechanism of epigenetic action of miRNA.
Collapse
|
2018
|
Construction and analyses of the microRNA-target gene differential regulatory network in thyroid carcinoma. PLoS One 2017; 12:e0178331. [PMID: 28570571 PMCID: PMC5453480 DOI: 10.1371/journal.pone.0178331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/11/2017] [Indexed: 12/13/2022] Open
Abstract
Thyroid-carcinoma (THCA) is the most common malignancy with an increasing incidence. Recent evidence has emphasized the role of microRNA (miRNA) in THCA. However, knowledge concerning the roles of miRNAs in THCA is still limited. We therefore use a miRNA-target gene differential regulatory network (MGDRN) to identify key miRNAs and characterize their synergistic regulation in THCA. Both miRNA-target gene interactions from multiple databases and negative expression correlations between miRNA-target genes were used to characterize the interactions. Then, two regulatory networks involving normal and tumor conditions were constructed, respectively. The MGDRN was finally constructed using different interactions between the above two regulatory networks. By analyzing topological features of the MGDRN, four miRNAs (hsa-mir-152-3p, hsa-mir-148a, hsa-mir-130b and hsa-mir-15b) are identified as key miRNAs in THCA. Over-expression of mir-152-3p inhibited proliferation and colony formation of TPC-1 cells. Furthermore, mir-152-3p negatively regulated ERBB3 by binding to the 3'-UTR of ERBB3, and down-regulation of ERBB3 by small interfering (si)RNAs inhibited proliferation and colony formation of TPC-1 cells, indicating that mir-152-3p acted as an anti-tumor miRNA by negatively regulating ERBB3. Finally, two synergistically dysregulated modules were identified which may contribute to the initiation and progression of THCA. Overall, the results provided a better understanding of the molecular basis of THCA, and suggested novel treatment strategies for this cancer.
Collapse
|
2019
|
Li Z, Li Y, Li Y, Ren K, Li X, Han X, Wang J. Long non-coding RNA H19 promotes the proliferation and invasion of breast cancer through upregulating DNMT1 expression by sponging miR-152. J Biochem Mol Toxicol 2017; 31. [PMID: 28544374 DOI: 10.1002/jbt.21933] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 03/30/2017] [Accepted: 04/06/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Zhen Li
- Department of Interventional Radiology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou 450052 People's Republic of China
| | - Yan Li
- Department of Cardiology; The Second Affiliated Hospital of Zhengzhou University; Zhengzhou 450052 People's Republic of China
| | - Ya Li
- Department of Gastroenterology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou 450052 People's Republic of China
| | - Kewei Ren
- Department of Interventional Radiology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou 450052 People's Republic of China
| | - Xin Li
- Department of Interventional Radiology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou 450052 People's Republic of China
| | - Xinwei Han
- Department of Interventional Radiology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou 450052 People's Republic of China
| | - Jiaxiang Wang
- Department of Surgery; The First Affiliated Hospital of Zhengzhou University; Zhengzhou 450052 People's Republic of China
| |
Collapse
|
2020
|
Li YW, Chiang KY, Li YH, Wu SY, Liu W, Lin CR, Wu JL. MiR-145 mediates zebrafish hepatic outgrowth through progranulin A signaling. PLoS One 2017; 12:e0177887. [PMID: 28531199 PMCID: PMC5439702 DOI: 10.1371/journal.pone.0177887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRs) are mRNA-regulatory molecules that fine-tune gene expression and modulate both processes of development and tumorigenesis. Our previous studies identified progranulin A (GrnA) as a growth factor which induces zebrafish hepatic outgrowth through MET signaling. We also found that miR-145 is one of potential fine-tuning regulators of GrnA involved in embryonic hepatic outgrowth. The low level of miR-145 seen in hepatocarinogenesis has been shown to promote pathological liver growth. However, little is known about the regulatory mechanism of miR-145 in embryonic liver development. In this study, we demonstrate a significant decrease in miR-145 expression during hepatogenesis. We modulate miR-145 expression in zebrafish embryos by injection with a miR-145 mimic or a miR-145 hairpin inhibitor. Altered embryonic liver outgrowth is observed in response to miR-145 expression modulation. We also confirm a critical role of miR-145 in hepatic outgrowth by using whole-mount in situ hybridization. Loss of miR-145 expression in embryos results in hepatic cell proliferation, and vice versa. Furthermore, we demonstrate that GrnA is a target of miR-145 and GrnA-induced MET signaling is also regulated by miR-145 as determined by luciferase reporter assay and gene expression analysis, respectively. In addition, co-injection of GrnA mRNA with miR-145 mimic or MO-GrnA with miR-145 inhibitor restores the liver defects caused by dysregulation of miR-145 expression. In conclusion, our findings suggest an important role of miR-145 in regulating GrnA-dependent hepatic outgrowth in zebrafish embryonic development.
Collapse
Affiliation(s)
- Ya-Wen Li
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Keng-Yu Chiang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Department of Life science, National Taiwan University, Taipei, Taiwan
| | - Yen-Hsing Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Sung-Yu Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Ray Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jen-Leih Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
2021
|
Li D, Hu J, Song H, Xu H, Wu C, Zhao B, Xie D, Wu T, Zhao J, Fang L. miR-143-3p targeting LIM domain kinase 1 suppresses the progression of triple-negative breast cancer cells. Am J Transl Res 2017; 9:2276-2285. [PMID: 28559978 PMCID: PMC5446510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
Breast cancer is the most common cancer in women worldwide. Triple-negative breast cancer is one of the most aggressive types of breast cancer as it has the worst clinical outcome for patients. microRNAs are a type of small non-coding RNA and play an important role in breast cancer. The purpose of this study was to explore the potential function and mechanism of miR-143-3p in triple-negative breast cancer (TNBC). MTT and colony formation assays, the effect of miR-143-3p modulation on MDA-MB-231 cell proliferation, revealed that increased miR-143-3p expression inhibited the proliferation of MDA-MB-231 TNBC cells. Moreover, miR-143-3p overexpression inhibited the movement of MDA-MB-231 TNBC cells in wound healing and transwell assays. To identify a potential miR-143-3p target, we investigated the effect of miR-143-3p modulation on LIMK1 expression level. Increased miR-143-3p expression caused a reduction in LIMK1 mRNA and protein, suggesting that LIMK1 is a target of miR-143-3p. In addition, dual-luciferase reporter assays showed that LIMK1 is a target gene of miR-143-3p. Flow cytometry analysis indicated that miR-143-3p arrested MDA-MB-231 TNBC cells at the G0/G1 phase. The TCGA (The Cancer Genome Atlas) database demonstrated that miR-143-3p was down-regulated in breast cancer tissues compared with normal breast tissues. These data demonstrated that miR-143-3p functioned as a suppressor gene in TNBC and that miR-143 targeted therapy may be a new strategy for TNBC treatment.
Collapse
Affiliation(s)
- Dengfeng Li
- Department of Thyroid and Breast, General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghai 200072, China
| | - Jiashu Hu
- Department of Thyroid and Breast, General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghai 200072, China
| | - Hongming Song
- Department of Thyroid and Breast, General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghai 200072, China
| | - Hui Xu
- Department of Thyroid and Breast, General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghai 200072, China
| | - Chengyang Wu
- Department of Thyroid and Breast, General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghai 200072, China
| | - Bingkun Zhao
- Department of Thyroid and Breast, General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghai 200072, China
| | - Dan Xie
- Department of Thyroid and Breast, General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghai 200072, China
| | - Tianqi Wu
- Department of Thyroid and Breast, General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghai 200072, China
| | - Junyong Zhao
- Department of Thyroid and Breast, General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghai 200072, China
| | - Lin Fang
- Department of Thyroid and Breast, General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghai 200072, China
| |
Collapse
|
2022
|
hTERT-Immortalized Bone Mesenchymal Stromal Cells Expressing Rat Galanin via a Single Tetracycline-Inducible Lentivirus System. Stem Cells Int 2017; 2017:6082684. [PMID: 28584529 PMCID: PMC5444038 DOI: 10.1155/2017/6082684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/26/2017] [Accepted: 02/22/2017] [Indexed: 01/01/2023] Open
Abstract
The use of human telomerase reverse transcriptase-immortalized bone marrow mesenchymal stromal cells (hTERT-BMSCs) as vehicles to deliver antinociceptive galanin (GAL) molecules into pain-processing centers represents a novel cell therapy strategy for pain management. Here, an hTERT-BMSCs/Tet-on/GAL cell line was constructed using a single Tet-on-inducible lentivirus system, and subsequent experiments demonstrated that the secretion of rat GAL from hTERT-BMSCs/Tet-on/GAL was switched on and off under the control of an inducer in a dose-dependent manner. The construction of this cell line is the first promising step in the regulation of GAL secretion from hTERT-immortalized BMSCs, and the potential application of this system may provide a stem cell-based research platform for pain.
Collapse
|
2023
|
Huang FT, Chen WY, Gu ZQ, Zhuang YY, Li CQ, Wang LY, Peng JF, Zhu Z, Luo X, Li YH, Yao HR, Zhang SN. The novel long intergenic noncoding RNA UCC promotes colorectal cancer progression by sponging miR-143. Cell Death Dis 2017; 8:e2778. [PMID: 28492554 PMCID: PMC5520712 DOI: 10.1038/cddis.2017.191] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/21/2017] [Accepted: 03/28/2017] [Indexed: 01/12/2023]
Abstract
The human genome contains thousands of long intergenic noncoding RNAs (lincRNAs). However, the functional roles of these transcripts and the mechanisms responsible for their deregulation in colorectal cancer (CRC) remain elusive. A novel lincRNA termed upregulated in CRC (UCC) was found to be highly expressed in human CRC tissues and cell lines. UCC levels correlated with lymph node metastasis, Dukes' stage, and patient outcomes. In SW480 and SW620 cells, knockdown of UCC inhibited proliferation, invasion, and cell cycle progression and induced apoptosis in vitro. Xenograft tumors grown from UCC-silenced SW620 cells had smaller mean volumes and formed more slowly than xenograft tumors grown from control cells. Inversely, overexpression of UCC in HCT116 promoted cell growth and invasion in vitro. Bioinformatics analysis, dual-luciferase reporter assays, and RNA immunoprecipitation assays showed that miR-143 can interact with UCC, and we found that UCC expression inversely correlates with miR-143 expression in CRC specimens. Moreover, mechanistic investigations showed that UCC may act as an endogenous sponge by competing for miR-143, thereby regulating the targets of this miRNA. Our results suggest that UCC and miR-143 may be promising molecular targets for CRC therapy.
Collapse
Affiliation(s)
- Feng-Ting Huang
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wen-Ying Chen
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhi-Qiang Gu
- Department of Gastroenterology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Yan-Yan Zhuang
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Chu-Qiang Li
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ling-Yun Wang
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Juan-Fei Peng
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhe Zhu
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Xin Luo
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuan-Hua Li
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - He-Rui Yao
- Breast Tumor Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shi-Neng Zhang
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2024
|
Cui S, Liao X, Ye C, Yin X, Liu M, Hong Y, Yu M, Liu Y, Liang H, Zhang CY, Chen X. ING5 suppresses breast cancer progression and is regulated by miR-24. Mol Cancer 2017; 16:89. [PMID: 28490335 PMCID: PMC5424299 DOI: 10.1186/s12943-017-0658-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/05/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The inhibitor of growth (ING) gene family of tumor suppressors is involved in multiple cellular functions such as cell cycle regulation, apoptosis, and chromatin remodeling. ING5 is a new member of the ING family whose function and regulation remain largely unknown. METHODS Quantitative real-time PCR and western blot were used to examine the expression levels of ING5 in breast cancer tissues. The miRNAs that potentially targeted ING5 were determined by bioinformatics analysis and luciferase reporter assay. Cell viability assay, transwell invasion and apoptosis assay were used to characterize the changes induced by overexpressing or knocking down miR-24 or ING5. Hematoxylin and eosin (H&E) staining and immunohistochemical staining for ING5 and Ki-67 were used for xenograft assays in BALB/c nude mice. RESULTS We showed that the ING5 protein rather than the mRNA, was significantly downregulated in breast cancer tissues. We also investigated the potential function of ING5 in breast tumorigenesis and found that ING5 suppressed the proliferation and invasion of breast cancer cells and promoted their apoptosis. Furthermore, we explored the molecular mechanisms accounting for the dysregulation of ING5 in breast cancer cells and identified an oncomiR, miR-24, as a direct upstream regulator of ING5. We revealed that miR-24 had the opposite effects to those of ING5 on breast cancer cells and could accelerate xenografted tumor growth in vivo. CONCLUSION Our findings uncover the tumor-suppressive role of ING5 and the regulatory pathway of ING5 in breast cancer and may provide insights into the molecular mechanisms of breast carcinogenesis.
Collapse
Affiliation(s)
- Shufang Cui
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Nanjing, Jiangsu 210046 China
| | - Xin Liao
- Beihai Marine Station, Evo-devo Institute, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093 China
| | - Chao Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Nanjing, Jiangsu 210046 China
| | - Xin Yin
- Department of Exercise and Heath, Nanjing Sport Institute, 8 Linggusi Road, Nanjing, Jiangsu 210014 China
| | - Minghui Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Nanjing, Jiangsu 210046 China
| | - Yeting Hong
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Nanjing, Jiangsu 210046 China
| | - Mengchao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Nanjing, Jiangsu 210046 China
| | - Yanqing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Nanjing, Jiangsu 210046 China
| | - Hongwei Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Nanjing, Jiangsu 210046 China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Nanjing, Jiangsu 210046 China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Nanjing, Jiangsu 210046 China
| |
Collapse
|
2025
|
Colorectal Cancer: From the Genetic Model to Posttranscriptional Regulation by Noncoding RNAs. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7354260. [PMID: 28573140 PMCID: PMC5442347 DOI: 10.1155/2017/7354260] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
Colorectal cancer is the third most common form of cancer in developed countries and, despite the improvements achieved in its treatment options, remains as one of the main causes of cancer-related death. In this review, we first focus on colorectal carcinogenesis and on the genetic and epigenetic alterations involved. In addition, noncoding RNAs have been shown to be important regulators of gene expression. We present a general overview of what is known about these molecules and their role and dysregulation in cancer, with a special focus on the biogenesis, characteristics, and function of microRNAs. These molecules are important regulators of carcinogenesis, progression, invasion, angiogenesis, and metastases in cancer, including colorectal cancer. For this reason, miRNAs can be used as potential biomarkers for diagnosis, prognosis, and efficacy of chemotherapeutic treatments, or even as therapeutic agents, or as targets by themselves. Thus, this review highlights the importance of miRNAs in the development, progression, diagnosis, and therapy of colorectal cancer and summarizes current therapeutic approaches for the treatment of colorectal cancer.
Collapse
|
2026
|
Inamura K. Major Tumor Suppressor and Oncogenic Non-Coding RNAs: Clinical Relevance in Lung Cancer. Cells 2017; 6:cells6020012. [PMID: 28486418 PMCID: PMC5492016 DOI: 10.3390/cells6020012] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/01/2017] [Accepted: 05/05/2017] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide, yet there remains a lack of specific and sensitive tools for early diagnosis and targeted therapies. High-throughput sequencing techniques revealed that non-coding RNAs (ncRNAs), e.g., microRNAs and long ncRNAs (lncRNAs), represent more than 80% of the transcribed human genome. Emerging evidence suggests that microRNAs and lncRNAs regulate target genes and play an important role in biological processes and signaling pathways in malignancies, including lung cancer. In lung cancer, several tumor suppressor/oncogenic microRNAs and lncRNAs function as biomarkers for metastasis and prognosis, and thus may serve as therapeutic tools. In this review, recent work on microRNAs and lncRNAs is introduced and briefly summarized with a focus on potential biological and therapeutic applications.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
2027
|
A Downmodulated MicroRNA Profiling in Patients with Gastric Cancer. Gastroenterol Res Pract 2017; 2017:1526981. [PMID: 28546810 PMCID: PMC5436063 DOI: 10.1155/2017/1526981] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/24/2017] [Accepted: 03/09/2017] [Indexed: 01/02/2023] Open
Abstract
Objective. Here, we aim to investigate the microRNA (miR) profiling in human gastric cancer (GC). Methods. Tumoral and matched peritumoral gastric specimens were collected from 12 GC patients who underwent routine surgery. A high-throughput miR sequencing method was applied to detect the aberrantly expressed miRs in a subset of 6 paired samples. The stem-loop quantitative real-time polymerase chain reaction (qRT-PCR) assay was subsequently performed to confirm the sequencing results in the remaining 6 paired samples. The profiling results were also validated in vitro in three human GC cell lines (BGC-823, MGC-803, and GTL-16) and a normal gastric epithelial cell line (GES-1). Results. The miR sequencing approach detected 5 differentially expressed miRs, hsa-miR-132-3p, hsa-miR-155-5p, hsa-miR-19b-3p, hsa-miR-204-5p, and hsa-miR-30a-3p, which were significantly downmodulated between the tumoral and peritumoral GC tissues. Most of the results were further confirmed by qRT-PCR, while no change was observed for hsa-miR-30a-3p. The in vitro finding also agreed with the results of both miR sequencing and qRT-PCR for hsa-miR-204-5p, hsa-miR-155-5p, and hsa-miR-132-3p. Conclusion. Together, our findings may serve to identify new molecular alterations as well as to enrich the miR profiling in human GC.
Collapse
|
2028
|
Zhou G, Zhou Y, Chen X. New Insight into Inter-kingdom Communication: Horizontal Transfer of Mobile Small RNAs. Front Microbiol 2017; 8:768. [PMID: 28507539 PMCID: PMC5410588 DOI: 10.3389/fmicb.2017.00768] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/13/2017] [Indexed: 12/12/2022] Open
Abstract
Small RNAs (sRNAs), including small interfering RNAs (siRNAs) and microRNAs (miRNAs), are conventionally regarded as critical molecular regulators of various intracellular processes. However, recent accumulating evidence indicates that sRNAs can be transferred within cells and tissues and even across species. In plants, nematodes and microbes, these mobile sRNAs can mediate inter-kingdom communication, environmental sensing, gene expression regulation, host-parasite defense and many other biological functions. Strikingly, a recent study by our group suggested that ingested plant miRNAs are transferred to blood, accumulate in tissues and regulate transcripts in consuming animals. While our and other independent groups’ subsequent studies further explored the emerging field of sRNA-mediated crosstalk between species, some groups reported negative results and questioned its general applicability. Thus, further studies carefully evaluating the horizontal transfer of exogenous sRNAs and its potential biological functions are urgently required. Here, we review the current state of knowledge in the field of the horizontal transfer of mobile sRNAs, suggest its future directions and key points for examination and discuss its potential mechanisms and application prospects in nutrition, agriculture and medicine.
Collapse
Affiliation(s)
- Geyu Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Yu Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| |
Collapse
|
2029
|
Xiong DD, Lv J, Wei KL, Feng ZB, Chen JT, Liu KC, Chen G, Luo DZ. A nine-miRNA signature as a potential diagnostic marker for breast carcinoma: An integrated study of 1,110 cases. Oncol Rep 2017; 37:3297-3304. [PMID: 28440475 DOI: 10.3892/or.2017.5600] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/14/2016] [Indexed: 11/05/2022] Open
Abstract
Growing evidence indicates that microRNAs (miRNAs) play critical roles in the initiation and progression of breast carcinoma (BC) and are promising diagnostic biomarkers. In the present study, we aimed to identify a multi-marker miRNA pool with high diagnostic performance for BC. We collected miRNA expression profiles of BC samples and normal breast tissues from The Cancer Genome Atlas (TCGA) and screened differentially expressed miRNAs by conducting two‑sample t-tests and by calculating log2 fold-change (log2FC) ratios. Statistical significance was established at p<0.001 and |log2FC| >1. Then, we generated receiver operating characteristic (ROC) curves, calculated the area under the curve (AUC) with a 95% confidence interval (95% CI), and calculated the diagnostic sensitivity and specificity using MedCalc software. Additionally, we predicted the targets of candidate miRNAs using 10 online databases: TarBase, miRTarBase, TargetScan, TargetMiner, microRNA.org, RNA22, PicTar-vert, miRDB, PITA and PolymiRTS. Target genes that were predicted by at least four algorithms were chosen, and cooperative targets of multiple miRNAs were further selected for GO and KEGG pathway analyses through the DAVID online tool. Eventually, a total of 66 differentially expressed miRNAs were identified after miRNA expression profiles were analyzed in BC and normal breast samples. Of these, we selected nine dysregulated miRNAs as candidate diagnostic markers: seven upregulated miRNAs (hsa-miR-21, hsa-miR-96, hsa-miR-183, hsa-miR‑182, hsa-miR-141, hsa-miR-200a and hsa-miR-429) and two downregulated miRNAs (hsa-miR-139 and hsa-miR‑145). The ROC curve for the combination of these nine differently expressed miRNAs showed extremely high diagnostic accuracy, with an AUC of 0.995 (95% CI, 0.988‑0.999) and diagnostic sensitivity and specificity of 98.7 and 98.9%, respectively. In conclusion, the combination of these nine miRNAs significantly improved the accuracy of breast cancer diagnosis.
Collapse
Affiliation(s)
- Dan-Dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jun Lv
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Kang-Lai Wei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ji-Tian Chen
- Department of Pathology, People's Hospital of Ling Shan, Ling Shan, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ke-Cheng Liu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
2030
|
Wang JH, Wang XW, Qu D, Sun JW, Guo FX, Lu D. Upregulation of microRNA-143 reverses drug resistance in human breast cancer cells via inhibition of cytokine-induced apoptosis inhibitor 1. Oncol Lett 2017; 13:4695-4700. [PMID: 28588724 PMCID: PMC5452889 DOI: 10.3892/ol.2017.6078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 04/06/2017] [Indexed: 01/22/2023] Open
Abstract
Cytokine-induced apoptosis inhibitor 1 (CIAPIN1), originally termed anamorsin, is an anti-apoptotic molecule that acts as a downstream effector of the receptor tyrosine kinase-Ras signaling pathway. Overexpression of CIAPIN1 contributes to multidrug resistance (MDR) and microRNA (miR)-143 is typically considered a tumor suppressor in breast cancer. The present study aimed to evaluate the therapeutic potential of miR-143 as a treatment for drug-resistant breast cancer via the downregulation of CIAPIN1 in vitro. The expression levels of miR-143 were measured using quantitative polymerase chain reaction and the expression levels of CIAPIN1 were detected via western blot analysis. Bioinformatic analyses was additionally conducted to search for miR-143, which may potentially target CIAPIN1. Luciferase reporter plasmids were created and used to verify direct targeting. In addition, Taxol-induced drug-resistant (TDR) breast cancer cell proliferation was evaluated using the Cell Counting Kit-8 assay in vitro. The present study identified an inverse association between miR-143 and CIAPIN1 protein expression levels in breast cancer MCF-7, MDA-MB-231 and MDA-MB-453 TDR cells. Specific targeting sites for miR-143 in the 3′-untranslated region of the CIAPIN1 gene were identified, which exhibit the ability to regulate CIAPIN1 expression. It was revealed that the repression of CIAPIN1 via miR-143 suppressed the proliferation of breast cancer TDR cells. The findings of the present study verified the role of miR-143 as a tumor suppressor in breast cancer MDR via inhibition of CIAPIN1 translation.
Collapse
Affiliation(s)
- Jing-Hao Wang
- Department of Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xiu-Wen Wang
- Department of Oncology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Di Qu
- Department of Oncology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ji-Wen Sun
- Department of Oncology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Fei-Xiao Guo
- Department of Oncology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Dan Lu
- Department of Oncology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
2031
|
Huang H, Roh J, Davis CD, Wang TTY. An improved method to quantitate mature plant microRNA in biological matrices using modified periodate treatment and inclusion of internal controls. PLoS One 2017; 12:e0175429. [PMID: 28399134 PMCID: PMC5388493 DOI: 10.1371/journal.pone.0175429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/24/2017] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) ubiquitously exist in microorganisms, plants, and animals, and appear to modulate a wide range of critical biological processes. However, no definitive conclusion has been reached regarding the uptake of exogenous dietary small RNAs into mammalian circulation and organs and cross-kingdom regulation. One of the critical issues is our ability to assess and distinguish the origin of miRNAs. Although periodate oxidation has been used to differentiate mammalian and plant miRNAs, validation of treatment efficiency and the inclusion of proper controls for this method were lacking in previous studies. This study aimed to address: 1) the efficiency of periodate treatment in a plant or mammalian RNA matrix, and 2) the necessity of inclusion of internal controls. We designed and tested spike-in synthetic miRNAs in various plant and mammalian matrices and showed that they can be used as a control for the completion of periodate oxidation. We found that overloading the reaction system with high concentration of RNA resulted in incomplete oxidation of unmethylated miRNA. The abundant miRNAs from soy and corn were analyzed in the plasma, liver, and fecal samples of C57BL/6 mice fed a corn and soy-based chow diet using our improved methodology. The improvement resulted in the elimination of the false positive detection in the liver, and we did not detect plant miRNAs in the mouse plasma or liver samples. In summary, an improved methodology was developed for plant miRNA detection that appears to work well in different sample matrices.
Collapse
Affiliation(s)
- Haiqiu Huang
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, Maryland, United States of America
- Office of Dietary Supplements, NIH, Bethesda, Maryland, United States of America
| | - Jamin Roh
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, Maryland, United States of America
| | - Cindy D. Davis
- Office of Dietary Supplements, NIH, Bethesda, Maryland, United States of America
| | - Thomas T. Y. Wang
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, Maryland, United States of America
| |
Collapse
|
2032
|
Luo Y, Wang P, Wang X, Wang Y, Mu Z, Li Q, Fu Y, Xiao J, Li G, Ma Y, Gu Y, Jin L, Ma J, Tang Q, Jiang A, Li X, Li M. Detection of dietetically absorbed maize-derived microRNAs in pigs. Sci Rep 2017; 7:645. [PMID: 28381865 PMCID: PMC5428504 DOI: 10.1038/s41598-017-00488-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/27/2017] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs are a class of small RNAs that are important in post-transcriptional gene regulation in animals and plants. These single-stranded molecules are widely distributed in organisms and influence fundamental biological processes. Interestingly, recent studies have reported that diet-derived plant miRNAs could regulate mammalian gene expression, and these studies have broadened our view of cross-kingdom communication. In the present study, we evaluated miRNA levels in cooked maize-containing chow diets, and found that plant miRNAs were resistant to the harsh cooking conditions to a certain extent. After feeding fresh maize to pigs (7 days), maize-derived miRNAs could be detected in porcine tissues and serum, and the authenticity of these plant miRNAs was confirmed by using oxidization reactions. Furthermore, in vivo and in vitro experiments demonstrated that dietary maize miRNAs could cross the gastrointestinal tract and enter the porcine bloodstream. In the porcine cells, we found that plant miRNAs are very likely to specifically target their endogenous porcine mRNAs and influence gene expression in a fashion similar to that of mammalian miRNAs. Our results indicate that maize-derived miRNAs can cross the gastrointestinal tract and present in pigs, and these exogenous miRNAs have the potential to regulate mammalian gene expression.
Collapse
Affiliation(s)
- Yi Luo
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pengjun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yuhao Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiping Mu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Chongqing Three Gorges University, Chongqing, 404000, China
| | - Qingzhi Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- The Fishery Institute of Sichuan Academy of Agricultural Sciences, Chengdu, 611731, China
| | - Yuhua Fu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Xiao
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guojun Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yao Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yiren Gu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Anan Jiang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2033
|
Kang W, Bang-Berthelsen CH, Holm A, Houben AJS, Müller AH, Thymann T, Pociot F, Estivill X, Friedländer MR. Survey of 800+ data sets from human tissue and body fluid reveals xenomiRs are likely artifacts. RNA (NEW YORK, N.Y.) 2017; 23:433-445. [PMID: 28062594 PMCID: PMC5340907 DOI: 10.1261/rna.059725.116] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/19/2016] [Indexed: 05/05/2023]
Abstract
miRNAs are small 22-nucleotide RNAs that can post-transcriptionally regulate gene expression. It has been proposed that dietary plant miRNAs can enter the human bloodstream and regulate host transcripts; however, these findings have been widely disputed. We here conduct the first comprehensive meta-study in the field, surveying the presence and abundances of cross-species miRNAs (xenomiRs) in 824 sequencing data sets from various human tissues and body fluids. We find that xenomiRs are commonly present in tissues (17%) and body fluids (69%); however, the abundances are low, comprising 0.001% of host human miRNA counts. Further, we do not detect a significant enrichment of xenomiRs in sequencing data originating from tissues and body fluids that are exposed to dietary intake (such as liver). Likewise, there is no significant depletion of xenomiRs in tissues and body fluids that are relatively separated from the main bloodstream (such as brain and cerebro-spinal fluids). Interestingly, the majority (81%) of body fluid xenomiRs stem from rodents, which are a rare human dietary contribution but common laboratory animals. Body fluid samples from the same studies tend to group together when clustered by xenomiR compositions, suggesting technical batch effects. Last, we performed carefully designed and controlled animal feeding studies, in which we detected no transfer of plant miRNAs into rat blood, or bovine milk sequences into piglet blood. In summary, our comprehensive computational and experimental results indicate that xenomiRs originate from technical artifacts rather than dietary intake.
Collapse
Affiliation(s)
- Wenjing Kang
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Claus Heiner Bang-Berthelsen
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, 1870 Copenhagen, Denmark
- Department of Diabetes Biology, Novo Nordisk, 2760 Måløv, Denmark
- National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Anja Holm
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, 2600 Glostrup, Denmark
| | - Anna J S Houben
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Anne Holt Müller
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, 2600 Glostrup, Denmark
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Science, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Flemming Pociot
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, 1870 Copenhagen, Denmark
- Department of Paediatrics, Herlev Hospital, University of Copenhagen, 2730 Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Xavier Estivill
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
2034
|
Du J, Liang Z, Xu J, Zhao Y, Li X, Zhang Y, Zhao D, Chen R, Liu Y, Joshi T, Chang J, Wang Z, Zhang Y, Zhu J, Liu Q, Xu D, Jiang C. Plant-derived phosphocholine facilitates cellular uptake of anti-pulmonary fibrotic HJT-sRNA-m7. SCIENCE CHINA-LIFE SCIENCES 2017; 62:309-320. [PMID: 28378154 DOI: 10.1007/s11427-017-9026-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
Abstract
Pulmonary fibrosis, a progressive chronic disease with a high mortality rate, has limited treatment options. Currently, lung transplantation remains the only effective treatment. Here we report that a small RNA, HJT-sRNA-m7, from a Chinese herbal medicine Hong Jing Tian (HJT, RHODIOHAE CRENULATAE RADIX ET RHIZOMA, Rhodiola crenulata) can effectively reduce the expressions of fibrotic hallmark genes and proteins both in alveolar in vitro and in mouse lung tissues in vivo. We also discovered over one hundred oil-soluble chemicals from HJT decoctions, most of which are found in lipid extracts from other Chinese herbals decoctions, including Pu Gong Ying (PGY, TARAXACI HERBA, Taraxacum mongolicum), Chuan Xin Lian (CXL, changed to "ANDROGRAPHIS HERBA, Andrographis paniculata"), and Jin Yin Hua (JYH, lonicera japonica or Honeysuckle). We identified the active component in these decoctions as two forms of phosphocholines, PC (18:0/18:2) and PC (16:0/18:2). These PCs potentially could form liposomes with small RNAs to enter human alveolar and gastric cells. Our experimental results suggest an unprecendent lipid complex route through which botanic small RNA can enter human bodies. Our results provide an innovative treatment strategy for oral delivery of siRNAs as therapeutic medication.
Collapse
Affiliation(s)
- Jianchao Du
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Zhu Liang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Jiantao Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Yan Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Xiaoyun Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Yanli Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Dandan Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Ruxuan Chen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
- Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yang Liu
- Department of Computer Science, Informatics Institute, and Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA
| | - Trupti Joshi
- Department of Computer Science, Informatics Institute, and Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA
- Department of Health Management and Informatics and Office of Medical Research, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Jiahui Chang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Zhiqing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Yanxu Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Jindong Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Qiang Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Dong Xu
- Department of Computer Science, Informatics Institute, and Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA
| | - Chengyu Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China.
| |
Collapse
|
2035
|
Liu Y, Liu R, Yang F, Cheng R, Chen X, Cui S, Gu Y, Sun W, You C, Liu Z, Sun F, Wang Y, Fu Z, Ye C, Zhang C, Li J, Chen X. miR-19a promotes colorectal cancer proliferation and migration by targeting TIA1. Mol Cancer 2017; 16:53. [PMID: 28257633 PMCID: PMC5336638 DOI: 10.1186/s12943-017-0625-8] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/26/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a major worldwide health problem due to its high prevalence and mortality rate. T-cell intracellular antigen 1 (TIA1) is an important tumor suppressor involved in many aspects of carcinogenesis and cancer development. How TIA1 expression is regulated during CRC development remains to be carefully elucidated. METHODS In CRC tissue sample pairs, TIA1 protein and mRNA levels were monitored by Western blot and qRT-PCR, respectively. Combining meta-analysis and miRNA target prediction software, we could predict microRNAs that targeted TIA1. Next, three CRC cell lines (SW480, Caco2 and HT29) were used to demonstrate the direct targeting of TIA1 by miR-19a. In addition, we investigated the biological effects of TIA1 inhibition by miR-19a both in vitro by CCK-8, EdU, Transwell, Ki67 immunofluorescence and Colony formation assays and in vivo by a xenograft mice model. RESULTS In colorectal cancer (CRC), we found that TIA1 protein, but not its mRNA, was downregulated. We predicted that TIA1 was a target of miR-19a and validated that miR-19a binded directly to the 3'-UTR of TIA1 mRNA. miR-19a could promote cell proliferation and migration in CRC cells and accelerated tumor growth in xenograft mice by targeting TIA1. CONCLUSIONS This study highlights an oncomiR role for miR-19a in regulating TIA1 in CRC and suggests that miR-19a may be a novel molecular therapeutic target for CRC.
Collapse
Affiliation(s)
- Yanqing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Fei Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Rongjie Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Xiaorui Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Shufang Cui
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Yuanyuan Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Wu Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Chaoying You
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Zhijian Liu
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China
| | - Feng Sun
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China
| | - Yanbo Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Zheng Fu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Chao Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Chenyu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China.
| | - Jing Li
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China.
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China.
| |
Collapse
|
2036
|
Gerasymenko IM, Kleschevnikov VV, Kedlian VR, Sakhno LO, Arbuzova IA, Sheludko YV, Dosenko VE, Kuchuk NV. Establishment of transgenic lettuce plants producing potentially antihypertensive ShRNA. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717010054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
2037
|
Downregulation of microRNA-145 promotes epithelial-mesenchymal transition via regulating Snail in osteosarcoma. Cancer Gene Ther 2017; 24:83-88. [PMID: 28186090 DOI: 10.1038/cgt.2017.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/21/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022]
Abstract
Metastasis is the principal cause of cancer death and occurs through multiple, complex processes. Epithelial to mesenchymal transition (EMT) is an important process during embryonic development and has also been hypothesized to exhibit a significant role in cancer cell invasion and metastasis. MicroRNAs (miRNAs) are a class of widespread noncoding RNAs. In recent years, many studies have shown that miRNAs could influence the signaling pathways and downstream events that define EMT on a molecular level. However, the exact role and mechanisms of miR-145 in EMT of osteosarcoma (OS) was unknown. In the present study, miR-145 was downregulated in OS tissues and cell lines and it was shown that miR-145 expression was closely correlated with advanced tumor progression in patients of OS. In addition, miR-145 upregulation by miR-145 agomir significantly inhibited MG63 cells invasion and migration ability. MiR-145 was reported to be able to inhibit EMT in cancers. Following the examination of changes in cell epithelial and mesenchymal markers, it was found that upregulation of miR-145 strongly reversed EMT in MG63 cells. Meanwhile, the expression of Snail, a strong E-cadherin transcription repressor was also attenuated by miR-145 agomir. Furthermore, the decreased EMT and invasion and metastasis caused by miR-145 agomir could be restored by Snail siRNA. In conclusion, the results demonstrated that miR-145 could mediate EMT by targeting Snail and miR-145 might be a novel EMT regulating transcription factor that involved in the progression of OS. The specific drugs targeting miR-145-mediated EMT process might be new promising cancer therapies.
Collapse
|
2038
|
Jafri MA, Al-Qahtani MH, Shay JW. Role of miRNAs in human cancer metastasis: Implications for therapeutic intervention. Semin Cancer Biol 2017; 44:117-131. [PMID: 28188828 DOI: 10.1016/j.semcancer.2017.02.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/23/2022]
Abstract
Metastasis is the spread and growth of localized cancer to new locations in the body and is considered the main cause of cancer-related deaths. Metastatic cancer cells display distinct genomic and epigenomic profiles and almost universally an aggressive pathophysiology. A better understanding of the molecular mechanisms and regulation of metastasis, including how metastatic tumors grow and survive in the nascent niche and the interactions of the emergent metastatic cancer cells within the local microenvironment may provide tools to design strategies to restrict metastatic dissemination. Aberrant microRNAs (miRNA) expression has been reported in metastatic cancer cells. MicroRNAs are known to regulate divergent and/or convergent metastatic gene pathways including activation of reprogramming switches during metastasis. An in-depth understanding of role of miRNAs in the metastatic cascade may lead to the identification of novel targets for anti-metastatic therapeutics as well as potential candidate miRNAs for cancer treatment. This review primarily focuses on the role of miRNAs in the mechanisms of cancer metastasis as well as implications for metastatic cancer treatment.
Collapse
Affiliation(s)
- Mohammad Alam Jafri
- Center of Excellence for Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Jerry William Shay
- Center of Excellence for Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Cell Biology, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2039
|
Zheng LL, Deng KW, Deng AC, Wu J, Yang JH, Lun ZR, Qu LH. Exo-miRExplorer: A Comprehensive Resource for Exploring and Comparatively Analyzing Exogenous MicroRNAs. Front Microbiol 2017; 8:126. [PMID: 28203233 PMCID: PMC5285362 DOI: 10.3389/fmicb.2017.00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs that play important roles in animals, plants, and viruses. Deep-sequencing technology has been widely adopted in miRNA investigations. However, it is still a big mysterious why nearly all sequencing data contain miRNA sequences from exogenous species, called exo-miRNAs. In this study, we developed a novel platform, exo-miRExplorer, for mining and identifying exo-miRNAs from high-throughput small RNA sequencing experiments which originated from tissues and cell lines of multiple organisms. Thousands of exo-miRNAs are characterized with their expression abundance, the RNA families, original organisms and the sequencing platforms presented in exo-miRExplorer. Subsequently, we used exo-miRExplorer to perform further analysis. Comparative analysis of the exo-miRNAs between different sequencing datasets revealed significant correlation of exo-miRNAs between experiments in the same study. The plant-derived exo-miRNAs analysis provided robust evidence for non-diet source of exo-miRNAs. Virus-derived exo-miRNA analysis showed that pathogen RNAs could transfer to host cells and exist in deep-sequencing result at abundance level. In conclusion, exo-miRExplorer provides users with an integrative resource to facilitate detection and analysis of exo-miRNAs. exo-miRExplorer is available at the following URL: http://rna.sysu.edu.cn/exomiRDB/.
Collapse
Affiliation(s)
- Ling-Ling Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, RNA Information Center, School of Life Sciences, Sun Yat-sen University Guangzhou, China
| | - Kai-Wen Deng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, RNA Information Center, School of Life Sciences, Sun Yat-sen University Guangzhou, China
| | - An-Cheng Deng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, RNA Information Center, School of Life Sciences, Sun Yat-sen University Guangzhou, China
| | - Jie Wu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, RNA Information Center, School of Life Sciences, Sun Yat-sen University Guangzhou, China
| | - Jian-Hua Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, RNA Information Center, School of Life Sciences, Sun Yat-sen University Guangzhou, China
| | - Zhao-Rong Lun
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, RNA Information Center, School of Life Sciences, Sun Yat-sen University Guangzhou, China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, RNA Information Center, School of Life Sciences, Sun Yat-sen University Guangzhou, China
| |
Collapse
|
2040
|
Sharma A. Transgenerational epigenetics: Integrating soma to germline communication with gametic inheritance. Mech Ageing Dev 2017; 163:15-22. [PMID: 28093237 DOI: 10.1016/j.mad.2016.12.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/28/2022]
Abstract
Evidence supporting germline mediated epigenetic inheritance of environmentally induced traits has increasingly emerged over the past several years. Although the mechanisms underlying this inheritance remain unclear, recent findings suggest that parental gamete-borne epigenetic factors, particularly RNAs, affect post-fertilization and developmental gene regulation, ultimately leading to phenotypic appearance in the offspring. Complex processes involving gene expression and epigenetic regulation are considered to perpetuate across generations. In addition to transfer of germline factors, epigenetic inheritance via gametes also requires a mechanism whereby the information pertaining to the induced traits is communicated from soma to germline. Despite violating a century-old view in biology, this communication seems to play a role in transmission of environmental effects across generations. Circulating RNAs, especially those associated with extracellular vesicles like exosomes, are emerging as promising candidates that can transmit gene regulatory information in this direction. Cumulatively, these new observations provide a basis to integrate epigenetic inheritance. With significant implications in health, disease and ageing, the latter appears poised to revolutionize biology.
Collapse
Affiliation(s)
- Abhay Sharma
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Sukhdev Vihar, Mathura Road, New Delhi, 110025, India.
| |
Collapse
|
2041
|
Yang F, He K, Huang L, Zhang L, Liu A, Zhang J. Casticin inhibits the activity of transcription factor Sp1 and the methylation of RECK in MGC803 gastric cancer cells. Exp Ther Med 2016; 13:745-750. [PMID: 28352361 DOI: 10.3892/etm.2016.4003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
The present study investigated the effect of casticin on reversion-inducing-cysteine-rich protein with kazal motifs (RECK) gene expression and intracellular methylation levels in MGC803 gastric cancer cells. Cells were treated with 1, 10 and 30 µmol/l casticin. Western blotting and reverse transcription-quantitative polymerase chain reaction assays were performed to determine the protein expression and mRNA levels of RECK and DNA methyltransferase 1 (DNMT1), respectively. High-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry was used to detect RECK methylation. In addition, MGC803 cell proliferation was measured by an MTT assay and the DNA-binding activity of transcription factor Sp1 was determined using an enzyme-linked immunosorbent assay. The results demonstrated that treatment with 1, 10 and 30 µmol/l casticin significantly increased RECK protein expression and mRNA levels. In addition, casticin (30 µmol/l) decreased RECK promoter methylation levels by 31%, global DNA methylation levels by 39% and nuclear methylation activity by 71.6%. Furthermore, casticin downregulated the mRNA levels and protein expression of DNMT1. The MTT assay demonstrated that MGC803 cell proliferation was inhibited by casticin treatment and DNA binding assays indicated that casticin reduced the DNA-binding activity of Sp1. The present study therefore indicated that casticin inhibits the proliferation of gastric cancer MGC803 cells by upregulating RECK gene expression and reducing intracellular methylation levels.
Collapse
Affiliation(s)
- Fan Yang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China; Department of Basic Medicine, Xiangnan University, Chenzhou, Hunan 423000, P.R. China
| | - Kefei He
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Li Huang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Lingyan Zhang
- Medical Department of Chongqing Bishan People's Hospital, Chongqing 402760, P.R. China
| | - Aixue Liu
- Department of Oncology, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518000, P.R. China
| | - Jiren Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
2042
|
Lukasik A, Zielenkiewicz P. Plant MicroRNAs-Novel Players in Natural Medicine? Int J Mol Sci 2016; 18:ijms18010009. [PMID: 28025496 PMCID: PMC5297644 DOI: 10.3390/ijms18010009] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) represent a class of small non-coding RNAs that act as efficient gene expression regulators and thus play many important roles in living organisms. Due to their involvement in several known human pathological and pathogenic states, miRNA molecules have become an important issue in medicine and gained the attention of scientists from the pharmaceutical industry. In recent few years, a growing number of studies have provided evidence that miRNAs may be transferred from one species to another and regulate gene expression in the recipients’ cells. The most intriguing results revealed that stable miRNAs derived from food plants may enter the mammals’ circulatory system and, after reaching the target, inhibit the production of specific mammalian protein. Part of the scientific community has perceived this as an attractive hypothesis that may provide a foundation for novel therapeutic approaches. In turn, others are convinced about the “false positive” effect of performed experiments from which the mentioned results were achieved. In this article, we review the recent literature that provides evidence (from both fronts) of dietary, plant miRNA uptake and functionality in various consumers. Additionally, we discuss possible miRNA transport mechanisms from plant food sources to human cells.
Collapse
Affiliation(s)
- Anna Lukasik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
- Department of Plant Molecular Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
2043
|
Cui XB, Li S, Li TT, Peng H, Jin TT, Zhang SM, Liu CX, Yang L, Shen YY, Li SG, Li N, Li Y, Hu JM, Jiang JF, Suo J, Qi Y, Liang WH, Wang LH, Dang HW, Li L, Cao WW, Wei Y, Laibo-Yin, Wu CY, Yuan XL, Zhou H, Zheng Y, Chen YZ, Li F. Targeting oncogenic PLCE1 by miR-145 impairs tumor proliferation and metastasis of esophageal squamous cell carcinoma. Oncotarget 2016; 7:1777-95. [PMID: 26657507 PMCID: PMC4811497 DOI: 10.18632/oncotarget.6499] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 10/29/2015] [Indexed: 11/25/2022] Open
Abstract
Phospholipase C epsilon 1 (PLCE1) is a susceptibility gene in esophageal squamous cell carcinoma (ESCC). Nevertheless, the role of PLCE1 in ESCC tumorigenesis has not been elucidated. In this study, we determined the function of PLCE1 and its regulatory microRNA (miRNA) in ESCC. PLCE1 protein was excessively expressed in ESCC and precancerous lesions compared with that in normal tissues. High PLCE1 expression levels in ESCC were significantly linked with poor overall survival. Knockdown of PLCE1 promoted the apoptosis, cytokine-induced apoptosis, and sensitivity of cancer cells to chemotherapeutic drugs but abrogated the proliferation and EMT phenotype of ESCC in vitro. Notably, miR-145 was newly identified as a potent repressor of PLCE1 expression by directly targeting the 3′UTR of PLCE1. MiR-145 also inhibited cell proliferation, migration, and metastasis, as well as controlled the cytoskeleton dynamics of esophageal cancer. Moreover, miR-145 was expressed at low levels in a large cohort of patients with ESCC and was inversely correlated with PLCE1 protein expression in cancer cells and tissues. These findings demonstrate that PLCE1 functions as tumor promoter in ESCC and can be suppressed by miR-145 through inhibition of PLCE1 translation. Hence, delivery of PLCE1-targeting miR-145 is a potential therapeutic approach for esophageal cancer.
Collapse
Affiliation(s)
- Xiao-Bin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China.,Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Su Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China.,Department of Pathology, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Ting-Ting Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Hao Peng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Ting-Ting Jin
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Shu-Mao Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Chun-Xia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Lan Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Yao-Yuan Shen
- Department of Pathology, People Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shu-Gang Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Na Li
- Department of Oncology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Yong Li
- Department of CT and MRI, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Jian-Ming Hu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Jin-Fang Jiang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Jing Suo
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Yan Qi
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Wei-Hua Liang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Liang-Hai Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Hong-Wei Dang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Li Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Wei-Wei Cao
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Yutao Wei
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Laibo-Yin
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Chuan-Yue Wu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiang-Lin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, University of Sydney, New South Wales, Australia
| | - Yu Zheng
- Bone Research Program, ANZAC Research Institute, University of Sydney, New South Wales, Australia
| | - Yun-Zhao Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China.,Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2044
|
Shi Y, Yang F, Sun Z, Zhang W, Gu J, Guan X. Differential microRNA expression is associated with androgen receptor expression in breast cancer. Mol Med Rep 2016; 15:29-36. [PMID: 27959398 PMCID: PMC5355696 DOI: 10.3892/mmr.2016.6019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 08/30/2016] [Indexed: 12/13/2022] Open
Abstract
The androgen receptor (AR) is frequently expressed in breast cancer; however, its prognostic value remains unclear. AR expression in breast cancer has been associated with improved outcomes in estrogen receptor (ER)‑positive breast cancer compared with ER‑negative disease. Eliminating AR function in breast cancer is critically important for breast cancer progression. However, the mechanism underlying AR regulation remains poorly understood. The study of microRNAs (miRNAs) has provided important insights into the pathogenesis of hormone‑dependent cancer. To determine whether miRNAs function in the AR regulation of breast cancer, the present study performed miRNA expression profiling in AR‑positive and ‑negative breast cancer cell lines. A total of 153 miRNAs were differentially expressed in AR‑positive compared with AR‑negative breast cancer cells; 52 were upregulated and 101 were downregulated. A number of these have been extensively associated with breast cancer cell functions, including proliferation, invasion and drug‑resistance. Furthermore, through pathway enrichment analysis, signaling pathways associated with the prediction targets of the miRNAs were characterized, including the vascular endothelial growth factor and mammalian target of rapamycin signaling pathways. In conclusion, the results of the present study indicated that the expression of miRNAs may be involved in the mechanism underlying AR regulation of breast cancer, and may improve understanding of the role of AR in breast cancer.
Collapse
Affiliation(s)
- Yaqin Shi
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Fang Yang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zijia Sun
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Wenwen Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jun Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
2045
|
Liu HT, Gao P. The roles of microRNAs related with progression and metastasis in human cancers. Tumour Biol 2016; 37:15383–15397. [PMID: 27714675 DOI: 10.1007/s13277-016-5436-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/23/2016] [Indexed: 02/06/2023] Open
Abstract
Metastasis is an important factor in predicting the prognosis of the patients with cancers and contributes to high cancer-related mortality. Recent studies indicated that microRNAs (miRNAs) played a functional role in the initiation and progression of human malignancies. MicroRNAs are small non-coding RNAs of about 22 nucleotides in length that can induce messenger RNA (mRNA) degradation or repress mRNA translation by binding to the 3' untranslated region (3'-UTR) of their target genes. Overwhelming reports indicated that miRNAs could regulate cancer invasion and metastasis via epithelial-to-mesenchymal transition (EMT)-related and/or non-EMT-related mechanisms. In this review, we concentrate on the underlying mechanisms of miRNAs in regulating cancer progression and metastasis.
Collapse
Affiliation(s)
- Hai-Ting Liu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, People's Republic of China
- Department of Pathology, School of Basic Medicine, Shandong University, Jinan, People's Republic of China
| | - Peng Gao
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, People's Republic of China.
- Department of Pathology, School of Basic Medicine, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
2046
|
Luo LJ, Yang F, Ding JJ, Yan DL, Wang DD, Yang SJ, Ding L, Li J, Chen D, Ma R, Wu JZ, Tang JH. MiR-31 inhibits migration and invasion by targeting SATB2 in triple negative breast cancer. Gene 2016; 594:47-58. [DOI: 10.1016/j.gene.2016.08.057] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/28/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022]
|
2047
|
The coordinated roles of miR-26a and miR-30c in regulating TGFβ1-induced epithelial-to-mesenchymal transition in diabetic nephropathy. Sci Rep 2016; 6:37492. [PMID: 27874055 PMCID: PMC5118685 DOI: 10.1038/srep37492] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/31/2016] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) play vital roles in the development of diabetic nephropathy. Here, we compared the protective efficacies of miR-26a and miR-30c in renal tubular epithelial cells (NRK-52E) and determined whether they demonstrated additive effects in the attenuation of renal fibrosis. TGFβ1 suppressed miR-26a and miR-30c expression but up-regulated pro-fibrotic markers in NRK-52E cells, and these changes were also found in the kidney cortex of 40-week-old diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats. Bioinformatic analyses and luciferase assays further demonstrated that both miR-26a and miR-30c targeted connective tissue growth factor (CTGF); additionally, Snail family zinc finger 1 (Snail1), a potent epithelial-to-mesenchymal transition (EMT) inducer, was targeted by miR-30c. Overexpression of miR-26a and miR-30c coordinately decreased CTGF protein levels and subsequently ameliorated TGFβ1-induced EMT in NRK-52E cells. Co-silencing of miR-26a and miR-30c exhibited the opposite effect. Moreover, miR-26a and miR-30c co-silenced CTGF to decrease ERK1/2 and p38 MAPK activation. Furthermore, miR-26a was up-regulated in urinary extracellular vesicles of diabetic nephropathy patients. Our study provides evidence for the cooperative roles of miR-26a and miR-30c in the pathogenesis of diabetic nephropathy, and the co-targeting of miR-26a and miR-30c could provide a new direction for diabetic nephropathy treatment.
Collapse
|
2048
|
Arora H, Qureshi R, Rizvi MA, Shrivastava S, Parihar MS. Study of apoptosis-related interactions in colorectal cancer. Tumour Biol 2016; 37:14415-14425. [PMID: 27629291 DOI: 10.1007/s13277-016-5363-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023] Open
Abstract
Abnormalities in apoptotic functions contribute to the pathogenesis of colorectal cancer. In this study, molecular interactions behind the apoptotic regulation have been explored. For this purpose, enrichment analysis was performed considering microRNAs (miRNAs) that putatively target TP53 and altered during colon cancer. This revealed gene associated with both TP53 and miRNAs. Further analysis showed that a significant molecular interaction between the shortlisted candidates (TP53, miR-143, KRAS, BCL2, and PLK1) exists. Mutation study was conducted to confirm the clinical relevance of candidates. It showed that the mutation extent does not significantly alter survival in patients thus making these candidates suitable as drug targets. Overall, we showed the importance of interactions between TP53, miR-143, KRAS, BCL2, and PLK1 with respect to colorectal cancer using bioinformatics approach.
Collapse
Affiliation(s)
- Himanshu Arora
- School of Studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, India.
| | - Rehana Qureshi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - M A Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Sharad Shrivastava
- School of Studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, India
| | - Mordhwaj S Parihar
- School of Studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, India
| |
Collapse
|
2049
|
Yi M, Li M, Long X, Ye J, Cui J, Wei W, Wan H, Yin M, Gao S, Su Z, Zhang F. miR-520e regulates cell proliferation, apoptosis and migration in breast cancer. Oncol Lett 2016; 12:3543-3548. [PMID: 27900034 PMCID: PMC5103980 DOI: 10.3892/ol.2016.5085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 09/24/2015] [Indexed: 02/05/2023] Open
Abstract
Previous studies have indicated that the deregulation of microRNAs contributes to tumorigenesis. Misregulation of microRNA-520e (miR-520e) has been observed in various types of cancer. However, the expression profile and biological function of miR-520e in breast cancer remains largely unknown. The present study demonstrated that miR-520e expression was significantly increased in breast cancer tissues compared with adjacent non-cancerous breast tissues in 21 patients, as revealed by reverse transcription-quantitative polymerase chain reaction. Furthermore, the proliferation capacity of breast cancer cells was markedly enhanced by the introduction of miR-520e in vitro using a cell counting kit-8 assay. The present study also revealed that the overexpression of miR-520e could suppress breast cancer cell apoptosis, revealed using Annexin V/propidium iodide double staining and flow cytometry analysis. In addition, the ectopic expression of miR-520e promoted the migration of breast cancer cells in vitro, as demonstrated by a Transwell assay. Overall, the findings of the present study highlight an important role for miR-520e in breast cancer development and in the molecular etiology of breast cancer, which indicates the potential application of miR-520e in cancer therapy.
Collapse
Affiliation(s)
- Ming Yi
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Graduate Studies, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Minghua Li
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xia Long
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jing Ye
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Junwei Cui
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Wei Wei
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Huijuan Wan
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Meijun Yin
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Shuying Gao
- Department of Biochemistry and Molecular Biology, Zhuhai Campus Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| | - Zhengming Su
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Graduate Studies, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Fangting Zhang
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Correspondence to: Miss Fangting Zhang, Central Laboratory, Peking University Shenzhen Hospital, 1120 Lian Hua Road, Shenzhen, Guangdong 518036, P.R China, E-mail:
| |
Collapse
|
2050
|
Kouba EJ, Eble JN, Simper N, Grignon DJ, Wang M, Zhang S, Wang L, Martignoni G, Williamson SR, Brunelli M, Luchini C, Calió A, Cheng L. High fidelity of driver chromosomal alterations among primary and metastatic renal cell carcinomas: implications for tumor clonal evolution and treatment. Mod Pathol 2016; 29:1347-1357. [PMID: 27469331 DOI: 10.1038/modpathol.2016.133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/14/2016] [Accepted: 06/04/2016] [Indexed: 12/24/2022]
Abstract
Recent studies have demonstrated considerable genomic heterogeneity in both primary and metastatic renal cell carcinoma (RCC). This mutational diversity has serious implications for the development and implementation of targeted molecular therapies. We evaluated 39 cases of primary RCC tumors with their matched metastatic tumors to determine if the hallmark chromosomal anomalies of these tumors are preserved over the course of disease progression. Thirty-nine matched pairs of primary and metastatic RCCs (20 clear cell RCC, 16 papillary RCC, and 3 chromophobe RCC) were analyzed. All clear cell RCC and papillary RCC tumors were evaluated for chromosome 3p deletion, trisomy 7 and 17 using fluorescence in situ hybridization. Chromophobe RCC tumors were evaluated for genetic alterations in chromosomes 1, 2, 6, 10, and 17. Of the 20 clear cell RCC tumors, 18 primary tumors (90%) showed a deletion of chromosome 3p and were disomic for chromosomes 7 and 17. All molecular aberrations were conserved within the matched metastatic tumor. Of the 16 papillary RCC tumors, 10 primary tumors (62%) showed trisomy for both chromosomes 7 and 17 without 3p deletion. These molecular aberrations and others were conserved in the paired metastatic tumors. Of the three chromophobe RCC tumors, multiple genetic anomalies were identified in chromosomes 1, 2, 6, 10, and 17. These chromosomal aberrations were conserved in the matched metastatic tumors. Our results demonstrated genomic fidelity among the primary and metastatic lesions in RCCs. These findings may have important clinical and diagnostic implications.
Collapse
Affiliation(s)
- Eril J Kouba
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John N Eble
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Novae Simper
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David J Grignon
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mingsheng Wang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shaobo Zhang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lisha Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Guido Martignoni
- Dipartimento di Patologia, Universitá di Verona, Verona, Italy
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Sean R Williamson
- Department of Pathology and Laboratory Medicine, and Josephine Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Matteo Brunelli
- Dipartimento di Patologia, Universitá di Verona, Verona, Italy
| | - Claudio Luchini
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Dipartimento di Patologia, Universitá di Verona, Verona, Italy
- Surgical Pathology Unit, Santa Chiara Hospital, Trento, Italy
| | - Anna Calió
- Dipartimento di Patologia, Universitá di Verona, Verona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|