2251
|
Patil S, Fribourg M, Ge Y, Batish M, Tyagi S, Hayot F, Sealfon SC. Single-cell analysis shows that paracrine signaling by first responder cells shapes the interferon-β response to viral infection. Sci Signal 2015; 8:ra16. [PMID: 25670204 DOI: 10.1126/scisignal.2005728] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Immune responses to viral infection are stochastic processes, which initiate in a limited number of cells that then propagate the response. A key component of the response to viral infection entails the synthesis and secretion of type I interferons (IFNs), including the early induction of the gene encoding IFN-β (Ifnb1). With single-cell analysis and mathematical modeling, we investigated the mechanisms underlying how increases in the amount of Ifnb1 mRNA per cell and in the numbers of cells expressing Ifnb1 calibrate the response to viral infection. We used single-cell, single-molecule assays to quantify the early induction of Ifnb1 expression (the Ifnb1 response) in human monocyte-derived dendritic cells infected with Newcastle disease virus, thus retaining the physiological stoichiometry of transcriptional regulators to both alleles of the Ifnb1 gene. We applied computational methods to extract the stochastic features that underlie the cell-to-cell variations in gene expression over time. Integration of simulations and experiments identified the role of paracrine signaling in increasing the number of cells that express Ifnb1 over time and in calibrating the immune response to viral infection.
Collapse
Affiliation(s)
- Sonali Patil
- Department of Neurology and Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miguel Fribourg
- Department of Neurology and Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yongchao Ge
- Department of Neurology and Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mona Batish
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Fernand Hayot
- Department of Neurology and Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stuart C Sealfon
- Department of Neurology and Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
2252
|
Rollins DA, Coppo M, Rogatsky I. Minireview: nuclear receptor coregulators of the p160 family: insights into inflammation and metabolism. Mol Endocrinol 2015; 29:502-17. [PMID: 25647480 DOI: 10.1210/me.2015-1005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nuclear receptor coactivators (NCOAs) are multifunctional transcriptional coregulators for a growing number of signal-activated transcription factors. The members of the p160 family (NCOA1/2/3) are increasingly recognized as essential and nonredundant players in a number of physiological processes. In particular, accumulating evidence points to the pivotal roles that these coregulators play in inflammatory and metabolic pathways, both under homeostasis and in disease. Given that chronic inflammation of metabolic tissues ("metainflammation") is a driving force for the widespread epidemic of obesity, insulin resistance, cardiovascular disease, and associated comorbidities, deciphering the role of NCOAs in "normal" vs "pathological" inflammation and in metabolic processes is indeed a subject of extreme biomedical importance. Here, we review the evolving and, at times, contradictory, literature on the pleiotropic functions of NCOA1/2/3 in inflammation and metabolism as related to nuclear receptor actions and beyond. We then briefly discuss the potential utility of NCOAs as predictive markers for disease and/or possible therapeutic targets once a better understanding of their molecular and physiological actions is achieved.
Collapse
Affiliation(s)
- David A Rollins
- Hospital for Special Surgery (D.A.R., M.C., I.R.), The David Rosensweig Genomics Center, New York, New York 10021; and Graduate Program in Immunology and Microbial Pathogenesis (D.A.R., I.R.), Weill Cornell Graduate School of Medical Sciences, New York, New York 10021
| | | | | |
Collapse
|
2253
|
Huang Y, Huang X, Cai J, OuYang Z, Wei S, Wei J, Qin Q. Identification of orange-spotted grouper (Epinephelus coioides) interferon regulatory factor 3 involved in antiviral immune response against fish RNA virus. FISH & SHELLFISH IMMUNOLOGY 2015; 42:345-52. [PMID: 25463297 DOI: 10.1016/j.fsi.2014.11.025] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 11/13/2014] [Accepted: 11/17/2014] [Indexed: 05/22/2023]
Abstract
Interferon regulatory factor 3 (IRF3) is an important transcription factor which regulates the expression of interferon (IFN) and IFN-stimulated genes (ISGs) following virus recognition. In this study, a novel IRF3 gene was cloned from grouper Epinephelus coioides (EcIRF3) and its effects against Singapore grouper iridovirus (SGIV) and red spotted grouper nervous necrosis virus (RGNNV) was investigated. The full-length of EcIRF3 cDNA was composed of 2513 bp and encoded a polypeptide of 458 amino acids which shared 82% identity with European seabass (Dicentrarchus labrax). EcIRF3 contained three conserved domains including a DNA-binding domain (DBD), an IRF associated domain (IAD) and a serine-rich domain. Expression profile analysis revealed that EcIRF3 was abundant in head kidney, kidney, spleen and gill. Upon different stimuli in vitro, the transcript of EcIRF3 was significantly up-regulated after RGNNV infection or treatment with polyinosin-polycytidylic acid (poly I:C). During SGIV infection, the increase of the EcIRF3 transcription was only detected at the late stage, suggesting that EcIRF3 was differently regulated by different stimuli. Immune fluorescence assay indicated that the fluorescence signal of EcIRF3 was increased significantly after infection with RGNNV or treatment with poly I:C, but moderately at the late stage of SGIV infection. Reporter gene assay showed that EcIRF3 activated zebrafish type I IFN and type III IFN promoter in vitro. The viral gene transcription and virus production of RGNNV were significantly decreased in EcIRF3 overexpressing cells. However, the ectopic expression of EcIRF3 did not affect the gene transcription and virus production of SGIV. Moreover, the mRNA expression levels of type I IFN and IFN-inducible genes (MxI, ISG15 and ISG56) were increased in RGNNV infected EcIRF3 overexpressing cells compared to empty vector transfected cells. Together, our results demonstrated that IFN immune response mediated by grouper IRF3 was exerted crucial roles for fish RNA virus, but not for DNA virus replication.
Collapse
Affiliation(s)
- Youhua Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Xiaohong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jia Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Zhengliang OuYang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Shina Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jingguang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| |
Collapse
|
2254
|
Interferon regulatory factors: critical mediators of human lupus. Transl Res 2015; 165:283-95. [PMID: 25445206 PMCID: PMC4306637 DOI: 10.1016/j.trsl.2014.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 12/22/2022]
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is multifactorial, and the interferon regulatory factors (IRFs) play an important role. Autoantibodies formed in SLE target nuclear antigens, and immune complexes formed by these antibodies contain nucleic acid. These immune complexes can activate antiviral pattern recognition receptors (PRRs), resulting in the downstream activation of IRFs, which can induce type I interferon (IFN-I) and other inflammatory mediators. Genetic variations in IRFs have been associated with susceptibility to SLE, and current evidence supports the idea that these polymorphisms are gain of function in humans. Recent studies suggest that these genetic variations contribute to the break in humoral tolerance that allows for nucleic acid binding autoantibodies, and that the same polymorphisms also augment IFN-I production in the presence of these autoantibody immune complexes, forming a feed-forward loop. In this review, we will outline major features of the PRR/IRF systems and describe the role of the IRFs in human SLE pathogenesis.
Collapse
|
2255
|
Mancino A, Termanini A, Barozzi I, Ghisletti S, Ostuni R, Prosperini E, Ozato K, Natoli G. A dual cis-regulatory code links IRF8 to constitutive and inducible gene expression in macrophages. Genes Dev 2015; 29:394-408. [PMID: 25637355 PMCID: PMC4335295 DOI: 10.1101/gad.257592.114] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The transcription factor IRF8 controls both developmental and inflammatory stimulus-inducible genes in macrophages. Mancino et al. found that IRF8 is recruited to distinct sets of DNA consensus sequences before and after lipopolysaccharide (LPS) stimulation. While constitutively expressed IRF8-dependent genes contained only sites mediating basal IRF8/PU.1 recruitment, inducible IRF8-dependent genes contained variable combinations of constitutive and inducible sites. The transcription factor (TF) interferon regulatory factor 8 (IRF8) controls both developmental and inflammatory stimulus-inducible genes in macrophages, but the mechanisms underlying these two different functions are largely unknown. One possibility is that these different roles are linked to the ability of IRF8 to bind alternative DNA sequences. We found that IRF8 is recruited to distinct sets of DNA consensus sequences before and after lipopolysaccharide (LPS) stimulation. In resting cells, IRF8 was mainly bound to composite sites together with the master regulator of myeloid development PU.1. Basal IRF8–PU.1 binding maintained the expression of a broad panel of genes essential for macrophage functions (such as microbial recognition and response to purines) and contributed to basal expression of many LPS-inducible genes. After LPS stimulation, increased expression of IRF8, other IRFs, and AP-1 family TFs enabled IRF8 binding to thousands of additional regions containing low-affinity multimerized IRF sites and composite IRF–AP-1 sites, which were not premarked by PU.1 and did not contribute to the basal IRF8 cistrome. While constitutively expressed IRF8-dependent genes contained only sites mediating basal IRF8/PU.1 recruitment, inducible IRF8-dependent genes contained variable combinations of constitutive and inducible sites. Overall, these data show at the genome scale how the same TF can be linked to constitutive and inducible gene regulation via distinct combinations of alternative DNA-binding sites.
Collapse
Affiliation(s)
- Alessandra Mancino
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Alberto Termanini
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Iros Barozzi
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Serena Ghisletti
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Renato Ostuni
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Elena Prosperini
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Keiko Ozato
- Laboratory of Molecular Growth Regulation, Genomics of Differentiation Program, National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy;
| |
Collapse
|
2256
|
Kambara H, Gunawardane L, Zebrowski E, Kostadinova L, Jobava R, Krokowski D, Hatzoglou M, Anthony DD, Valadkhan S. Regulation of Interferon-Stimulated Gene BST2 by a lncRNA Transcribed from a Shared Bidirectional Promoter. Front Immunol 2015; 5:676. [PMID: 25688240 PMCID: PMC4311693 DOI: 10.3389/fimmu.2014.00676] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/15/2014] [Indexed: 01/30/2023] Open
Abstract
Recent genome-wide studies have revealed the presence of thousands of long non-protein-coding RNAs (lncRNAs), some of which may play critical roles in the cell. We have previously shown that a large number of lncRNAs show differential expression in response to interferon (IFN)α stimulation in primary human cells. Here, we show that a subset of IFN-induced lncRNAs are positioned in proximity of protein-coding IFN-stimulated genes (ISGs). The majority of gene pairs originated from bidirectional promoters and showed positively correlated expression. We focused our analysis on a pair consisting of the known protein-coding ISG, BST2, and an un-studied putative lncRNA originating from the promoter region of BST2 in a divergent orientation. We showed that this transcript was a multi-exonic, polyadenylated long RNA that lacked protein-coding capacity. BST2 and the lncRNA were both induced in response to IFNα in diverse cell types. The induction of both genes was mediated through the JAK-STAT pathway, suggesting that IFN-stimulated response elements within the shared promoter activated the transcription of both genes. RNAi-mediated knock-down of the lncRNA resulted in down-regulation of BST2, and we could show that this down-regulation occurred at the level of transcription. Forced overexpression of this lncRNA, which we named BST2 IFN-Stimulated Positive Regulator (BISPR), resulted in up-regulation of BST2, indicating that the regulation of expression of BST2 by BISPR is mediated through interactions involving BISPR RNA itself, rather than the impact of its transcription from an adjacent locus. Importantly, upon IFN stimulation, transcriptional activation of BISPR preceded the induction of BST2, suggesting that expression of BISPR facilitated the initiation of transcription in its paired protein-coding gene. The lncRNA-mediated transcriptional regulation described in this study may help govern the expression of additional protein-coding RNAs involved in IFN response and other cellular processes.
Collapse
Affiliation(s)
- Hiroto Kambara
- Department of Biochemistry, Case Western Reserve University School of Medicine , Cleveland, OH , USA
| | - Lalith Gunawardane
- Department of Biochemistry, Case Western Reserve University School of Medicine , Cleveland, OH , USA
| | - Elizabeth Zebrowski
- Divisions of Infectious and Rheumatic Diseases, Department of Medicine, Case Western Reserve University School of Medicine , Cleveland, OH , USA
| | - Lenche Kostadinova
- Divisions of Infectious and Rheumatic Diseases, Department of Medicine, Case Western Reserve University School of Medicine , Cleveland, OH , USA
| | - Raul Jobava
- Department of Nutrition, Case Western Reserve University School of Medicine , Cleveland, OH , USA
| | - Dawid Krokowski
- Department of Nutrition, Case Western Reserve University School of Medicine , Cleveland, OH , USA
| | - Maria Hatzoglou
- Department of Nutrition, Case Western Reserve University School of Medicine , Cleveland, OH , USA
| | - Donald D Anthony
- Divisions of Infectious and Rheumatic Diseases, Department of Medicine, Case Western Reserve University School of Medicine , Cleveland, OH , USA
| | - Saba Valadkhan
- Department of Biochemistry, Case Western Reserve University School of Medicine , Cleveland, OH , USA
| |
Collapse
|
2257
|
Cho H, Kelsall BL. The role of type I interferons in intestinal infection, homeostasis, and inflammation. Immunol Rev 2015; 260:145-67. [PMID: 24942688 DOI: 10.1111/imr.12195] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type I interferons are a widely expressed family of effector cytokines that promote innate antiviral and antibacterial immunity. Paradoxically, they can also suppress immune responses by driving production of anti-inflammatory cytokines, and dysregulation of these cytokines can contribute to host-mediated immunopathology and disease progression. Recent studies describe their anti-inflammatory role in intestinal inflammation and the locus containing IFNAR, a heterodimeric receptor for the type I interferons has been identified as a susceptibility region for human inflammatory bowel disease. This review focuses on the role of type I IFNs in the intestine in health and disease and their emerging role as immune modulators. Clear understanding of type I IFN-mediated immune responses may provide avenues for fine-tuning existing IFN treatment for infection and intestinal inflammation.
Collapse
Affiliation(s)
- Hyeseon Cho
- Mucosal Immunobiology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
2258
|
Mihm S. Activation of Type I and Type III Interferons in Chronic Hepatitis C. J Innate Immun 2015; 7:251-259. [PMID: 25766746 PMCID: PMC6738759 DOI: 10.1159/000369973] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 12/29/2022] Open
Abstract
Infection with hepatitis C virus (HCV) results in chronic and progressive liver disease. Persistency rates add up to 85%. Despite recognition of the virus by the human host in peripheral blood and in the liver, immune response appears to be ineffective in clearing infection. The ability to spontaneously eradicate the virus as well as the outcome of infection upon therapy with human recombinant interferon-α (IFN-α) was found to correlate most closely with genetic variations within the region encoding the IFN-λ genes, as revealed by genome-wide association studies on main ethnic populations in 2009. This review summarizes the induction of type I and type III IFN genes and their effectors, the IFN-stimulated genes. It focusses on the in vivo situation in chronic HCV infection in man both in the peripheral blood compartment and in the liver. It also addresses the impact of genetic polymorphisms in the region of type III IFN genes on their activation. Finally, it discusses how antiviral drugs (i.e. IFN-α, ribavirin and the direct-acting antivirals) may complementarily control the activation of endogenous IFNs and succeed in combatting infections.
Collapse
Affiliation(s)
- Sabine Mihm
- Department of Gastroenterology II, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
2259
|
Sun L, Miyoshi H, Origanti S, Nice TJ, Barger AC, Manieri NA, Fogel LA, French AR, Piwnica-Worms D, Piwnica-Worms H, Virgin HW, Lenschow DJ, Stappenbeck TS. Type I interferons link viral infection to enhanced epithelial turnover and repair. Cell Host Microbe 2015; 17:85-97. [PMID: 25482432 PMCID: PMC4297260 DOI: 10.1016/j.chom.2014.11.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/30/2014] [Accepted: 11/05/2014] [Indexed: 02/06/2023]
Abstract
The host immune system functions constantly to maintain chronic commensal and pathogenic organisms in check. The consequences of these immune responses on host physiology are as yet unexplored, and may have long-term implications in health and disease. We show that chronic viral infection increases epithelial turnover in multiple tissues, and the antiviral cytokines type I interferons (IFNs) mediate this response. Using a murine model with persistently elevated type I IFNs in the absence of exogenous viral infection, the Irgm1(-/-) mouse, we demonstrate that type I IFNs act through nonepithelial cells, including macrophages, to promote increased epithelial turnover and wound repair. Downstream of type I IFN signaling, the highly related IFN-stimulated genes Apolipoprotein L9a and b activate epithelial proliferation through ERK activation. Our findings demonstrate that the host immune response to chronic viral infection has systemic effects on epithelial turnover through a myeloid-epithelial circuit.
Collapse
Affiliation(s)
- Lulu Sun
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hiroyuki Miyoshi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sofia Origanti
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy J Nice
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexandra C Barger
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas A Manieri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Leslie A Fogel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anthony R French
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Helen Piwnica-Worms
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deborah J Lenschow
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
2260
|
Barriocanal M, Carnero E, Segura V, Fortes P. Long Non-Coding RNA BST2/BISPR is Induced by IFN and Regulates the Expression of the Antiviral Factor Tetherin. Front Immunol 2015; 5:655. [PMID: 25620967 PMCID: PMC4288319 DOI: 10.3389/fimmu.2014.00655] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/08/2014] [Indexed: 12/17/2022] Open
Abstract
Many long non-coding RNAs (lncRNAs) are expressed in cells but only a few have been well characterized. In these cases, lncRNAs have been shown to be key regulators of several cellular processes. Therefore, there is a great need to understand the function of more lncRNAs and their regulation in response to stimuli. Interferon (IFN) is a key molecule in the cellular antiviral response. IFN binding to its receptor activates transcription of several IFN-stimulated genes (ISGs) that function as potent antivirals. In addition, several ISGs are positive or negative regulators of the IFN pathway. This is essential to ensure a strong antiviral response and a later return of the cell to homeostasis. As the ISGs described to date are coding genes, we sought to determine whether IFN also regulates the expression of long non-coding ISGs. To this aim, we used RNA sequencing to analyze the transcriptome of control and HuH7 cells treated with IFNα2. The results show that IFN-treatment regulates the expression of several unknown non-coding transcripts. We have validated two lncRNAs upregulated after treatment with different doses of type I IFNα2 in different cells or with type III IFNλ. These lncRNAs were also induced by influenza and vesicular stomatitis virus mutants unable to block the IFN response, but not by several wild-type lytic viruses tested. These lncRNA genes were named lncISG15 and lncBST2 as they are located close to ISGs ISG15 and BST2, respectively. Interestingly, inhibition experiments showed that lncBST2 is a positive regulator of BST2. Therefore lncBST2 has been renamed BISPR, from BST2 IFN-stimulated positive regulator. Our results may have therapeutic implications as lncBST2/BISPR, but also lncISG15 and their coding neighbors, are increased in cells infected with hepatitis C virus and in the liver of infected patients. These results allow us to hypothesize that several lncRNAs could be activated by IFN to control the potency of the antiviral IFN response.
Collapse
Affiliation(s)
- Marina Barriocanal
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Elena Carnero
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Victor Segura
- Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Puri Fortes
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| |
Collapse
|
2261
|
Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells. Proc Natl Acad Sci U S A 2015; 112:827-32. [PMID: 25561542 DOI: 10.1073/pnas.1411030112] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most isolates of human rhinovirus, the common cold virus, replicate more robustly at the cool temperatures found in the nasal cavity (33-35 °C) than at core body temperature (37 °C). To gain insight into the mechanism of temperature-dependent growth, we compared the transcriptional response of primary mouse airway epithelial cells infected with rhinovirus at 33 °C vs. 37 °C. Mouse airway cells infected with mouse-adapted rhinovirus 1B exhibited a striking enrichment in expression of antiviral defense response genes at 37 °C relative to 33 °C, which correlated with significantly higher expression levels of type I and type III IFN genes and IFN-stimulated genes (ISGs) at 37 °C. Temperature-dependent IFN induction in response to rhinovirus was dependent on the MAVS protein, a key signaling adaptor of the RIG-I-like receptors (RLRs). Stimulation of primary airway cells with the synthetic RLR ligand poly I:C led to greater IFN induction at 37 °C relative to 33 °C at early time points poststimulation and to a sustained increase in the induction of ISGs at 37 °C relative to 33 °C. Recombinant type I IFN also stimulated more robust induction of ISGs at 37 °C than at 33 °C. Genetic deficiency of MAVS or the type I IFN receptor in infected airway cells permitted higher levels of viral replication, particularly at 37 °C, and partially rescued the temperature-dependent growth phenotype. These findings demonstrate that in mouse airway cells, rhinovirus replicates preferentially at nasal cavity temperature due, in part, to a less efficient antiviral defense response of infected cells at cool temperature.
Collapse
|
2262
|
Abstract
Macrophage involvement in viral infections and antiviral states is common. However, this involvement has not been well-studied in the paradigm of macrophage polarization, which typically has been categorized by the dichotomy of classical (M1) and alternative (M2) statuses. Recent studies have revealed the complexity of macrophage polarization in response to various cellular mediators and exogenous stimuli by adopting a multipolar view to revisit the differential process of macrophages, especially those re-polarized during viral infections. Here, through examination of viral infections targeting macrophages/monocytic cells, we focus on the direct involvement of macrophage polarization during viral infections. Type I and type III interferons (IFNs) are critical in regulation of viral pathogenesis and host antiviral infection; thus, we propose to incorporate IFN-mediated antiviral states into the framework of macrophage polarization. This view is supported by the multifunctional properties of type I IFNs, which potentially elicit and regulate both M1- and M2-polarization in addition to inducing the antiviral state, and by the discoveries of viral mechanisms to adapt and modulate macrophage polarization. Indeed, several recent studies have demonstrated effective prevention of viral diseases through manipulation of macrophage immune statuses.
Collapse
Affiliation(s)
- Yongming Sang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Laura C Miller
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Frank Blecha
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
2263
|
Type I IFNs as biomarkers in rheumatoid arthritis: towards disease profiling and personalized medicine. Clin Sci (Lond) 2014; 128:449-64. [DOI: 10.1042/cs20140554] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RA (rheumatoid arthritis) is a chronic rheumatic condition hallmarked by joint inflammation and destruction by self-reactive immune responses. Clinical management of RA patients is often hampered by its heterogeneous nature in both clinical presentation and outcome, thereby highlighting the need for new predictive biomarkers. In this sense, several studies have recently revealed a role for type I IFNs (interferons), mainly IFNα, in the pathogenesis of a subset of RA patients. Genetic variants associated with the type I IFN pathway have been linked with RA development, as well as with clinical features. Moreover, a role for IFNα as a trigger for RA development has also been described. Additionally, a type I IFN signature has been associated with the early diagnosis of RA and clinical outcome prediction in patients undergoing biological drug treatment, two challenging issues for decision-making in the clinical setting. Moreover, these cytokines have been related to endothelial damage and vascular repair failure in different autoimmune disorders. Therefore, together with chronic inflammation and disease features, they could probably account for the increased cardiovascular disease morbidity and mortality of these patients. The main aim of the present review is to provide recent evidence supporting a role for type I IFNs in the immunopathology of RA, as well as to analyse their possible role as biomarkers for disease management.
Collapse
|
2264
|
Spangler JB, Moraga I, Mendoza JL, Garcia KC. Insights into cytokine-receptor interactions from cytokine engineering. Annu Rev Immunol 2014; 33:139-67. [PMID: 25493332 DOI: 10.1146/annurev-immunol-032713-120211] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytokines exert a vast array of immunoregulatory actions critical to human biology and disease. However, the desired immunotherapeutic effects of native cytokines are often mitigated by toxicity or lack of efficacy, either of which results from cytokine receptor pleiotropy and/or undesired activation of off-target cells. As our understanding of the structural principles of cytokine-receptor interactions has advanced, mechanism-based manipulation of cytokine signaling through protein engineering has become an increasingly feasible and powerful approach. Modified cytokines, both agonists and antagonists, have been engineered with narrowed target cell specificities, and they have also yielded important mechanistic insights into cytokine biology and signaling. Here we review the theory and practice of cytokine engineering and rationalize the mechanisms of several engineered cytokines in the context of structure. We discuss specific examples of how structure-based cytokine engineering has opened new opportunities for cytokines as drugs, with a focus on the immunotherapeutic cytokines interferon, interleukin-2, and interleukin-4.
Collapse
Affiliation(s)
- Jamie B Spangler
- Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305; , , ,
| | | | | | | |
Collapse
|
2265
|
Yang Q, Stevenson HL, Scott MJ, Ismail N. Type I interferon contributes to noncanonical inflammasome activation, mediates immunopathology, and impairs protective immunity during fatal infection with lipopolysaccharide-negative ehrlichiae. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:446-61. [PMID: 25481711 DOI: 10.1016/j.ajpath.2014.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/18/2014] [Accepted: 10/09/2014] [Indexed: 12/29/2022]
Abstract
Ehrlichia species are intracellular bacteria that cause fatal ehrlichiosis, mimicking toxic shock syndrome in humans and mice. Virulent ehrlichiae induce inflammasome activation leading to caspase-1 cleavage and IL-18 secretion, which contribute to development of fatal ehrlichiosis. We show that fatal infection triggers expression of inflammasome components, activates caspase-1 and caspase-11, and induces host-cell death and secretion of IL-1β, IL-1α, and type I interferon (IFN-I). Wild-type and Casp1(-/-) mice were highly susceptible to fatal ehrlichiosis, had overwhelming infection, and developed extensive tissue injury. Nlrp3(-/-) mice effectively cleared ehrlichiae, but displayed acute mortality and developed liver injury similar to wild-type mice. By contrast, Ifnar1(-/-) mice were highly resistant to fatal disease and had lower bacterial burden, attenuated pathology, and prolonged survival. Ifnar1(-/-) mice also had improved protective immune responses mediated by IFN-γ and CD4(+) Th1 and natural killer T cells, with lower IL-10 secretion by T cells. Importantly, heightened resistance of Ifnar1(-/-) mice correlated with improved autophagosome processing, and attenuated noncanonical inflammasome activation indicated by decreased activation of caspase-11 and decreased IL-1β, compared with other groups. Our findings demonstrate that IFN-I signaling promotes host susceptibility to fatal ehrlichiosis, because it mediates ehrlichia-induced immunopathology and supports bacterial replication, perhaps via activation of noncanonical inflammasomes, reduced autophagy, and suppression of protective CD4(+) T cells and natural killer T-cell responses against ehrlichiae.
Collapse
Affiliation(s)
- Qin Yang
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Heather L Stevenson
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melanie J Scott
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nahed Ismail
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
2266
|
Riva E, Scagnolari C, Turriziani O, Antonelli G. Hepatitis C virus and interferon type III (interferon-λ3/interleukin-28B and interferon-λ4): genetic basis of susceptibility to infection and response to antiviral treatment. Clin Microbiol Infect 2014; 20:1237-45. [PMID: 25273834 DOI: 10.1111/1469-0691.12797] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/12/2014] [Accepted: 08/17/2014] [Indexed: 02/06/2023]
Abstract
There has been a significant increase in our understanding of the host genetic determinants of susceptibility to viral infections in recent years. Recently, two single-nucleotide polymorphisms (SNPs), rs12979860 T/C and rs8099917 T/G, upstream of the interleukin (IL)-28B/interferon (IFN)-λ3 gene have been clearly associated with spontaneous and treatment-induced viral clearance in hepatitis C virus (HCV) infection. Because of their power in predicting the response to IFN/ribavirin therapy, the above SNPs have been used as a diagnostic tool, even though their relevance in the management of HCV infection will be blunt in the era of IFN-free regimens. The recent discovery of a new genetic variant, ss469415590 TT/ΔG, upstream of the IL-28B gene, which generates the novel IFN-λ4 protein, has opened up a new and alternative scenario to understand the functional architecture of type III IFN genomic regions and to improve our knowledge of the pathogenetic mechanism of HCV infection. A role of ss469415590 in predicting responsiveness to antiviral therapy has also been observed in HCV-infected patients receiving direct antiviral agents. The underlying biological mechanism that links the above IL-28B polymorphisms (in both IFN-λ3 and IFN-λ4) to spontaneous and treatment-induced clearance of HCV infection remains to be discovered. Despite this, shedding some light on this issue, which is the main aim of this review, may provide new insights into the general topic of 'host genetics and viral infections'.
Collapse
Affiliation(s)
- E Riva
- Department of Integrated Research, Virology Section, University Campus Bio-Medico of Rome, Rome, Italy
| | | | | | | |
Collapse
|
2267
|
Chan CH, Fang C, Yarilina A, Prinjha RK, Qiao Y, Ivashkiv LB. BET bromodomain inhibition suppresses transcriptional responses to cytokine-Jak-STAT signaling in a gene-specific manner in human monocytes. Eur J Immunol 2014; 45:287-297. [PMID: 25345375 DOI: 10.1002/eji.201444862] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/17/2014] [Accepted: 10/21/2014] [Indexed: 11/12/2022]
Abstract
Disruption of the interaction of bromo and extraterminal (BET) proteins with acetylated histones using small molecule inhibitors suppresses Myc-driven cancers and TLR-induced inflammation in mouse models. The predominant mechanism of BET inhibitor action is to suppress BET-mediated recruitment of positive transcription elongation factor b and, thus, transcription elongation. We investigated the effects of BET inhibitor I-BET151 on transcriptional responses to TLR4 and TNF in primary human monocytes and also on responses to cytokines IFN-β, IFN-γ, IL-4, and IL-10, which activate the JAK-STAT signaling pathway and are important for monocyte polarization and inflammatory diseases. I-BET151 suppressed TLR4- and TNF-induced IFN responses by diminishing both autocrine IFN-β expression and transcriptional responses to IFN-β. I-BET151 inhibited cytokine-induced transcription of STAT targets in a gene-specific manner without affecting STAT activation or recruitment. This inhibition was independent of Myc or other upstream activators. IFN-stimulated gene transcription is regulated primarily at the level of transcription initiation. Accordingly, we found that I-BET151 suppressed the recruitment of transcriptional machinery to the CXCL10 promoter and an upstream enhancer. Our findings suggest that BET inhibition reduces inflammation partially through suppressing cytokine activity and expands the understanding of the inhibitory and potentially selective immunosuppressive effects of inhibiting BET proteins.
Collapse
Affiliation(s)
- Chun Hin Chan
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Center for Genomics Research, Hospital for Special Surgery, New York, New York, USA
| | - Celestia Fang
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Center for Genomics Research, Hospital for Special Surgery, New York, New York, USA
| | - Anna Yarilina
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Center for Genomics Research, Hospital for Special Surgery, New York, New York, USA
| | - Rab K Prinjha
- GlaxoSmithKline, Epinova DPU, Stevenage, United Kingdom
| | - Yu Qiao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Center for Genomics Research, Hospital for Special Surgery, New York, New York, USA
| | - Lionel B Ivashkiv
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Center for Genomics Research, Hospital for Special Surgery, New York, New York, USA.,Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| |
Collapse
|
2268
|
Saleiro D, Platanias LC. Intersection of mTOR and STAT signaling in immunity. Trends Immunol 2014; 36:21-9. [PMID: 25592035 DOI: 10.1016/j.it.2014.10.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 10/10/2014] [Accepted: 10/24/2014] [Indexed: 12/17/2022]
Abstract
Optimal regulation of immune networks is essential for the generation of effective immune responses, and defects in such networks can lead to immunodeficiency while uncontrolled responses can result in autoimmune disorders. mTOR and STAT signaling cascades are key regulators of the differentiation and function of cells of the immune system. Both pathways act as sensors and transducers of environmental stimuli, and recent evidence has revealed points of crosstalk between these pathways, highlighting synergistic regulation of immune cell differentiation and function. We review here the current understanding of mTOR and STAT interactions in T cells and innate immune cells, and discuss potential mechanisms underlying these events. We further outline models for the intersection of these pathways in the regulation of immunity and highlight important areas for future research.
Collapse
Affiliation(s)
- Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, Chicago, IL, USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, Chicago, IL, USA; Division of Hematology-Oncology, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| |
Collapse
|
2269
|
Zhou H, Chen S, Wang M, Cheng A. Interferons and Their Receptors in Birds: A Comparison of Gene Structure, Phylogenetic Analysis, and Cross Modulation. Int J Mol Sci 2014; 15:21045-68. [PMID: 25405736 PMCID: PMC4264211 DOI: 10.3390/ijms151121045] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/26/2014] [Accepted: 11/04/2014] [Indexed: 11/17/2022] Open
Abstract
Interferon may be thought of as a key, with the interferon receptor as the signal lock: Crosstalk between them maintains their balance during viral infection. In this review, the protein structure of avian interferon and the interferon receptor are discussed, indicating remarkable similarity between different species. However, the structures of the interferon receptors are more sophisticated than those of the interferons, suggesting that the interferon receptor is a more complicated signal lock system and has considerable diversity in subtypes or structures. Preliminary evolutionary analysis showed that the subunits of the interferon receptor formed a distinct clade, and the orthologs may be derived from the same ancestor. Furthermore, the development of interferons and interferon receptors in birds may be related to an animal’s age and the maintenance of a balanced state. In addition, the equilibrium between interferon and its receptor during pathological and physiological states revealed that the virus and the host influence this equilibrium. Birds could represent an important model for studies on interferon’s antiviral activities and may provide the basis for new antiviral strategies.
Collapse
Affiliation(s)
- Hao Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
2270
|
Carnero E, Barriocanal M, Segura V, Guruceaga E, Prior C, Börner K, Grimm D, Fortes P. Type I Interferon Regulates the Expression of Long Non-Coding RNAs. Front Immunol 2014; 5:548. [PMID: 25414701 PMCID: PMC4222131 DOI: 10.3389/fimmu.2014.00548] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/14/2014] [Indexed: 12/22/2022] Open
Abstract
Interferons (IFNs) are key players in the antiviral response. IFN sensing by the cell activates transcription of IFN-stimulated genes (ISGs) able to induce an antiviral state by affecting viral replication and release. IFN also induces the expression of ISGs that function as negative regulators to limit the strength and duration of IFN response. The ISGs identified so far belong to coding genes. However, only a small proportion of the transcriptome corresponds to coding transcripts and it has been estimated that there could be as many coding as long non-coding RNAs (lncRNAs). To address whether IFN can also regulate the expression of lncRNAs, we analyzed the transcriptome of HuH7 cells treated or not with IFNα2 by expression arrays. Analysis of the arrays showed increased levels of several well-characterized coding genes that respond to IFN both at early or late times. Furthermore, we identified several IFN-stimulated or -downregulated lncRNAs (ISRs and IDRs). Further validation showed that ISR2, 8, and 12 expression mimics that of their neighboring genes GBP1, IRF1, and IL6, respectively, all related to the IFN response. These genes are induced in response to different doses of IFNα2 in different cell lines at early (ISR2 or 8) or later (ISR12) time points. IFNβ also induced the expression of these lncRNAs. ISR2 and 8 were also induced by an influenza virus unable to block the IFN response but not by other wild-type lytic viruses tested. Surprisingly, both ISR2 and 8 were significantly upregulated in cultured cells and livers from patients infected with HCV. Increased levels of ISR2 were also detected in patients chronically infected with HIV. This is relevant as genome-wide guilt-by-association studies predict that ISR2, 8, and 12 may function in viral processes, in the IFN pathway and the antiviral response. Therefore, we propose that these lncRNAs could be induced by IFN to function as positive or negative regulators of the antiviral response.
Collapse
Affiliation(s)
- Elena Carnero
- Department of Gene therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Marina Barriocanal
- Department of Gene therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Victor Segura
- Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Elizabeth Guruceaga
- Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Celia Prior
- Department of Gene therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Kathleen Börner
- Centre for Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks , Heidelberg , Germany ; German Center for Infection Research (DZIF) , Heidelberg , Germany
| | - Dirk Grimm
- Centre for Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks , Heidelberg , Germany
| | - Puri Fortes
- Department of Gene therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| |
Collapse
|
2271
|
Sang Y, Bergkamp J, Blecha F. Molecular evolution of the porcine type I interferon family: subtype-specific expression and antiviral activity. PLoS One 2014; 9:e112378. [PMID: 25372927 PMCID: PMC4221479 DOI: 10.1371/journal.pone.0112378] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/15/2014] [Indexed: 12/22/2022] Open
Abstract
Type I interferons (IFNs), key antiviral cytokines, evolve to adapt with ever-changing viral threats during vertebrate speciation. Due to novel pathogenic pressure associated with Suidae speciation and domestication, porcine IFNs evolutionarily engender both molecular and functional diversification, which have not been well addressed in pigs, an important livestock species and animal model for biomedical sciences. Annotation of current swine genome assembly Sscrofa10.2 reveals 57 functional genes and 16 pseudogenes of type I IFNs. Subfamilies of multiple IFNA, IFNW and porcine-specific IFND genes are separated into four clusters with ∼ 60 kb intervals within the IFNB/IFNE bordered region in SSC1, and each cluster contains mingled subtypes of IFNA, IFNW and IFND. Further curation of the 57 functional IFN genes indicates that they include 18 potential artifactual duplicates. We performed phylogenetic construction as well as analyses of gene duplication/conversion and natural selection and showed that porcine type I IFN genes have been undergoing active diversification through both gene duplication and conversion. Extensive analyses of the non-coding sequences proximal to all IFN coding regions identified several genomic repetitive elements significantly associated with different IFN subtypes. Family-wide studies further revealed their molecular diversity with respect to differential expression and restrictive activity on the resurgence of a porcine endogenous retrovirus. Based on predicted 3-D structures of representative animal IFNs and inferred activity, we categorized the general functional propensity underlying the structure-activity relationship. Evidence indicates gene expansion of porcine type I IFNs. Genomic repetitive elements that associated with IFN subtypes may serve as molecular signatures of respective IFN subtypes and genomic mechanisms to mediate IFN gene evolution and expression. In summary, the porcine type I IFN profile has been phylogenetically defined family-wide and linked to diverse expression and antiviral activity, which is important information for further biological studies across the porcine type I IFN family.
Collapse
Affiliation(s)
- Yongming Sang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| | - Joseph Bergkamp
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Frank Blecha
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
2272
|
Annibali V, Mechelli R, Romano S, Buscarinu MC, Fornasiero A, Umeton R, Ricigliano VAG, Orzi F, Coccia EM, Salvetti M, Ristori G. IFN-β and multiple sclerosis: from etiology to therapy and back. Cytokine Growth Factor Rev 2014; 26:221-8. [PMID: 25466632 DOI: 10.1016/j.cytogfr.2014.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 10/22/2014] [Indexed: 01/09/2023]
Abstract
Several immunomodulatory treatments are currently available for relapsing-remitting forms of multiple sclerosis (RRMS). Interferon beta (IFN) was the first therapeutic intervention able to modify the course of the disease and it is still the most used first-line treatment in RRMS. Though two decades have passed since IFN-β was introduced in the management of MS, it remains a valid approach because of its good benefit/risk profile. This is witnessed by new efforts of pharmaceutical industry to improve this line: a PEGylated form of subcutaneous IFN-β 1a, (Plegridy(®)) with a longer half-life, has been recently approved in RRMS. This review will survey the various stages of the use of type I IFN in MS, with special attention to the effect of the treatment on the supposed viral etiologic factors associated to the disease. The antiviral activities of IFN (that initially prompted its use as immunomodulatory agent in MS), and the mounting evidences in favor of a viral etiology in MS, allowed us to outline a re-appraisal from etiology to therapy and back.
Collapse
Affiliation(s)
- V Annibali
- Centre for Experimental Neurological Therapies (CENTERS), Neurology and Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Italy
| | - R Mechelli
- Centre for Experimental Neurological Therapies (CENTERS), Neurology and Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Italy
| | - S Romano
- Centre for Experimental Neurological Therapies (CENTERS), Neurology and Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Italy
| | - M C Buscarinu
- Centre for Experimental Neurological Therapies (CENTERS), Neurology and Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Italy
| | - A Fornasiero
- Centre for Experimental Neurological Therapies (CENTERS), Neurology and Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Italy
| | - R Umeton
- Centre for Experimental Neurological Therapies (CENTERS), Neurology and Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Italy
| | - V A G Ricigliano
- Centre for Experimental Neurological Therapies (CENTERS), Neurology and Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Italy; Neuroimmunology Unit, Fondazione Santa Lucia-I.R.C.C.S., Rome, Italy
| | - F Orzi
- Neurology and Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Italy
| | - E M Coccia
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - M Salvetti
- Centre for Experimental Neurological Therapies (CENTERS), Neurology and Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Italy.
| | - G Ristori
- Centre for Experimental Neurological Therapies (CENTERS), Neurology and Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Italy
| |
Collapse
|
2273
|
Tomasello E, Pollet E, Vu Manh TP, Uzé G, Dalod M. Harnessing Mechanistic Knowledge on Beneficial Versus Deleterious IFN-I Effects to Design Innovative Immunotherapies Targeting Cytokine Activity to Specific Cell Types. Front Immunol 2014; 5:526. [PMID: 25400632 PMCID: PMC4214202 DOI: 10.3389/fimmu.2014.00526] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/07/2014] [Indexed: 12/15/2022] Open
Abstract
Type I interferons (IFN-I) were identified over 50 years ago as cytokines critical for host defense against viral infections. IFN-I promote anti-viral defense through two main mechanisms. First, IFN-I directly reinforce or induce de novo in potentially all cells the expression of effector molecules of intrinsic anti-viral immunity. Second, IFN-I orchestrate innate and adaptive anti-viral immunity. However, IFN-I responses can be deleterious for the host in a number of circumstances, including secondary bacterial or fungal infections, several autoimmune diseases, and, paradoxically, certain chronic viral infections. We will review the proposed nature of protective versus deleterious IFN-I responses in selected diseases. Emphasis will be put on the potentially deleterious functions of IFN-I in human immunodeficiency virus type 1 (HIV-1) infection, and on the respective roles of IFN-I and IFN-III in promoting resolution of hepatitis C virus (HCV) infection. We will then discuss how the balance between beneficial versus deleterious IFN-I responses is modulated by several key parameters including (i) the subtypes and dose of IFN-I produced, (ii) the cell types affected by IFN-I, and (iii) the source and timing of IFN-I production. Finally, we will speculate how integration of this knowledge combined with advanced biochemical manipulation of the activity of the cytokines should allow designing innovative immunotherapeutic treatments in patients. Specifically, we will discuss how induction or blockade of specific IFN-I responses in targeted cell types could promote the beneficial functions of IFN-I and/or dampen their deleterious effects, in a manner adapted to each disease.
Collapse
Affiliation(s)
- Elena Tomasello
- UM2, Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University , Marseille , France ; U1104, Institut National de la Santé et de la Recherche Médicale (INSERM) , Marseille , France ; UMR7280, Centre National de la Recherche Scientifique (CNRS) , Marseille , France
| | - Emeline Pollet
- UM2, Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University , Marseille , France ; U1104, Institut National de la Santé et de la Recherche Médicale (INSERM) , Marseille , France ; UMR7280, Centre National de la Recherche Scientifique (CNRS) , Marseille , France
| | - Thien-Phong Vu Manh
- UM2, Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University , Marseille , France ; U1104, Institut National de la Santé et de la Recherche Médicale (INSERM) , Marseille , France ; UMR7280, Centre National de la Recherche Scientifique (CNRS) , Marseille , France
| | - Gilles Uzé
- UMR 5235, Centre National de la Recherche Scientifique (CNRS), University Montpellier II , Montpellier , France
| | - Marc Dalod
- UM2, Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University , Marseille , France ; U1104, Institut National de la Santé et de la Recherche Médicale (INSERM) , Marseille , France ; UMR7280, Centre National de la Recherche Scientifique (CNRS) , Marseille , France
| |
Collapse
|
2274
|
Dhariwala MO, Anderson DM. Bacterial programming of host responses: coordination between type I interferon and cell death. Front Microbiol 2014; 5:545. [PMID: 25389418 PMCID: PMC4211556 DOI: 10.3389/fmicb.2014.00545] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/30/2014] [Indexed: 01/24/2023] Open
Abstract
During mammalian infection, bacteria induce cell death from an extracellular or intracellular niche that can protect or hurt the host. Data is accumulating that associate type I interferon (IFN) signaling activated by intracellular bacteria with programmed death of immune effector cells and enhanced virulence. Multiple pathways leading to IFN-dependent host cell death have been described, and in some cases it is becoming clear how these mechanisms contribute to virulence. Yet common mechanisms of IFN-enhanced bacterial pathogenesis are not obvious and no specific interferon stimulated genes have yet been identified that cause sensitivity to pathogen-induced cell death. In this review, we will summarize some bacterial infections caused by facultative intracellular pathogens and what is known about how type I IFN signaling may promote the replication of extracellular bacteria rather than stimulate protection. Each of these pathogens can survive phagocytosis but their intracellular life cycles are very different, they express distinct virulence factors and trigger different pathways of immune activation and crosstalk. These differences likely lead to widely varying amounts of type I IFN expression and a different inflammatory environment, but these may not be important to the pathologic effects on the host. Instead, each pathogen induces programmed cell death of key immune cells that have been sensitized by the activation of the type I IFN response. We will discuss how IFN-dependent host cell death may increase host susceptibility and try to understand common pathways of pathogenesis that lead to IFN-enhanced bacterial virulence.
Collapse
Affiliation(s)
- Miqdad O Dhariwala
- Department of Veterinary Pathobiology, University of Missouri Columbia, MO, USA
| | - Deborah M Anderson
- Department of Veterinary Pathobiology, University of Missouri Columbia, MO, USA
| |
Collapse
|
2275
|
Gianchecchi E, Crinò A, Giorda E, Luciano R, Perri V, Russo AL, Cappa M, Rosado MM, Fierabracci A. Altered B cell homeostasis and toll-like receptor 9-driven response in type 1 diabetes carriers of the C1858T PTPN22 allelic variant: implications in the disease pathogenesis. PLoS One 2014; 9:e110755. [PMID: 25333705 PMCID: PMC4205012 DOI: 10.1371/journal.pone.0110755] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/18/2014] [Indexed: 01/10/2023] Open
Abstract
Type 1 diabetes is an autoimmune disease caused by the destruction of pancreatic beta cells by autoreactive T cells. Among the genetic variants associated with type 1 diabetes, the C1858T (Lyp) polymorphism of the protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene alters the function of T cells but also of B cells in innate and adaptive immunity. The Lyp variant was shown to diminish interferon production and responses upon Toll-like receptor stimulation in macrophages and dendritic cells, possibly leading to uncontrolled infections as triggers of the diabetogenic process. The aim of this study was to unravel the yet uncharacterized effects that the variant could exert on the immune and autoimmune responses, particularly regarding the B cell phenotype, in the peripheral blood lymphocytes of diabetic patients and healthy controls in basal conditions and after unmethylated bacterial DNA CpG stimulation. The presence of the Lyp variant resulted in a significant increase in the percentage of transitional B cells in C/T carriers patients and controls compared to C/C patients and controls, in C/T carrier patients compared to C/C controls and in C/T carrier patients compared to C/C patients. A significant reduction in the memory B cells was also observed in the presence of the risk variant. After four days of CpG stimulation, there was a significant increase in the abundance of IgM+ memory B cells in C/T carrier diabetics than in C/C subjects and in the groups of C/T carrier individuals than in C/C individuals. IgM- memory B cells tended to differentiate more precociously into plasma cells than IgM+ memory B cells in heterozygous C/T subjects compared to the C/C subjects. The increased Toll-like receptor response that led to expanded T cell-independent IgM+ memory B cells should be further investigated to determine the putative contribution of innate immune responses in the disease pathogenesis.
Collapse
Affiliation(s)
- Elena Gianchecchi
- Autoimmunity Laboratory, Immunology and Pharmacotherapy Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonino Crinò
- Division of Endocrinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Ezio Giorda
- B cell Development Laboratory, Immunology and Pharmacotherapy Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Rosa Luciano
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Valentina Perri
- Autoimmunity Laboratory, Immunology and Pharmacotherapy Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Anna Lo Russo
- Autoimmunity Laboratory, Immunology and Pharmacotherapy Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Cappa
- Division of Endocrinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - M. Manuela Rosado
- B cell Development Laboratory, Immunology and Pharmacotherapy Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Alessandra Fierabracci
- Autoimmunity Laboratory, Immunology and Pharmacotherapy Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
2276
|
Misasi J, Sullivan NJ. Camouflage and misdirection: the full-on assault of ebola virus disease. Cell 2014; 159:477-86. [PMID: 25417101 DOI: 10.1016/j.cell.2014.10.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 01/30/2023]
Abstract
Ebolaviruses cause a severe hemorrhagic fever syndrome that is rapidly fatal to humans and nonhuman primates. Ebola protein interactions with host cellular proteins disrupt type I and type II interferon responses, RNAi antiviral responses, antigen presentation, T-cell-dependent B cell responses, humoral antibodies, and cell-mediated immunity. This multifaceted approach to evasion and suppression of innate and adaptive immune responses in their target hosts leads to the severe immune dysregulation and "cytokine storm" that is characteristic of fatal ebolavirus infection. Here, we highlight some of the processes by which Ebola interacts with its mammalian hosts to evade antiviral defenses.
Collapse
Affiliation(s)
- John Misasi
- Boston Children's Hospital, Department of Medicine, Division of Infectious Diseases, Boston, MA 02115, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2277
|
Wang Y, Tian Q, Xu X, Yang X, Luo J, Mo W, Peng J, Niu X, Luo Y, Guo X. Recombinant rabies virus expressing IFNα1 enhanced immune responses resulting in its attenuation and stronger immunogenicity. Virology 2014; 468-470:621-630. [PMID: 25310498 DOI: 10.1016/j.virol.2014.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/09/2014] [Indexed: 12/24/2022]
Abstract
Several studies have shown that type 1 interferons (IFNs) exert multiple biological effects on both innate and adaptive immune responses. Here, we investigated the pathogenicity and immunogenicity of recombinant rabies virus (RABV) expressing canine interferon α1 (rHEP-CaIFNα1). It was shown that Kun Ming (KM) mice that received a single intramuscular immunization with rHEP-CaIFNα1 had an earlier increase and a higher level of virus-neutralizing antibody titers compared with immunization of the parent HEP-Flury. A challenge experiment further confirmed that more mice that were immunized with rHEP-CaIFNα1 survived compared with mice immunized with the parent virus. Quantitative real-time PCR indicated that rHEP-CaIFNα1 induced a stronger innate immune response, especially the type 1 IFN response. Flow cytometry was conducted to show that rHEP-CaIFNα1 recruited more activated B cells in lymph nodes and CD8 T cells in the peripheral blood, which is beneficial to achieve virus clearance in the early infective stage.
Collapse
Affiliation(s)
- Yifei Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qin Tian
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaojuan Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xianfeng Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weiyu Mo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiaojiao Peng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuefeng Niu
- The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
2278
|
Immunologic characterization of a rhesus macaque H1N1 challenge model for candidate influenza virus vaccine assessment. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1668-80. [PMID: 25298110 DOI: 10.1128/cvi.00547-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite the availability of annually formulated vaccines, influenza virus infection remains a worldwide public health burden. Therefore, it is important to develop preclinical challenge models that enable the evaluation of vaccine candidates while elucidating mechanisms of protection. Here, we report that naive rhesus macaques challenged with 2009 pandemic H1N1 (pH1N1) influenza virus do not develop observable clinical symptoms of disease but develop a subclinical biphasic fever on days 1 and 5 to 6 postchallenge. Whole blood microarray analysis further revealed that interferon activity was associated with fever. We then tested whether type I interferon activity in the blood is a correlate of vaccine efficacy. The animals immunized with candidate vaccines carrying hemagglutinin (HA) or nucleoprotein (NP) exhibited significantly reduced interferon activity on days 5 to 6 postchallenge. Supported by cellular and serological data, we conclude that blood interferon activity is a prominent marker that provides a convenient metric of influenza virus vaccine efficacy in the subclinical rhesus macaque model.
Collapse
|
2279
|
Sendai virus pathogenesis in mice is prevented by Ifit2 and exacerbated by interferon. J Virol 2014; 88:13593-601. [PMID: 25231314 DOI: 10.1128/jvi.02201-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED The type I/III interferon (IFN) system has major roles in regulating viral pathogenesis, usually ameliorating pathogenesis by impairing virus replication through the antiviral actions of one or more IFN-induced proteins. Ifit2 is one such protein which can be induced by IFN or virus infection, and it is responsible for protecting mice from neuropathogenesis caused by vesicular stomatitis virus. Here, we show that Ifit2 also protects mice from pathogenesis caused by the respirovirus Sendai virus (SeV). Mice lacking Ifit2 (Ifit2(-/-)) suffered severe weight loss and succumbed to intranasal infection with SeV strain 52 at a dose that killed only a few wild-type mice. Viral RNA was detectable only in lungs, and SeV titers were higher in Ifit2(-/-) mice than in wild-type mice. Similar infiltration of immune cells was found in the lungs of both mouse lines, corresponding to similar levels of many induced cytokines and chemokines. In contrast, IFN-β and IFN-λ3 expression were considerably higher in the lungs of Ifit2(-/-) mice. Surprisingly, type I IFN receptor knockout (IFNAR(-/-)) mice were less susceptible to SeV than Ifit2(-/-) mice, although their pulmonary virus titers were similarly high. To test the intriguing possibility that type I IFN action enhances pathogenesis in the context of elevated SeV replication in lungs, we generated Ifit2/IFNAR(-/-) double knockout mice. These mice were less susceptible to SeV than Ifit2(-/-) mice, although viral titers in their lungs were even higher. Our results indicate that high SeV replication in the lungs of infected Ifit2(-/-) mice cooperates with elevated IFN-β induction to cause disease. IMPORTANCE The IFN system is an innate defense against virus infections. It is triggered quickly in infected cells, which then secrete IFN. Via their cell surface receptors on surrounding cells, they induce transcription of numerous IFN-stimulated genes (ISG), which in turn protect these cells by inhibiting virus life cycles. Hence, IFNs are commonly considered beneficial during virus infections. Here, we report two key findings. First, lack of a single ISG in mice, Ifit2, resulted in high mortality after SeV infection of the respiratory tract, following higher virus loads and higher IFN production in Ifit2(-/-) lungs. Second, mortality of Ifit2(-/-) mice was reduced when mice also lacked the type I IFN receptor, while SeV loads in lungs still were high. This indicates that type I IFN exacerbates pathogenesis in the SeV model, and that limitation of both viral replication and IFN production is needed for effective prevention of disease.
Collapse
|
2280
|
Lee KJ, Ye JS, Choe H, Nam YR, Kim N, Lee U, Joo CH. Serine cluster phosphorylation liberates the C-terminal helix of IFN regulatory factor 7 to bind histone acetyltransferase p300. THE JOURNAL OF IMMUNOLOGY 2014; 193:4137-48. [PMID: 25225665 DOI: 10.4049/jimmunol.1401290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
IFN regulatory factor 7 (IRF7) is a major regulator of type I (αβ) IFN secretion. A growing body of evidence shows that IRF7 is involved in a wide variety of pathologic conditions in addition to infections; however, the detailed mechanism of IRF7 transactivation remains elusive. Our current knowledge of IRF7 transactivation is based on studies of IRF3, another major regulator of IFN-β secretion. IRF3 and IRF7 are closely related homologs with high sequence similarity in their C-terminal regions, and both proteins are activated by phosphorylation of a specific serine cluster (SC). Nevertheless, the functional domains of the two proteins are arranged in an inverted manner. We generated a model structure of the IRF7 C-terminal region using homology modeling and used it to guide subsequent functional domain studies. The model structure led to the identification of a tripod-helix structure containing the SC. Based on the model and experimental data, we hypothesized that phosphorylation-mediated IRF7 transactivation is controlled by a tripod-helix structure. Inducible IκB kinase binds a tripod-helix structure. Serial phosphorylation of the SC by the kinase liberates C-terminal helix from an inhibitory hydrophobic pocket. A histone acetyltransferase P300 binds the liberated helix. The difference in the P300 binding sites explains why the domain arrangement of IRF7 is inverted relative to that of IRF3.
Collapse
Affiliation(s)
- Kyoung Jin Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Jung Sook Ye
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Han Choe
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736, Korea; Department of Physiology, University of Ulsan College of Medicine, Seoul 138-736, Korea; and
| | - Young Ran Nam
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Nari Kim
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Uk Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Chul Hyun Joo
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 138-736, Korea; Cell Dysfunction Research Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| |
Collapse
|
2281
|
Fish EN, Platanias LC. Interferon receptor signaling in malignancy: a network of cellular pathways defining biological outcomes. Mol Cancer Res 2014; 12:1691-703. [PMID: 25217450 DOI: 10.1158/1541-7786.mcr-14-0450] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IFNs are cytokines with important antiproliferative activity and exhibit key roles in immune surveillance against malignancies. Early work initiated over three decades ago led to the discovery of IFN receptor activated Jak-Stat pathways and provided important insights into mechanisms for transcriptional activation of IFN-stimulated genes (ISG) that mediate IFN biologic responses. Since then, additional evidence has established critical roles for other receptor-activated signaling pathways in the induction of IFN activities. These include MAPK pathways, mTOR cascades, and PKC pathways. In addition, specific miRNAs appear to play a significant role in the regulation of IFN signaling responses. This review focuses on the emerging evidence for a model in which IFNs share signaling elements and pathways with growth factors and tumorigenic signals but engage them in a distinctive manner to mediate antiproliferative and antiviral responses.
Collapse
Affiliation(s)
- Eleanor N Fish
- Toronto General Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown VA Medical Center, Chicago, Illinois.
| |
Collapse
|
2282
|
miR-27a suppresses EV71 replication by directly targeting EGFR. Virus Genes 2014; 49:373-82. [PMID: 25212431 DOI: 10.1007/s11262-014-1114-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022]
Abstract
Enterovirus 71 (EV71), a major causative agent of hand, foot, and mouth disease, has broken out several times and was accompanied by neurological disease. microRNAs, a class of small non-coding RNAs that are approximately 20 nucleotides long, play important roles in the regulation of various biological processes, including antiviral defense. However, the roles of miRNAs in EV71 replication and pathogenesis are not well understood. In this study, we found that the expression of miR-27a was significantly decreased in EV71-infected cells. Interestingly, the over-expression of miR-27a could inhibit EV71 replication, as measured by virus titration, qPCR, and Western blotting. We identified EGFR mRNA is a bona fide target of miR-27a by computational analysis and luciferase reporter assays. Furthermore, miR-27a could decrease EGFR expression, as measured by qPCR and Western blotting. Moreover, the inhibition of EGFR expression by miR-27a decreased the phosphorylation of Akt and ERK, which facilitate EV71 replication. These results suggest that miR-27a may have antiviral activity against EV71 by inhibiting EGFR.
Collapse
|
2283
|
Nup98 promotes antiviral gene expression to restrict RNA viral infection in Drosophila. Proc Natl Acad Sci U S A 2014; 111:E3890-9. [PMID: 25197089 DOI: 10.1073/pnas.1410087111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In response to infection, the innate immune system rapidly activates an elaborate and tightly orchestrated gene expression program to induce critical antimicrobial genes. While many key players in this program have been identified in disparate biological systems, it is clear that there are additional uncharacterized mechanisms at play. Our previous studies revealed that a rapidly-induced antiviral gene expression program is active against disparate human arthropod-borne viruses in Drosophila. Moreover, one-half of this program is regulated at the level of transcriptional pausing. Here we found that Nup98, a virus-induced gene, was antiviral against a panel of viruses both in cells and adult flies since its depletion significantly enhanced viral infection. Mechanistically, we found that Nup98 promotes antiviral gene expression in Drosophila at the level of transcription. Expression profiling revealed that the virus-induced activation of 36 genes was abrogated upon loss of Nup98; and we found that a subset of these Nup98-dependent genes were antiviral. These Nup98-dependent virus-induced genes are Cdk9-dependent and translation-independent suggesting that these are rapidly induced primary response genes. Biochemically, we demonstrate that Nup98 is directly bound to the promoters of virus-induced genes, and that it promotes occupancy of the initiating form of RNA polymerase II at these promoters, which are rapidly induced on viral infection to restrict human arboviruses in insects.
Collapse
|
2284
|
Wijesundara DK, Xi Y, Ranasinghe C. Unraveling the convoluted biological roles of type I interferons in infection and immunity: a way forward for therapeutics and vaccine design. Front Immunol 2014; 5:412. [PMID: 25221557 PMCID: PMC4148647 DOI: 10.3389/fimmu.2014.00412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/13/2014] [Indexed: 01/04/2023] Open
Abstract
It has been well-established that type I interferons (IFN-Is) have pleiotropic effects and play an early central role in the control of many acute viral infections. However, their pleiotropic effects are not always beneficial to the host and in fact several reports suggest that the induction of IFN-Is exacerbate disease outcomes against some bacterial and chronic viral infections. In this brief review, we probe into this mystery and try to develop answers based on past and recent studies evaluating the roles of IFN-Is in infection and immunity as this is vital for developing effective IFN-Is based therapeutics and vaccines. We also discuss the biological roles of an emerging IFN-I, namely IFN-ε, and discuss its potential use as a mucosal therapeutic and/or vaccine adjuvant. Overall, we anticipate the discussions generated in this review will provide new insights for better exploiting the biological functions of IFN-Is in developing efficacious therapeutics and vaccines in the future.
Collapse
Affiliation(s)
- Danushka Kumara Wijesundara
- Virology Laboratory, Department of Surgery, Basil Hetzel Institute, University of Adelaide , Adelaide, SA , Australia ; Molecular Mucosal Vaccine Immunology Group, The John Curtin School of Medical Research, The Australian National University , Canberra, ACT , Australia
| | - Yang Xi
- Lung and Allergy Research Centre, Translational Research Institute, UQ School of Medicine, The University of Queensland , Woolloongabba, QLD , Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, The John Curtin School of Medical Research, The Australian National University , Canberra, ACT , Australia
| |
Collapse
|
2285
|
Abstract
Co-infections may have unpredictable consequences for the health of a host beyond the sum of the individual infections. Two recent papers in Science provide mechanistic insights into how acute helminth infections alter the outcome of Herpesvirus and Norovirus infections by triggering changes in the local cytokine environment.
Collapse
|
2286
|
Alkanani AK, Hara N, Gianani R, Zipris D. Kilham Rat Virus-induced type 1 diabetes involves beta cell infection and intra-islet JAK-STAT activation prior to insulitis. Virology 2014; 468-470:19-27. [PMID: 25129435 DOI: 10.1016/j.virol.2014.07.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 11/24/2022]
Abstract
We used the LEW1.WR1 rat model of Kilham Rat Virus (KRV)-induced type 1 diabetes (T1D) to test the hypothesis that disease mechanisms are linked with beta cell infection and intra-islet immune activation prior to insulitis. KRV induces genes involved in type I and type II interferon pathways in islet cell lines in vitro and in islets from day-5-infected animals in vivo via mechanisms that do not involve insulitis, beta cell apoptosis, or impaired insulin expression. Immunohistochemistry studies indicated that KRV protein is expressed in beta cells 5 days following infection. KRV induces the phosphorylation of Janus Kinase 1/2 (JAK1/2) and signal transducer and activator of transcription 1 (STAT-1) in islet cells via a mechanism that could involve TLR9 and NF-κB pathways. These data demonstrate for the first time that KRV-induced islet destruction is associated with beta cell infection and intra-islet innate immune upregulation early in the disease process.
Collapse
Affiliation(s)
- Aimon K Alkanani
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, 1775 Aurora Ct., Mail Stop B-140, Aurora, CO 80045, United States
| | - Naoko Hara
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, 1775 Aurora Ct., Mail Stop B-140, Aurora, CO 80045, United States
| | - Roberto Gianani
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, 1775 Aurora Ct., Mail Stop B-140, Aurora, CO 80045, United States
| | - Danny Zipris
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, 1775 Aurora Ct., Mail Stop B-140, Aurora, CO 80045, United States.
| |
Collapse
|
2287
|
Versteeg GA, Benke S, García-Sastre A, Rajsbaum R. InTRIMsic immunity: Positive and negative regulation of immune signaling by tripartite motif proteins. Cytokine Growth Factor Rev 2014; 25:563-76. [PMID: 25172371 PMCID: PMC7173094 DOI: 10.1016/j.cytogfr.2014.08.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 12/25/2022]
Abstract
During the immune response, striking the right balance between positive and negative regulation is critical to effectively mount an anti-microbial defense while preventing detrimental effects from exacerbated immune activation. Intra-cellular immune signaling is tightly regulated by various post-translational modifications, which allow for this dynamic response. One of the post-translational modifiers critical for immune control is ubiquitin, which can be covalently conjugated to lysines in target molecules, thereby altering their functional properties. This is achieved in a process involving E3 ligases which determine ubiquitination target specificity. One of the most prominent E3 ligase families is that of the tripartite motif (TRIM) proteins, which counts over 70 members in humans. Over the last years, various studies have contributed to the notion that many members of this protein family are important immune regulators. Recent studies into the mechanisms by which some of the TRIMs regulate the innate immune system have uncovered important immune regulatory roles of both covalently attached, as well as unanchored poly-ubiquitin chains. This review highlights TRIM evolution, recent findings in TRIM-mediated immune regulation, and provides an outlook to current research hurdles and future directions.
Collapse
Affiliation(s)
- Gijs A Versteeg
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria.
| | - Stefan Benke
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ricardo Rajsbaum
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; University of Texas Medical Branch, Department of Microbiology and Immunology, 301 University Avenue, Galveston, TX 77555, USA
| |
Collapse
|
2288
|
Kambara H, Niazi F, Kostadinova L, Moonka DK, Siegel CT, Post AB, Carnero E, Barriocanal M, Fortes P, Anthony DD, Valadkhan S. Negative regulation of the interferon response by an interferon-induced long non-coding RNA. Nucleic Acids Res 2014; 42:10668-80. [PMID: 25122750 PMCID: PMC4176326 DOI: 10.1093/nar/gku713] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play critical roles in diverse cellular processes; however, their involvement in many critical aspects of the immune response including the interferon (IFN) response remains poorly understood. To address this gap, we compared the global gene expression pattern of primary human hepatocytes before and at three time points after treatment with IFN-α. Among ∼200 IFN-induced lncRNAs, one transcript showed ∼100-fold induction. This RNA, which we named lncRNA-CMPK2, was a spliced, polyadenylated nuclear transcript that was induced by IFN in diverse cell types from human and mouse. Similar to protein-coding IFN-stimulated genes (ISGs), its induction was dependent on JAK-STAT signaling. Intriguingly, knockdown of lncRNA-CMPK2 resulted in a marked reduction in HCV replication in IFN-stimulated hepatocytes, suggesting that it could affect the antiviral role of IFN. We could show that lncRNA-CMPK2 knockdown resulted in upregulation of several protein-coding antiviral ISGs. The observed upregulation was caused by an increase in both basal and IFN-stimulated transcription, consistent with loss of transcriptional inhibition in knockdown cells. These results indicate that the IFN response involves a lncRNA-mediated negative regulatory mechanism. lncRNA-CMPK2 was strongly upregulated in a subset of HCV-infected human livers, suggesting a role in modulation of the IFN response in vivo.
Collapse
Affiliation(s)
- Hiroto Kambara
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Farshad Niazi
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lenche Kostadinova
- Divisions of Infectious and Rheumatic Diseases, Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dilip K Moonka
- Division of Gastroenterology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Christopher T Siegel
- Department of Surgery, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Anthony B Post
- Department of Gastroenterology, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Elena Carnero
- Department of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Marina Barriocanal
- Department of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Puri Fortes
- Department of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Donald D Anthony
- Divisions of Infectious and Rheumatic Diseases, Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Saba Valadkhan
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
2289
|
Meissner EG, Wu D, Osinusi A, Bon D, Virtaneva K, Sturdevant D, Porcella S, Wang H, Herrmann E, McHutchison J, Suffredini AF, Polis M, Hewitt S, Prokunina-Olsson L, Masur H, Fauci AS, Kottilil S. Endogenous intrahepatic IFNs and association with IFN-free HCV treatment outcome. J Clin Invest 2014; 124:3352-63. [PMID: 24983321 PMCID: PMC4109554 DOI: 10.1172/jci75938] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/19/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND. Hepatitis C virus (HCV) infects approximately 170 million people worldwide and may lead to cirrhosis and hepatocellular carcinoma in chronically infected individuals. Treatment is rapidly evolving from IFN-α-based therapies to IFN-α-free regimens that consist of directly acting antiviral agents (DAAs), which demonstrate improved efficacy and tolerability in clinical trials. Virologic relapse after DAA therapy is a common cause of treatment failure; however, it is not clear why relapse occurs or whether certain individuals are more prone to recurrent viremia. METHODS. We conducted a clinical trial using the DAA sofosbuvir plus ribavirin (SOF/RBV) and performed detailed mRNA expression analysis in liver and peripheral blood from patients who achieved either a sustained virologic response (SVR) or relapsed. RESULTS. On-treatment viral clearance was accompanied by rapid downregulation of IFN-stimulated genes (ISGs) in liver and blood, regardless of treatment outcome. Analysis of paired pretreatment and end of treatment (EOT) liver biopsies from SVR patients showed that viral clearance was accompanied by decreased expression of type II and III IFNs, but unexpectedly increased expression of the type I IFN IFNA2. mRNA expression of ISGs was higher in EOT liver biopsies of patients who achieved SVR than in patients who later relapsed. CONCLUSION. These results suggest that restoration of type I intrahepatic IFN signaling by EOT may facilitate HCV eradication and prevention of relapse upon withdrawal of SOF/RBV. TRIAL REGISTRATION. ClinicalTrials.gov NCT01441180.
Collapse
Affiliation(s)
- Eric G. Meissner
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - David Wu
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Anu Osinusi
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Dimitra Bon
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Kimmo Virtaneva
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Dan Sturdevant
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Steve Porcella
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Honghui Wang
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Eva Herrmann
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - John McHutchison
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Anthony F. Suffredini
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Michael Polis
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Stephen Hewitt
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Ludmila Prokunina-Olsson
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Henry Masur
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Anthony S. Fauci
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Shyamasundaran Kottilil
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| |
Collapse
|
2290
|
Racicot K, Kwon JY, Aldo P, Silasi M, Mor G. Understanding the complexity of the immune system during pregnancy. Am J Reprod Immunol 2014; 72:107-16. [PMID: 24995526 PMCID: PMC6800182 DOI: 10.1111/aji.12289] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 06/16/2014] [Indexed: 12/14/2022] Open
Abstract
Progress in our understanding of the role of the maternal immune system during healthy pregnancy will help us better understand the role of the immune system in adverse pregnancy outcomes. In this review, we discuss our present understanding of the 'immunity of pregnancy' in the context of the response to cervical and placental infections and how these responses affect both the mother and the fetus. We discuss novel and challenging concepts that help explain the immunological aspects of pregnancy and how the mother and fetus respond to infection.
Collapse
Affiliation(s)
- Karen Racicot
- Division of Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
2291
|
Abstract
The interferons (IFNs) are glycoproteins with strong antiviral activities that represent one of the first lines of host defense against invading pathogens. These proteins are classified into three groups, Type I, II and III IFNs, based on the structure of their receptors on the cell surface. Due to their ability to modulate immune responses, they have become attractive therapeutic options to control chronic virus infections. In combination with other drugs, Type I IFNs are considered as "standard of care" in suppressing Hepatitis C (HCV) and Hepatitis B (HBV) infections, while Type III IFN has generated encouraging results as a treatment for HCV infection in phase III clinical trials. However, though effective, using IFNs as a treatment is not without the need for caution. IFNs are such powerful cytokines that affect a wide array of cell types; as a result, patients usually experience unpleasant symptoms, with a percentage of patients suffering system wide effects. Thus, constant monitoring is required for patients treated with IFN in order to reach the treatment goals of suppressing virus infection and maintaining quality of life.
Collapse
Affiliation(s)
- Fan-ching Lin
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer, Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Howard A Young
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer, Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
2292
|
Donlin LT, Jayatilleke A, Giannopoulou EG, Kalliolias GD, Ivashkiv LB. Modulation of TNF-induced macrophage polarization by synovial fibroblasts. THE JOURNAL OF IMMUNOLOGY 2014; 193:2373-83. [PMID: 25057003 DOI: 10.4049/jimmunol.1400486] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stromal cells have emerged as powerful modulators of the immune system. In this study, we explored how the human macrophage response to TNF is regulated by human synovial fibroblasts, the representative stromal cell type in the synovial lining of joints that become activated during inflammatory arthritis. We found that synovial fibroblasts strongly suppressed TNF-mediated induction of an IFN-β autocrine loop and downstream expression of IFN-stimulated genes (ISGs), including chemokines CXCL9 and CXCL10 that are characteristic of classical macrophage activation. TNF induced the production of soluble synovial fibroblast factors that suppressed the macrophage production of IFN-β, and cooperated with TNF to limit the responsiveness of macrophages to IFN-β by suppressing activation of Jak-STAT signaling. Genome-wide transcriptome analysis showed that cocultured synovial fibroblasts modulate the expression of approximately one third of TNF-regulated genes in macrophages, including genes in pathways important for macrophage survival and polarization toward an alternatively activated phenotype. Pathway analysis revealed that gene expression programs regulated by synovial fibroblasts in our coculture system were also regulated in rheumatoid arthritis synovial macrophages, suggesting that these fibroblast-mediated changes may contribute to rheumatoid arthritis pathogenesis. This work furthers our understanding of the interplay between innate immune and stromal cells during an inflammatory response, one that is particularly relevant to inflammatory arthritis. Our findings also identify modulation of macrophage phenotype as a new function for synovial fibroblasts that may prove to be a contributing factor in arthritis pathogenesis.
Collapse
Affiliation(s)
- Laura T Donlin
- Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021;
| | - Arundathi Jayatilleke
- Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| | - Eugenia G Giannopoulou
- Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021; Biological Sciences Department, New York City College of Technology, City University of New York, New York, NY 11201
| | - George D Kalliolias
- Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021; Department of Medicine, Weill Cornell Medical College, New York, NY 10021; and
| | - Lionel B Ivashkiv
- Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021; Department of Medicine, Weill Cornell Medical College, New York, NY 10021; and Weill Cornell Graduate School of Medical Sciences, New York, NY 10021
| |
Collapse
|
2293
|
Bruns AM, Horvath CM. Antiviral RNA recognition and assembly by RLR family innate immune sensors. Cytokine Growth Factor Rev 2014; 25:507-12. [PMID: 25081315 DOI: 10.1016/j.cytogfr.2014.07.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 12/24/2022]
Abstract
Virus-encoded molecular signatures, such as cytosolic double-stranded or otherwise biochemically distinct RNA species, trigger cellular antiviral signaling. Cytoplasmic proteins recognize these non-self RNAs and activate signal transduction pathways that drive the expression of virus-induced genes, including the primary antiviral cytokine, IFNβ, and diverse direct and indirect antiviral effectors. One important group of cytosolic RNA sensors known as the RIG-I-like receptors (RLRs) is comprised of three proteins that are similar in structure and function. The RLR proteins, RIG-I, MDA5, and LGP2, share the ability to recognize nucleic acid signatures produced by virus infections and activate antiviral signaling. Emerging evidence indicates that RNA detection by RLRs culminates in the assembly of dynamic multimeric ribonucleoprotein (RNP) complexes. These RNPs can act as signaling platforms that are capable of propagating and amplifying antiviral signaling responses. Despite their common domain structures and similar abilities to induce antiviral responses, the RLRs differ in their enzymatic properties, their intrinsic abilities to recognize RNA, and their ability to assemble into filamentous complexes. This molecular specialization has enabled the RLRs to recognize and respond to diverse virus infections, and to mediate both unique and overlapping functions in immune regulation.
Collapse
Affiliation(s)
- Annie M Bruns
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Curt M Horvath
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
2294
|
|
2295
|
Interferon-induced protein Ifit2 protects mice from infection of the peripheral nervous system by vesicular stomatitis virus. J Virol 2014; 88:10303-11. [PMID: 24991014 DOI: 10.1128/jvi.01341-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The interferon system provides the first line of host defense against virus infection. Mouse pathogenesis studies have revealed the importance of specific interferon-induced proteins in providing protection against specific viruses. We have previously reported that one such protein, Ifit2, protects neurons of the central nervous system from intranasal infection by the neurotropic rhabdovirus, vesicular stomatitis virus (VSV). Here, we demonstrate that Ifit2 protects the peripheral nervous system from VSV infection as well. In Ifit2(-/-) mice, VSV, injected subcutaneously into the footpad, entered the proximal lymph node, where it replicated and infected the nodal nerve endings. The infection spread to the sciatic nerve, the spinal cord, and the brain, causing paralysis. In contrast, in the wild-type mice, although VSV replicated equally well in the lymph node, infection of the sciatic nerve and the rest of the nervous system was impaired, thus preventing paralysis. Ifit2 protected only the nervous system from VSV infection; other tissues were well protected even in Ifit2(-/-) mice. These results indicate that Ifit2 is the interferon-induced protein that prevents VSV infection of neurons of both the peripheral and the central nervous systems, thus inhibiting the consequent neuropathy, but it is dispensable for protecting the cells of other tissues from VSV infection. IMPORTANCE Although viral infection is quite common, the immune system effectively protects us from viral diseases. A major part of this protection is mediated by interferon, the antiviral cytokine secreted by virus-infected cells. To empower the neighboring uninfected cells in combating the oncoming infection, interferon induces the synthesis of more than 200 new proteins, many of which have antiviral activities. The virus studied here, vesicular stomatitis virus (VSV), like its relative, rabies virus, can cause neuropathy in mice if it enters the peripheral nervous system through skin lesions; however, interferon can protect neurons from VSV infection. We have identified a specific interferon-induced protein, Ifit2, as the protein that protects neurons from VSV infection. Surprisingly, Ifit2 was not needed to protect other cell types from VSV. Our results indicate that the effector antiviral proteins of the interferon system have highly specialized functions.
Collapse
|
2296
|
Ferreira RC, Guo H, Coulson RMR, Smyth DJ, Pekalski ML, Burren OS, Cutler AJ, Doecke JD, Flint S, McKinney EF, Lyons PA, Smith KGC, Achenbach P, Beyerlein A, Dunger DB, Clayton DG, Wicker LS, Todd JA, Bonifacio E, Wallace C, Ziegler AG. A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes. Diabetes 2014; 63:2538-50. [PMID: 24561305 PMCID: PMC4066333 DOI: 10.2337/db13-1777] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diagnosis of the autoimmune disease type 1 diabetes (T1D) is preceded by the appearance of circulating autoantibodies to pancreatic islets. However, almost nothing is known about events leading to this islet autoimmunity. Previous epidemiological and genetic data have associated viral infections and antiviral type I interferon (IFN) immune response genes with T1D. Here, we first used DNA microarray analysis to identify IFN-β-inducible genes in vitro and then used this set of genes to define an IFN-inducible transcriptional signature in peripheral blood mononuclear cells from a group of active systemic lupus erythematosus patients (n = 25). Using this predefined set of 225 IFN signature genes, we investigated the expression of the signature in cohorts of healthy controls (n = 87), patients with T1D (n = 64), and a large longitudinal birth cohort of children genetically predisposed to T1D (n = 109; 454 microarrayed samples). Expression of the IFN signature was increased in genetically predisposed children before the development of autoantibodies (P = 0.0012) but not in patients with established T1D. Upregulation of IFN-inducible genes was transient, temporally associated with a recent history of upper respiratory tract infections (P = 0.0064), and marked by increased expression of SIGLEC-1 (CD169), a lectin-like receptor expressed on CD14(+) monocytes. DNA variation in IFN-inducible genes altered T1D risk (P = 0.007), as exemplified by IFIH1, one of the genes in our IFN signature for which increased expression is a known risk factor for disease. These findings identify transient increased expression of type I IFN genes in preclinical diabetes as a risk factor for autoimmunity in children with a genetic predisposition to T1D.
Collapse
Affiliation(s)
- Ricardo C Ferreira
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Hui Guo
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Richard M R Coulson
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K.Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, U.K
| | - Deborah J Smyth
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Marcin L Pekalski
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Oliver S Burren
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Antony J Cutler
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - James D Doecke
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K.The Australian E-Health Research Centre, Royal Brisbane and Women's Hospital, Queensland, AustraliaThe Commonwealth Scientific and Industrial Research Organisation (CSIRO) Preventative Health Flagship, Victoria, AustraliaCSIRO Mathematics and Information Sciences, Macquarie University, New South Wales, Australia
| | - Shaun Flint
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, U.K
| | - Eoin F McKinney
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, U.K
| | - Paul A Lyons
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, U.K
| | - Kenneth G C Smith
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, U.K
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, Neuherberg, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Andreas Beyerlein
- Institute of Diabetes Research, Helmholtz Zentrum München, Neuherberg, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - David B Dunger
- Department of Paediatrics, School of Clinical Medicine, University of Cambridge, Cambridge, U.K
| | - David G Clayton
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Linda S Wicker
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - John A Todd
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K.
| | - Ezio Bonifacio
- CRTD-DFG Research Center for Regenerative Therapies Dresden and Paul Langerhans Institute Dresden, Technische Universität Dresden, Dresden, Germany
| | - Chris Wallace
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K.
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Neuherberg, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, München, Germany
| |
Collapse
|
2297
|
Snijders AM, Langley S, Mao JH, Bhatnagar S, Bjornstad KA, Rosen CJ, Lo A, Huang Y, Blakely EA, Karpen GH, Bissell MJ, Wyrobek AJ. An interferon signature identified by RNA-sequencing of mammary tissues varies across the estrous cycle and is predictive of metastasis-free survival. Oncotarget 2014; 5:4011-4025. [PMID: 24994117 PMCID: PMC4147302 DOI: 10.18632/oncotarget.2148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 06/28/2014] [Indexed: 01/08/2023] Open
Abstract
The concept that a breast cancer patient's menstrual stage at the time of tumor surgery influences risk of metastases remains controversial. The scarcity of comprehensive molecular studies of menstrual stage-dependent fluctuations in the breast provides little insight in this observation. To gain a deeper understanding of the biological changes in mammary tissue and blood during the menstrual cycle and to determine the influence of environmental exposures, such as low-dose ionizing radiation (LDIR), we used the mouse to characterize estrous-cycle variations in mammary gene transcripts by RNA-sequencing, peripheral white blood cell (WBC) counts and plasma cytokine levels. We identified an estrous-variable and hormone-dependent gene cluster enriched for Type-1 interferon genes. Cox regression identified a 117-gene signature of interferon-associated genes, which correlated with lower frequencies of metastasis in breast cancer patients. LDIR (10cGy) exposure had no detectable effect on mammary transcripts. However, peripheral WBC counts varied across the estrous cycle and LDIR exposure reduced lymphocyte counts and cytokine levels in tumor-susceptible mice. Our finding of variations in mammary Type-1 interferon and immune functions across the estrous cycle provides a mechanism by which timing of breast tumor surgery during the menstrual cycle may have clinical relevance to a patient's risk for distant metastases.
Collapse
Affiliation(s)
| | - Sasha Langley
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Jian-Hua Mao
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Sandhya Bhatnagar
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | | | - Chris J. Rosen
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Alvin Lo
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Yurong Huang
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Eleanor A. Blakely
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Gary H. Karpen
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Andrew J. Wyrobek
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| |
Collapse
|
2298
|
Reid E, Charleston B. Type I and III interferon production in response to RNA viruses. J Interferon Cytokine Res 2014; 34:649-58. [PMID: 24956361 DOI: 10.1089/jir.2014.0066] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The biology of RNA viruses is closely linked to the type I and type III interferon (IFN) response of the host. These viruses display a range of molecular patterns that may be detected by host cells resulting in the induction of IFNs. Consequently, there are many examples of mechanisms employed by RNA viruses to block or delay IFN induction and reduce the expression of IFN-stimulated genes (ISGs), a necessary step in the virus lifecycle because of the capacity of IFNs to block virus replication. Efficient transmission of viruses depends, in part, on maintaining a balance between virus replication and host survival; specialized host cells, such as plasmacytoid dendritic cells, can sense viral molecular patterns and produce IFNs to help maintain this balance. There are now many examples of RNA viruses inducing type I and type III IFNs, and although these IFNs act through different receptors, in many systems studied, they induce a similar spectrum of genes. However, there may be a difference in the temporal expression pattern, with more prolonged expression of ISGs in response to type III IFN compared with type I IFN. There are also examples of synergy between type I and type III IFNs to induce antiviral responses. Clearly, it is important to understand the different roles of these IFNs in the antiviral response in vivo. One of the most striking differences between these 2 IFN systems is the distribution of the receptors: type I IFN receptors are expressed on most cells, yet type III receptor expression is restricted primarily to epithelial cells but has also been demonstrated on other cells, including dendritic cells. There is increasing evidence that type III IFNs are a key control mechanism against RNA viruses that infect respiratory and enteric epithelia.
Collapse
Affiliation(s)
- Elizabeth Reid
- Viral Immunology, The Pirbright Institute , Surrey, United Kingdom
| | | |
Collapse
|
2299
|
Transfer of the amino-terminal nuclear envelope targeting domain of human MX2 converts MX1 into an HIV-1 resistance factor. J Virol 2014; 88:9017-26. [PMID: 24899177 DOI: 10.1128/jvi.01269-14] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The myxovirus resistance 2 (MX2) protein of humans has been identified recently as an interferon (IFN)-inducible inhibitor of human immunodeficiency virus type 1 (HIV-1) that acts at a late postentry step of infection to prevent the nuclear accumulation of viral cDNA (C. Goujon et al., Nature 502:559-562, 2013, http://dx.doi.org/10.1038/nature12542; M. Kane et al., Nature 502:563-566, 2013, http://dx.doi.org/10.1038/nature12653; Z. Liu et al., Cell Host Microbe 14:398-410, 2013, http://dx.doi.org/10.1016/j.chom.2013.08.015). In contrast, the closely related human MX1 protein, which suppresses infection by a range of RNA and DNA viruses (such as influenza A virus [FluAV]), is ineffective against HIV-1. Using a panel of engineered chimeric MX1/2 proteins, we demonstrate that the amino-terminal 91-amino-acid domain of MX2 confers full anti-HIV-1 function when transferred to the amino terminus of MX1, and that this fusion protein retains full anti-FluAV activity. Confocal microscopy experiments further show that this MX1/2 fusion, similar to MX2 but not MX1, can localize to the nuclear envelope (NE), linking HIV-1 inhibition with MX accumulation at the NE. MX proteins are dynamin-like GTPases, and while MX1 antiviral function requires GTPase activity, neither MX2 nor MX1/2 chimeras require this attribute to inhibit HIV-1. This key discrepancy between the characteristics of MX1- and MX2-mediated viral resistance, together with previous observations showing that the L4 loop of the stalk domain of MX1 is a critical determinant of viral substrate specificity, presumably reflect fundamental differences in the mechanisms of antiviral suppression. Accordingly, we propose that further comparative studies of MX proteins will help illuminate the molecular basis and subcellular localization requirements for implementing the noted diversity of virus inhibition by MX proteins. IMPORTANCE Interferon (IFN) elicits an antiviral state in cells through the induction of hundreds of IFN-stimulated genes (ISGs). The human MX2 protein has been identified as a key effector in the suppression of HIV-1 infection by IFN. Here, we describe a molecular genetic approach, using a collection of chimeric MX proteins, to identify protein domains of MX2 that specify HIV-1 inhibition. The amino-terminal 91-amino-acid domain of human MX2 confers HIV-1 suppressor capabilities upon human and mouse MX proteins and also promotes protein accumulation at the nuclear envelope. Therefore, these studies correlate the cellular location of MX proteins with anti-HIV-1 function and help establish a framework for future mechanistic analyses of MX-mediated virus control.
Collapse
|
2300
|
Davis MA, Gale M. Antiviral and inflammatory crosstalk in the control of RNA virus infection. Future Virol 2014. [DOI: 10.2217/fvl.14.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Michael A Davis
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|