2251
|
Börcsök J, Diossy M, Sztupinszki Z, Prosz A, Tisza V, Spisak S, Rusz O, Stormoen DR, Pappot H, Csabai I, Brunak S, Mouw KW, Szallasi Z. Detection of Molecular Signatures of Homologous Recombination Deficiency in Bladder Cancer. Clin Cancer Res 2021; 27:3734-3743. [PMID: 33947694 DOI: 10.1158/1078-0432.ccr-20-5037] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/11/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Poly (ADP ribose)-polymerase (PARP) inhibitors are approved for use in breast, ovarian, prostate, and pancreatic cancers, which are the solid tumor types that most frequently have alterations in key homologous recombination (HR) genes, such as BRCA1/2. However, the frequency of HR deficiency (HRD) in other solid tumor types, including bladder cancer, is less well characterized. EXPERIMENTAL DESIGN Specific DNA aberration profiles (mutational signatures) are induced by HRD, and the presence of these "genomic scars" can be used to assess the presence or absence of HRD in a given tumor biopsy even in the absence of an observed alteration of an HR gene. Using whole-exome and whole-genome data, we measured various HRD-associated mutational signatures in bladder cancer. RESULTS We found that a subset of bladder tumors have evidence of HRD. In addition to a small number of tumors with biallelic BRCA1/2 events, approximately 10% of bladder tumors had significant evidence of HRD-associated mutational signatures. Increased levels of HRD signatures were associated with promoter methylation of RBBP8, which encodes CtIP, a key protein involved in HR. CONCLUSIONS A subset of bladder tumors have genomic features suggestive of HRD and therefore may be more likely to benefit from therapies such as platinum agents and PARP inhibitors that target tumor HRD.
Collapse
Affiliation(s)
- Judit Börcsök
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Miklos Diossy
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Zsofia Sztupinszki
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts
| | - Aurel Prosz
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Viktoria Tisza
- Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts
| | - Sandor Spisak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Orsolya Rusz
- 2nd Department of Pathology, SE NAP, Brain Metastasis Research Group, Semmelweis University, Budapest, Hungary
| | - Dag R Stormoen
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Helle Pappot
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Istvan Csabai
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Zoltan Szallasi
- Danish Cancer Society Research Center, Copenhagen, Denmark. .,Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts.,2nd Department of Pathology, SE NAP, Brain Metastasis Research Group, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2252
|
Zhang Y, Chen J, Zhou N, Lu Y, Lu J, Xing X, Chen H, Zhang X. FUBP1 mediates the growth and metastasis through TGFβ/Smad signaling in pancreatic adenocarcinoma. Int J Mol Med 2021; 47:66. [PMID: 33649780 PMCID: PMC7952245 DOI: 10.3892/ijmm.2021.4899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/29/2021] [Indexed: 11/06/2022] Open
Abstract
Recent studies have reported that the expression levels of far upstream element‑binding protein 1 (FUBP1) were upregulated and served a crucial role in several types of cancer. However, the underlying molecular mechanisms and clinical significance of FUBP1 in pancreatic adenocarcinoma (PAAD) remain unclear. The present study aimed to determine the expression levels of FUBP1 in patients with PAAD and subsequently investigated the biological functions and mechanisms of FUBP1 using in vitro assays. FUBP1 expression levels and survival outcomes in patients with PAAD were analyzed using The Cancer Genome Atlas and starBase databases. Reverse transcription‑quantitative PCR was used to analyze the mRNA expression levels of FUBP1 in PAAD and adjacent normal tissues. In addition, the expression of FUBP1 was knocked down with small interfering RNA and overexpressed using FUBP1‑overexpressed plasmids, and the effects on biological functions, including cell proliferation, migration and invasion, were investigated. Western blotting and immunofluorescence assays were used to determine the role of FUBP1 in epithelial‑mesenchymal transition (EMT). The results of the present study revealed that the expression levels of FUBP1 were upregulated in PAAD tissues compared with adjacent normal tissues and the upregulated expression was significantly associated with poor survival. The knockdown of FUBP1 expression significantly inhibited the proliferative, migratory and invasive abilities of the PAAD PaTu8988 cell line, while the overexpression of FUBP1 promoted cell proliferation, migration and invasion in the PAAD SW1990 cell line. Furthermore, the knockdown of FUBP1 downregulated the expression levels of EMT‑related markers, including N‑cadherin, β‑catenin and vimentin, while the expression levels of E‑cadherin were upregulated. The knockdown of FUBP1 was also revealed to regulate the TGFβ/Smad signaling cascade by downregulating phosphorylated‑Smad2/3 and TGFβ1 expression levels. Conversely, the overexpression of FUBP1 reversed these effects. In conclusion, the findings of the present study indicated that FUBP1 may be a potential oncogene that mediates the EMT of PAAD via TGFβ/Smad signaling. These data suggested that FUBP1 may represent a potential biomarker for the diagnosis of PAAD or a target for the treatment of patients with PAAD.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian District Central Hospital, Shanghai 201499, P.R. China
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Jinlian Chen
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian District Central Hospital, Shanghai 201499, P.R. China
| | - Nvshi Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yun Lu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Jingwen Lu
- Department of Pathology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, P.R. China
| | - Xin Xing
- Central Laboratory, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian District Central Hospital, Shanghai 201499, P.R. China
| | - Hua Chen
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian District Central Hospital, Shanghai 201499, P.R. China
| | - Xingxing Zhang
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian District Central Hospital, Shanghai 201499, P.R. China
| |
Collapse
|
2253
|
Wu Q, Luo X, Li H, Zhang L, Su F, hou S, Yin J, Zhang W, Zou L. Identification of differentially expressed circular RNAs associated with thymoma. Thorac Cancer 2021; 12:1312-1319. [PMID: 33704915 PMCID: PMC8088952 DOI: 10.1111/1759-7714.13873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Thymomas and thymic carcinomas are the most common tumor types among anterior mediastinal lesions. However, the relationship between molecular aberrations and thymoma patients are poorly understood, especially abnormal changes in the expression profiles of circRNAs. The purpose of the present study was to investigate the expression profiles of circRNAs in thymoma patients and their possible roles in the pathogenesis of thymoma. METHODS Diseased tissues and surrounding normal thymic tissues in two thymoma patients were collected for circRNA sequencing. The top four upregulated circRNAs were selected as candidates and further validated with RT-PCR in 20 thymoma patients. Gene ontology and signal transduction network analyses of circRNA-related mRNAs were performed to analyze the functional properties. Survival analysis of their parental genes were also carried out to evaluate the clinical value of differentially expressed circRNA. RESULTS A total of 73 circRNAs were differentially expressed in thymoma tissues using high-throughput sequencing. Among these circRNAs, hsa_circ_0001173, hsa_circ_0007291, hsa_circ_0003550, and hsa_circ_0001947 were significantly upregulated in thymoma tissues compared with normal thymic tissues. We identified that these four circRNA-related mRNAs were involved in cell-cell adhesion, MAPK pathways, and TNF pathway, which may contribute to the pathological immune disorder in thymoma. Finally, we also found that SCAP (hsa_circ_0007291 parental gene) and AFF2 (hsa_circ_0001947 parental gene) were all significantly related with progression-free survival (PFS) of thymoma patients in a Kaplan-Meier plot (p-value <0.05). CONCLUSIONS The expression levels of hsa_circ_0001173, hsa_circ_0007291, hsa_circ_0003550, and hsa_circ_0001947 were significantly upregulated and positively correlated with immune imbalance in thymoma patients.
Collapse
Affiliation(s)
- Qingjun Wu
- Department of thoracic surgeryBeijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Xuanmei Luo
- The Key Laboratory of Geriatrics, Beijing Institute of GeriatricsBeijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Hexin Li
- Clinical BiobankBeijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Lili Zhang
- Clinical BiobankBeijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Fei Su
- Clinical BiobankBeijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Shifang hou
- Department of NeurologyBeijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Jian Yin
- Department of NeurologyBeijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Wei Zhang
- Department of Pathology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Lihui Zou
- The Key Laboratory of Geriatrics, Beijing Institute of GeriatricsBeijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
2254
|
Ghozlan H, Showalter A, Lee E, Zhu X, Khaled AR. Chaperonin-Containing TCP1 Complex (CCT) Promotes Breast Cancer Growth Through Correlations With Key Cell Cycle Regulators. Front Oncol 2021; 11:663877. [PMID: 33996588 PMCID: PMC8121004 DOI: 10.3389/fonc.2021.663877] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Uncontrolled proliferation as a result of dysregulated cell cycling is one of the hallmarks of cancer. Therapeutically targeting pathways that control the cell cycle would improve patient outcomes. However, the development of drug resistance and a limited number of inhibitors that target multiple cell cycle modulators are challenges that impede stopping the deregulated growth that leads to malignancy. To advance the discovery of new druggable targets for cell cycle inhibition, we investigated the role of Chaperonin-Containing TCP1 (CCT or TRiC) in breast cancer cells. CCT, a type II chaperonin, is a multi-subunit protein-folding complex that interacts with many oncoproteins and mutant tumor suppressors. CCT subunits are highly expressed in a number of cancers, including breast cancer. We found that expression of one of the CCT subunits, CCT2, inversely correlates with breast cancer patient survival and is subject to copy number alterations through genomic amplification. To investigate a role for CCT2 in the regulation of the cell cycle, we expressed an exogenous CCT2-FLAG construct in T47D and MCF7 luminal A breast cancer cells and examined cell proliferation under conditions of two-dimensional (2D) monolayer and three-dimensional (3D) spheroid cultures. Exogenous CCT2 increased the proliferation of cancer cells, resulting in larger and multiple spheroids as compared to control cells. CCT2-expressing cells were also able to undergo spheroid growth reversal, re-attaching, and resuming growth in 2D cultures. Such cells gained anchorage-independent growth. CCT2 expression in cells correlated with increased expression of MYC, especially in spheroid cultures, and other cell cycle regulators like CCND1 and CDK2, indicative of a novel activity that could contribute to the increase in cell growth. Statistically significant correlations between CCT2, MYC, and CCND1 were shown. Since CCT2 is located on chromosome 12q15, an amplicon frequently found in soft tissue cancers as well as breast cancer, CCT2 may have the basic characteristics of an oncogene. Our findings suggest that CCT2 could be an essential driver of cell division that may be a node through which pathways involving MYC, cyclin D1 and other proliferative factors could converge. Hence the therapeutic inhibition of CCT2 may have the potential to achieve multi-target inhibition, overcoming the limitations associated with single agent inhibitors.
Collapse
Affiliation(s)
- Heba Ghozlan
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Adrian Showalter
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Eunkyung Lee
- Department of Health Sciences, College of Health Professions and Sciences, University of Central Florida, Orlando, FL, United States
| | - Xiang Zhu
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Annette R Khaled
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
2255
|
Zhang W, Yang C, Wang S, Xiang Z, Dou R, Lin Z, Zheng J, Xiong B. SDC2 and TFPI2 Methylation in Stool Samples as an Integrated Biomarker for Early Detection of Colorectal Cancer. Cancer Manag Res 2021; 13:3601-3617. [PMID: 33958894 PMCID: PMC8096344 DOI: 10.2147/cmar.s300861] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
Background Detection of aberrant methylated DNA in the stool is an effective early screening method for colorectal cancer (CRC). Previously, reporters identified that syndecan-2 (SDC2) and tissue factor pathway inhibitor 2 (TFPI2) were aberrantly methylated in most CRC tissues. However, the combined diagnostic role of them remains undefined. Our research aimed at probing the role and efficiency of the methylation status of SDC2 and TFPI2 in CRC early screening by using bioinformatics analysis and clinical stool sample validation. Methods The promoter and CpG site methylation levels of SDC2 and TFPI2 and their correlation with clinicopathological characteristics of CRC were analyzed using UALCAN, Methsurv, and Wanderer. UCSC Xena was used to perform survival analyses. LinkedOmics was used to do functional network analysis. DNA was isolated and purified from stool, and quantitative methylation-specific PCR (qMSP) was applied to detect methylatedSDC2 and TFPI2. Results The results showed that promoter and most CpG site methylation levels of SDC2 and TFPI2 were significantly higher in CRC than in normal tissues. Moreover, SDC2 and TFPI2 methylation showed a positive correlation. Functional network analysis suggested that both methylated SDC2 and TFPI2 were involved in tumor cells’ metabolic programs. Besides, there was a higher positive integrated detection rate in CRC (n=61) with a sensitivity of 93.4% and in adenoma (Ade) (n=16) with a sensitivity of 81.3% than normal with a specificity of 94.3% in stool samples. What is more, integration of methylated SDC2 and TFPI2 showed a higher sensitivity and Youden index than a single gene in detecting Adeor CRC. Conclusion Our data indicate that SDC2 and TFPI2 were hypermethylated in CRC, and integrated detection of methylated SDC2 and TFPI2 in stool has the potential to be an effective and noninvasive tool of CRC early screening.
Collapse
Affiliation(s)
- Weisong Zhang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan, 430071, People's Republic of China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan, 430071, People's Republic of China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan, 430071, People's Republic of China
| | - Zhenxian Xiang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan, 430071, People's Republic of China
| | - Rongzhang Dou
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan, 430071, People's Republic of China
| | - Zaihuan Lin
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan, 430071, People's Republic of China
| | - Jinsen Zheng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan, 430071, People's Republic of China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan, 430071, People's Republic of China
| |
Collapse
|
2256
|
Rothzerg E, Xu J, Wood D, Kõks S. 12 Survival-related differentially expressed genes based on the TARGET-osteosarcoma database. Exp Biol Med (Maywood) 2021; 246:2072-2081. [PMID: 33926256 DOI: 10.1177/15353702211007410] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Therapeutically Applicable Research to Generate Effective Treatments (TARGET) project aims to determine molecular changes that drive childhood cancers, including osteosarcoma. The main purpose of the program is to use the open-source database to develop novel, effective, and less toxic therapies. We downloaded TARGET-OS RNA-Sequencing data through R studio and merged the mRNA expression of genes with clinical information (vital status, survival time and gender). Further, we analyzed differential gene expressions between dead and alive patients based on TARGET-OS project. By this study, we found 5758 differentially expressed genes between deceased and alive patients with a false discovery rate below 0.05; 4469 genes were upregulated in deceased patients compared to alive, whereas 1289 genes were downregulated. The survival-related genes were obtained using Kaplan-Meier survival analysis and Cox univariate regression (KM < 0.05 and Cox P-value < 0.05). Out of 5758 differentially expressed genes, only 217 have been associated with overall survival. Eight survival-related downregulated genes (ERCC4, CLUAP1, CTNNBIP1, GCA, RAB40C, SIRPA, USP11, and TCN2) and four survival-related upregulated genes (MUC1, COL13A1, JAG2 and KAZALD1) were selected for further analysis as potential independent prognostic candidate genes. This study may help to discover novel prognostic markers and potential therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia.,Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - David Wood
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
2257
|
The long non-coding RNA MIR31HG regulates the senescence associated secretory phenotype. Nat Commun 2021; 12:2459. [PMID: 33911076 PMCID: PMC8080841 DOI: 10.1038/s41467-021-22746-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
Oncogene-induced senescence provides a barrier against malignant transformation. However, it can also promote cancer through the secretion of a plethora of factors released by senescent cells, called the senescence associated secretory phenotype (SASP). We have previously shown that in proliferating cells, nuclear lncRNA MIR31HG inhibits p16/CDKN2A expression through interaction with polycomb repressor complexes and that during BRAF-induced senescence, MIR31HG is overexpressed and translocates to the cytoplasm. Here, we show that MIR31HG regulates the expression and secretion of a subset of SASP components during BRAF-induced senescence. The SASP secreted from senescent cells depleted for MIR31HG fails to induce paracrine invasion without affecting the growth inhibitory effect. Mechanistically, MIR31HG interacts with YBX1 facilitating its phosphorylation at serine 102 (p-YBX1S102) by the kinase RSK. p-YBX1S102 induces IL1A translation which activates the transcription of the other SASP mRNAs. Our results suggest a dual role for MIR31HG in senescence depending on its localization and points to the lncRNA as a potential therapeutic target in the treatment of senescence-related pathologies. Senescence-associated secretory phenotype (SASP) involves secretion of factors such as pro-inflammatory cytokines. Here the authors show that MIR31HG regulates the expression and secretion of a subset of SASP components that induce paracrine invasion, through interaction with YBX1 and induction of IL1A translation.
Collapse
|
2258
|
Xu W, Li C, Ma B, Lu Z, Wang Y, Jiang H, Luo Y, Yang Y, Wang X, Liao T, Ji Q, Wang Y, Wei W. Identification of Key Functional Gene Signatures Indicative of Dedifferentiation in Papillary Thyroid Cancer. Front Oncol 2021; 11:641851. [PMID: 33996555 PMCID: PMC8113627 DOI: 10.3389/fonc.2021.641851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/19/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Differentiated thyroid cancer (DTC) is the most common type of thyroid cancer. Many of them can relapse to dedifferentiated thyroid cancer (DDTC) and exhibit different gene expression profiles. The underlying mechanism of dedifferentiation and the involved genes or pathways remained to be investigated. Methods: A discovery cohort obtained from patients who received surgical resection in the Fudan University Shanghai Cancer Center (FUSCC) and two validation cohorts derived from Gene Expression Omnibus (GEO) database were used to screen out differentially expressed genes in the dedifferentiation process. Weighted gene co-expression network analysis (WGCNA) was constructed to identify modules highly related to differentiation. Gene Set Enrichment Analysis (GSEA) was used to identify pathways related to differentiation, and all differentially expressed genes were grouped by function based on the GSEA and literature reviewing data. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to control the number of variables in each group. Next, we used logistic regression to build a gene signature in each group to indicate differentiation status, and we computed receiver operating characteristic (ROC) curve to evaluate the indicative performance of each signature. Results: A total of 307 upregulated and 313 downregulated genes in poorly differentiated thyroid cancer (PDTC) compared with papillary thyroid cancer (PTC) and normal thyroid (NT) were screened out in FUSCC cohort and validated in two GEO cohorts. WGCNA of 620 differential genes yielded the seven core genes with the highest correlation with thyroid differentiation score (TDS). Furthermore, 395 genes significantly correlated with TDS in univariate logistic regression analysis were divided into 11 groups. The areas under the ROC curve (AUCs) of the gene signature of group transcription and epigenetic modification, signal and substance transport, extracellular matrix (ECM), and metabolism in the training set [The Cancer Genome Atlas (TCGA) cohort] and validation set (combined GEO cohort) were both >0.75. The gene signature based on group transcription and epigenetic modification, cilia formation and movement, and proliferation can reflect the patient's disease recurrence state. Conclusion: The dedifferentiation of DTC is affected by a variety of mechanisms including many genes. The gene signature of group transcription and epigenetic modification, signal and substance transport, ECM, and metabolism can be used as biomarkers for DDTC.
Collapse
Affiliation(s)
- Weibo Xu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cuiwei Li
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongwu Lu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuchen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hongyi Jiang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Luo
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yichen Yang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
2259
|
Chromatin-Directed Proteomics Identifies ZNF84 as a p53-Independent Regulator of p21 in Genotoxic Stress Response. Cancers (Basel) 2021; 13:cancers13092115. [PMID: 33925586 PMCID: PMC8123910 DOI: 10.3390/cancers13092115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Chemotherapy is a commonly applied anticancer treatment, however therapy-induced senescent growth arrest has been associated with aggressive disease recurrence. The p21 protein, encoded by CDKN1A, plays a vital role in the induction of senescence. Its transcriptional control by p53 is well-established. However, in many cancers where TP53 is mutated, p21 expression must be triggered by p53-independent mechanisms. We here used a chromatin-directed proteomic approach and identified ZNF84 as a regulator of CDKN1A gene expression in various p53-deficient cell lines. Knock-down of ZNF84, an as-yet un-characterized protein, inhibited p21 gene and protein expression in response to doxorubicin and facilitated senescence bypass. Intriguingly, ZNF84 depletion diminished genotoxic burden evoked by doxorubicin. Clinical data association studies indicated the relevance of ZNF84 expression for patient survival. Collectively, we identified ZNF84 as a critical regulator of senescence-proliferation outcome of chemotherapy, opening possibilities for its targeting in novel anti-cancer therapies of p53-mutated tumours. Abstract The p21WAF1/Cip1 protein, encoded by CDKN1A, plays a vital role in senescence, and its transcriptional control by the tumour suppressor p53 is well-established. However, p21 can also be regulated in a p53-independent manner, by mechanisms that still remain less understood. We aimed to expand the knowledge about p53-independent senescence by looking for novel players involved in CDKN1A regulation. We used a chromatin-directed proteomic approach and identified ZNF84 as a novel regulator of p21 in various p53-deficient cell lines treated with cytostatic dose of doxorubicin. Knock-down of ZNF84, an as-yet un-characterized protein, inhibited p21 gene and protein expression in response to doxorubicin, it attenuated senescence and was associated with enhanced proliferation, indicating that ZNF84-deficiency can favor senescence bypass. ZNF84 deficiency was also associated with transcriptomic changes in genes governing various cancer-relevant processes e.g., mitosis. In cells with ZNF84 knock-down we discovered significantly lower level of H2AX Ser139 phosphorylation (γH2AX), which is triggered by DNA double strand breaks. Intriguingly, we observed a reverse correlation between the level of ZNF84 expression and survival rate of colon cancer patients. In conclusion, ZNF84, whose function was previously not recognized, was identified here as a critical p53-independent regulator of senescence, opening possibilities for its targeting in novel therapies of p53-null cancers.
Collapse
|
2260
|
NPRL2 reduces the niraparib sensitivity of castration-resistant prostate cancer via interacting with UBE2M and enhancing neddylation. Exp Cell Res 2021; 403:112614. [PMID: 33905671 DOI: 10.1016/j.yexcr.2021.112614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/03/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022]
Abstract
In this study, we explored the regulatory effects of nitrogen permease regulator 2-like (NPRL2) on niraparib sensitivity, a PARP inhibitor (PARPi) in castrate-resistant prostate cancer (CRPC). Data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) program were retrospectively examined. Gene-set enrichment analysis (GSEA) was conducted between high and low NRPL2 expression prostate adenocarcinoma (PRAD) cases in TCGA. CCK-8 assay, Western blot analysis of apoptotic proteins, and flow cytometric analysis of apoptosis were applied to test niraparib sensitivity. Immunofluorescent (IF) staining and co-immunoprecipitation (co-IP) were conducted to explore the proteins interacting with NPRL2. Results showed that the upregulation of a canonical protein-coding transcript of NPRL2 (ENST00000232501.7) is associated with an unfavorable prognosis. Bioinformatic analysis predicts a physical interaction between NPRL2 and UBE2M, which is validated by a following Co-IP assay. This interaction increases NPRL2 stability by reducing polyubiquitination and proteasomal degradation. Depletion of NPRL2 or UBE2M significantly increases the niraparib sensitivity of CRPC cells and enhances niraparib-induced tumor growth inhibition in vivo. NPRL2 cooperatively enhances UBE2M-mediated neddylation and facilitates the degradation of multiple substrates of Cullin-RING E3 ubiquitin ligases (CRLs). In conclusion, this study identified a novel NPRL2-UBE2M complex in modulating neddylation and niraparib sensitivity of CRPC cells. Therefore, targeting NPRL2 might be considered as an adjuvant strategy for PARPi therapy.
Collapse
|
2261
|
Wang C, Cao M, Jiang X, Yao Y, Liu Z, Luo D. Macrophage balance fraction determines the degree of immunosuppression and metastatic ability of breast cancer. Int Immunopharmacol 2021; 97:107682. [PMID: 33895480 DOI: 10.1016/j.intimp.2021.107682] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/29/2022]
Abstract
Macrophages are important immune cells in the tumor microenvironment and can be divided into two polarized subtypes, M1 and M2. M1 type macrophages have anti-tumor effects, while M2 type macrophages have pro-tumor effect. Most of the current researches are limited to the effect of M1 or M2 macrophages on tumors, while ignoring the overall balance of macrophages. Our research suggests that the macrophage balance fraction (MBF) can more effectively and comprehensively reflect the balance of tumor associated macrophages. Using bioinformatics analysis and in vitro experiments, we found that MBF is also an effective indicator of the degree of immunosuppression and metastatic ability of breast cancer, and different MBF environment can impact the migration and invasion ability of breast cancer cells. Finally, we also found that the mechanism of MBF changes in breast cancer may be affected by breast cancer-derived exosomes. In summary, MBF was proposed and validated as a novel indicator of macrophage balance state. Using this indicator, we found that the balance of macrophages can affect the degree of immunosuppression and metastatic ability of breast cancer.
Collapse
Affiliation(s)
- Chao Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Minghua Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Xiaoli Jiang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Minister of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yudi Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; Gaoxin Hospital of the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhuoqi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China.
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
2262
|
Zhao X, Cong S, Guo Q, Cheng Y, Liang T, Wang J, Zhang G. Combination of Immune-Related Genomic Alterations Reveals Immune Characterization and Prediction of Different Prognostic Risks in Ovarian Cancer. Front Cell Dev Biol 2021; 9:653357. [PMID: 33968933 PMCID: PMC8102990 DOI: 10.3389/fcell.2021.653357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
With the highest case-fatality rate among women, the molecular pathological alterations of ovarian cancer (OV) are complex, depending on the diversity of genomic alterations. Increasing evidence supports that immune infiltration in tumors is associated with prognosis. Therefore, we aim to assess infiltration in OV using multiple methods to capture genomic signatures regulating immune events to identify reliable predictions of different outcomes. A dataset of 309 ovarian serous cystadenocarcinoma patients with overall survival >90 days from The Cancer Genome Atlas (TCGA) was analyzed. Multiple estimations and clustering methods identified and verified two immune clusters with component differences. Functional analyses pointed out immune-related alterations underlying internal genomic variables potentially. After extracting immune genes from a public database, the LASSO Cox regression model with 10-fold cross-validation was used for selecting genes associated with overall survival rate significantly, and a risk score model was then constructed. Kaplan-Meier survival and Cox regression analyses among cohorts were performed systematically to evaluate prognostic efficiency among the risk score model and other clinical pathological parameters, establishing a predictive ability independently. Furthermore, this risk score model was compared among identified signatures in previous studies and applied to two external cohorts, showing better prediction performance and generalization ability, and also validated as robust in association with immune cell infiltration in bulk tissues. Besides, a transcription factor regulation network suggested upper regulatory mechanisms in OV. Our immune risk score model may provide gyneco-oncologists with predictive values for the prognosis and treatment management of patients with OV.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guangmei Zhang
- Department of Gynecology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
2263
|
Li K, Chen L, Zhang H, Wang L, Sha K, Du X, Li D, Zheng Z, Pei R, Lu Y, Tong H. High expression of COMMD7 is an adverse prognostic factor in acute myeloid leukemia. Aging (Albany NY) 2021; 13:11988-12006. [PMID: 33891561 PMCID: PMC8109082 DOI: 10.18632/aging.202901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is a frequent malignancy in adults worldwide; identifying preferable biomarkers has become one of the current challenges. Given that COMMD7 has been reported associated with tumor progression in various human solid cancers but rarely reported in AML, herein, RNA sequencing data from TCGA and GTEx were obtained for analysis of COMMD7 expression and differentially expressed gene (DEG). Furthermore, functional enrichment analysis of COMMD7-related DEGs was performed by GO/KEGG, GSEA, immune cell infiltration analysis, and protein-protein interaction (PPI) network. In addition, the clinical significance of COMMD7 in AML was figured out by Kaplan-Meier Cox regression and prognostic nomogram model. R package was used to analyze incorporated studies. As a result, COMMD7 was highly expressed in various malignancies, including AML, compared with normal samples. Moreover, high expression of COMMD7 was associated with poor prognosis in 151 AML samples, as well as subgroups with age >60, NPM1 mutation-positive, FLT3 mutation-negative, and DNMT3A mutation-negative, et al. (P < 0.05). High COMMD7 was an independent prognostic factor in Cox regression analysis; Age and cytogenetics risk were included in the nomogram prognostic model. Furthermore, a total of 529 DEGs were identified between the high- and the low- expression group, of which 92 genes were up-regulated and 437 genes were down-regulated. Collectively, high expression of COMMD7 is a potential biomarker for adverse outcomes in AML. The DEGs and pathways recognized in the study provide a preliminary grasp of the underlying molecular mechanisms of AML carcinogenesis and progression.
Collapse
Affiliation(s)
- Kongfei Li
- Department of Hematology, People's Hospital Affiliated to Ningbo University, Ningbo 315000, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310003, China
| | - Lieguang Chen
- Department of Hematology, People's Hospital Affiliated to Ningbo University, Ningbo 315000, China
| | - Hua Zhang
- Department of Hematology, Jinshan Hospital of Fudan University, Shanghai 201500, China
| | - Lu Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310003, China
| | - Keya Sha
- Department of Hematology, People's Hospital Affiliated to Ningbo University, Ningbo 315000, China
| | - Xiaohong Du
- Department of Hematology, People's Hospital Affiliated to Ningbo University, Ningbo 315000, China
| | - Daiyang Li
- Shanghai Tissuebank Biotechnology Co., Ltd, Shanghai 201318, China
| | - Zhongzheng Zheng
- Shanghai Tissuebank Biotechnology Co., Ltd, Shanghai 201318, China
| | - Renzhi Pei
- Department of Hematology, People's Hospital Affiliated to Ningbo University, Ningbo 315000, China
| | - Ying Lu
- Department of Hematology, People's Hospital Affiliated to Ningbo University, Ningbo 315000, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
2264
|
Liu Y, Ye X, Zhan X, Yu CY, Zhang J, Huang K. TPQCI: A topology potential-based method to quantify functional influence of copy number variations. Methods 2021; 192:46-56. [PMID: 33894380 DOI: 10.1016/j.ymeth.2021.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
Copy number variation (CNV) is a major type of chromosomal structural variation that play important roles in many diseases including cancers. Due to genome instability, a large number of CNV events can be detected in diseases such as cancer. Therefore, it is important to identify the functionally important CNVs in diseases, which currently still poses a challenge in genomics. One of the critical steps to solve the problem is to define the influence of CNV. In this paper, we provide a topology potential based method, TPQCI, to quantify this kind of influence by integrating statistics, gene regulatory associations, and biological function information. We used this metric to detect functionally enriched genes on genomic segments with CNV in breast cancer and multiple myeloma and discovered biological functions influenced by CNV. Our results demonstrate that, by using our proposed TPQCI metric, we can detect disease-specific genes that are influenced by CNVs. Source codes of TPQCI are provided in Github (https://github.com/usos/TPQCI).
Collapse
Affiliation(s)
- Yusong Liu
- Collage of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China; Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiufen Ye
- Collage of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
| | - Xiaohui Zhan
- Indiana University School of Medicine, Indianapolis, IN 46202, USA; National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518037, China; Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Christina Y Yu
- Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Jie Zhang
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kun Huang
- Indiana University School of Medicine, Indianapolis, IN 46202, USA; Regenstrief Institute, Indianapolis, IN 46202, USA.
| |
Collapse
|
2265
|
Yang YC, Chien MH, Lai TC, Tung MC, Jan YH, Chang WM, Jung SM, Chen MH, Yeh CN, Hsiao M. Proteomics-based identification of TMED9 is linked to vascular invasion and poor prognoses in patients with hepatocellular carcinoma. J Biomed Sci 2021; 28:29. [PMID: 33888099 PMCID: PMC8063382 DOI: 10.1186/s12929-021-00727-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/14/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Due to the difficulties in early diagnosing and treating hepatocellular carcinoma (HCC), prognoses for patients remained poor in the past decade. In this study, we established a screening model to discover novel prognostic biomarkers in HCC patients. METHODS Candidate biomarkers were screened by liquid chromatography with tandem mass spectrometry (LC-MS/MS) analyses of five HCC normal (N)/tumor (T) paired tissues and preliminarily verified them through several in silico database analyses. Expression levels and functional roles of candidate biomarkers were respectively evaluated by immunohistochemical staining in N/T paired tissue (n = 120) and MTS, colony formation, and transwell migration/invasion assays in HCC cell lines. Associations of clinicopathological features and prognoses with candidate biomarkers in HCC patients were analyzed from GEO and TCGA datasets and our recruited cohort. RESULTS We found that the transmembrane P24 trafficking protein 9 (TMED9) protein was elevated in HCC tissues according to a global proteomic analysis. Higher messenger (m)RNA and protein levels of TMED9 were observed in HCC tissues compared to normal liver tissues or pre-neoplastic lesions. The TMED9 mRNA expression level was significantly associated with an advanced stage and a poor prognosis of overall survival (OS, p = 0.00084) in HCC patients. Moreover, the TMED9 protein expression level was positively correlated with vascular invasion (p = 0.026), OS (p = 0.044), and disease-free survival (p = 0.015) in our recruited Taiwanese cohort. In vitro, manipulation of TMED9 expression in HCC cells significantly affected cell migratory, invasive, proliferative, and colony-forming abilities. CONCLUSIONS Ours is the first work to identify an oncogenic role of TMED9 in HCC cells and may provide insights into the application of TMED9 as a novel predictor of clinical outcomes and a potential therapeutic target in patients with HCC.
Collapse
Affiliation(s)
- Yi-Chieh Yang
- Department of Medical Research, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Tsung-Ching Lai
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Min-Che Tung
- Department of Medical Research, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
| | - Yi-Hua Jan
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Wei-Ming Chang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.,School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ming Jung
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Huang Chen
- Department of Oncology, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan. .,School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Chun-Nan Yeh
- Department of General Surgery and Liver Research Center, Linkou Branch, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan. .,Department of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2266
|
Castro-Piedras I, Sharma M, Brelsfoard J, Vartak D, Martinez EG, Rivera C, Molehin D, Bright RK, Fokar M, Guindon J, Pruitt K. Nuclear Dishevelled targets gene regulatory regions and promotes tumor growth. EMBO Rep 2021; 22:e50600. [PMID: 33860601 DOI: 10.15252/embr.202050600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
Dishevelled (DVL) critically regulates Wnt signaling and contributes to a wide spectrum of diseases and is important in normal and pathophysiological settings. However, how it mediates diverse cellular functions remains poorly understood. Recent discoveries have revealed that constitutive Wnt pathway activation contributes to breast cancer malignancy, but the mechanisms by which this occurs are unknown and very few studies have examined the nuclear role of DVL. Here, we have performed DVL3 ChIP-seq analyses and identify novel target genes bound by DVL3. We show that DVL3 depletion alters KMT2D binding to novel targets and changes their epigenetic marks and mRNA levels. We further demonstrate that DVL3 inhibition leads to decreased tumor growth in two different breast cancer models in vivo. Our data uncover new DVL3 functions through its regulation of multiple genes involved in developmental biology, antigen presentation, metabolism, chromatin remodeling, and tumorigenesis. Overall, our study provides unique insight into the function of nuclear DVL, which helps to define its role in mediating aberrant Wnt signaling.
Collapse
Affiliation(s)
- Isabel Castro-Piedras
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Monica Sharma
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jennifer Brelsfoard
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - David Vartak
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edgar G Martinez
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Cristian Rivera
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Deborah Molehin
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert K Bright
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mohamed Fokar
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, USA
| | - Josee Guindon
- Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
2267
|
multiSLIDE is a web server for exploring connected elements of biological pathways in multi-omics data. Nat Commun 2021; 12:2279. [PMID: 33863886 PMCID: PMC8052434 DOI: 10.1038/s41467-021-22650-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Quantitative multi-omics data are difficult to interpret and visualize due to large volume of data, complexity among data features, and heterogeneity of information represented by different omics platforms. Here, we present multiSLIDE, a web-based interactive tool for the simultaneous visualization of interconnected molecular features in heatmaps of multi-omics data sets. multiSLIDE visualizes biologically connected molecular features by keyword search of pathways or genes, offering convenient functionalities to query, rearrange, filter, and cluster data on a web browser in real time. Various querying mechanisms make it adaptable to diverse omics types, and visualizations are customizable. We demonstrate the versatility of multiSLIDE through three examples, showcasing its applicability to a wide range of multi-omics data sets, by allowing users to visualize established links between molecules from different omics data, as well as incorporate custom inter-molecular relationship information into the visualization. Online and stand-alone versions of multiSLIDE are available at https://github.com/soumitag/multiSLIDE. The integration and interpretation of different omics data types is an ongoing challenge for biologists. Here, the authors present a web-based, interactive tool called multiSLIDE for the visualization of protein, phosphoprotein, and RNA data presented as interlinked heatmaps.
Collapse
|
2268
|
He Q, Li Z, Yin J, Li Y, Yin Y, Lei X, Zhu W. Prognostic Significance of Autophagy-Relevant Gene Markers in Colorectal Cancer. Front Oncol 2021; 11:566539. [PMID: 33937013 PMCID: PMC8081889 DOI: 10.3389/fonc.2021.566539] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Background Colorectal cancer (CRC) is a common malignant solid tumor with an extremely low survival rate after relapse. Previous investigations have shown that autophagy possesses a crucial function in tumors. However, there is no consensus on the value of autophagy-associated genes in predicting the prognosis of CRC patients. This work screens autophagy-related markers and signaling pathways that may participate in the development of CRC, and establishes a prognostic model of CRC based on autophagy-associated genes. Methods Gene transcripts from the TCGA database and autophagy-associated gene data from the GeneCards database were used to obtain expression levels of autophagy-associated genes, followed by Wilcox tests to screen for autophagy-related differentially expressed genes. Then, 11 key autophagy-associated genes were identified through univariate and multivariate Cox proportional hazard regression analysis and used to establish prognostic models. Additionally, immunohistochemical and CRC cell line data were used to evaluate the results of our three autophagy-associated genes EPHB2, NOL3, and SNAI1 in TCGA. Based on the multivariate Cox analysis, risk scores were calculated and used to classify samples into high-risk and low-risk groups. Kaplan-Meier survival analysis, risk profiling, and independent prognosis analysis were carried out. Receiver operating characteristic analysis was performed to estimate the specificity and sensitivity of the prognostic model. Finally, GSEA, GO, and KEGG analysis were performed to identify the relevant signaling pathways. Results A total of 301 autophagy-related genes were differentially expressed in CRC. The areas under the 1-year, 3-year, and 5-year receiver operating characteristic curves of the autophagy-based prognostic model for CRC were 0.764, 0.751, and 0.729, respectively. GSEA analysis of the model showed significant enrichment in several tumor-relevant pathways and cellular protective biological processes. The expression of EPHB2, IL-13, MAP2, RPN2, and TRAF5 was correlated with microsatellite instability (MSI), while the expression of IL-13, RPN2, and TRAF5 was related to tumor mutation burden (TMB). GO analysis showed that the 11 target autophagy genes were chiefly enriched in mRNA processing, RNA splicing, and regulation of the mRNA metabolic process. KEGG analysis showed enrichment mainly in spliceosomes. We constructed a prognostic risk assessment model based on 11 autophagy-related genes in CRC. Conclusion A prognostic risk assessment model based on 11 autophagy-associated genes was constructed in CRC. The new model suggests directions and ideas for evaluating prognosis and provides guidance to choose better treatment strategies for CRC.
Collapse
Affiliation(s)
- Qinglian He
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Ziqi Li
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Jinbao Yin
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Yuling Li
- Department of Pathology, Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Yuting Yin
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Xue Lei
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Wei Zhu
- Department of Pathology, Guangdong Medical University, Dongguan, China
| |
Collapse
|
2269
|
Park K, Ryoo J, Jeong H, Kim M, Lee S, Hwang SY, Ahn J, Kim D, Moon HC, Baek D, Kim K, Park HY, Ahn K. Aicardi-Goutières syndrome-associated gene SAMHD1 preserves genome integrity by preventing R-loop formation at transcription-replication conflict regions. PLoS Genet 2021; 17:e1009523. [PMID: 33857133 PMCID: PMC8078737 DOI: 10.1371/journal.pgen.1009523] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/27/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
The comorbid association of autoimmune diseases with cancers has been a major obstacle to successful anti-cancer treatment. Cancer survival rate decreases significantly in patients with preexisting autoimmunity. However, to date, the molecular and cellular profiles of such comorbidities are poorly understood. We used Aicardi-Goutières syndrome (AGS) as a model autoimmune disease and explored the underlying mechanisms of genome instability in AGS-associated-gene-deficient patient cells. We found that R-loops are highly enriched at transcription-replication conflict regions of the genome in fibroblast of patients bearing SAMHD1 mutation, which is the AGS-associated-gene mutation most frequently reported with tumor and malignancies. In SAMHD1-depleted cells, R-loops accumulated with the concomitant activation of DNA damage responses. Removal of R-loops in SAMHD1 deficiency reduced cellular responses to genome instability. Furthermore, downregulation of SAMHD1 expression is associated with various types of cancer and poor survival rate. Our findings suggest that SAMHD1 functions as a tumor suppressor by resolving R-loops, and thus, SAMHD1 and R-loop may be novel diagnostic markers and targets for patient stratification in anti-cancer therapy. Mutations in SAMHD1 cause Aicardi-Goutières syndrome (AGS), a monogenic lupus-like autoimmune disease. Among AGS-associated genes, SAMHD1 is most frequently mutates in various types of tumors and malignancies, suggesting that it is biologically relevant to cancer development. Here, we show that SAMHD1 resolves R-loops induced by transcription-replication conflicts, thereby contributing to the maintenance of genome stability. Our findings provide insight into the molecular and mechanical understanding of the autoimmunity and cancer comorbidity, and suggest that SAMHD1 and R-loops are potential and reliable biomarkers in anti-cancer therapeutics.
Collapse
Affiliation(s)
- Kiwon Park
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jeongmin Ryoo
- Department of Hematology, Oncology and Stem Cell transplantation, Comprehensive Cancer center Freiburg, University of Freiburg, Freiburg, Germany
| | - Heena Jeong
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Minsu Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sungwon Lee
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung-Yeon Hwang
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jiyoung Ahn
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Doyeon Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyungseok C. Moon
- Department of Physics and Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Daehyun Baek
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kwangsoo Kim
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Kwangseog Ahn
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
2270
|
Özdoğan M, Papadopoulou E, Tsoulos N, Tsantikidi A, Mariatou VM, Tsaousis G, Kapeni E, Bourkoula E, Fotiou D, Kapetsis G, Boukovinas I, Touroutoglou N, Fassas A, Adamidis A, Kosmidis P, Trafalis D, Galani E, Lypas G, Orhan B, Tansan S, Özatlı T, Kırca O, Çakır O, Nasioulas G. Comprehensive tumor molecular profile analysis in clinical practice. BMC Med Genomics 2021; 14:105. [PMID: 33853586 PMCID: PMC8045191 DOI: 10.1186/s12920-021-00952-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/18/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tumor molecular profile analysis by Next Generation Sequencing technology is currently widely applied in clinical practice and has enabled the detection of predictive biomarkers of response to targeted treatment. In parallel with targeted therapies, immunotherapies are also evolving, revolutionizing cancer therapy, with Programmed Death-ligand 1 (PD-L1), Microsatellite instability (MSI), and Tumor Mutational Burden (TMB) analysis being the biomarkers employed most commonly. METHODS In the present study, tumor molecular profile analysis was performed using a 161 gene NGS panel, containing the majority of clinically significant genes for cancer treatment selection. A variety of tumor types have been analyzed, including aggressive and hard to treat cancers such as pancreatic cancer. Besides, the clinical utility of immunotherapy biomarkers (TMB, MSI, PD-L1), was also studied. RESULTS Molecular profile analysis was conducted in 610 cancer patients, while in 393 of them a at least one biomarker for immunotherapy response was requested. An actionable alteration was detected in 77.87% of the patients. 54.75% of them received information related to on-label or off-label treatment (Tiers 1A.1, 1A.2, 2B, and 2C.1) and 21.31% received a variant that could be used for clinical trial inclusion. The addition to immunotherapy biomarker to targeted biomarkers' analysis in 191 cases increased the number of patients with an on-label treatment recommendation by 22.92%, while an option for on-label or off-label treatment was provided in 71.35% of the cases. CONCLUSIONS Tumor molecular profile analysis using NGS is a first-tier method for a variety of tumor types and provides important information for decision making in the treatment of cancer patients. Importantly, simultaneous analysis for targeted therapy and immunotherapy biomarkers could lead to better tumor characterization and offer actionable information in the majority of patients. Furthermore, our data suggest that one in two patients may be eligible for on-label ICI treatment based on biomarker analysis. However, appropriate interpretation of results from such analysis is essential for implementation in clinical practice and accurate refinement of treatment strategy.
Collapse
Affiliation(s)
- Mustafa Özdoğan
- Division of Medical Oncology, Memorial Hospital, Antalya, Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Eleni Galani
- Second Department of Medical Oncology, "Metropolitan" Hospital, Piraeus, Greece
| | - George Lypas
- Department of Genetic Oncology/Medical Oncology, Hygeia Hospital, Athens, Greece
| | - Bülent Orhan
- Department of Medical Oncology, Ceylan International Hospital, Bursa, Turkey
| | | | | | - Onder Kırca
- Division of Medical Oncology, Memorial Hospital, Antalya, Turkey
| | - Okan Çakır
- Applied Health Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, Scotland, UK
| | | |
Collapse
|
2271
|
Subasri M, Shooshtari P, Watson AJ, Betts DH. Analysis of TERT Isoforms across TCGA, GTEx and CCLE Datasets. Cancers (Basel) 2021; 13:cancers13081853. [PMID: 33924498 PMCID: PMC8070023 DOI: 10.3390/cancers13081853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Reactivation of the multi-subunit ribonucleoprotein telomerase is the primary telomere maintenance mechanism in cancer, but it is rate-limited by the enzymatic component, telomerase reverse transcriptase (TERT). While regulatory in nature, TERT alternative splice variant/isoform regulation and functions are not fully elucidated and are further complicated by their highly diverse expression and nature. Our primary objective was to characterize TERT isoform expression across 7887 neoplastic and 2099 normal tissue samples using The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression Project (GTEx), respectively. We confirmed the global overexpression and splicing shift towards full-length TERT in neoplastic tissue. Stratifying by tissue type we found uncharacteristic TERT expression in normal brain tissue subtypes. Stratifying by tumor-specific subtypes, we detailed TERT expression differences potentially regulated by subtype-specific molecular characteristics. Focusing on β-deletion splicing regulation, we found the NOVA1 trans-acting factor to mediate alternative splicing in a cancer-dependent manner. Of relevance to future tissue-specific studies, we clustered cancer cell lines with tumors from related origin based on TERT isoform expression patterns. Taken together, our work has reinforced the need for tissue and tumour-specific TERT investigations, provided avenues to do so, and brought to light the current technical limitations of bioinformatic analyses of TERT isoform expression.
Collapse
Affiliation(s)
- Mathushan Subasri
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON N6A 5C1, Canada; (M.S.); (A.J.W.)
| | - Parisa Shooshtari
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada;
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Computer Science, The University of Western Ontario, London, ON N6A 5C1, Canada
- The Children’s Health Research Institute—Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Andrew J. Watson
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON N6A 5C1, Canada; (M.S.); (A.J.W.)
- The Children’s Health Research Institute—Lawson Health Research Institute, London, ON N6C 2R5, Canada
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Dean H. Betts
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON N6A 5C1, Canada; (M.S.); (A.J.W.)
- The Children’s Health Research Institute—Lawson Health Research Institute, London, ON N6C 2R5, Canada
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, ON N6A 5C1, Canada
- Correspondence: ; Tel.: +1-519-661-2111 (ext. 83786)
| |
Collapse
|
2272
|
Carstens JL, Yang S, Correa de Sampaio P, Zheng X, Barua S, McAndrews KM, Rao A, Burks JK, Rhim AD, Kalluri R. Stabilized epithelial phenotype of cancer cells in primary tumors leads to increased colonization of liver metastasis in pancreatic cancer. Cell Rep 2021; 35:108990. [PMID: 33852841 PMCID: PMC8078733 DOI: 10.1016/j.celrep.2021.108990] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/25/2021] [Accepted: 03/23/2021] [Indexed: 12/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is therapeutically recalcitrant and metastatic. Partial epithelial to mesenchymal transition (EMT) is associated with metastasis; however, a causal connection needs further unraveling. Here, we use single-cell RNA sequencing and genetic mouse models to identify the functional roles of partial EMT and epithelial stabilization in PDAC growth and metastasis. A global EMT expression signature identifies ∼50 cancer cell clusters spanning the epithelial-mesenchymal continuum in both human and murine PDACs. The combined genetic suppression of Snail and Twist results in PDAC epithelial stabilization and increased liver metastasis. Genetic deletion of Zeb1 in PDAC cells also leads to liver metastasis associated with cancer cell epithelial stabilization. We demonstrate that epithelial stabilization leads to the enhanced collective migration of cancer cells and modulation of the immune microenvironment, which likely contribute to efficient liver colonization. Our study provides insights into the diverse mechanisms of metastasis in pancreatic cancer and potential therapeutic targets.
Collapse
Affiliation(s)
- Julienne L Carstens
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Sujuan Yang
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Pedro Correa de Sampaio
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Xiaofeng Zheng
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Souptik Barua
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77030, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, Biostatistics, Radiation Oncology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jared K Burks
- Department of Leukemia, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Andrew D Rhim
- Department of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
2273
|
Neuropilin-2 and Its Transcript Variants Correlate with Clinical Outcome in Bladder Cancer. Genes (Basel) 2021; 12:genes12040550. [PMID: 33918816 PMCID: PMC8070368 DOI: 10.3390/genes12040550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
Urothelial bladder cancer ranks among the 10 most frequently diagnosed cancers worldwide. In our previous study, the transmembrane protein neuropilin-2 (NRP2) emerged as a predictive marker in patients with bladder cancer. NRP2 consists of several splice variants; the most abundant of these, NRP2a and NRP2b, are reported to have different biological functions in lung cancer progression. For other cancer types, there are no published data on the role of these transcript variants in cancer progression and the clinical outcome. Here, we correlate NRP2 and its two most abundant transcript variants, NRP2A and NRP2B, with the clinical outcome using available genomic data with subsequent validation in our own cohort of patients with muscle-invasive bladder cancer. In addition to NRP2, NRP1 and the NRP ligands PDGFC and PDGFD were studied. Only NRP2A emerged as an independent prognostic marker for shorter cancer-specific survival in muscle-invasive bladder cancer in our cohort of 102 patients who underwent radical cystectomy between 2008 and 2014 with a median follow-up time of 82 months. Additionally, we demonstrate that high messenger expression of NRP2, NRP1, PDGFC and PDGFD associates with a more aggressive disease (i.e., a high T stage, positive lymph node status and reduced survival).
Collapse
|
2274
|
Hu Y, Zheng M, Wang S, Gao L, Gou R, Liu O, Dong H, Li X, Lin B. Identification of a five-gene signature of the RGS gene family with prognostic value in ovarian cancer. Genomics 2021; 113:2134-2144. [PMID: 33845140 DOI: 10.1016/j.ygeno.2021.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/01/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
The RGS (regulator of G protein signaling) gene family, which includes negative regulators of G protein-coupled receptors, comprises important drug targets for malignant tumors. It is thus of great significance to explore the value of RGS family genes for diagnostic and prognostic prediction in ovarian cancer. The RNA-seq, immunophenotype, and stem cell index data of pan-cancer, The Cancer Genome Atlas (TCGA) data, and GTEx data of ovarian cancer were downloaded from the UCSC Xena database. In the pan-cancer database, the expression level of RGS1, RGS18, RGS19, and RGS13 was positively correlated with stromal and immune cell scores. Cancer patients with high RGS18 expression were more sensitive to cyclophosphamide and nelarabine, whereas those with high RGS19 expression were more sensitive to cladribine and nelarabine. The relationship between RGS family gene expression and overall survival (OS) and progression-free survival (PFS) of ovarian cancer patients was analyzed using the KM-plotter database, RGS17, RGS16, RGS1, and RGS8 could be used as diagnostic biomarkers of the immune subtype of ovarian cancer, and RGS10 and RGS16 could be used as biomarkers to predict the clinical stage of this disease. Further, Lasso cox analysis identified a five-gene risk score (RGS11, RGS10, RGS13, RGS4, and RGS3). Multivariate COX analysis showed that the risk score was an independent prognostic factor for patients with ovarian cancer. Immunohistochemistry and the HPA protein database confirmed that the five-gene signature is overexpressed in ovarian cancer. GSEA showed that it is mainly involved in the ECM-receptor interaction, TGF-beta signaling pathway, Wnt signaling pathway, and chemokine signaling pathway, which promote the occurrence and development of ovarian cancer. The prediction model of ovarian cancer constructed using RGS family genes is of great significance for clinical decision making and the personalized treatment of patients with ovarian cancer.
Collapse
Affiliation(s)
- Yuexin Hu
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Mingjun Zheng
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China; Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Shuang Wang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Lingling Gao
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Rui Gou
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Ouxuan Liu
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Hui Dong
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Xiao Li
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Bei Lin
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China.
| |
Collapse
|
2275
|
Zhang Y, Wu X, Li J, Sun K, Li H, Yan L, Duan C, Liu H, Chen K, Ye Z, Liu M, Xu H. Comprehensive characterization of alternative splicing in renal cell carcinoma. Brief Bioinform 2021; 22:6210067. [PMID: 33822848 DOI: 10.1093/bib/bbab084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Irregular splicing was associated with tumor formation and progression in renal cell carcinoma (RCC) and many other cancers. By using splicing data in the TCGA SpliceSeq database, RCC subtype classification was performed and splicing features and their correlations with clinical course, genetic variants, splicing factors, pathways activation and immune heterogeneity were systemically analyzed. In this research, alternative splicing was found useful for classifying RCC subtypes. Splicing inefficiency with upregulated intron retention and cassette exon was associated with advanced conditions and unfavorable overall survival of patients with RCC. Splicing characteristics like splice site strength, guanine and cytosine content and exon length may be important factors disrupting splicing balance in RCC. Other than cis-acting and trans-acting regulation, alternative splicing also differed in races and tissue types and is also affected by mutation conditions, pathway settings and the response to environmental changes. Severe irregular splicing in tumor not only indicated terrible intra-cellular homeostasis, but also changed the activity of cancer-associated pathways by different splicing effects including isoforms switching and expression regulation. Moreover, irregular splicing and splicing-associated antigens were involved in immune reprograming and formation of immunosuppressive tumor microenvironment. Overall, we have described several clinical and molecular features in RCC splicing subtypes, which may be important for patient management and targeting treatment.
Collapse
Affiliation(s)
- Yangjun Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jingzhen Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, China
| | - Heng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Libin Yan
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Haoran Liu
- Department of Urology, Tongji Hospital and now works in the Department of Urology, The Second Affiliated Hospital of Kunming Medical University, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| |
Collapse
|
2276
|
Li G, Zhu X, Liu C. Characterization of Immune Infiltration and Construction of a Prediction Model for Overall Survival in Melanoma Patients. Front Oncol 2021; 11:639059. [PMID: 33869027 PMCID: PMC8051586 DOI: 10.3389/fonc.2021.639059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/10/2021] [Indexed: 12/27/2022] Open
Abstract
Reports indicate that the use of anti-programmed cell death-1 (PD-1) and death ligand-1 (PD-L1) monoclonal antibodies for the treatment of patients diagnosed with melanoma has demonstrated promising efficacy. Nonetheless, this therapy is limited by the resistance induced by the tumor microenvironment (TME). As such, understanding the complexity of the TME is vital in enhancing the efficiency of immunotherapy. This study used four different methods to estimate the infiltrating level of immune cells. Besides, we analyzed their infiltration pattern in primary and metastatic melanoma obtained from The Cancer Genome Atlas (TCGA) database. As a consequence, we discovered a significantly higher infiltration of immune cells in metastatic melanoma compared to primary tumor. Consensus clustering identified four clusters in melanoma with different immune infiltration and clusters with higher immune infiltration demonstrated a better overall survival. To elucidate the underlying mechanisms of immune cell infiltration, the four clusters were subdivided into two subtypes denoted as hot and cold tumors based on immune infiltration and predicted immune response. Enrichment analysis of differentially expressed genes (DEGs) revealed different transcriptome alterations in two types of tumors. Additionally, we found tyrosinase-related protein1 (TYRP1) was negatively correlated with CD8A expression. In vitro experiments showed that knockdown TYRP1 promoted the expression of HLA-A, B, and C. Eventually, we constructed a prediction model which was validated in our external cohort. Notably, this model also performed effectively in predicting the survival of patients under immunotherapy. In summary, this work provides a deeper understanding of the state of immune infiltration in melanoma and a prediction model that might guide the clinical treatment of patients with melanoma.
Collapse
Affiliation(s)
- Gang Li
- Plastic Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | |
Collapse
|
2277
|
Zhuang Y, Li X, Zhan P, Pi G, Wen G. MMP11 promotes the proliferation and progression of breast cancer through stabilizing Smad2 protein. Oncol Rep 2021; 45:16. [PMID: 33649832 PMCID: PMC7876999 DOI: 10.3892/or.2021.7967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/08/2020] [Indexed: 11/17/2022] Open
Abstract
Breast cancer (BC) is one of the most common malignant tumours in women. The matrix metalloproteinase (MMP) enzyme family plays a complex role in the development of BC. There is increasing evidence that MMP11 plays a major role in BC; however, the underlying mechanisms are not clear. The present study confirmed by analysing clinical samples and TCGA data sets, that high expression of MMP11 in clinical samples of BC was strongly associated with a poor prognosis in BC patients. In addition, MTT and colony formation assays indicated that the proliferative capacity of BC was affected when MMP11 expression changed. Furthermore, pathway enrichment analysis was performed and it was revealed that the TGF‑β signalling pathway was a potential downstream target of MMP11. In the TGF‑β signalling pathway, MMP11 could significantly regulate the protein expression levels of Smad2 and Smad3 and inhibit the degradation of Smad2 through the ubiquitin proteasome pathway as determined by western blotting. In vivo, it was further verified that MMP11 knockdown could inhibit tumour proliferation and growth. Collectively, the present results demonstrated that MMP11 inhibited the degradation of Smad2 in the TGF‑β signalling pathway, thereby promoting the development of BC. Thus, MMP11 expression was not only revealed to be an important indicator of BC prognosis but may also be an important therapeutic target for further prevention of BC growth and proliferation. The present study indicated that MMP11‑targeted therapy may provide new solutions for BC treatment.
Collapse
Affiliation(s)
- Ying Zhuang
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Xiang Li
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Peng Zhan
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Guoliang Pi
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Gu Wen
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
2278
|
Chen C, Gu YM, Zhang F, Zhang ZC, Zhang YT, He YD, Wang L, Zhou N, Tang FT, Liu HJ, Li YM. Construction of PD1/CD28 chimeric-switch receptor enhances anti-tumor ability of c-Met CAR-T in gastric cancer. Oncoimmunology 2021; 10:1901434. [PMID: 33854821 PMCID: PMC8018404 DOI: 10.1080/2162402x.2021.1901434] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell is a promising method in cancer immunotherapy but faces many challenges in solid tumors. One of the major problems was immunosuppression caused by PD-1. In our study, the expression of c-Met in GC was analyzed from TCGA datasets, GC tissues, and cell lines. The c-Met CAR was a second-generation CAR with 4–1BB, cMet-PD1/CD28 CAR was c-Met CAR adding PD1/CD28 chimeric-switch receptor (CSR). In vitro, we measured the changes of different subgroups, phenotypes and PD-1 expression in CAR-T cells. We detected the secretion levels of different cytokines and the killing ability of CAR-Ts. In vivo, we established a xenograft GC model and observed the anti-tumor effect and off-target toxicity of different CAR-Ts. We find that the expression of c-Met was increased in GC. CD3+CD8+ T cells and CD62L+CCR7+ central memory T cells (TCM) were increased in two CAR-Ts. The stimulation of target cells could promote the expression of PD-1 in c-Met CAR-T. Compared with Mock T, the secretion of cytokines as IFN-γ, TNF-α, IL-6, IL-10 secreted by two CAR-Ts was increased, and the killing ability to c-Met positive GC cells was enhanced. The PD1/CD28 CSR could further enhance the killing ability, especially the long-term anti-tumor effect of c-Met CAR-T, and reduce the release level of IL-6. CAR-Ts target c-Met had no obvious off-target toxicity to normal organs. Thus, the PD1/CD28 CSR could further enhance the anti-tumor ability of c-Met CAR-T, and provides a promising design strategy to improve the efficacy of CAR-T in GC.
Collapse
Affiliation(s)
- Cong Chen
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China.,Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yan-Mei Gu
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Fan Zhang
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Zheng-Chao Zhang
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Ya-Ting Zhang
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yi-Di He
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Ling Wang
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Ning Zhou
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Fu-Tian Tang
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Hong-Jian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu-Min Li
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
2279
|
Lasham A, Knowlton N, Mehta SY, Braithwaite AW, Print CG. Breast Cancer Patient Prognosis Is Determined by the Interplay between TP53 Mutation and Alternative Transcript Expression: Insights from TP53 Long Amplicon Digital PCR Assays. Cancers (Basel) 2021; 13:cancers13071531. [PMID: 33810361 PMCID: PMC8036703 DOI: 10.3390/cancers13071531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The TP53 gene, the most commonly mutated gene in human cancers, is capable of producing multiple RNAs (transcripts). The aim of our study was to measure the abundance of each TP53 transcript, combined with TP53 gene mutation information, to determine the interplay between these in a cohort of breast tumors from New Zealand patients. To do this, we devised a new assay which then enabled the measurement of all known TP53 transcripts. We showed how TP53 gene mutations influenced the levels of specific TP53 transcripts in breast tumors. We evaluated whether a combination of TP53 tumor information, including TP53 mutation status and the levels of certain TP53 transcripts, with standard clinical and pathological information, was associated with breast cancer patient outcome. We recommend that a truly comprehensive analysis of TP53 needs to incorporate data about both TP53 DNA mutations and the expression of the alternative TP53 transcripts. Abstract The TP53 gene locus is capable of producing multiple RNA transcripts encoding the different p53 protein isoforms. We recently described multiplex long amplicon droplet digital PCR (ddPCR) assays to quantify seven of eight TP53 reference transcripts in human tumors. Here, we describe a new long amplicon ddPCR assay to quantify expression of the eighth TP53 reference transcript encoding ∆40p53α. We then applied these assays, alongside DNA sequencing of the TP53 gene locus, to tumors from a cohort of New Zealand (NZ) breast cancer patients. We found a high prevalence of mutations at TP53 splice sites in the NZ breast cancer cohort. Mutations at TP53 intron 4 splice sites were associated with overexpression of ∆133TP53 transcripts. Cox proportional hazards survival analysis showed that interplay between TP53 mutation status and expression of TP53 transcript variants was significantly associated with patient outcome, over and above standard clinical and pathological information. In particular, patients with no TP53 mutation and a low ratio of TP53 transcripts t2 to t1, which derive from alternative intron 1 acceptor splice sites, had a remarkably good outcome. We suggest that this type of analysis, integrating mutation and transcript expression, provides a step-change in our understanding of TP53 in cancer.
Collapse
Affiliation(s)
- Annette Lasham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand; (N.K.); (C.G.P.)
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
- Correspondence:
| | - Nicholas Knowlton
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand; (N.K.); (C.G.P.)
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
| | - Sunali Y. Mehta
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
| | - Antony W. Braithwaite
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Cristin G. Print
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand; (N.K.); (C.G.P.)
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
| |
Collapse
|
2280
|
Blaszczak W, Liu G, Zhu H, Barczak W, Shrestha A, Albayrak G, Zheng S, Kerr D, Samsonova A, La Thangue NB. Immune modulation underpins the anti-cancer activity of HDAC inhibitors. Mol Oncol 2021; 15:3280-3298. [PMID: 33773029 PMCID: PMC8637571 DOI: 10.1002/1878-0261.12953] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 02/05/2023] Open
Abstract
Aberrant protein acetylation is strongly linked to tumorigenesis, and modulating acetylation through targeting histone deacetylase (HDAC) with small‐molecule inhibitors has been the focus of clinical trials. However, clinical success on solid tumours, such as colorectal cancer (CRC), has been limited, in part because the cancer‐relevant mechanisms through which HDAC inhibitors act remain largely unknown. Here, we have explored, at the genome‐wide expression level, the effects of a novel HDAC inhibitor CXD101. In human CRC cell lines, a diverse set of differentially expressed genes were up‐ and downregulated upon CXD101 treatment. Functional profiling of the expression data highlighted immune‐relevant concepts related to antigen processing and natural killer cell‐mediated cytotoxicity. Similar profiles were apparent when gene expression was investigated in murine colon26 CRC cells treated with CXD101. Significantly, these changes were also apparent in syngeneic colon26 tumours growing in vivo. The ability of CXD101 to affect immune‐relevant gene expression coincided with changes in the tumour microenvironment (TME), especially in the subgroups of CD4 and CD8 tumour‐infiltrating T lymphocytes. The altered TME reflected enhanced antitumour activity when CXD101 was combined with immune checkpoint inhibitors (ICIs), such as anti‐PD‐1 and anti‐CTLA4. The ability of CXD101 to reinstate immune‐relevant gene expression in the TME and act together with ICIs provides a powerful rationale for exploring the combination therapy in human cancers.
Collapse
Affiliation(s)
| | - Geng Liu
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK
| | - Hong Zhu
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK.,Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wojciech Barczak
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK
| | - Amit Shrestha
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK
| | - Gulsah Albayrak
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK
| | | | - David Kerr
- Celleron Therapeutics Ltd, Oxford, UK.,Nuffield Division of Clinical Laboratory Sciences, University of Oxford, UK
| | - Anastasia Samsonova
- Centre for Computational Biology, Peter the Great Saint Petersburg Polytechnic University, Russia.,Centre for Genome Bioinformatics, St. Petersburg State University, Russia
| | - Nicholas B La Thangue
- Celleron Therapeutics Ltd, Oxford, UK.,Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK
| |
Collapse
|
2281
|
Liu L, Hou Y, Hu J, Zhou L, Chen K, Yang X, Song Z. SLC39A8/Zinc Suppresses the Progression of Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:651921. [PMID: 33869056 PMCID: PMC8045709 DOI: 10.3389/fonc.2021.651921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/05/2021] [Indexed: 12/19/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most frequent and lethal subtype, which has high risk of metastasis or recurrence, accounting for 75–83% of renal cell carcinoma (RCC). Zrt‐ and Irt‐like proteins (ZIP) family members (SLC39A1-14) function to pass zinc into the cytoplasm for many critical biological processes when cellular zinc is depleted. However, the functional analysis of individual ZIP family genes in ccRCC is not clarified. This study aimed to investigate whether ZIP family genes are related to the clinicopathological features and survival of ccRCC patients, and to identify the function of key gene of ZIP family in ccRCC in vitro. Through bioinformatics analysis of tumor databases, SLC39A8 was identified as a key gene of ZIP family in ccRCC, which could be used as an effective indicator for diagnosing ccRCC and judging its prognosis. With the progression of tumor, the expression of SLC39A8 decreased progressively. The prognosis of patients with low expression of SLC39A8 is significantly worse. Furthermore, we found that overexpression of SLC39A8 or treatment with low concentration of zinc chloride could effectively inhibit the proliferation, migration and invasion of ccRCC cells. Moreover, the inhibition effect of SLC39A8 overexpression could be enhanced by low concentration zinc supplement. Therefore, this study provides a novel understanding for the role of SLC39A8/zinc in the regulation of ccRCC progression. These findings provide a new direction and target for progressive ccRCC drug development and combination therapy strategies.
Collapse
Affiliation(s)
- Lilong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaxin Hou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Hu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijie Zhou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengshuai Song
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2282
|
Sekino Y, Han X, Babasaki T, Miyamoto S, Kobatake K, Kitano H, Ikeda K, Goto K, Inoue S, Hayashi T, Teishima J, Shiota M, Takeshima Y, Yasui W, Matsubara A. TUBB3 is associated with PTEN, neuroendocrine differentiation, and castration resistance in prostate cancer. Urol Oncol 2021; 39:368.e1-368.e9. [PMID: 33771409 DOI: 10.1016/j.urolonc.2021.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tubulin-β3 encoded by the Tubulin-β3 (TUBB3) gene is a microtubule protein. Previous studies have shown that TUBB3 expression is upregulated in castration-resistant prostate cancer (CaP) and is involved in taxane resistance. However, the biological mechanism of TUBB3 involvement in the progression to castration-resistant CaP is not fully elucidated. This study aimed to analyze the expression and function of TUBB3 in localized and metastatic CaP. METHODS TUBB3 expression was determined using immunohistochemistry in localized and metastatic CaP. We also investigated the association between TUBB3, phosphatase and tensin homolog (PTEN), and neuroendocrine differentiation and examined the involvement of TUBB3 in new antiandrogen drugs (enzalutamide and apalutamide) resistance in metastatic CaP. RESULTS In 155 cases of localized CaP, immunohistochemistry showed that 5 (3.2%) of the CaP cases were positive for tubulin-β3. Kaplan-Meier analysis showed that high expression of tubulin-β3 was associated with poor prostate-specific antigen recurrence-free survival after radical prostatectomy. In 57 cases of metastatic CaP, immunohistochemistry showed that 14 (25%) cases were positive for tubulin-β3. Tubulin-β3 expression was higher in metastatic CaP than in localized CaP. High tubulin-β3 expression was correlated with negative PTEN expression. TUBB3 expression was increased in neuroendocrine CaP based on several public databases. PTEN knockout decreased the sensitivity to enzalutamide and apalutamide in 22Rv-1 cells. TUBB3 knockdown reversed the sensitivity to enzalutamide and apalutamide in PTEN-CRISPR 22Rv-1 cells. High expression of tubulin-β3 and negative expression of PTEN were significantly associated with poor overall survival in metastatic CaP treated with androgen deprivation therapy. CONCLUSIONS These results suggest that TUBB3 may be a useful predictive biomarker for survival and play an essential role in antiandrogen resistance in CaP.
Collapse
Affiliation(s)
- Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Xiangrui Han
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Babasaki
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shunsuke Miyamoto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kohei Kobatake
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Kitano
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenichiro Ikeda
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keisuke Goto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shogo Inoue
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tetsutaro Hayashi
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Jun Teishima
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akio Matsubara
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Urology, Hiroshima General Hospital, Hatsukaichi, Japan
| |
Collapse
|
2283
|
Mining The Cancer Genome Atlas gene expression data for lineage markers in distinguishing bladder urothelial carcinoma and prostate adenocarcinoma. Sci Rep 2021; 11:6765. [PMID: 33762601 PMCID: PMC7990953 DOI: 10.1038/s41598-021-85993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/09/2021] [Indexed: 12/02/2022] Open
Abstract
Distinguishing bladder urothelial carcinomas from prostate adenocarcinomas for poorly differentiated carcinomas derived from the bladder neck entails the use of a panel of lineage markers to help make this distinction. Publicly available The Cancer Genome Atlas (TCGA) gene expression data provides an avenue to examine utilities of these markers. This study aimed to verify expressions of urothelial and prostate lineage markers in the respective carcinomas and to seek the relative importance of these markers in making this distinction. Gene expressions of these markers were downloaded from TCGA Pan-Cancer database for bladder and prostate carcinomas. Differential gene expressions of these markers were analyzed. Standard linear discriminant analyses were applied to establish the relative importance of these markers in lineage determination and to construct the model best in making the distinction. This study shows that all urothelial lineage genes except for the gene for uroplakin III were significantly expressed in bladder urothelial carcinomas (p < 0.001). In descending order of importance to distinguish from prostate adenocarcinomas, genes for uroplakin II, S100P, GATA3 and thrombomodulin had high discriminant loadings (> 0.3). All prostate lineage genes were significantly expressed in prostate adenocarcinomas(p < 0.001). In descending order of importance to distinguish from bladder urothelial carcinomas, genes for NKX3.1, prostate specific antigen (PSA), prostate-specific acid phosphatase, prostein, and prostate-specific membrane antigen had high discriminant loadings (> 0.3). Combination of gene expressions for uroplakin II, S100P, NKX3.1 and PSA approached 100% accuracy in tumor classification both in the training and validation sets. Mining gene expression data, a combination of four lineage markers helps distinguish between bladder urothelial carcinomas and prostate adenocarcinomas.
Collapse
|
2284
|
Kostecka LG, Olseen A, Kang K, Torga G, Pienta KJ, Amend SR. High KIFC1 expression is associated with poor prognosis in prostate cancer. Med Oncol 2021; 38:47. [PMID: 33760984 PMCID: PMC7990808 DOI: 10.1007/s12032-021-01494-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/09/2021] [Indexed: 12/14/2022]
Abstract
Kinesins play important roles in the progression and development of cancer. Kinesin family member C1 (KIFC1), a minus end-directed motor protein, is a novel Kinesin involved in the clustering of excess centrosomes found in cancer cells. Recently KIFC1 has shown to play a role in the progression of many different cancers, however, the involvement of KIFC1 in the progression of prostate cancer (PCa) is still not well understood. This study investigated the expression and clinical significance of KIFC1 in PCa by utilizing multiple publicly available datasets to analyze KIFC1 expression in patient samples. High KIFC1 expression was found to be associated with high Gleason score, high tumor stage, metastatic lesions, high ploidy levels, and lower recurrence-free survival. These results reveal that high KIFC1 levels are associated with a poor prognosis for PCa patients and could act as a prognostic indicator for PCa patients as well.
Collapse
Affiliation(s)
- Laurie G Kostecka
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA.
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, 1830 E. Monument St., Baltimore, MD, 21205, USA.
| | - Athen Olseen
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA
| | - KiChang Kang
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA
| | - Gonzalo Torga
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA
| |
Collapse
|
2285
|
Cao X, Li B, Chen J, Dang J, Chen S, Gunes EG, Xu B, Tian L, Muend S, Raoof M, Querfeld C, Yu J, Rosen ST, Wang Y, Feng M. Effect of cabazitaxel on macrophages improves CD47-targeted immunotherapy for triple-negative breast cancer. J Immunother Cancer 2021; 9:jitc-2020-002022. [PMID: 33753567 PMCID: PMC7986678 DOI: 10.1136/jitc-2020-002022] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background Limited therapeutic options are available for triple-negative breast cancer (TNBC), emphasizing an urgent need for more effective treatment approaches. The development of strategies by targeting tumor-associated macrophages (TAMs) to stimulate their ability of Programmed Cell Removal (PrCR) provides a promising new immunotherapy for TNBC treatment. Methods CD47 is a critical self-protective “don’t eat me” signal on multiple human cancers against macrophage immunosurveillance. Using human and mouse TNBC preclinical models, we evaluated the efficacy of PrCR-based immunotherapy by blocking CD47. We performed high-throughput screens on FDA-approved anti-cancer small molecule compounds for agents potentiating PrCR and enhancing the efficacy of CD47-targeted therapy for TNBC treatment. Results We showed that CD47 was widely expressed on TNBC cells and TAMs represented the most abundant immune cell population in TNBC tumors. Blockade of CD47 enabled PrCR of TNBC cells, but the efficacy was not satisfactory. Our high-throughput screens identified cabazitaxel in enhancing PrCR-based immunotherapy. A combination of CD47 blockade and cabazitaxel treatment yielded a highly effective treatment strategy, promoting PrCR of TNBC cells and inhibiting tumor development and metastasis in preclinical models. We demonstrated that cabazitaxel potentiated PrCR by activating macrophages, independent of its cytotoxicity toward cancer cells. When treated with cabazitaxel, the molecular and phenotypic signatures of macrophages were polarized toward M1 state, and the NF-kB signaling pathway became activated. Conclusion The combination of CD47 blockade and macrophage activation by cabazitaxel synergizes to vastly enhance the elimination of TNBC cells. Our results show that targeting macrophages is a promising and effective strategy for TNBC treatment.
Collapse
Affiliation(s)
- Xu Cao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Bolei Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Jing Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Jessica Dang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Siqi Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - E Gulsen Gunes
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Bo Xu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Lei Tian
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Sabina Muend
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Mustafa Raoof
- Department of Surgery, City of Hope, Duarte, California, USA
| | - Christiane Querfeld
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA.,Division of Dermatology, City of Hope, Duarte, California, USA.,Department of Pathology, City of Hope, Duarte, California, USA
| | - Jianhua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope, Duarte, California, USA
| | - Steven T Rosen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA.,Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Yingyu Wang
- Center for Informatics, City of Hope, Duarte, California, USA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| |
Collapse
|
2286
|
Deep generative neural network for accurate drug response imputation. Nat Commun 2021; 12:1740. [PMID: 33741950 PMCID: PMC7979803 DOI: 10.1038/s41467-021-21997-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/16/2021] [Indexed: 01/22/2023] Open
Abstract
Drug response differs substantially in cancer patients due to inter- and intra-tumor heterogeneity. Particularly, transcriptome context, especially tumor microenvironment, has been shown playing a significant role in shaping the actual treatment outcome. In this study, we develop a deep variational autoencoder (VAE) model to compress thousands of genes into latent vectors in a low-dimensional space. We then demonstrate that these encoded vectors could accurately impute drug response, outperform standard signature-gene based approaches, and appropriately control the overfitting problem. We apply rigorous quality assessment and validation, including assessing the impact of cell line lineage, cross-validation, cross-panel evaluation, and application in independent clinical data sets, to warrant the accuracy of the imputed drug response in both cell lines and cancer samples. Specifically, the expression-regulated component (EReX) of the observed drug response achieves high correlation across panels. Using the well-trained models, we impute drug response of The Cancer Genome Atlas data and investigate the features and signatures associated with the imputed drug response, including cell line origins, somatic mutations and tumor mutation burdens, tumor microenvironment, and confounding factors. In summary, our deep learning method and the results are useful for the study of signatures and markers of drug response.
Collapse
|
2287
|
Zhang B, Xu C, Liu J, Yang J, Gao Q, Ye F. Nidogen-1 expression is associated with overall survival and temozolomide sensitivity in low-grade glioma patients. Aging (Albany NY) 2021; 13:9085-9107. [PMID: 33735110 PMCID: PMC8034893 DOI: 10.18632/aging.202789] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/16/2021] [Indexed: 12/23/2022]
Abstract
We investigated the prognostic significance of nidogen-1 (NID1) in glioma. Oncomine, GEPIA, UALCAN, CCGA database analyses showed that NID1 transcript levels were significantly upregulated in multiple cancer types, including gliomas. Quantitative RT-PCR analyses confirmed that NID1 expression was significantly upregulated in glioma tissues compared to paired adjacent normal brain tissue samples (n=9). NID1 silencing enhanced in vitro apoptosis and the temozolomide sensitivity of U251 and U87-MG glioma cells. Protein-protein interaction network analysis using the STRING and GeneMANIA databases showed that NID1 interacts with several extracellular matrix proteins. TIMER database analysis showed that NID1 expression in low-grade gliomas was associated with tumor infiltration of B cells, CD4+ and CD8+ T cells, macrophages, neutrophils, and dendritic cells. Kaplan-Meier survival curve analysis showed that low-grade gliomas patients with high NID1 expression were associated with shorter overall survival. However, NID1 expression was not associated with overall survival in glioblastoma multiforme patients. These findings demonstrate that NID1 expression in glioma tissues is associated with overall survival of low-grade glioma patients and temozolomide sensitivity. NID1 is thus a potential prognostic biomarker and therapeutic target in low-grade glioma patients.
Collapse
Affiliation(s)
- Baiwei Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Xu
- Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junfeng Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinsheng Yang
- Department of Neurosurgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Qinglei Gao
- Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Ye
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2288
|
Liu G, Liu Z, Sun X, Xia X, Liu Y, Liu L. Pan-Cancer Genome-Wide DNA Methylation Analyses Revealed That Hypermethylation Influences 3D Architecture and Gene Expression Dysregulation in HOXA Locus During Carcinogenesis of Cancers. Front Cell Dev Biol 2021; 9:649168. [PMID: 33816499 PMCID: PMC8012915 DOI: 10.3389/fcell.2021.649168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 01/22/2023] Open
Abstract
DNA methylation dysregulation during carcinogenesis has been widely discussed in recent years. However, the pan-cancer DNA methylation biomarkers and corresponding biological mechanisms were seldom investigated. We identified differentially methylated sites and regions from 5,056 The Cancer Genome Atlas (TCGA) samples across 10 cancer types and then validated the findings using 48 manually annotated datasets consisting of 3,394 samples across nine cancer types from Gene Expression Omnibus (GEO). All samples’ DNA methylation profile was evaluated with Illumina 450K microarray to narrow down the batch effect. Nine regions were identified as commonly differentially methylated regions across cancers in TCGA and GEO cohorts. Among these regions, a DNA fragment consisting of ∼1,400 bp detected inside the HOXA locus instead of the boundary may relate to the co-expression attenuation of genes inside the locus during carcinogenesis. We further analyzed the 3D DNA interaction profile by the publicly accessible Hi-C database. Consistently, the HOXA locus in normal cell lines compromised isolated topological domains while merging to the domain nearby in cancer cell lines. In conclusion, the dysregulation of the HOXA locus provides a novel insight into pan-cancer carcinogenesis.
Collapse
Affiliation(s)
- Gang Liu
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhenhao Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Xiangya Hospital, Central South University, Changsha, China.,Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Xiaomeng Sun
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaoqiong Xia
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yunhe Liu
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lei Liu
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
2289
|
Gu J, Huang W, Zhang J, Wang X, Tao T, Yang L, Zheng Y, Liu S, Yang J, Zhu L, Wang H, Fan Y. TMPRSS4 Promotes Cell Proliferation and Inhibits Apoptosis in Pancreatic Ductal Adenocarcinoma by Activating ERK1/2 Signaling Pathway. Front Oncol 2021; 11:628353. [PMID: 33816264 PMCID: PMC8012900 DOI: 10.3389/fonc.2021.628353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Transmembrane protease serine 4 (TMPRSS4) is upregulated in various kinds of human cancers, including pancreatic cancer. However, its biological function in pancreatic ductal adenocarcinoma (PDAC) remains unclear. In the current study, real-time qPCR, immunohistochemical staining, Western blotting, and database (Cancer Genome Atlas and Gene Expression) analysis revealed remarkable overexpression of TMPRSS4 in PDAC tissue as compared to non-tumor tissue. The TMPRSS4 overexpression was associated with poor prognosis of PDAC patients. Moreover, multivariate analysis revealed that TMPRSS4 serves as an independent risk factor in PDAC. We performed gain-and loss-of-function analysis and found that TMPRSS4 promotes cellular proliferation and inhibits apoptosis of PDAC cells both in vitro and in vivo. Furthermore, we showed that TMPRSS4 might promote cell proliferation and inhibit apoptosis through activating ERK1/2 signaling pathway in pancreatic cancer cells. These findings were validated by using ERK1/2 phosphorylation inhibitor SCH772984 both in vitro and in vivo. Taken together, this study suggests that TMPRSS4 is a proto-oncogene, which promotes initiation and progression of PDAC by controlling cell proliferation and apoptosis. Our findings indicate that TMPRSS4 could be a promising prognostic biomarker and a therapeutic target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jianyou Gu
- Department of Hepatobiliary Surgery I, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Wenjie Huang
- Department of Hepatobiliary Surgery I, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Junfeng Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Xianxing Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Tian Tao
- Department of Hepatobiliary Surgery I, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ludi Yang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yao Zheng
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Songsong Liu
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Jiali Yang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Liwei Zhu
- Department of Hepatobiliary Surgery I, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yingfang Fan
- Department of Hepatobiliary Surgery I, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2290
|
Garate J, Maimó-Barceló A, Bestard-Escalas J, Fernández R, Pérez-Romero K, Martínez MA, Payeras MA, Lopez DH, Fernández JA, Barceló-Coblijn G. A Drastic Shift in Lipid Adducts in Colon Cancer Detected by MALDI-IMS Exposes Alterations in Specific K + Channels. Cancers (Basel) 2021; 13:cancers13061350. [PMID: 33802791 PMCID: PMC8061771 DOI: 10.3390/cancers13061350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 01/12/2023] Open
Abstract
Even though colorectal cancer (CRC) is one of the most preventable cancers, it is one of the deadliest, and recent data show that the incidence in people <50 years has unexpectedly increased. While new techniques for CRC molecular classification are emerging, no molecular feature is as yet firmly associated with prognosis. Imaging mass spectrometry (IMS) lipidomic analyses have demonstrated the specificity of the lipid fingerprint in differentiating pathological from healthy tissues. During IMS lipidomic analysis, the formation of ionic adducts is common. Of particular interest is the [Na+]/[K+] adduct ratio, which already functions as a biomarker for homeostatic alterations. Herein, we show a drastic shift of the [Na+]/[K+] adduct ratio in adenomatous colon mucosa compared to healthy mucosa, suggesting a robust increase in K+ levels. Interrogating public databases, a strong association was found between poor diagnosis and voltage-gated potassium channel subunit beta-2 (KCNAB2) overexpression. We found this overexpression in three CRC molecular subtypes defined by the CRC Subtyping Consortium, making KCNAB2 an interesting pharmacological target. Consistently, its pharmacological inhibition resulted in a dramatic halt in commercial CRC cell proliferation. Identification of potential pharmacologic targets using lipid adduct information emphasizes the great potential of IMS lipidomic techniques in the clinical field.
Collapse
Affiliation(s)
- Jone Garate
- Department of Physical Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.G.); (R.F.); (J.A.F.)
| | - Albert Maimó-Barceló
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (J.B.-E.); (K.P.-R.); (M.A.M.); (M.A.P.); (D.H.L.)
- Research Unit, Hospital Universitari Son Espases, 07120 Palma, Spain
| | - Joan Bestard-Escalas
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (J.B.-E.); (K.P.-R.); (M.A.M.); (M.A.P.); (D.H.L.)
- Research Unit, Hospital Universitari Son Espases, 07120 Palma, Spain
| | - Roberto Fernández
- Department of Physical Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.G.); (R.F.); (J.A.F.)
- Research Department, IMG Pharma Biotech S.L., BIC Bizkaia (612), 48160 Derio, Spain
| | - Karim Pérez-Romero
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (J.B.-E.); (K.P.-R.); (M.A.M.); (M.A.P.); (D.H.L.)
- Research Unit, Hospital Universitari Son Espases, 07120 Palma, Spain
| | - Marco A. Martínez
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (J.B.-E.); (K.P.-R.); (M.A.M.); (M.A.P.); (D.H.L.)
- Pathology Anatomy Unit, Hospital Universitari Son Espases, 07120 Palma, Spain
| | - Mª Antònia Payeras
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (J.B.-E.); (K.P.-R.); (M.A.M.); (M.A.P.); (D.H.L.)
- Gastroenterology Unit, Hospital Universitari Son Espases, 07120 Palma, Spain
| | - Daniel H. Lopez
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (J.B.-E.); (K.P.-R.); (M.A.M.); (M.A.P.); (D.H.L.)
- Research Unit, Hospital Universitari Son Espases, 07120 Palma, Spain
| | - José Andrés Fernández
- Department of Physical Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.G.); (R.F.); (J.A.F.)
| | - Gwendolyn Barceló-Coblijn
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (J.B.-E.); (K.P.-R.); (M.A.M.); (M.A.P.); (D.H.L.)
- Research Unit, Hospital Universitari Son Espases, 07120 Palma, Spain
- Correspondence: ; Tel.: +34-871-205-000 (ext. 66300)
| |
Collapse
|
2291
|
László L, Kurilla A, Takács T, Kudlik G, Koprivanacz K, Buday L, Vas V. Recent Updates on the Significance of KRAS Mutations in Colorectal Cancer Biology. Cells 2021; 10:667. [PMID: 33802849 PMCID: PMC8002639 DOI: 10.3390/cells10030667] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 12/17/2022] Open
Abstract
The most commonly mutated isoform of RAS among all cancer subtypes is KRAS. In this review, we focus on the special role of KRAS mutations in colorectal cancer (CRC), aiming to collect recent data on KRAS-driven enhanced cell signalling, in vitro and in vivo research models, and CRC development-related processes such as metastasis and cancer stem cell formation. We attempt to cover the diverse nature of the effects of KRAS mutations on age-related CRC development. As the incidence of CRC is rising in young adults, we have reviewed the driving forces of ageing-dependent CRC.
Collapse
Affiliation(s)
- Loretta László
- Research Centre for Natural Sciences, Institute of Enzymology, 1051 Budapest, Hungary; (L.L.); (A.K.); (T.T.); (G.K.); (K.K.); (L.B.)
| | - Anita Kurilla
- Research Centre for Natural Sciences, Institute of Enzymology, 1051 Budapest, Hungary; (L.L.); (A.K.); (T.T.); (G.K.); (K.K.); (L.B.)
| | - Tamás Takács
- Research Centre for Natural Sciences, Institute of Enzymology, 1051 Budapest, Hungary; (L.L.); (A.K.); (T.T.); (G.K.); (K.K.); (L.B.)
| | - Gyöngyi Kudlik
- Research Centre for Natural Sciences, Institute of Enzymology, 1051 Budapest, Hungary; (L.L.); (A.K.); (T.T.); (G.K.); (K.K.); (L.B.)
| | - Kitti Koprivanacz
- Research Centre for Natural Sciences, Institute of Enzymology, 1051 Budapest, Hungary; (L.L.); (A.K.); (T.T.); (G.K.); (K.K.); (L.B.)
| | - László Buday
- Research Centre for Natural Sciences, Institute of Enzymology, 1051 Budapest, Hungary; (L.L.); (A.K.); (T.T.); (G.K.); (K.K.); (L.B.)
- Department of Medical Chemistry, Semmelweis University Medical School, 1071 Budapest, Hungary
| | - Virag Vas
- Research Centre for Natural Sciences, Institute of Enzymology, 1051 Budapest, Hungary; (L.L.); (A.K.); (T.T.); (G.K.); (K.K.); (L.B.)
| |
Collapse
|
2292
|
Ding Y, Li M, Tayier T, Zhang M, Chen L, Feng S. Bioinformatics analysis of lncRNA‑associated ceRNA network in melanoma. J Cancer 2021; 12:2921-2932. [PMID: 33854593 PMCID: PMC8040875 DOI: 10.7150/jca.51851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/15/2021] [Indexed: 01/06/2023] Open
Abstract
Melanoma is an extremely malignant tumor with early metastasis and high mortality. Little is known about the process of by which melanoma occurs, as its mechanism is very complex and only limited data are available on its long non-coding RNA (lncRNA)-associated competing endogenous RNAs (ceRNAs). The purpose of this study was to screen out potential prognostic molecules and identify a ceRNA network related to the occurrence of melanoma. We screened 169 differentially expressed mRNAs (DEmRNAs) from E-MTAB-1862 and GSE3189; gene ontology (GO) enrichment analysis showed that these genes were closely related to the development of skin. In the protein-protein interaction network, we screened out a total of 19 hub genes. Furthermore, we predicted the microRNAs (miRNAs) that regulate hub genes using the miRWalk database and then intersected these with GSE35579, resulting in nine DEmiRNAs. We also predicted the lncRNAs that regulate the miRNAs using the LncBasev.2 database. According to the ceRNA hypothesis, and based on the intersection of the DElncRNAs with merged GTEx and TCGA data, we obtained 20 DElncRNAs. A total of four DEmRNAs, nine DEmiRNAs, and 20 DElncRNAs were included in the ceRNA network. Based on Cox stepwise regression and survival analysis, we identified five biomarkers, ZSCAN16-AS1, LINC00520, XIST, DTL, and let-7a-5p, and obtained risk scores. The results showed that most of the differentially expressed genes were related to epithelial-mesenchymal transition (EMT) in melanoma. Finally, we obtained a LINC00520/let-7a-5p/DTL molecular regulatory network. These results suggest that ceRNA networks have an important role in evaluating the prognosis of patients with melanoma and provide a new experimental basis for exploring the EMT process in the development of melanoma.
Collapse
Affiliation(s)
- Yi Ding
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Min Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tuersong Tayier
- Department of Pharmacology, Pharmacy College, Xinjiang Medical University, Urumqi, China
| | - MeiLin Zhang
- Xinjiang Urumqi City Center Blood Station, Urumqi, China
| | - Long Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - ShuMei Feng
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
2293
|
Uysal D, Kowalewski KF, Kriegmair MC, Wirtz R, Popovic ZV, Erben P. A comprehensive molecular characterization of the 8q22.2 region reveals the prognostic relevance of OSR2 mRNA in muscle invasive bladder cancer. PLoS One 2021; 16:e0248342. [PMID: 33711044 PMCID: PMC7954304 DOI: 10.1371/journal.pone.0248342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
Technological advances in molecular profiling have enabled the comprehensive identification of common regions of gene amplification on chromosomes (amplicons) in muscle invasive bladder cancer (MIBC). One such region is 8q22.2, which is largely unexplored in MIBC and could harbor genes with potential for outcome prediction or targeted therapy. To investigate the prognostic role of 8q22.2 and to compare different amplicon definitions, an in-silico analysis of 357 patients from The Cancer Genome Atlas, who underwent radical cystectomy for MIBC, was performed. Amplicons were generated using the GISTIC2.0 algorithm for copy number alterations (DNA_Amplicon) and z-score normalization for mRNA gene overexpression (RNA_Amplicon). Kaplan-Meier survival analysis, univariable, and multivariable Cox proportional hazard ratios were used to relate amplicons, genes, and clinical parameters to overall (OS) and disease-free survival (DFS). Analyses of the biological functions of 8q22.2 genes and genomic events in MIBC were performed to identify potential targets. Genes with prognostic significance from the in silico analysis were validated using RT-qPCR of MIBC tumor samples (n = 46). High 8q22.2 mRNA expression (RNA-AMP) was associated with lymph node metastases. Furthermore, 8q22.2 DNA and RNA amplified patients were more likely to show a luminal subtype (DNA_Amplicon_core: p = 0.029; RNA_Amplicon_core: p = 0.01). Overexpression of the 8q22.2 gene OSR2 predicted shortened DFS in univariable (HR [CI] 1.97 [1.2; 3.22]; p = 0.01) and multivariable in silico analysis (HR [CI] 1.91 [1.15; 3.16]; p = 0.01) and decreased OS (HR [CI] 6.25 [1.37; 28.38]; p = 0.0177) in RT-qPCR data analysis. Alterations in different levels of the 8q22.2 region are associated with manifestation of different clinical characteristics in MIBC. An in-depth comprehensive molecular characterization of genomic regions involved in cancer should include multiple genetic levels, such as DNA copy number alterations and mRNA gene expression, and could lead to a better molecular understanding. In this study, OSR2 is identified as a potential biomarker for survival prognosis.
Collapse
Affiliation(s)
- Daniel Uysal
- Department of Urology and Urosurgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Karl-Friedrich Kowalewski
- Department of Urology and Urosurgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Ralph Wirtz
- STRATIFYER Molecular Pathology GmbH, Köln, Germany
| | - Zoran V. Popovic
- Institute of Pathology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Philipp Erben
- Department of Urology and Urosurgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- * E-mail:
| |
Collapse
|
2294
|
Smolle MA, Herbsthofer L, Goda M, Granegger B, Brcic I, Bergovec M, Scheipl S, Prietl B, El-Heliebi A, Pichler M, Gerger A, Posch F, Tomberger M, López-García P, Feichtinger J, Baumgartner C, Leithner A, Liegl-Atzwanger B, Szkandera J. Influence of tumor-infiltrating immune cells on local control rate, distant metastasis, and survival in patients with soft tissue sarcoma. Oncoimmunology 2021; 10:1896658. [PMID: 33763294 PMCID: PMC7954425 DOI: 10.1080/2162402x.2021.1896658] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Soft tissue sarcomas (STS) are considered non-immunogenic, although distinct entities respond to anti-tumor agents targeting the tumor microenvironment. This study's aims were to investigate relationships between tumor-infiltrating immune cells and patient/tumor-related factors, and assess their prognostic value for local recurrence (LR), distant metastasis (DM), and overall survival (OS). One-hundred-eighty-eight STS-patients (87 females [46.3%]; median age: 62.5 years) were retrospectively analyzed. Tissue microarrays (in total 1266 cores) were stained with multiplex immunohistochemistry and analyzed with multispectral imaging. Seven cell types were differentiated depending on marker profiles (CD3+, CD3+ CD4+ helper, CD3+ CD8+ cytotoxic, CD3+ CD4+ CD45RO+ helper memory, CD3+ CD8+ CD45RO+ cytotoxic memory T-cells; CD20 + B-cells; CD68+ macrophages). Correlations between phenotype abundance and variables were analyzed. Uni- and multivariate Fine&Gray and Cox-regression models were constructed to investigate prognostic variables. Model calibration was assessed with C-index. IHC-findings were validated with TCGA-SARC gene expression data of genes specific for macrophages, T- and B-cells. B-cell percentage was lower in patients older than 62.5 years (p = .013), whilst macrophage percentage was higher (p = .002). High B-cell (p = .035) and macrophage levels (p = .003) were associated with increased LR-risk in the univariate analysis. In the multivariate setting, high macrophage levels (p = .014) were associated with increased LR-risk, irrespective of margins, age, gender or B-cells. Other immune cells were not associated with outcome events. High macrophage levels were a poor prognostic factor for LR, irrespective of margins, B-cells, gender and age. Thus, anti-tumor, macrophage-targeting agents may be applied more frequently in tumors with enhanced macrophage infiltration.
Collapse
Affiliation(s)
- Maria A Smolle
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | | | - Mark Goda
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Barbara Granegger
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Iva Brcic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Marko Bergovec
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Susanne Scheipl
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Barbara Prietl
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Amin El-Heliebi
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Martin Pichler
- Division of Clinical Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Armin Gerger
- Division of Clinical Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Florian Posch
- Division of Clinical Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | | | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Claudia Baumgartner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Bernadette Liegl-Atzwanger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Joanna Szkandera
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
2295
|
A comprehensive analysis of tumor microenvironment-related genes in colon cancer. Clin Transl Oncol 2021; 23:1769-1781. [PMID: 33689097 DOI: 10.1007/s12094-021-02578-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND The development and progression of colon cancer are significantly affected by the tumor microenvironment, which has attracted much attention. The goal of our study was primarily to find out all possible tumor microenvironment-related genes in colon cancer. METHOD This study quantified the immune and stromal landscape using the ESTIMATION algorithm using the gene expression matrix obtained from the UCSC Xena database. Dysregulated genes were harvested using the limma R package, and relevant pathways and biofunctions were identified using enrichment analysis. A least absolute shrinkage and selection operator (LASSO) regression was used to select the pivotal genes from the DEGs. Then, survival analysis was performed to determine the hub genes and a prognostic model was constructed by these hub genes with (or) TNM stage. Besides, associations between hub gene expressions and immune cell infiltration were assessed. RESULTS A total of 725 DEGs were identified. Most of the results of the enrichment analysis were immune-related items. 13 genes were selected as the hub genes and a moderate-to-strong positive correlation between most hub genes and several immune cells were observed. Besides, the prognostic value of the hub genes were comparable to TNM staging. CONCLUSIONS Our study provides a better understanding of how interactions between the 13 immune-prognostic hub genes and immune cells in the tumor microenvironment affect biological processes in colon cancer. These genes exhibit an equivalent ability to TNM staging in prognosis prediction. They are particularly expected to become novel prognostic biomarkers and targets of immunotherapies for colon cancer.
Collapse
|
2296
|
Fort RS, Duhagon MA. Pan-cancer chromatin analysis of the human vtRNA genes uncovers their association with cancer biology. F1000Res 2021; 10:182. [PMID: 34354812 PMCID: PMC8287541 DOI: 10.12688/f1000research.28510.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/17/2022] Open
Abstract
Background: The vault RNAs (vtRNAs) are a class of 84-141-nt eukaryotic non-coding RNAs transcribed by RNA polymerase III, associated to the ribonucleoprotein complex known as vault particle. Of the four human vtRNA genes, vtRNA1-1, vtRNA1-2 and vtRNA1-3, clustered at locus 1, are integral components of the vault particle, while vtRNA2-1 is a more divergent homologue located in a second locus. Gene expression studies of vtRNAs in large cohorts have been hindered by their unsuccessful sequencing using conventional transcriptomic approaches. Methods: VtRNA expression in The Cancer Genome Atlas (TCGA) Pan-Cancer cohort was estimated using the genome-wide DNA methylation and chromatin accessibility data (ATAC-seq) of their genes as surrogate variables. The association between vtRNA expression and patient clinical outcome, immune subtypes and transcriptionally co-regulated gene programs was analyzed in the dataset. Results: VtRNAs promoters are enriched in transcription factors related to viral infection. VtRNA2-1 is likely the most independently regulated homologue. VtRNA1-1 has the most accessible chromatin, followed by vtRNA1-2, vtRNA2-1 and vtRNA1-3. VtRNA1-1 and vtRNA1-3 chromatin status does not significantly change in cancer tissues. Meanwhile, vtRNA2-1 and vtRNA1-2 expression is widely deregulated in neoplastic tissues and its alteration is compatible with a broad oncogenic role for vtRNA1-2, and both tumor suppressor and oncogenic functions for vtRNA2-1. Yet, vtRNA1-1, vtRNA1-2 and vtRNA2-1 promoter DNA methylation predicts a shorter patient overall survival cancer-wide. In addition, gene ontology analyses of vtRNAs co-regulated genes identify a chromosome regulatory domain, epithelial differentiation, immune and thyroid cancer gene sets for specific vtRNAs. Furthermore, vtRNA expression patterns are associated with cancer immune subtypes and vtRNA1-2 expression is positively associated with cell proliferation and wound healing. Conclusions: Our study presents the landscape of vtRNA chromatin status cancer-wide, identifying co-regulated gene networks and ontological pathways associated with the different vtRNA genes that may account for their diverse roles in cancer.
Collapse
Affiliation(s)
- Rafael Sebastián Fort
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Montevideo, 11400, Uruguay.,Depto. de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Montevideo, 11600, Uruguay
| | - María Ana Duhagon
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Montevideo, 11400, Uruguay.,Depto. de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Montevideo, 11400, Uruguay
| |
Collapse
|
2297
|
Weeks SE, Kammerud SC, Metge BJ, AlSheikh HA, Schneider DA, Chen D, Wei S, Mobley JA, Ojesina AI, Shevde LA, Samant RS. Inhibiting β-catenin disables nucleolar functions in triple-negative breast cancer. Cell Death Dis 2021; 12:242. [PMID: 33664239 PMCID: PMC7933177 DOI: 10.1038/s41419-021-03531-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 01/31/2023]
Abstract
Triple-negative breast cancer (TNBC) patients with upregulated Wnt/β-catenin signaling often have poor clinical prognoses. During pathological examinations of breast cancer sections stained for β-catenin, we made the serendipitous observation that relative to non-TNBC, specimens from TNBC patients have a greater abundance of nucleoli. There was a remarkable direct relationship between nuclear β-catenin and greater numbers of nucleoli in TNBC tissues. These surprising observations spurred our investigations to decipher the differential functional relevance of the nucleolus in TNBC versus non-TNBC cells. Comparative nucleolar proteomics revealed that the majority of the nucleolar proteins in TNBC cells were potential targets of β-catenin signaling. Next, we undertook an analysis of the nucleolar proteome in TNBC cells in response to β-catenin inhibition. This effort revealed that a vital component of pre-rRNA processing, LAS1 like ribosome biogenesis factor (LAS1L) was significantly decreased in the nucleoli of β-catenin inhibited TNBC cells. Here we demonstrate that LAS1L protein expression is significantly elevated in TNBC patients, and it functionally is important for mammary tumor growth in xenograft models and enables invasive attributes. Our observations highlight a novel function for β-catenin in orchestrating nucleolar activity in TNBCs.
Collapse
Affiliation(s)
- Shannon E Weeks
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah C Kammerud
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Heba A AlSheikh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongquan Chen
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shi Wei
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James A Mobley
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Akinyemi I Ojesina
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Birmingham VA Medical Center, Birmingham, AL, USA.
| |
Collapse
|
2298
|
Peng Q, Shen Y, Fu K, Dai Z, Jin L, Yang D, Zhu J. Artificial intelligence prediction model for overall survival of clear cell renal cell carcinoma based on a 21-gene molecular prognostic score system. Aging (Albany NY) 2021; 13:7361-7381. [PMID: 33686949 PMCID: PMC7993746 DOI: 10.18632/aging.202594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/14/2021] [Indexed: 01/03/2023]
Abstract
We developed and validated a new prognostic model for predicting the overall survival in clear cell renal cell carcinoma (ccRCC) patients. In this study, artificial intelligence (AI) algorithms including random forest and neural network were trained to build a molecular prognostic score (mPS) system. Afterwards, we investigated the potential mechanisms underlying mPS by assessing gene set enrichment analysis, mutations, copy number variations (CNVs) and immune cell infiltration. A total of 275 prognosis-related genes were identified, which were also differentially expressed between ccRCC patients and healthy controls. We then constructed a universal mPS system that depends on the expression status of only 21 of these genes by applying AI-based algorithms. Then, the mPS were validated by another independent cohort and demonstrated to be applicable to ccRCC subsets. Furthermore, a nomogram comprising the mPS score and several independent variables was established and proved to effectively predict ccRCC patient prognosis. Finally, significant differences were identified regarding the pathways, mutated genes, CNVs and tumor-infiltrating immune cells among the subgroups of ccRCC stratified by the mPS system. The AI-based mPS system can provide critical prognostic prediction for ccRCC patients and may be useful to inform treatment and surveillance decisions before initial intervention.
Collapse
Affiliation(s)
- Qiliang Peng
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Yi Shen
- Department of Radiation Oncology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Kai Fu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zheng Dai
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu Jin
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongrong Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Zhu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2299
|
Guo R, Lü M, Cao F, Wu G, Gao F, Pang H, Li Y, Zhang Y, Xing H, Liang C, Lyu T, Du C, Li Y, Guo R, Xie X, Li W, Liu D, Song Y, Jiang Z. Single-cell map of diverse immune phenotypes in the acute myeloid leukemia microenvironment. Biomark Res 2021; 9:15. [PMID: 33648605 PMCID: PMC7919996 DOI: 10.1186/s40364-021-00265-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Knowledge of immune cell phenotypes, function, and developmental trajectory in acute myeloid leukemia (AML) microenvironment is essential for understanding mechanisms of evading immune surveillance and immunotherapy response of targeting special microenvironment components. METHODS Using a single-cell RNA sequencing (scRNA-seq) dataset, we analyzed the immune cell phenotypes, function, and developmental trajectory of bone marrow (BM) samples from 16 AML patients and 4 healthy donors, but not AML blasts. RESULTS We observed a significant difference between normal and AML BM immune cells. Here, we defined the diversity of dendritic cells (DC) and macrophages in different AML patients. We also identified several unique immune cell types including T helper cell 17 (TH17)-like intermediate population, cytotoxic CD4+ T subset, T cell: erythrocyte complexes, activated regulatory T cells (Treg), and CD8+ memory-like subset. Emerging AML cells remodels the BM immune microenvironment powerfully, leads to immunosuppression by accumulating exhausted/dysfunctional immune effectors, expending immune-activated types, and promoting the formation of suppressive subsets. CONCLUSION Our results provide a comprehensive AML BM immune cell census, which can help to select pinpoint targeted drug and predict efficacy of immunotherapy.
Collapse
Affiliation(s)
- Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengdie Lü
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Fujiao Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guanghua Wu
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan, China
| | - Fengcai Gao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haili Pang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yadan Li
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan, China
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yinyin Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haizhou Xing
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunyan Liang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tianxin Lyu
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan, China
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Chunyan Du
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinsheng Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Delong Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
2300
|
Schnoell J, Jank BJ, Kadletz-Wanke L, Stoiber S, Spielvogel CP, Gurnhofer E, Kenner L, Heiduschka G. Transcription factors CP2 and YY1 as prognostic markers in head and neck squamous cell carcinoma: analysis of The Cancer Genome Atlas and a second independent cohort. J Cancer Res Clin Oncol 2021; 147:755-765. [PMID: 33315124 PMCID: PMC7872999 DOI: 10.1007/s00432-020-03482-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/22/2020] [Indexed: 01/29/2023]
Abstract
PURPOSE The transcription factors YY1 and CP2 have been associated with tumor promotion and suppression in various cancers. Recently, simultaneous expression of both markers was correlated with negative prognosis in cancer. The aim of this study was to explore the expression of YY1 and CP2 in head and neck squamous cell carcinoma (HNSCC) patients and their association with survival. METHODS First, we analyzed mRNA expression and copy number variations (CNVs) of YY1 and CP2 using "The Cancer Genome Atlas" (TCGA) with 510 HNSCC patients. Secondly, protein expression was investigated via immunohistochemistry in 102 patients, who were treated in the Vienna General Hospital, utilizing a tissue microarray. RESULTS The median follow-up was 2.9 years (1.8-4.6) for the TCGA cohort and 10.3 years (6.5-12.8) for the inhouse tissue micro-array (TMA) cohort. The median overall survival of the TCGA cohort was decreased for patients with a high YY1 mRNA expression (4.0 vs. 5.7 years, p = 0.030, corr. p = 0.180) and high YY1-CNV (3.53 vs. 5.4 years, p = 0.0355, corr. p = 0.213). Furthermore, patients with a combined high expression of YY1 and CP2 mRNA showed a worse survival (3.5 vs. 5.4 years, p = 0.003, corr. p = 0.018). The mortality rate of patients with co-expression of YY1 and CP2 mRNA was twice as high compared to patients with low expression of one or both (HR 1.99, 95% CI 1.11-3.58, p = 0.021). Protein expression of nuclear YY1 and CP2 showed no association with disease outcome in our inhouse cohort. CONCLUSION Our data indicate that simultaneous expression of YY1 and CP2 mRNA is associated with shorter overall survival. Thus, combined high mRNA expression might be a suitable prognostic marker for risk stratification in HNSCC patients. However, since we could not validate this finding at genomic or protein level, we hypothesize that unknown underlying mechanisms which regulate mRNA transcription of YY1 and CP2 are the actual culprits leading to a worse survival.
Collapse
Affiliation(s)
- Julia Schnoell
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Bernhard J Jank
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.
| | - Lorenz Kadletz-Wanke
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Stefan Stoiber
- Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria
- Department of Pathology, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Clemens P Spielvogel
- Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Gurnhofer
- Department of Pathology, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria.
- Department of Pathology, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria.
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine, Vienna, Austria.
- CBmed GmbH-Center for Biomarker Research in Medicine, Graz, Styria, Austria.
| | - Gregor Heiduschka
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|