2251
|
dos Santos WD, Ferrarese MDLL, Ferrarese-Filho O. High performance liquid chromatography method for the determination of cinnamyl alcohol dehydrogenase activity in soybean roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:511-5. [PMID: 17023167 DOI: 10.1016/j.plaphy.2006.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 07/13/2006] [Indexed: 05/12/2023]
Abstract
This study proposes a simple, quick and reliable method for determining the cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) activity in soybean (Glycine max L. Merr.) roots using reversed-phase high performance liquid chromatography (RP-HPLC). The method includes a single extraction of the tissue and conduction of the enzymatic reaction at 30 degrees C with cinnamaldehydes (coniferyl or sinapyl), substrates of CAD. Disappearance of the substrates in the reaction mixture is monitored at 340 nm (for coniferaldehyde) or 345 nm (for sinapaldehyde) by isocratic elution with methanol/acetic acid through a GLC-ODS (M) column. This HPLC technique furnishes a rapid and reliable measure of cinnamaldehyde substrates, and may be used as an alternative tool to analyze CAD activity in enzyme preparation without previous purification.
Collapse
Affiliation(s)
- W D dos Santos
- Laboratory of Plant Biochemistry, Department of Biochemistry, University of Maringá, Av. Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | | | | |
Collapse
|
2252
|
Barrière Y, Denoue D, Briand M, Simon M, Jouanin L, Durand-Tardif M. Genetic variations of cell wall digestibility related traits in floral stems of Arabidopsis thaliana accessions as a basis for the improvement of the feeding value in maize and forage plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:163-75. [PMID: 16783597 DOI: 10.1007/s00122-006-0284-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 03/31/2006] [Indexed: 05/10/2023]
Abstract
Floral stems of Arabidopsis thaliana accessions were used as a model system relative to forage plant stems in genetic variation studies of lignin content and cell wall digestibility related traits. Successive investigations were developed in a core collection of 24 Arabidopsis accessions and in a larger collection of 280 accessions. Significant genetic variation for lignin content in the cell wall, and for the two in vitro cell wall digestibility investigated traits, were found both in the core collection and in the large collection. Genotype x environment interactions, investigated in the core collection, were significant with a few genotypes contributing greatly to interactions, based on ecovalence value estimates. In the core collection, genotypes 42AV, 224AV, and 8AV had low cell wall digestibility values, whatever be the environmental conditions. Genotype 157AV, observed only in one environment, also appeared to have a low cell wall digestibility. Conversely, genotypes 236AV, 162AV, 70AV, 101AV, 83AV had high cell wall digestibility values, genotype 83AV having a slightly greater instability across differing environments than others. The well-known accession Col-0 (186AV) appeared with a medium level of cell wall digestibility and a weak to medium level of interaction between environments. The ranges of variation in cell wall digestibility traits were higher in the large collection than in the core collection of 24 accessions, these results needing confirmation due to the lower number of replicates. Accessions 295AV, 148AV, and 309AV could be models for low stem cell wall digestibility values, with variable lignin content. Similarly, accessions 83AV and 162AV, already identified from the study of the core collection, and five accessions (6AV, 20AV, 91AV, 114AV, and 223AV) could be models for high stem cell wall digestibility values. The large variations observed between Arabidopsis accessions for both lignin content and cell wall digestibility in floral stems have strengthened the use this species as a powerful tool for discovering genes involved in cell wall biosynthesis and lignification of dicotyledons forage plants. Investigations of this kind might also be applicable to monocotyledons forage plants due to the basic similarity of the genes involved in the lignin pathway of Angiosperms and the partial homology of the cell wall composition and organization of the mature vascular system in grasses and Arabidopsis.
Collapse
Affiliation(s)
- Y Barrière
- INRA, Unité de Génétique et Amélioration des Plantes Fourragères, BP6, 86600 Lusignan, France.
| | | | | | | | | | | |
Collapse
|
2253
|
Singh SA, Christendat D. Structure ofArabidopsisDehydroquinate Dehydratase-Shikimate Dehydrogenase and Implications for Metabolic Channeling in the Shikimate Pathway†,‡. Biochemistry 2006; 45:7787-96. [PMID: 16784230 DOI: 10.1021/bi060366+] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bifunctional enzyme dehydroquinate dehydratase-shikimate dehydrogenase (DHQ-SDH) catalyzes the dehydration of dehydroquinate to dehydroshikimate and the reduction of dehydroshikimate to shikimate in the shikimate pathway. We report the first crystal structure of Arabidopsis DHQ-SDH with shikimate bound at the SDH site and tartrate at the DHQ site. The interactions observed in the DHQ-tartrate complex reveal a conserved mode for substrate binding between the plant and microbial DHQ dehydratase family of enzymes. The SDH-shikimate complex provides the first direct evidence of the role of active site residues in the catalytic mechanism. Site-directed mutagenesis and mechanistic analysis revealed that Asp 423 and Lys 385 are key catalytic groups and Ser 336 is a key binding group. The arrangement of the two functional domains reveals that the control of metabolic flux through the shikimate pathway is achieved by increasing the effective concentration of dehydroshikimate through the proximity of the two sites.
Collapse
Affiliation(s)
- Sasha Anna Singh
- Department of Botany, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | | |
Collapse
|
2254
|
Alvarez S, Goodger JQD, Marsh EL, Chen S, Asirvatham VS, Schachtman DP. Characterization of the maize xylem sap proteome. J Proteome Res 2006; 5:963-72. [PMID: 16602704 DOI: 10.1021/pr050471q] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The xylem in plants has mainly been described as a conduit for water and minerals, but emerging evidence also indicates that the xylem contains protein. To study the proteins in xylem sap, we characterized the identity and composition of the maize xylem sap proteome. The composition of the xylem sap proteome in maize revealed proteins related to different phases of xylem differentiation including cell wall metabolism, secondary cell wall synthesis, and programmed cell death. Many proteins were found to be present as multiple isoforms and some of these isoforms are glycosylated. Proteins involved in defense mechanisms were also present in xylem sap and the sap proteins were shown to have antifungal activity in bioassays.
Collapse
Affiliation(s)
- Sophie Alvarez
- Donald Danforth Plant Science Center, 975 North Warson Road, Saint Louis, Missouri 63132, USA
| | | | | | | | | | | |
Collapse
|
2255
|
Dicko MH, Gruppen H, Hilhorst R, Voragen AGJ, van Berkel WJH. Biochemical characterization of the major sorghum grain peroxidase. FEBS J 2006; 273:2293-307. [PMID: 16650004 DOI: 10.1111/j.1742-4658.2006.05243.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The major cationic peroxidase in sorghum grain (SPC4) , which is ubiquitously present in all sorghum varieties was purified to apparent homogeneity, and found to be a highly basic protein (pI approximately 11). MS analysis showed that SPC4 consists of two glycoforms with molecular masses of 34,227 and 35,629 Da and it contains a type-b heme. Chemical deglycosylation allowed to estimate sugar contents of 3.0% and 6.7% (w/w) in glycoform I and II, respectively, and a mass of the apoprotein of 33,246 Da. High performance anion exchange chromatography allowed to determine the carbohydrate constituents of the polysaccharide chains. The N-terminal sequence of SPC4 is not blocked by pyroglutamate. MS analysis showed that six peptides, including the N-terminal sequence of SPC4 matched with the predicted tryptic peptides of gene indice TC102191 of sorghum chromosome 1, indicating that TC102191 codes for the N-terminal part of the sequence of SPC4, including a signal peptide of 31 amino acids. The N-terminal fragment of SPC4 (213 amino acids) has a high sequence identity with barley BP1 (85%), rice Prx23 (90%), wheat WSP1 (82%) and maize peroxidase (58%), indicative for a common ancestor. SPC4 is activated by calcium ions. Ca2+ binding increased the protein conformational stability by raising the melting temperature (Tm) from 67 to 82 degrees C. SPC4 catalyzed the oxidation of a wide range of aromatic substrates, being catalytically more efficient with hydroxycinnamates than with tyrosine derivatives. In spite of the conserved active sites, SPC4 differs from BP1 in being active with aromatic compounds above pH 5.
Collapse
Affiliation(s)
- Mamoudou H Dicko
- Laboratory of Biochemistry, Department of Agrotechnology and Food Sciences, Wageningen University, The Netherlands.
| | | | | | | | | |
Collapse
|
2256
|
Sato Y, Demura T, Yamawaki K, Inoue Y, Sato S, Sugiyama M, Fukuda H. Isolation and characterization of a novel peroxidase gene ZPO-C whose expression and function are closely associated with lignification during tracheary element differentiation. PLANT & CELL PHYSIOLOGY 2006; 47:493-503. [PMID: 16446311 DOI: 10.1093/pcp/pcj016] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In an attempt to elucidate the regulatory mechanism of vessel lignification, we isolated ZPO-C, a novel peroxidase gene of Zinnia elegans that is expressed specifically in differentiating tracheary elements (TEs). The ZPO-C transcript was shown to accumulate transiently at the time of secondary wall thickening of TEs in xylogenic culture of Zinnia cells. In situ hybridization indicated specific accumulation of the ZPO-C transcript in immature vessels in Zinnia seedlings. Immunohistochemical analysis using anti-ZPO-C antibody showed that the ZPO-C protein is abundant in TEs, especially at their secondary walls. For enzymatic characterization of ZPO-C, 6 x His-tagged ZPO-C was produced in tobacco cultured cells and purified. The ZPO-C:6 x His protein had a peroxidase activity preferring sinapyl alcohol as well as coniferyl alcohol as a substrate, with a narrow pH optimum around 5.25. The peroxidase activity required calcium ion and was elevated by increasing Ca2+ concentration in the range of 0-10 mM. An Arabidopsis homolog of ZPO-C, At5g51890, was examined for expression patterns with transgenic plants carrying a yellow fluorescent protein (YFP) gene under the control of the At5g51890 promoter. The YFP fluorescence localization demonstrated vessel-specific expression of At5g51890 in the Arabidopsis roots. Taken collectively, our results strongly suggest that ZPO-C and its homologs play an important role in lignification of secondary cell walls in differentiating TEs.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/genetics
- Asteraceae/cytology
- Asteraceae/enzymology
- Asteraceae/genetics
- Bacterial Proteins/genetics
- Calcium/analysis
- Cell Differentiation/genetics
- Cells, Cultured
- DNA, Complementary
- DNA, Plant/analysis
- DNA, Plant/genetics
- Gene Expression Regulation, Plant
- Genes, Plant
- Hydrogen-Ion Concentration
- Immunohistochemistry
- In Situ Hybridization
- Lignin/metabolism
- Luminescent Proteins/genetics
- Microscopy, Immunoelectron
- Molecular Sequence Data
- Peroxidase/chemistry
- Peroxidase/genetics
- Peroxidase/physiology
- Phylogeny
- Plant Stems/cytology
- Plant Stems/enzymology
- Plant Stems/physiology
- Plants, Genetically Modified
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Nicotiana/cytology
- Nicotiana/enzymology
- Transcription, Genetic
Collapse
Affiliation(s)
- Yasushi Sato
- Department of Biology, Faculty of Science, Ehime University, Matsuyama, 790-8577 Japan.
| | | | | | | | | | | | | |
Collapse
|
2257
|
Radotić K, Kalauzi A, Djikanović D, Jeremić M, Leblanc RM, Cerović ZG. Component analysis of the fluorescence spectra of a lignin model compound. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 83:1-10. [PMID: 16406801 DOI: 10.1016/j.jphotobiol.2005.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 12/02/2005] [Accepted: 12/04/2005] [Indexed: 10/25/2022]
Abstract
In order to test whether lignin fluorescence originates from discrete fluorophores, fluorescence emission spectra of the lignin model dehydrogenative polymer (DHP) were analyzed by the band deconvolution method and time-resolved analysis of both the excitation and emission spectra. Two series of 22 fluorescence emission spectra of DHP in chloroform/methanol (3:1, v/v) solution, and as a solid suspension in water, were deconvoluted into three fluorescence and one Raman Gaussian components. Emission spectra were obtained by stepwise variation of the excitation wavelength from 360 to 465 nm. Deconvolution was performed by nonlinear fitting of all three Gaussian parameters: area, width and position. Position of all components in a series was treated as a random variable and its approximate probability distribution (APD) calculated from a series of histograms with increasing number of abscissa intervals. A five peak multimodal APD profile was obtained for both series of DHP emission spectra. The mean fluorescence lifetime varied with wavelength both in the emission and the excitation decay-associated spectra (DAS), where four kinetic components were resolved. The shapes of the excitation spectra of the four components were quite different and gradually shifted bathochromically. The multicomponent nature of the DHP emission spectra along with the changes in the mean fluorescence lifetime and the form of the excitation DAS of the four components give evidence of the heterogeneous origin of fluorescent species emitting in the visible.
Collapse
Affiliation(s)
- Ksenija Radotić
- Centre for Multidisciplinary Studies, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia and Montenegro.
| | | | | | | | | | | |
Collapse
|
2258
|
Hano C, Addi M, Bensaddek L, Crônier D, Baltora-Rosset S, Doussot J, Maury S, Mesnard F, Chabbert B, Hawkins S, Lainé E, Lamblin F. Differential accumulation of monolignol-derived compounds in elicited flax (Linum usitatissimum) cell suspension cultures. PLANTA 2006; 223:975-89. [PMID: 16292660 DOI: 10.1007/s00425-005-0156-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 09/15/2005] [Indexed: 05/05/2023]
Abstract
Lignin and lignans share monolignols as common precursors and are both potentially involved in plant defence against pathogens. In this study, we investigated the effects of fungal elicitors on lignin and lignan metabolism in flax (Linum usitatissimum) cell suspensions. Cell suspension cultures of flax were treated with elicitor preparations made from mycelium extracts of Botrytis cinerea, Phoma exigua and Fusarium oxysporum F ssp lini. Elicitors induced a rapid stimulation of the monolignol pathway, as confirmed by the increase in PAL (phenylalanine ammonia-lyase, EC 4.1.3.5), CCR (cinnamoyl-CoA reductase EC 1.2.1.44) and CAD (cinnamyl alcohol dehydrogenase EC 1.1.1.195) gene expression and PAL activity. At the same time, CCR activity only increased significantly in F. oxysporum-treated cells 24 h post elicitation. On the other hand, CAD activity measured for coniferyl alcohol formation was transiently decreased but a substrate-specific activation of CAD activity was observed in F. oxysporum-treated cells when using sinapyl alcohol as substrate. The accumulation of monolignol-derived products varied according to the elicitor used. B. cinerea or P. exigua-elicited cell cultures were characterised by a reinforcement of the cell wall by a deposit of 8-O-4'-linked non-condensed lignin structures and phenolic monomers, while at the same time no stimulation of 8-8'-linked lignan or 8-5'-linked phenylcoumaran lignan accumulation was observed. Additionally, elicitation of cell cultures with F. oxysporum extracts even triggered a strong incorporation of monolignols in the non condensed labile ether-linked lignin fraction concomitantly with a decrease in lignan and phenylcoumaran lignan accumulation. Several hypotheses are proposed to explain the putative role of these compounds in the defence response of flax cells against pathogens.
Collapse
Affiliation(s)
- C Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, UPRES EA 1207, Antenne Scientifique Universitaire de Chartres, 21 rue de Loigny la Bataille, 28000 Chartres, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2259
|
Wei H, Dhanaraj AL, Arora R, Rowland LJ, Fu Y, Sun L. Identification of cold acclimation-responsive Rhododendron genes for lipid metabolism, membrane transport and lignin biosynthesis: importance of moderately abundant ESTs in genomic studies. PLANT, CELL & ENVIRONMENT 2006; 29:558-70. [PMID: 17080607 DOI: 10.1111/j.1365-3040.2005.01432.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have previously analysed expressed sequence tags (ESTs) from non-acclimated (NA) and cold-acclimated (CA) Rhododendron leaves, and identified highly abundant complementary DNAs (cDNAs) possibly involved in cold acclimation. A potentially significant, but relatively unexplored, application of these EST data sets is the study of moderately abundant cDNAs, such as those picked only 1-3 times from each Rhododendron EST library containing approximately 430 ESTs. Using statistical tests and Northern blots, we established that the probability of differential expression of moderately abundant cDNAs based on the EST data is, indeed, a reasonably accurate predictor of their 'true' upregulation or downregulation as 11 out of 13 cDNAs (85%) studied fit this criterion. The analyses also revealed four aspects of cold acclimation in Rhododendron leaf tissues. Firstly, the concomitant upregulation of long-chain acyl-coenzyme A (acyl-CoA) synthetase, CTP:cholinephosphate cytidylyltransferase and delta-12 fatty acid desaturase in CA leaf tissues suggests that phospholipid biosynthesis and desaturation are important components of cold hardening in Rhododendron. Secondly, upregulation of plastidic nicotinamide adenine dinucleotide phosphatemalic enzyme (NADP-ME) in CA tissues suggests that malate is an important source of acetyl-CoA used for fatty acid biosynthesis during cold acclimation. Thirdly, down-regulation of plasma membrane intrinsic protein (PIP)2-1 aquaporin and upregulation of gated outward rectifying K+ channel (GORK) in CA tissues may be associated with the protection of overwintering leaves from freeze-induced cellular dehydration. Fourthly, upregulation of coumarate 3-hydroxylase may be associated with cell wall thickening in CA tissues. Physiological implications of these results, which reveal potentially novel regulations of cold acclimation in overwintering woody evergreens, are discussed. This work highlights the importance of also investigating low/moderately abundant ESTs (in addition to highly abundant ones) in genomic studies, in that it offers an effective strategy for identifying stress-related genes, especially when large-scale cDNA sequencing/microarray studies are not possible.
Collapse
Affiliation(s)
- Hui Wei
- Department of Horticulture, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | |
Collapse
|
2260
|
Farrokhi N, Burton RA, Brownfield L, Hrmova M, Wilson SM, Bacic A, Fincher GB. Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:145-67. [PMID: 17177793 DOI: 10.1111/j.1467-7652.2005.00169.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Cell walls are dynamic structures that represent key determinants of overall plant form, plant growth and development, and the responses of plants to environmental and pathogen-induced stresses. Walls play centrally important roles in the quality and processing of plant-based foods for both human and animal consumption, and in the production of fibres during pulp and paper manufacture. In the future, wall material that constitutes the major proportion of cereal straws and other crop residues will find increasing application as a source of renewable fuel and composite manufacture. Although the chemical structures of most wall constituents have been defined in detail, the enzymes involved in their synthesis and remodelling remain largely undefined, particularly those involved in polysaccharide biosynthesis. There have been real recent advances in our understanding of cellulose biosynthesis in plants, but, with few exceptions, the identities and modes of action of polysaccharide synthases and other glycosyltransferases that mediate the biosynthesis of the major non-cellulosic wall polysaccharides are not known. Nevertheless, emerging functional genomics and molecular genetics technologies are now allowing us to re-examine the central questions related to wall biosynthesis. The availability of the rice, Populus trichocarpa and Arabidopsis genome sequences, a variety of mutant populations, high-density genetic maps for cereals and other industrially important plants, high-throughput genome and transcript analysis systems, extensive publicly available genomics resources and an increasing armoury of analysis systems for the definition of candidate gene function will together allow us to take a systems approach to the description of wall biosynthesis in plants.
Collapse
Affiliation(s)
- Naser Farrokhi
- School of Agriculture and Wine, and Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | | | | | | | | | | | | |
Collapse
|
2261
|
Ralph J, Akiyama T, Kim H, Lu F, Schatz PF, Marita JM, Ralph SA, Reddy MSS, Chen F, Dixon RA. Effects of Coumarate 3-Hydroxylase Down-regulation on Lignin Structure. J Biol Chem 2006; 281:8843-53. [PMID: 16421107 DOI: 10.1074/jbc.m511598200] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Down-regulation of the gene encoding 4-coumarate 3-hydroxylase (C3H) in alfalfa massively but predictably increased the proportion of p-hydroxyphenyl (P) units relative to the normally dominant guaiacyl (G) and syringyl (S) units. Stem levels of up to approximately 65% P (from wild-type levels of approximately 1%) resulting from down-regulation of C3H were measured by traditional degradative analyses as well as two-dimensional 13C-1H correlative NMR methods. Such levels put these transgenics well beyond the P:G:S compositional bounds of normal plants; p-hydroxyphenyl levels are reported to reach a maximum of 30% in gymnosperm severe compression wood zones but are limited to a few percent in dicots. NMR also revealed structural differences in the interunit linkage distribution that characterizes a lignin polymer. Lower levels of key beta-aryl ether units were relatively augmented by higher levels of phenylcoumarans and resinols. The C3H-deficient alfalfa lignins were devoid of beta-1 coupling products, highlighting the significant differences in the reaction course for p-coumaryl alcohol versus the two normally dominant monolignols, coniferyl and sinapyl alcohols. A larger range of dibenzodioxocin structures was evident in conjunction with an approximate doubling of their proportion. The nature of each of the structural units was revealed by long range 13C-1H correlation experiments. For example, although beta-ethers resulted from the coupling of all three monolignols with the growing polymer, phenylcoumarans were formed almost solely from coupling reactions involving p-coumaryl alcohol; they resulted from both coniferyl and sinapyl alcohol in the wild-type plants. Such structural differences form a basis for explaining differences in digestibility and pulping performance of C3H-deficient plants.
Collapse
Affiliation(s)
- John Ralph
- United States Dairy Forage Research Center, United States Department of Agriculture-Agricultural Research Service, Madison, Wisconsin 53706, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2262
|
Zhang K, Qian Q, Huang Z, Wang Y, Li M, Hong L, Zeng D, Gu M, Chu C, Cheng Z. GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice. PLANT PHYSIOLOGY 2006; 140:972-83. [PMID: 16443696 PMCID: PMC1400561 DOI: 10.1104/pp.105.073007] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Lignin content and composition are two important agronomic traits for the utilization of agricultural residues. Rice (Oryza sativa) gold hull and internode phenotype is a classical morphological marker trait that has long been applied to breeding and genetics study. In this study, we have cloned the GOLD HULL AND INTERNODE2 (GH2) gene in rice using a map-based cloning approach. The result shows that the gh2 mutant is a lignin-deficient mutant, and GH2 encodes a cinnamyl-alcohol dehydrogenase (CAD). Consistent with this finding, extracts from roots, internodes, hulls, and panicles of the gh2 plants exhibited drastically reduced CAD activity and undetectable sinapyl alcohol dehydrogenase activity. When expressed in Escherichia coli, purified recombinant GH2 was found to exhibit strong catalytic ability toward coniferaldehyde and sinapaldehyde, while the mutant protein gh2 completely lost the corresponding CAD and sinapyl alcohol dehydrogenase activities. Further phenotypic analysis of the gh2 mutant plants revealed that the p-hydroxyphenyl, guaiacyl, and sinapyl monomers were reduced in almost the same ratio compared to the wild type. Our results suggest GH2 acts as a primarily multifunctional CAD to synthesize coniferyl and sinapyl alcohol precursors in rice lignin biosynthesis.
Collapse
Affiliation(s)
- Kewei Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2263
|
Fan L, Linker R, Gepstein S, Tanimoto E, Yamamoto R, Neumann PM. Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. PLANT PHYSIOLOGY 2006; 140:603-12. [PMID: 16384904 PMCID: PMC1361327 DOI: 10.1104/pp.105.073130] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 10/20/2005] [Accepted: 11/21/2005] [Indexed: 05/05/2023]
Abstract
Water deficit caused by addition of polyethylene glycol 6000 at -0.5 MPa water potential to well-aerated nutrient solution for 48 h inhibited the elongation of maize (Zea mays) seedling primary roots. Segmental growth rates in the root elongation zone were maintained 0 to 3 mm behind the tip, but in comparison with well-watered control roots, progressive growth inhibition was initiated by water deficit as expanding cells crossed the region 3 to 9 mm behind the tip. The mechanical extensibility of the cell walls was also progressively inhibited. We investigated the possible involvement in root growth inhibition by water deficit of alterations in metabolism and accumulation of wall-linked phenolic substances. Water deficit increased expression in the root elongation zone of transcripts of two genes involved in lignin biosynthesis, cinnamoyl-CoA reductase 1 and 2, after only 1 h, i.e. before decreases in wall extensibility. Further increases in transcript expression and increased lignin staining were detected after 48 h. Progressive stress-induced increases in wall-linked phenolics at 3 to 6 and 6 to 9 mm behind the root tip were detected by comparing Fourier transform infrared spectra and UV-fluorescence images of isolated cell walls from water deficit and control roots. Increased UV fluorescence and lignin staining colocated to vascular tissues in the stele. Longitudinal bisection of the elongation zone resulted in inward curvature, suggesting that inner, stelar tissues were also rate limiting for root growth. We suggest that spatially localized changes in wall-phenolic metabolism are involved in the progressive inhibition of wall extensibility and root growth and may facilitate root acclimation to drying environments.
Collapse
Affiliation(s)
- Ling Fan
- Plant Physiology Laboratory, Department of Environmental, Water, and Agricultural Engineering, Faculty of Civil and Environmental Engineering , Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | |
Collapse
|
2264
|
Barsberg S, Matousek P, Towrie M, Jørgensen H, Felby C. Lignin radicals in the plant cell wall probed by Kerr-gated resonance Raman spectroscopy. Biophys J 2006; 90:2978-86. [PMID: 16443659 PMCID: PMC1414548 DOI: 10.1529/biophysj.105.070391] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lignin radicals are crucial intermediates for lignin biosynthesis in the cell wall of vascular plants. In this work they were for the first time, to our knowledge, selectively observed in wood cell walls by laser-based Kerr-gated resonance Raman spectroscopy, and the observations were supported by density functional theory prediction of their vibrational properties. For dry wood cells a lignin radical Raman band is observed at 1,570 cm(-1) irrespective of species. For wet beech cells they were generated in situ and observed at 1,606 cm(-1). DFT/B3LYP/6-31+G(d) modeling results support that in beech they are formed from syringyl (S) phenolic moieties and in spruce from guaiacyl (G) phenolic moieties. The observed lignin radical band is predicted as G is approximately 1,597 cm(-1) and S is approximately 1,599 cm(-1), respectively, and is assigned the (Wilson notation) nu(8a) phenyl ring mode. The RR band probes lignin radical properties, e.g., spin density distribution, and these respond to charge polarization or hydrogen bonding to proximate water molecules. These observations can be crucial for an understanding of the factors that control cell wall structure during biosynthesis of vascular plants and demonstrate the unique potential of RR spectroscopy of lignin radicals.
Collapse
Affiliation(s)
- Søren Barsberg
- Danish Centre for Forest, Landscape and Planning, The Royal Veterinary and Agricultural University, DK-2630 Taastrup, Denmark.
| | | | | | | | | |
Collapse
|
2265
|
Douglas CJ, Ehlting J. Arabidopsis thaliana full genome longmer microarrays: a powerful gene discovery tool for agriculture and forestry. Transgenic Res 2006; 14:551-61. [PMID: 16245146 DOI: 10.1007/s11248-005-8926-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 06/13/2005] [Indexed: 10/25/2022]
Abstract
Sequenced plant genomes provide a large reservoir of known genes with potential for use in crop and tree improvement, but assignment of specific functions to annotated genes in sequenced plant genomes remains a challenge. Furthermore, most plant genes belong to families encoding proteins with related but distinct functions. In this commentary, we discuss our development of Arabidopsis spotted whole genome longmer oligonucleotide microarrays, and their use in global transcription profiling. We show that longmer array based transcriptome analysis in Arabidopsis can be used as an efficient and effective gene discovery and functional genomics tool, particularly for functional analyses of members of large gene families. We discuss experiments that focus on gene families involved in phenylpropanoid natural product biosynthesis and fiber differentiation. These analyses have helped to elucidate functions of individual gene family members, and have identified new candidate genes involved in fiber development and differentiation. Results obtained by these studies in Arabidopsis can be used as the basis for gene discovery in commercially important plants, and we have focused our attention on Populus trichocarpa (poplar), a species important in forestry and agroforestry for which complete genome sequence information is available.
Collapse
Affiliation(s)
- Carl J Douglas
- Department of Botany, University of British Columbia, BC V6T 1Z4 Vancouver, Canada.
| | | |
Collapse
|
2266
|
Cai X, Davis EJ, Ballif J, Liang M, Bushman E, Haroldsen V, Torabinejad J, Wu Y. Mutant identification and characterization of the laccase gene family in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:2563-9. [PMID: 16804053 DOI: 10.1093/jxb/erl022] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Laccases, EC 1.10.3.2 or p-diphenol:dioxygen oxidoreductases, are multi-copper containing glycoproteins. Despite many years of research, genetic evidence for the roles of laccases in plants is mostly lacking. In this study, a reverse genetics approach was taken to identify T-DNA insertional mutants (the SALK collection) available for genes in the Arabidopsis laccase family. Twenty true null mutants were confirmed for 12 laccase genes of the 17 total laccase genes (AtLAC1 to AtLAC17) in the family. By examining the mutants identified, it was found that four mutants, representing mutations in three laccase genes, showed altered phenotypes. Mutants for AtLAC2, lac2, showed compromised root elongation under PEG-induced dehydration conditions; lac8 flowered earlier than wild-type plants, and lac15 showed an altered seed colour. The diverse phenotypes suggest that laccases perform different functions in plants and are not as genetically redundant as previously thought. These mutants will prove to be valuable resources for understanding laccase functions in vivo.
Collapse
Affiliation(s)
- Xiaoning Cai
- Department of Plants, Soils and Biometeorology, Utah State University, Logan, 84322, USA
| | | | | | | | | | | | | | | |
Collapse
|
2267
|
Andersson-Gunnerås S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y, Coutinho PM, Nilsson P, Henrissat B, Moritz T, Sundberg B. Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:144-65. [PMID: 16367961 DOI: 10.1111/j.1365-313x.2005.02584.x] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Stems and branches of angiosperm trees form tension wood (TW) when exposed to a gravitational stimulus. One of the main characteristics of TW, which distinguishes it from normal wood, is the formation of fibers with a thick inner gelatinous cell wall layer mainly composed of crystalline cellulose. Hence TW is enriched in cellulose, and deficient in lignin and hemicelluloses. An expressed sequence tag library made from TW-forming tissues in Populus tremula (L.) x tremuloides (Michx.) and data from transcript profiling using microarray and metabolite analysis were obtained during TW formation in Populus tremula (L.) in two growing seasons. The data were examined with the aim of identifying the genes responsible for the change in carbon (C) flow into various cell wall components, and the mechanisms important for the formation of the gelatinous cell wall layer (G-layer). A specific effort was made to identify carbohydrate-active enzymes with a putative function in cell wall biosynthesis. An increased C flux to cellulose was suggested by a higher abundance of sucrose synthase transcripts. However, genes related to the cellulose biosynthetic machinery were not generally affected, although the expression of secondary wall-specific CesA genes was modified in both directions. Other pathways for which the data suggested increased activity included lipid and glucosamine biosynthesis and the pectin degradation machinery. In addition, transcripts encoding fasciclin-like arabinogalactan proteins were particularly increased and found to lack true Arabidopsis orthologs. Major pathways for which the transcriptome and metabolome analysis suggested decreased activity were the pathway for C flux through guanosine 5'-diphosphate (GDP) sugars to mannans, the pentose phosphate pathway, lignin biosynthesis, and biosynthesis of cell wall matrix carbohydrates. Several differentially expressed auxin- and ethylene-related genes and transcription factors were also identified.
Collapse
Affiliation(s)
- Sara Andersson-Gunnerås
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2268
|
Abdulrazzak N, Pollet B, Ehlting J, Larsen K, Asnaghi C, Ronseau S, Proux C, Erhardt M, Seltzer V, Renou JP, Ullmann P, Pauly M, Lapierre C, Werck-Reichhart D. A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth. PLANT PHYSIOLOGY 2006; 140:30-48. [PMID: 16377748 PMCID: PMC1326029 DOI: 10.1104/pp.105.069690] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cytochromes P450 monooxygenases from the CYP98 family catalyze the meta-hydroxylation step in the phenylpropanoid biosynthetic pathway. The ref8 Arabidopsis (Arabidopsis thaliana) mutant, with a point mutation in the CYP98A3 gene, was previously described to show developmental defects, changes in lignin composition, and lack of soluble sinapoyl esters. We isolated a T-DNA insertion mutant in CYP98A3 and show that this mutation leads to a more drastic inhibition of plant development and inhibition of cell growth. Similar to the ref8 mutant, the insertion mutant has reduced lignin content, with stem lignin essentially made of p-hydroxyphenyl units and trace amounts of guaiacyl and syringyl units. However, its roots display an ectopic lignification and a substantial proportion of guaiacyl and syringyl units, suggesting the occurrence of an alternative CYP98A3-independent meta-hydroxylation mechanism active mainly in the roots. Relative to the control, mutant plantlets produce very low amounts of sinapoyl esters, but accumulate flavonol glycosides. Reduced cell growth seems correlated with alterations in the abundance of cell wall polysaccharides, in particular decrease in crystalline cellulose, and profound modifications in gene expression and homeostasis reminiscent of a stress response. CYP98A3 thus constitutes a critical bottleneck in the phenylpropanoid pathway and in the synthesis of compounds controlling plant development. CYP98A3 cosuppressed lines show a gradation of developmental defects and changes in lignin content (40% reduction) and structure (prominent frequency of p-hydroxyphenyl units), but content in foliar sinapoyl esters is similar to the control. The purple coloration of their leaves is correlated to the accumulation of sinapoylated anthocyanins.
Collapse
Affiliation(s)
- Nawroz Abdulrazzak
- Department of Plant Metabolic Responses , Institute of Plant Molecular Biology Centre National de la Recherche Scientifique-Unité Propre de Recherche 2357, Université Louis Pasteur, 67000 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2269
|
Tsai CJ, Harding SA, Tschaplinski TJ, Lindroth RL, Yuan Y. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. THE NEW PHYTOLOGIST 2006; 172:47-62. [PMID: 16945088 DOI: 10.1111/j.1469-8137.2006.01798.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Salicin-based phenolic glycosides, hydroxycinnamate derivatives and flavonoid-derived condensed tannins comprise up to one-third of Populus leaf dry mass. Genes regulating the abundance and chemical diversity of these substances have not been comprehensively analysed in tree species exhibiting this metabolically demanding level of phenolic metabolism. Here, shikimate-phenylpropanoid pathway genes thought to give rise to these phenolic products were annotated from the Populus genome, their expression assessed by semiquantitative or quantitative reverse transcription polymerase chain reaction (PCR), and metabolic evidence for function presented. Unlike Arabidopsis, Populus leaves accumulate an array of hydroxycinnamoyl-quinate esters, which is consistent with broadened function of the expanded hydroxycinnamoyl-CoA transferase gene family. Greater flavonoid pathway diversity is also represented, and flavonoid gene families are larger. Consistent with expanded pathway function, most of these genes were upregulated during wound-stimulated condensed tannin synthesis in leaves. The suite of Populus genes regulating phenylpropanoid product accumulation should have important application in managing phenolic carbon pools in relation to climate change and global carbon cycling.
Collapse
Affiliation(s)
- Chung-Jui Tsai
- Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA.
| | | | | | | | | |
Collapse
|
2270
|
Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemura K, Umezawa T, Shimamoto K. Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci U S A 2005; 103:230-5. [PMID: 16380417 PMCID: PMC1325009 DOI: 10.1073/pnas.0509875103] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
OsRac1, one of the Rac/Rop family of small GTPases, plays important roles in defense responses, including a role in the production of reactive oxygen species mediated by NADPH oxidase. We have identified an effector of OsRac1, namely rice (Oryza sativa) cinnamoyl-CoA reductase 1 (OsCCR1), an enzyme involved in lignin biosynthesis. Lignin, which is polymerized through peroxidase activity by using H(2)O(2) in the cell wall, is an important factor in plant defense responses, because it presents an undegradable mechanical barrier to most pathogens. Expression of OsCCR1 was induced by a sphingolipid elicitor, suggesting that OsCCR1 participates in defense signaling. In in vitro interaction and two-hybrid experiments, OsRac1 was shown to bind OsCCR1 in a GTP-dependent manner. Moreover, the interaction of OsCCR1 with OsRac1 led to the enzymatic activation of OsCCR1 in vitro. Transgenic cell cultures expressing the constitutively active OsRac1 accumulated lignin through enhanced CCR activity and increased reactive oxygen species production. Thus, it is likely that OsRac1 controls lignin synthesis through regulation of both NADPH oxidase and OsCCR1 activities during defense responses in rice.
Collapse
Affiliation(s)
- Tsutomu Kawasaki
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
2271
|
Ab Initio Studies on the Molecular Conformation of Lignin Model Compounds I. Conformational Preferences of the Phenolic Hydroxyl and Methoxy Groups in Guaiacol. MONATSHEFTE FUR CHEMIE 2005. [DOI: 10.1007/s00706-005-0404-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
2272
|
Reddy MSS, Chen F, Shadle G, Jackson L, Aljoe H, Dixon RA. Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc Natl Acad Sci U S A 2005; 102:16573-8. [PMID: 16263933 PMCID: PMC1283808 DOI: 10.1073/pnas.0505749102] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Indexed: 11/18/2022] Open
Abstract
Improving the digestibility of forages provides a means to enhance animal performance and protect the environment against excessive animal waste. Increased lignin content during maturity, and corresponding changes in lignin composition, correlate with decreased digestibility of forages. These relationships have yet to be investigated in isogenic systems. By targeting three specific cytochrome P450 enzymes of the lignin pathway for antisense down-regulation, we generated transgenic alfalfa lines with a range of differences in lignin content and composition. There was a strong negative relationship between lignin content and rumen digestibility, but no relationship between lignin composition and digestibility, in these transgenic lines. Models for genetic manipulation of forage digestibility based on the changes in lignin composition that increase paper-pulping efficiency in trees are therefore invalid. Down-regulation of 4-coumarate 3-hydroxylase provided the largest improvements in digestibility yet seen in a forage crop.
Collapse
Affiliation(s)
- M S Srinivasa Reddy
- Plant Biology Division and Agriculture Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | | | | | | | | | | |
Collapse
|
2273
|
Pourcel L, Routaboul JM, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. THE PLANT CELL 2005; 17:2966-80. [PMID: 16243908 PMCID: PMC1276023 DOI: 10.1105/tpc.105.035154] [Citation(s) in RCA: 307] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The Arabidopsis thaliana transparent testa10 (tt10) mutant exhibits a delay in developmentally determined browning of the seed coat, also called the testa. Seed coat browning is caused by the oxidation of flavonoids, particularly proanthocyanidins, which are polymers of flavan-3-ol subunits such as epicatechin and catechin. The tt10 mutant seeds accumulate more epicatechin monomers and more soluble proanthocyanidins than wild-type seeds. Moreover, intact testa cells of tt10 cannot trigger H2O2-independent browning in the presence of epicatechin and catechin, in contrast with wild-type cells. UV-visible light detection and mass spectrometry revealed that the major oxidation products obtained with epicatechin alone are yellow dimers called dehydrodiepicatechin A. These products differ from proanthocyanidins in the nature and position of their interflavan linkages. Flavonol composition was also affected in tt10 seeds, which exhibited a higher ratio of quercetin rhamnoside monomers versus dimers than wild-type seeds. We identified the TT10 gene by a candidate gene approach. TT10 encodes a protein with strong similarity to laccase-like polyphenol oxidases. It is expressed essentially in developing testa, where it colocalizes with the flavonoid end products proanthocyanidins and flavonols. Together, these data establish that TT10 is involved in the oxidative polymerization of flavonoids and functions as a laccase-type flavonoid oxidase.
Collapse
Affiliation(s)
- Lucille Pourcel
- Laboratoire de Biologie des Semences, Unité Mixte de Recherche 204, Institut National de la Recherche Agronomique/Institut National Agronomique Paris-Grignon, Institut Jean-Pierre Bourgin, 78026 Versailles, France
| | | | | | | | | | | |
Collapse
|
2274
|
Gabaldón C, López-Serrano M, Pedreño MA, Barceló AR. Cloning and molecular characterization of the basic peroxidase isoenzyme from Zinnia elegans, an enzyme involved in lignin biosynthesis. PLANT PHYSIOLOGY 2005; 139:1138-54. [PMID: 16258008 PMCID: PMC1283753 DOI: 10.1104/pp.105.069674] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The major basic peroxidase from Zinnia elegans (ZePrx) suspension cell cultures was purified and cloned, and its properties and organ expression were characterized. The ZePrx was composed of two isoforms with a M(r) (determined by matrix-assisted laser-desorption ionization time of flight) of 34,700 (ZePrx34.70) and a M(r) of 33,440 (ZePrx33.44). Both isoforms showed absorption maxima at 403 (Soret band), 500, and 640 nm, suggesting that both are high-spin ferric secretory class III peroxidases. M(r) differences between them were due to the glycan moieties, and were confirmed from the total similarity of the N-terminal sequences (LSTTFYDTT) and by the 99.9% similarity of the tryptic fragment fingerprints obtained by reverse-phase nano-liquid chromatography. Four full-length cDNAs coding for these peroxidases were cloned. They only differ in the 5'-untranslated region. These differences probably indicate different ways in mRNA transport, stability, and regulation. According to the k(cat) and apparent K(m)(RH) values shown by both peroxidases for the three monolignols, sinapyl alcohol was the best substrate, the endwise polymerization of sinapyl alcohol by both ZePrxs yielding highly polymerized lignins with polymerization degrees > or =87. Western blots using anti-ZePrx34.70 IgGs showed that ZePrx33.44 was expressed in tracheary elements, roots, and hypocotyls, while ZePrx34.70 was only expressed in roots and young hypocotyls. None of the ZePrx isoforms was significantly expressed in either leaves or cotyledons. A neighbor-joining tree constructed for the four full-length cDNAs suggests that the four putative paralogous genes encoding the four cDNAs result from duplication of a previously duplicated ancestral gene, as may be deduced from the conserved nature and conserved position of the introns.
Collapse
Affiliation(s)
- Carlos Gabaldón
- Department of Plant Biology, University of Murcia, E-30100 Murcia, Spain
| | | | | | | |
Collapse
|
2275
|
Damiani I, Morreel K, Danoun S, Goeminne G, Yahiaoui N, Marque C, Kopka J, Messens E, Goffner D, Boerjan W, Boudet AM, Rochange S. Metabolite profiling reveals a role for atypical cinnamyl alcohol dehydrogenase CAD1 in the synthesis of coniferyl alcohol in tobacco xylem. PLANT MOLECULAR BIOLOGY 2005; 59:753-69. [PMID: 16270228 DOI: 10.1007/s11103-005-0947-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 07/14/2005] [Indexed: 05/05/2023]
Abstract
In angiosperms, lignin is built from two main monomers, coniferyl and sinapyl alcohol, which are incorporated respectively as G and S units in the polymer. The last step of their synthesis has so far been considered to be performed by a family of dimeric cinnamyl alcohol dehydrogenases (CAD2). However, previous studies on Eucalyptus gunnii xylem showed the presence of an additional, structurally unrelated, monomeric CAD form named CAD1. This form reduces coniferaldehyde to coniferyl alcohol, but is inactive on sinapaldehyde. In this paper, we report the functional characterization of CAD1 in tobacco (Nicotiana tabacum L.). Transgenic tobacco plants with reduced CAD1 expression were obtained through an RNAi strategy. These plants displayed normal growth and development, and detailed biochemical studies were needed to reveal a role for CAD1. Lignin analyses showed that CAD1 down-regulation does not affect Klason lignin content, and has a moderate impact on G unit content of the non-condensed lignin fraction. However, comparative metabolic profiling of the methanol-soluble phenolic fraction from basal xylem revealed significant differences between CAD1 down-regulated and wild-type plants. Eight compounds were less abundant in CAD1 down-regulated lines, five of which were identified as dimers or trimers of monolignols, each containing at least one moiety derived from coniferyl alcohol. In addition, 3-trans-caffeoyl quinic acid accumulated in the transgenic plants. Together, our results support a significant contribution of CAD1 to the synthesis of coniferyl alcohol in planta, along with the previously characterized CAD2 enzymes.
Collapse
Affiliation(s)
- Isabelle Damiani
- UMR UPS/CNRS 5546 "Surfaces Cellulaires et Signalisation chez les Végétaux", Pôle de Biotechnologie Végétale, 24 chemin de Borderouge, BP 42617, F-31326, Castanet, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2276
|
Tiimonen H, Aronen T, Laakso T, Saranpää P, Chiang V, Ylioja T, Roininen H, Häggman H. Does lignin modification affect feeding preference or growth performance of insect herbivores in transgenic silver birch (Betula pendula Roth)? PLANTA 2005; 222:699-708. [PMID: 15971066 DOI: 10.1007/s00425-005-0002-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 04/25/2005] [Indexed: 05/03/2023]
Abstract
Transgenic silver birch (Betula pendula Roth) lines were produced in order to modify lignin biosynthesis. These lines carry COMT (caffeate/5-hydroxyferulate O-methyltransferase) gene from Populus tremuloides driven by constitutive promoter 35S CaMV (cauliflower mosaic virus) or UbB1 (ubiquitin promoter from sunflower). The decreased syringyl/guaiacyl (S/G) ratio was found in stem and leaf lignin of 35S CaMV-PtCOMT transgenic silver birch lines when compared to non-transformed control or UbB1-PtCOMT lines. In controlled feeding experiments the leaves of transgenic birch lines as well as controls were fed to insect herbivores common in boreal environment, i.e., larvae of Aethalura punctulata, Cleora cinctaria and Trichopteryx carpinata (Lepidoptera: Geometridae) as well as the adults of birch leaf-feeding beetles Agelastica alni (Coleoptera: Chrysomelidae) and Phyllobius spp. (Coleoptera: Curculionidae). The feeding preferences of these herbivores differed in some cases among the tested birch lines, but these differences could not be directly associated to lignin modification. They could as well be explained by other characteristics of leaves, either natural or caused by transgene site effects. Growth performance of lepidopteran larvae fed on transgenic or control leaves did not differ significantly.
Collapse
Affiliation(s)
- Heidi Tiimonen
- Finnish Forest Research Institute, Punkaharju Research Station, Finlandiantie 18, 58450, Punkaharju, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
2277
|
Rogers LA, Dubos C, Surman C, Willment J, Cullis IF, Mansfield SD, Campbell MM. Comparison of lignin deposition in three ectopic lignification mutants. THE NEW PHYTOLOGIST 2005; 168:123-40. [PMID: 16159327 DOI: 10.1111/j.1469-8137.2005.01496.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Arabidopsis thaliana mutants de-etiolated3 (det3), pom-pom1 (pom1) and ectopic lignification1 (eli1) all deposit lignins in cells where these polymers would not normally be found. Comparison of these mutants provides an opportunity to determine if the shared mutant phenotype arose by perturbing a common regulatory mechanism in each of the mutants. The mutants were compared using a combination of genetics, histochemistry, chemical profiling, transcript profiling using both Northern blots and microarrays, and bioinformatics. The subset of cells that ectopically lignified was shared between all three mutants, but clear differences in cell wall chemistry were evident between the mutants. Northern blot analysis of lignin biosynthetic genes over diurnal and circadian cycles revealed that transcript abundance of several key genes was clearly altered in all three mutants. Microarray analysis suggests that changes in the expression of specific members of the R2R3-MYB and Dof transcription factor families may contribute to the ectopic lignification phenotypes. This comparative analysis provides a suite of hypotheses that can be tested to examine the control of lignin biosynthesis.
Collapse
Affiliation(s)
- Louisa A Rogers
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | | | | | | | | | |
Collapse
|
2278
|
Mase K, Sato K, Nakano Y, Nishikubo N, Tsuboi Y, Zhou J, Kitano H, Katayama Y. The ectopic expression of phenylalanine ammonia lyase with ectopic accumulation of polysaccharide-linked hydroxycinnamoyl esters in internode parenchyma of rice mutant Fukei 71. PLANT CELL REPORTS 2005; 24:487-493. [PMID: 15838683 DOI: 10.1007/s00299-005-0960-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 01/30/2005] [Accepted: 03/07/2005] [Indexed: 05/24/2023]
Abstract
Both polysaccharide-linked hydroxycinnamoyl esters (PHEs) and lignin are biosynthesized via the phenylpropanoid pathway. In the abnormal internode parenchyma of the rice (Oryza sativa L.) mutant Fukei 71, which has a defective recessive gene (d50), the biosynthesis of lignin and PHEs differs. . The polysaccharide-linked ferulate and p-coumarate have been shown to accumulate to high levels in the irregularly shaped and collapsed internode parenchyma cells of Fukei 71 without an accompanying overaccumulation of lignin as a result of the defective d50 gene. In the present study we demonstrated that in this abnormal parenchyma tissue of Fukei 71 the expression of phenylalanine ammonia lyase (PAL) and glutamine synthetase (GS) were ectopically induced with the ectopic accumulation of PHEs, suggesting that the d50 gene may play a role as a controlling element in the biosynthesis of PHEs during cell-wall formation in the grasses.
Collapse
Affiliation(s)
- Kohei Mase
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | | | | | |
Collapse
|
2279
|
Ohashi-Ito K, Kubo M, Demura T, Fukuda H. Class III homeodomain leucine-zipper proteins regulate xylem cell differentiation. PLANT & CELL PHYSIOLOGY 2005; 46:1646-56. [PMID: 16081527 DOI: 10.1093/pcp/pci180] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although it has been suggested that class III homeodomain leucine-zipper proteins (HD-Zip III) are involved in vascular development, details of the function of individual HD-Zip III proteins in vascular differentiation have not been resolved. To understand the function of each HD-Zip III protein in vascular differentiation precisely, we analyzed the in vitro transcriptional activity and in vivo function of Zinnia HD-Zip III genes, ZeHB-10, ZeHB-11 and ZeHB-12, which show xylem-related expression. Transgenic Arabidopsis plants harboring cauliflower mosaic virus 35S-driven ZeHB-10 and ZeHB-12 with a mutation in the START domain (mtZeHB-10, mtZeHB-12) showed a higher production of tracheary elements (TEs) and xylem precursor cells, respectively. A systematic analysis with Genechip arrays revealed that overexpression of mtZeHB-12 rapidly induced various genes, including brassinosteroid-signaling pathway-related genes and genes for transcription factors that are expressed specifically in vascular tissues in situ. Furthermore, mtZeHB-12 overexpression did not induce TE-specific genes, including genes related to programmed cell death and lignin polymerization, but did induce lignin monomer synthesis-related genes, which are expressed in xylem parenchyma cells. These results suggest that ZeHB-12 is involved in the differentiation of xylem parenchyma cells, but not of TEs.
Collapse
Affiliation(s)
- Kyoko Ohashi-Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Japan.
| | | | | | | |
Collapse
|
2280
|
Prassinos C, Ko JH, Yang J, Han KH. Transcriptome profiling of vertical stem segments provides insights into the genetic regulation of secondary growth in hybrid aspen trees. PLANT & CELL PHYSIOLOGY 2005; 46:1213-25. [PMID: 15908438 DOI: 10.1093/pcp/pci130] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In order to better understand the genetic regulation of secondary growth in hybrid aspen (Populus tremula L.xP. alba L.), we carried out a series of cDNA-amplified fragment length polymorphism (AFLP)-based transcriptome analyses in vertical stem segments that represent a gradient of developmental stages with regard to secondary growth. This approach allowed us to screen >80% of the transcriptome expressed in six samples and identify genes differentially expressed with the progress of secondary growth, in a tissue-specific manner. Of the 76,800 transcript-derived fragments (TDFs) analyzed, 271 TDFs were selected and sequenced based on their differential expression patterns. Many of the xylem-up-regulated genes were involved in cell wall and lignin biosynthesis, while the bark-up-regulated genes had diverse functional roles. About 25% of the xylem-up-regulated TDFs analyzed were involved in the phenylpropanoid biosynthesis pathway, which produces the cell wall polymer lignin and various wood extractives. In addition, many of the TDFs showing secondary xylem-specific expression were annotated as genes not previously reported in Populus, including novel cell death proteins, cytoskeleton-interacting proteins, transporters and putative transcription factors.
Collapse
Affiliation(s)
- Constantinos Prassinos
- Department of Forestry, Michigan State University, 126 Natural Resources, East Lansing, MI 48824-1222, USA
| | | | | | | |
Collapse
|
2281
|
Baltas M, Lapeyre C, Bedos-Belval F, Maturano M, Saint-Aguet P, Roussel L, Duran H, Grima-Pettenati J. Kinetic and inhibition studies of cinnamoyl-CoA reductase 1 from Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:746-53. [PMID: 16122934 DOI: 10.1016/j.plaphy.2005.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 06/10/2005] [Indexed: 05/04/2023]
Abstract
Cinnamoyl coenzyme A reductase (CCR, EC 1.2.1.44), one of the key enzymes in the biosynthesis of lignin monomers, catalyzes the NADPH-dependent reduction of cinnamoyl-CoA esters to their corresponding cinnamaldehydes. AtCCR1, one of the two distinct isoforms isolated from Arabidopsis thaliana, was shown to be involved in lignin biosynthesis during development. Here, we report on the purification of the recombinant AtCCR1 protein expressed in Escherichia coli and the subsequent determination of its kinetic properties (K(m) and k(cat)/K(m) values) towards its main substrates i.e. feruloyl-CoA, sinapoyl-CoA, and p-coumaroyl-CoA esters. In addition, the potential inhibitory effect of five substrate-like analogs possessing an N-acetylcysteamine thioester group was tested on CCR activity using either feruloyl-CoA or sinapoyl-CoA as substrates. The K(i) values were in the range of 4.4-502 microM and the type of inhibition was found to be either uncompetitive or noncompetitive. Interestingly, for compounds 3 and 5, the type of inhibition was found to be different depending on the substrate used to monitor the enzyme activity. The best inhibitors were those possessing the feruloyl (compound 3) and sinapoyl (compound 5) aromatic moiety (4.1 and 7.1 microM) while the enzyme activity was monitored using the corresponding substrates.
Collapse
Affiliation(s)
- M Baltas
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, Université Paul-Sabatier, 118, route de Narbonne, 31062 Toulouse cedex 4, France.
| | | | | | | | | | | | | | | |
Collapse
|
2282
|
van Raemdonck D, Pesquet E, Cloquet S, Beeckman H, Boerjan W, Goffner D, El Jaziri M, Baucher M. Molecular changes associated with the setting up of secondary growth in aspen. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2211-27. [PMID: 15996985 DOI: 10.1093/jxb/eri221] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Vascular secondary growth results from the activity of the vascular cambium, which produces secondary phloem and secondary xylem. By means of cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis along aspen stems, several potential regulatory genes involved in the progressive transition from primary to secondary growth were identified. A total of 83 unique transcript-derived fragments (TDFs) was found to be differentiated between the top and the bottom of the stem. An independent RT-PCR expression analysis validated the cDNA-AFLP profiles for 19 of the TDFs. Among these, seven correspond to new genes encoding putative regulatory proteins. Emphasis was laid upon two genes encoding, respectively, an AP2/ERF-like transcription factor (PtaERF1) and a RING finger protein (PtaRHE1); their differential expression was further confirmed by reverse northern analysis. In situ RT-PCR revealed that PtaERF1 was expressed in phloem tissue and that PtaRHE1 had a pronounced expression in ray initials and their derivatives within the cambial zone. These results suggest that these genes have a potential role in vascular tissue development and/or functioning.
Collapse
Affiliation(s)
- Damien van Raemdonck
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, Chaussée de Wavre 1850, B-1160 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
2283
|
Yong W, Link B, O'Malley R, Tewari J, Hunter CT, Lu CA, Li X, Bleecker AB, Koch KE, McCann MC, McCarty DR, Patterson SE, Reiter WD, Staiger C, Thomas SR, Vermerris W, Carpita NC. Genomics of plant cell wall biogenesis. PLANTA 2005; 221:747-51. [PMID: 15981004 DOI: 10.1007/s00425-005-1563-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 04/01/2005] [Indexed: 05/03/2023]
Affiliation(s)
- Weidong Yong
- Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, Indiana, 47907-2054, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2284
|
Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N, Grima-Pettenati J. EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:553-67. [PMID: 16098109 DOI: 10.1111/j.1365-313x.2005.02480.x] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Summary EgMYB2, a member of a new subgroup of the R2R3 MYB family of transcription factors, was cloned from a library consisting of RNA from differentiating Eucalyptus xylem. EgMYB2 maps to a unique locus on the Eucalyptus grandis linkage map and co-localizes with a quantitative trait locus (QTL) for lignin content. Recombinant EgMYB2 protein was able to bind specifically the cis-regulatory regions of the promoters of two lignin biosynthetic genes, cinnamoyl-coenzyme A reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD), which contain MYB consensus binding sites. EgMYB2 was also able to regulate their transcription in both transient and stable expression assays. Transgenic tobacco plants over-expressing EgMYB2 displayed phenotypic changes relative to wild-type plants, among which were a dramatic increase in secondary cell wall thickness, and an alteration of the lignin profiles. Transcript abundance of genes encoding enzymes specific to lignin biosynthesis was increased to varying extents according to the position of individual genes in the pathway, whereas core phenylpropanoid genes were not significantly affected. Together these results suggest a role for EgMYB2 in the co-ordinated control of genes belonging to the monolignol-specific pathway, and therefore in the biosynthesis of lignin and the regulation of secondary cell wall formation.
Collapse
Affiliation(s)
- Monica Goicoechea
- Institut Fédératif de Recherches FR40, Unité mixte de Recherches 5546, Université Paul Sabatier-Centre National de la Recherche Scientifique, Pôle de Biotechnologie Végétale, 24 chemin de Borde Rouge, BP 17 Auzeville, 31326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2285
|
Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Séguin A. CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. THE PLANT CELL 2005; 17:2059-76. [PMID: 15937231 PMCID: PMC1167552 DOI: 10.1105/tpc.105.030767] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
During lignin biosynthesis in angiosperms, coniferyl and sinapyl aldehydes are believed to be converted into their corresponding alcohols by cinnamyl alcohol dehydrogenase (CAD) and by sinapyl alcohol dehydrogenase (SAD), respectively. This work clearly shows that CAD-C and CAD-D act as the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis thaliana by supplying both coniferyl and sinapyl alcohols. An Arabidopsis CAD double mutant (cad-c cad-d) resulted in a phenotype with a limp floral stem at maturity as well as modifications in the pattern of lignin staining. Lignin content of the mutant stem was reduced by 40%, with a 94% reduction, relative to the wild type, in conventional beta-O-4-linked guaiacyl and syringyl units and incorportion of coniferyl and sinapyl aldehydes. Fourier transform infrared spectroscopy demonstrated that both xylem vessels and fibers were affected. GeneChip data and real-time PCR analysis revealed that transcription of CAD homologs and other genes mainly involved in cell wall integrity were also altered in the double mutant. In addition, molecular complementation of the double mutant by tissue-specific expression of CAD derived from various species suggests different abilities of these genes/proteins to produce syringyl-lignin moieties but does not indicate a requirement for any specific SAD gene.
Collapse
Affiliation(s)
- Richard Sibout
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Sainte-Foy, QC G1V 4C7, Canada
| | | | | | | | | | | | | |
Collapse
|
2286
|
Rogers LA, Dubos C, Cullis IF, Surman C, Poole M, Willment J, Mansfield SD, Campbell MM. Light, the circadian clock, and sugar perception in the control of lignin biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:1651-63. [PMID: 15878986 DOI: 10.1093/jxb/eri162] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Experiments were undertaken to investigate some of the mechanisms that may function to regulate lignin biosynthesis (lignification) in Arabidopsis thaliana. Northern blot analyses revealed that several genes encoding enzymes involved in the synthesis of lignin monomers displayed significant changes in transcript abundance over a diurnal cycle. Northern blot analysis also suggested that some of the changes in diurnal transcript abundance were likely to be attributable to circadian regulation, whereas others were likely to be attributable to light perception. Comparison of circadian changes in transcript abundance of lignin biosynthetic genes between wild-type plants and the sex1 mutant, which is impaired in starch turnover, suggested that carbon availability related to starch turnover might determine the capacity to synthesize lignins. This hypothesis was supported by the observation that the sex1 mutant accumulated fewer lignins than wild-type plants. Consistent with the relationship between carbon availability and lignin accumulation, analysis of dark-grown wild-type A. thaliana seedlings uncovered a role for sugars in the regulation of lignin biosynthesis. Analysis of lignin accumulation, as determined by qualitative changes in phloroglucinol staining, suggested that metabolizable sugars positively influence the abundance of lignins. Transcriptome analysis supports the hypothesis that sugars are not merely a source of carbon skeletons for lignification, but they also function as a signal to enhance the capacity to synthesize lignins.
Collapse
Affiliation(s)
- Louisa A Rogers
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | | | | | | | | | | | |
Collapse
|
2287
|
Abstract
Although many important and valuable traits are associated with plant natural products, engineering natural product pathways for plant improvement has often been limited by a lack of understanding of their biochemistry, and by the need for coordinate regulation of multiple gene activities. New approaches are facilitating both the discovery of genes that encode natural products and pathway engineering. Notable successes have been reported in altering complex pathways to improve plant quality and resistance to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Richard A Dixon
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA.
| |
Collapse
|
2288
|
Bednarek P, Schneider B, Svatos A, Oldham NJ, Hahlbrock K. Structural complexity, differential response to infection, and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots. PLANT PHYSIOLOGY 2005; 138:1058-70. [PMID: 15923335 PMCID: PMC1150420 DOI: 10.1104/pp.104.057794] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Levels of indolic and phenylpropanoid secondary metabolites in Arabidopsis (Arabidopsis thaliana) leaves undergo rapid and drastic changes during pathogen defense, yet little is known about this process in roots. Using Arabidopsis wild-type and mutant root cultures as an experimental system, and the root-pathogenic oomycete, Pythium sylvaticum, for infections, we analyzed the aromatic metabolite profiles in soluble extracts from uninfected and infected roots, as well as from the surrounding medium. A total of 16 indolic, one heterocyclic, and three phenylpropanoid compounds were structurally identified by mass spectrometry and nuclear magnetic resonance analyses. Most of the indolics increased strongly upon infection, whereas the three phenylpropanoids decreased. Concomitant increases in both indolic and phenylpropanoid biosynthetic mRNAs suggested that phenylpropanoids other than those examined here in "soluble extracts" were coinduced with the indolics. These and previous results indicate that roots differ greatly from leaves with regard to the nature and relative abundance of all major soluble phenylpropanoid constituents. For indolics, by contrast, our data reveal far-reaching similarities between roots and leaves and, beyond this comparative aspect, provide an insight into this highly diversified yet under-explored metabolic realm. The data point to metabolic interconnections among the compounds identified and suggest a partial revision of the previously proposed camalexin pathway.
Collapse
Affiliation(s)
- Pawel Bednarek
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany.
| | | | | | | | | |
Collapse
|
2289
|
Boudet AM, Hawkins S, Rochange S. The polymorphism of the genes/enzymes involved in the last two reductive steps of monolignol synthesis: what is the functional significance? C R Biol 2005; 327:837-45. [PMID: 15587075 DOI: 10.1016/j.crvi.2004.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The polymorphism of genes and enzymes involved in the last two steps of monolignol synthesis is examined in the light of recent data coming from genomic studies and mutant/transformant analyses. The two catalytic activities considered--cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD)--are encoded by small multigene families. While some degree of diversification can be noted at the sequence level, it is often difficult to use this information to assign substrate specificities to each member of a gene family. Expression profiles, however, suggest for both CAD and CCR the existence of two sub-families: one devoted to developmental lignification, and the other involved in the synthesis of defence-related compounds.
Collapse
Affiliation(s)
- Alain-Michel Boudet
- UMR UPS/CNRS 5546, Pôle de biotechnologies végétale, 24, chemin de Borderouge, Auzeville, 31326 Castanet, France.
| | | | | |
Collapse
|
2290
|
Barrière Y, Ralph J, Méchin V, Guillaumie S, Grabber JH, Argillier O, Chabbert B, Lapierre C. Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown-midrib mutants. C R Biol 2005; 327:847-60. [PMID: 15587076 DOI: 10.1016/j.crvi.2004.05.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The brown-midrib mutants of maize have a reddish-brown pigmentation of the leaf midrib and stalk pith, associated with lignified tissues. These mutants progressively became models for lignification genetics and biochemical studies in maize and grasses. Comparisons at silage maturity of bm1, bm2, bm3, bm4 plants highlighted their reduced lignin, but also illustrated the biochemical specificities of each mutant in p-coumarate, ferulate ester and etherified ferulate content, or syringyl/guaiacyl monomer ratio after thioacidolysis. Based on the current knowledge of the lignin pathway, and based on presently developed data and discussions, C3H and CCoAOMT activities are probably major hubs in controlling cell-wall lignification (and digestibility). It is also likely that ferulates arise via the CCoAOMT pathway.
Collapse
Affiliation(s)
- Yves Barrière
- Unité dé génétique et d'amélioration des plantes fourragères, INRA, 86600 Lusignan, France.
| | | | | | | | | | | | | | | |
Collapse
|
2291
|
Koutaniemi S, Toikka MM, Kärkönen A, Mustonen M, Lundell T, Simola LK, Kilpeläinen IA, Teeri TH. Characterization of basic p-coumaryl and coniferyl alcohol oxidizing peroxidases from a lignin-forming Picea abies suspension culture. PLANT MOLECULAR BIOLOGY 2005; 58:141-57. [PMID: 16027971 DOI: 10.1007/s11103-005-5345-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 04/12/2005] [Indexed: 05/03/2023]
Abstract
A Norway spruce (Picea abies) tissue culture line that produces extracellular lignin into the culture medium has been used as a model system to study the enzymes involved in lignin polymerization. We report here the purification of two highly basic culture medium peroxidases, PAPX4 and PAPX5, and isolation of the corresponding cDNAs. Both isoforms had high affinity to monolignols with apparent K(m) values in microM range. PAPX4 favoured coniferyl alcohol with a six-fold higher catalytic efficiency (V(max)/K(m)) and PAPX5 p-coumaryl alcohol with a two-fold higher catalytic efficiency as compared to the other monolignol. Thus coniferyl and p-coumaryl alcohol could be preferentially oxidized by different peroxidase isoforms in this suspension culture, which may reflect a control mechanism for the incorporation of different monolignols into the cell wall. Dehydrogenation polymers produced by the isoforms were structurally similar. All differed from the released suspension culture lignin and milled wood lignin, in accordance with previous observations on the major effects that e.g. cell wall context, rate of monolignol feeding and other proteins have on polymerisation. Amino acid residues shown to be involved in monolignol binding in the lignification-related Arabidopsis ATPA2 peroxidase were nearly identical in PAPX4 and PAPX5. This similarity extended to other peroxidases involved in lignification, suggesting that a preferential structural organization of the substrate access channel for monolignol oxidation might exist in both angiosperms and gymnosperms.
Collapse
|
2292
|
Lim EK, Jackson RG, Bowles DJ. Identification and characterisation of Arabidopsis glycosyltransferases capable of glucosylating coniferyl aldehyde and sinapyl aldehyde. FEBS Lett 2005; 579:2802-6. [PMID: 15907484 DOI: 10.1016/j.febslet.2005.04.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 04/03/2005] [Accepted: 04/04/2005] [Indexed: 11/30/2022]
Abstract
This study describes the substrate recognition profile of UGT72E1, an UDP-glucose:glycosyltransferase of Arabidopsis thaliana that is the third member of a branch of glycosyltransferases, capable of conjugating lignin monomers and related metabolites. The data show that UGT72E1, in contrast to the two closely related UGTs 72E2 and 72E3, is specific for sinapyl and coniferyl aldehydes. The biochemical properties of UGT72E1 are characterised, and are compared with that of UGT72E2, which is capable of glycosylating the aldehydes as well as coniferyl and sinapyl alcohols.
Collapse
Affiliation(s)
- Eng-Kiat Lim
- CNAP, Department of Biology, University of York, UK
| | | | | |
Collapse
|
2293
|
Gafni Y, Levy Y. Coniferyl alcohol, a lignin precursor, stimulates Rhizobium rhizogenes A4 virulence. Curr Microbiol 2005; 50:262-5. [PMID: 15886921 DOI: 10.1007/s00284-004-4427-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 11/21/2004] [Indexed: 11/26/2022]
Abstract
Rhizobium rhizogenes, a soil bacterium, is the causative agent of the neoplastic disease hairy root. Upon incubation of Rhizobium rhizogenes A4 with coniferyl alcohol, a lignin precursor, bacterial virulence on cotton cotyledon slices was stimulated. This was observed both in numbers of root hairs produced and in their length. Stimulation was maximized after exposure of bacteria to 150 microg/mL of coniferyl alcohol for 4 h. This was shown to be at the early log phase of bacterial growth.
Collapse
Affiliation(s)
- Yedidya Gafni
- Department of Plant Genetics, A.R.O., The Volcani Center, Bet Dagan 50250, Israel.
| | | |
Collapse
|
2294
|
Tobias CM, Chow EK. Structure of the cinnamyl-alcohol dehydrogenase gene family in rice and promoter activity of a member associated with lignification. PLANTA 2005; 220:678-688. [PMID: 15452707 DOI: 10.1007/s00425-004-1385-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Accepted: 08/17/2004] [Indexed: 05/24/2023]
Abstract
Analysis of lignification in rice has been facilitated by the availability of the recently completed rice genome sequence, and rice will serve as an important model for understanding the relationship of grass lignin composition to cell wall digestibility. Cinnamyl-alcohol dehydrogenase (CAD) is an enzyme important in lignin biosynthesis. The rice genome contains 12 distinct genes present at nine different loci that encode products with significant similarity to CAD. The rice gene family is diverse with respect to other angiosperm and gymnosperm CAD genes isolated to date and includes one member (OsCAD6) that contains a peroxisomal targeting signal and is substantially diverged relative to other family members. Four closely related family members (OsCAD8A-D) are present at the same locus and represent the product of a localized gene duplication and inversion. Promoter-reporter gene fusions to OsCAD2, an orthologue of the CAD gene present at the bm1 (brown midrib 1) locus of maize, reveal that in rice expression is associated with vascular tissue in aerial parts of the plant and is correlated with the onset of lignification. In root tissue, expression is primarily in the cortical parenchyma adjacent to the exodermis and in vascular tissue.
Collapse
Affiliation(s)
- Christian M Tobias
- Agricultural Research Service, Western Regional Research Center, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA.
| | | |
Collapse
|
2295
|
Aspeborg H, Schrader J, Coutinho PM, Stam M, Kallas A, Djerbi S, Nilsson P, Denman S, Amini B, Sterky F, Master E, Sandberg G, Mellerowicz E, Sundberg B, Henrissat B, Teeri TT. Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen. PLANT PHYSIOLOGY 2005; 137:983-97. [PMID: 15734915 PMCID: PMC1065399 DOI: 10.1104/pp.104.055087] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 12/28/2004] [Accepted: 01/06/2005] [Indexed: 05/17/2023]
Abstract
Wood formation is a fundamental biological process with significant economic interest. While lignin biosynthesis is currently relatively well understood, the pathways leading to the synthesis of the key structural carbohydrates in wood fibers remain obscure. We have used a functional genomics approach to identify enzymes involved in carbohydrate biosynthesis and remodeling during xylem development in the hybrid aspen Populus tremula x tremuloides. Microarrays containing cDNA clones from different tissue-specific libraries were hybridized with probes obtained from narrow tissue sections prepared by cryosectioning of the developing xylem. Bioinformatic analyses using the sensitive tools developed for carbohydrate-active enzymes allowed the identification of 25 xylem-specific glycosyltransferases belonging to the Carbohydrate-Active EnZYme families GT2, GT8, GT14, GT31, GT43, GT47, and GT61 and nine glycosidases (or transglycosidases) belonging to the Carbohydrate-Active EnZYme families GH9, GH10, GH16, GH17, GH19, GH28, GH35, and GH51. While no genes encoding either polysaccharide lyases or carbohydrate esterases were found among the secondary wall-specific genes, one putative O-acetyltransferase was identified. These wood-specific enzyme genes constitute a valuable resource for future development of engineered fibers with improved performance in different applications.
Collapse
Affiliation(s)
- Henrik Aspeborg
- Royal Institute of Technology, Department of Biotechnology, AlbaNova University Center, SE-10691 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2296
|
Vincent D, Lapierre C, Pollet B, Cornic G, Negroni L, Zivy M. Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. A proteomic investigation. PLANT PHYSIOLOGY 2005; 137:949-60. [PMID: 15728345 PMCID: PMC1065396 DOI: 10.1104/pp.104.050815] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 12/10/2004] [Accepted: 12/21/2004] [Indexed: 05/18/2023]
Abstract
Drought is a major abiotic stress affecting all levels of plant organization and, in particular, leaf elongation. Several experiments were designed to study the effect of water deficits on maize (Zea mays) leaves at the protein level by taking into account the reduction of leaf elongation. Proteomic analyses of growing maize leaves allowed us to show that two isoforms of caffeic acid/5-hydroxyferulic 3-O-methyltransferase (COMT) accumulated mostly at 10 to 20 cm from the leaf point of insertion and that drought resulted in a shift of this region of maximal accumulation toward basal regions. We showed that this shift was due to the combined effect of reductions in growth and in total amounts of COMT. Several other enzymes involved in lignin and/or flavonoid synthesis (caffeoyl-CoA 3-O-methyltransferase, phenylalanine ammonia lyase, methylenetetrahydrofolate reductase, and several isoforms of S-adenosyl-l-methionine synthase and methionine synthase) were highly correlated with COMT, reinforcing the hypothesis that the zone of maximal accumulation corresponds to a zone of lignification. According to the accumulation profiles of the enzymes, lignification increases in leaves of control plants when their growth decreases before reaching their final size. Lignin levels analyzed by thioacidolysis confirmed that lignin is synthesized in the region where we observed the maximal accumulation of these enzymes. Consistent with the levels of these enzymes, we found that the lignin level was lower in leaves of plants subjected to water deficit than in those of well-watered plants.
Collapse
Affiliation(s)
- Delphine Vincent
- Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Paris XI, Institut National Agronomique Paris-Grignon, la Ferme du Moulon, 91190 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
2297
|
Kemp BP, Beeching JR, Cooper RM. cDNA-AFLP reveals genes differentially expressed during the hypersensitive response of cassava. MOLECULAR PLANT PATHOLOGY 2005; 6:113-123. [PMID: 20565643 DOI: 10.1111/j.1364-3703.2005.00268.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY The tropical staple cassava is subject to several major diseases, such as cassava bacterial blight, caused by Xanthomonas axonopodis pv. manihotis. Disease-resistant genotypes afford the only practical solution, yet despite the global importance of this crop, little is known about its defence mechanisms. cDNA-AFLP was used to isolate cassava genes differentially expressed during the hypersensitive reaction (HR) of leaves in response to an incompatible Pseudomonas syringae pathovar. Seventy-eight transcript-derived fragments (TDFs) showing differential expression (c. 75% up-regulated, 25% down-regulated) were identified. Many encoded putative homologues of known defence-related genes involved in signalling (e.g. calcium transport and binding, ACC oxidases and a WRKY transcription factor), cell wall strengthening (e.g. cinnamoyl coenzyme A reductase and peroxidase), programmed cell death (e.g. proteases, 26S proteosome), antimicrobial activity (e.g. proteases and beta-1,3-glucanases) and the production of antimicrobial compounds (e.g. DAHP synthase and cytochrome P450s). Full-length cDNAs including a probable matrix metalloprotease and a WRKY transcription factor were isolated from six TDFs. RT-PCR or Northern blot analysis showed HR-induced TDFs were maximally expressed at 24 h, although some were produced by 6 h; some were induced, albeit more slowly, in response to wounding. This work begins to reveal potential defence-related genes of this understudied, major crop.
Collapse
Affiliation(s)
- Benjamin P Kemp
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | | |
Collapse
|
2298
|
Lopez C, Soto M, Restrepo S, Piégu B, Cooke R, Delseny M, Tohme J, Verdier V. Gene expression profile in response to Xanthomonas axonopodis pv. manihotis infection in cassava using a cDNA microarray. PLANT MOLECULAR BIOLOGY 2005; 57:393-410. [PMID: 15830129 DOI: 10.1007/s11103-004-7819-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Accepted: 12/20/2004] [Indexed: 05/24/2023]
Abstract
A cassava cDNA microarray based on a large cassava EST database was constructed and used to study the incompatible interaction between cassava and Xanthomonas axonopodis pv. manihotis (Xam) strain CIO151. For microarray construction, 5700 clones from the cassava unigene set were amplified by polymerase chain reaction (PCR) and printed on glass slides. Microarray hybridization was performed using cDNA from cassava plants (resistant variety MBra685) collected at 12, 24, 48 h and 7 and 15 days post-infection as treatment and cDNA from mock-inoculated plants as control. A total of 199 genes were found to be differentially expressed (126 up-regulated and 73 down-regulated). A greater proportion of differentially-expressed genes was observed at 7 days after inoculation. Expression profiling and cluster analyses indicate that, in response to inoculation with Xam, cassava induces dozens of genes, including principally those involved in oxidative burst, protein degradation and pathogenesis-related (PR) genes. In contrast, genes encoding proteins that are involved in photosynthesis and metabolism were down regulated. In addition, various other genes encoding proteins with unknown function or showing no similarity to other proteins were also induced. Quantitative real time PCR experiments confirmed the reliability of our microarray data. In addition we showed that some genes are induced more rapidly in the resistant than in the susceptible cultivar.
Collapse
Affiliation(s)
- Camilo Lopez
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS-Université de Perpignan - Institut de Recherche pour le Développement, Perpignan, France
| | | | | | | | | | | | | | | |
Collapse
|
2299
|
Tokunaga N, Sakakibara N, Umezawa T, Ito Y, Fukuda H, Sato Y. Involvement of extracellular dilignols in lignification during tracheary element differentiation of isolated Zinnia mesophyll cells. PLANT & CELL PHYSIOLOGY 2005; 46:224-32. [PMID: 15659440 DOI: 10.1093/pcp/pci017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
During differentiation of isolated Zinnia mesophyll cells into tracheary elements (TEs), lignification on TEs progresses by supply of monolignols not only from TEs themselves but also from surrounding xylem parenchyma-like cells through the culture medium. However, how lignin polymerizes from the secreted monolignols has not been resolved. In this study, we analyzed phenol compounds in culture medium with reversed-phase HPLC, gas chromatography-mass spectrometry and nuclear magnetic resonance spectrometry, and found 12 phenolic compounds including coniferyl alcohol and four dilignols, i.e. erythro-guaiacylglycerol-beta-coniferyl ether, threo-guaiacylglycerol-beta-coniferyl ether, dehydrodiconiferyl alcohol and pinoresinol, in the medium in which TEs were developing. Coniferyl alcohol applied to TE-inductive cultures during TE formation rapidly disappeared from the medium, and caused a sudden increase in dilignols. Addition of the dilignols promoted lignification of TEs in which monolignol biosynthesis was blocked by an inhibitor of phenylalanine anmmonia-lyase (PAL), L-alpha-aminooxy-beta-phenylpropionic acid (AOPP). These results suggested that dilignols can act as intermediates of lignin polymerization.
Collapse
Affiliation(s)
- Naohito Tokunaga
- Department of Biology and Earth Sciences, Faculty of Science, Ehime University, Matsuyama, 790-8577 Japan
| | | | | | | | | | | |
Collapse
|
2300
|
|