2351
|
Lecrubier Y. Refinement of diagnosis and disease classification in psychiatry. Eur Arch Psychiatry Clin Neurosci 2008; 258 Suppl 1:6-11. [PMID: 18344044 DOI: 10.1007/s00406-007-1003-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Knowledge concerning the classification of mental disorders progressed substantially with the use of DSM III-IV and IDCD 10 because it was based on observed data, with precise definitions. These classifications a priori avoided to generate definitions related to etiology or treatment response. They are based on a categorical approach where diagnostic entities share common phenomenological features. Modifications proposed or discussed are related to the weak validity of the classification strategy described above. (a) Disorders are supposed to be independent but the current coexistence of two or more disorders is the rule; (b) They also are supposed to have stability, however anxiety disorders most of the time precede major depression. For GAD age at onset, family history, biology and symptomatology are close to those of depression. As a consequence broader entities such as depression-GAD spectrum, panic-phobias spectrum and OCD spectrum including eating disorders and pathological gambling are taken into consideration; (c) Diagnostic categories use thresholds to delimitate a border with normals. This creates "subthreshold" conditions. The relevance of such conditions is well documented. Measuring the presence and severity of different dimensions, independent from a threshold, will improve the relevance of the description of patients pathology. In addition, this dimensional approach will improve the problems posed by the mutually exclusive diagnoses (depression and GAD, schizophrenia and depression); (d) Some disorders are based on the coexistence of different dimensions. Patients may present only one set of symptoms and have different characteristics, evolution and response to treatment. An example would be negative symptoms in Schizophrenia; (e) Because no etiological model is available and most measures are subjective, objective measures (cognitive, biological) and genetics progresses created important hopes. None of these measures is pathognomonic and most appear to be related to risk factors especially at certain periods when associated with environmental events. One of the major aims for a classification of patients is to identify groups to whom a best possible therapeutic strategy can be proposed. Drugs may improve fear extinction while the genetic and/or acquired avoidance may be called phobia. The basic mechanism and or the corresponding phenotype should appear in the classification. Progresses in early identification of disturbances by taking into account all the information available (prodromal symptoms, cognitive, biological, imaging, genetic, family information) are crucial for the future therapeutic strategy: prevention.
Collapse
Affiliation(s)
- Yves Lecrubier
- INSERM U 302, Hôpital de la Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
2352
|
Calitoiu D, Oommen BJ, Nussbaum D. Spikes annihilation in the Hodgkin-Huxley neuron. BIOLOGICAL CYBERNETICS 2008; 98:239-257. [PMID: 18183413 DOI: 10.1007/s00422-007-0207-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 12/06/2007] [Indexed: 05/25/2023]
Abstract
The Hodgkin-Huxley (HH) neuron is a nonlinear system with two stable states: A fixed point and a limit cycle. Both of them co-exist. The behavior of this neuron can be switched between these two equilibria, namely spiking and resting respectively, by using a perturbation method. The change from spiking to resting is named Spike Annihilation, and the transition from resting to spiking is named Spike Generation. Our intention is to determine if the HH neuron in 2D is controllable (i.e., if it can be driven from a quiescent state to a spiking state and vice versa). It turns out that the general system is unsolvable.(1) In this paper, first of all,(2) we analytically prove the existence of a brief current pulse, which, when delivered to the HH neuron during its repetitively firing state, annihilates its spikes. We also formally derive the characteristics of this brief current pulse. We then proceed to explore experimentally, by using numerical simulations, the properties of this pulse, namely the range of time when it can be inserted (the minimum phase and the maximum phase), its magnitude, and its duration. In addition, we study the solution of annihilating the spikes by using two successive stimuli, when the first is, of its own, unable to annihilate the neuron. Finally, we investigate the inverse problem of annihilation, namely the spike generation problem, when the neuron switches from resting to firing.
Collapse
Affiliation(s)
- D Calitoiu
- School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6.
| | | | | |
Collapse
|
2353
|
Shin DS, Carlen PL. Enhanced Ih depresses rat entopeduncular nucleus neuronal activity from high-frequency stimulation or raised Ke+. J Neurophysiol 2008; 99:2203-19. [PMID: 18305090 DOI: 10.1152/jn.01065.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High-frequency stimulation (HFS) is used to treat a variety of neurological diseases, yet its underlying therapeutic action is not fully elucidated. Previously, we reported that HFS-induced elevation in [K(+)](e) or bath perfusion of raised K(e)(+) depressed rat entopeduncular nucleus (EP) neuronal activity via an enhancement of an ionic conductance leading to marked depolarization. Herein, we show that the hyperpolarization-activated (I(h)) channel mediates the HFS- or K(+)-induced depression of EP neuronal activity. The perfusion of an I(h) channel inhibitor, 50 microM ZD7288 or 2 mM CsCl, increased input resistance by 23.5 +/- 7% (ZD7288) or 35 +/- 10% (CsCl), hyperpolarized cells by 3.4 +/- 1.7 mV (ZD7288) or 2.3 +/- 0.9 mV (CsCl), and decreased spontaneous action potential (AP) frequency by 51.5 +/- 12.5% (ZD7288) or 80 +/- 13.5% (CsCl). The I(h) sag was absent with either treatment, suggesting a block of I(h) channel activity. Inhibition of the I(h) channel prior to HFS or 6 mM K(+) perfusion not only prevented the previously observed decrease in AP frequency, but increased neuronal activity. Under voltage-clamp conditions, I(h) currents were enhanced in the presence of 6 mM K(+). Calcium is also involved in the depression of EP neuronal activity, since its removal during raised K(e)(+) application prevented this attenuation and blocked the I(h) sag. We conclude that the enhancement of I(h) channel activity initiates the HFS- and K(+)-induced depression of EP neuronal activity. This mechanism could underlie the inhibitory effects of HFS used in deep brain stimulation in output basal ganglia nuclei.
Collapse
Affiliation(s)
- D S Shin
- Division of Fundamental Neurobiology, Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, Ontario, Canada.
| | | |
Collapse
|
2354
|
Kringelbach ML, Lehtonen A, Squire S, Harvey AG, Craske MG, Holliday IE, Green AL, Aziz TZ, Hansen PC, Cornelissen PL, Stein A. A specific and rapid neural signature for parental instinct. PLoS One 2008; 3:e1664. [PMID: 18301742 PMCID: PMC2244707 DOI: 10.1371/journal.pone.0001664] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 01/28/2008] [Indexed: 11/26/2022] Open
Abstract
Darwin originally pointed out that there is something about infants which prompts adults to respond to and care for them, in order to increase individual fitness, i.e. reproductive success, via increased survivorship of one's own offspring. Lorenz proposed that it is the specific structure of the infant face that serves to elicit these parental responses, but the biological basis for this remains elusive. Here, we investigated whether adults show specific brain responses to unfamiliar infant faces compared to adult faces, where the infant and adult faces had been carefully matched across the two groups for emotional valence and arousal, as well as size and luminosity. The faces also matched closely in terms of attractiveness. Using magnetoencephalography (MEG) in adults, we found that highly specific brain activity occurred within a seventh of a second in response to unfamiliar infant faces but not to adult faces. This activity occurred in the medial orbitofrontal cortex (mOFC), an area implicated in reward behaviour, suggesting for the first time a neural basis for this vital evolutionary process. We found a peak in activity first in mOFC and then in the right fusiform face area (FFA). In mOFC the first significant peak (p<0.001) in differences in power between infant and adult faces was found at around 130 ms in the 10–15 Hz band. These early differences were not found in the FFA. In contrast, differences in power were found later, at around 165 ms, in a different band (20–25 Hz) in the right FFA, suggesting a feedback effect from mOFC. These findings provide evidence in humans of a potential brain basis for the “innate releasing mechanisms” described by Lorenz for affection and nurturing of young infants. This has potentially important clinical applications in relation to postnatal depression, and could provide opportunities for early identification of families at risk.
Collapse
|
2355
|
Fales CL, Barch DM, Rundle MM, Mintun MA, Snyder AZ, Cohen JD, Mathews J, Sheline YI. Altered emotional interference processing in affective and cognitive-control brain circuitry in major depression. Biol Psychiatry 2008; 63:377-84. [PMID: 17719567 PMCID: PMC2268639 DOI: 10.1016/j.biopsych.2007.06.012] [Citation(s) in RCA: 368] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2007] [Revised: 06/07/2007] [Accepted: 06/07/2007] [Indexed: 11/30/2022]
Abstract
BACKGROUND Major depression is characterized by a negativity bias: an enhanced responsiveness to, and memory for, affectively negative stimuli. However, it is not yet clear whether this bias represents 1) impaired top-down cognitive control over affective responses, potentially linked to deficits in dorsolateral prefrontal cortex function; or 2) enhanced bottom-up responses to affectively laden stimuli that dysregulate cognitive control mechanisms, potentially linked to deficits in amygdala and anterior cingulate function. METHODS We used an attentional interference task using emotional distracters to test for top-down versus bottom-up dysfunction in the interaction of cognitive-control circuitry and emotion-processing circuitry. A total of 27 patients with major depression and 24 control participants was tested. Event-related functional magnetic resonance imaging was carried out as participants directly attended to, or attempted to ignore, fear-related stimuli. RESULTS Compared with control subjects, patients with depression showed an enhanced amygdala response to unattended fear-related stimuli (relative to unattended neutral). By contrast, control participants showed increased activity in right dorsolateral prefrontal cortex (Brodmann areas 46/9) when ignoring fear stimuli (relative to neutral), which the patients with depression did not show. In addition, the depressed participants failed to show evidence of error-related cognitive adjustments (increased activity in bilateral dorsolateral prefrontal cortex on posterror trials), but the control group did show them. CONCLUSIONS These results suggest multiple sources of dysregulation in emotional and cognitive control circuitry in depression, implicating both top-down and bottom-up dysfunction.
Collapse
Affiliation(s)
- Christina L. Fales
- Department of Psychology, Washington University in St. Louis, St. Louis, Missouri
| | - Deanna M. Barch
- Department of Psychology, Washington University in St. Louis, St. Louis, Missouri
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
- Department of Radiolology, Washington University in St. Louis, St. Louis, Missouri
| | - Melissa M. Rundle
- Department of Radiolology, Washington University in St. Louis, St. Louis, Missouri
| | - Mark A. Mintun
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
- Department of Radiolology, Washington University in St. Louis, St. Louis, Missouri
| | - Abraham Z. Snyder
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
- Department of Radiolology, Washington University in St. Louis, St. Louis, Missouri
| | - Jonathan D. Cohen
- Department of Psychology, Princeton University, Princeton, New Jersey
| | - Jose Mathews
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Yvette I. Sheline
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
- Department of Radiolology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
2356
|
Grimm S, Beck J, Schuepbach D, Hell D, Boesiger P, Bermpohl F, Niehaus L, Boeker H, Northoff G. Imbalance between left and right dorsolateral prefrontal cortex in major depression is linked to negative emotional judgment: an fMRI study in severe major depressive disorder. Biol Psychiatry 2008; 63:369-76. [PMID: 17888408 DOI: 10.1016/j.biopsych.2007.05.033] [Citation(s) in RCA: 452] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 04/19/2007] [Accepted: 05/16/2007] [Indexed: 12/19/2022]
Abstract
BACKGROUND Although recent neuroimaging and therapeutic transcranial magnetic cortex stimulation (TMS) studies suggest imbalance between left and right dorsolateral prefrontal cortex (DLPFC) in major depressive disorder (MDD) the fundamental neuropsychological characterization of left DLPFC hypoactivity and right DLPFC hyperactivity in MDD remains poorly understood. METHODS We used event-related functional magnetic resonance imaging (fMRI) to investigate neural activity in left and right DLPFC related to unattended (unexpected) and attended (expected) judgment of emotions. Participating in the study were 20 medication-free patients with MDD and 30 healthy subjects. RESULTS The MDD patients showed hypoactivity in the left DLPFC during both unattended and attended emotional judgment and hyperactivity in the right DLPFC during attended emotional judgment. In contrast to healthy subjects, left DLPFC activity during emotional judgment was not parametrically modulated by negative emotional valence and was inversely modulated by positive emotional valence in MDD patients. Hyperactivity in the right DLPFC correlated with depression severity. CONCLUSIONS Results demonstrate that left DLPFC hypoactivity is associated with negative emotional judgment rather than with emotional perception or attention while right DLPFC hyperactivity is linked to attentional modulation. Left-right DLPFC imbalance is characterized in neuropsychological regard, which bridges the gap from resting metabolism and therapeutic repetitive transcranial magnetic stimulation effects to functional neuroanatomy of altered emotional-cognitive interaction in MDD.
Collapse
Affiliation(s)
- Simone Grimm
- Department of Psychiatry, University of Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
2357
|
Bernstein JG, Han X, Henninger MA, Ko EY, Qian X, Franzesi GT, McConnell JP, Stern P, Desimone R, Boyden ES. Prosthetic systems for therapeutic optical activation and silencing of genetically-targeted neurons. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2008; 6854:68540H. [PMID: 18458792 DOI: 10.1117/12.768798] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Many neural disorders are associated with aberrant activity in specific cell types or neural projection pathways embedded within the densely-wired, heterogeneous matter of the brain. An ideal therapy would permit correction of activity just in specific target neurons, while leaving other neurons unaltered. Recently our lab revealed that the naturally-occurring light-activated proteins channelrhodopsin-2 (ChR2) and halorhodopsin (Halo/NpHR) can, when genetically expressed in neurons, enable them to be safely, precisely, and reversibly activated and silenced by pulses of blue and yellow light, respectively. We here describe the ability to make specific neurons in the brain light-sensitive, using a viral approach. We also reveal the design and construction of a scalable, fully-implantable optical prosthetic capable of delivering light of appropriate intensity and wavelength to targeted neurons at arbitrary 3-D locations within the brain, enabling activation and silencing of specific neuron types at multiple locations. Finally, we demonstrate control of neural activity in the cortex of the non-human primate, a key step in the translation of such technology for human clinical use. Systems for optical targeting of specific neural circuit elements may enable a new generation of high-precision therapies for brain disorders.
Collapse
Affiliation(s)
- Jacob G Bernstein
- MIT Media Lab, Neuromedia Group, 20 Ames St., Cambridge, MA, USA 02139
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2358
|
Hamani C, Hodaie M, Chiang J, del Campo M, Andrade DM, Sherman D, Mirski M, Mello LE, Lozano AM. Deep brain stimulation of the anterior nucleus of the thalamus: Effects of electrical stimulation on pilocarpine-induced seizures and status epilepticus. Epilepsy Res 2008; 78:117-23. [DOI: 10.1016/j.eplepsyres.2007.09.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 08/10/2007] [Accepted: 09/22/2007] [Indexed: 11/16/2022]
|
2359
|
Abstract
This study used functional magnetic resonance imaging to identify the neural structures associated with women's underperformance on math tasks. Although women in a control condition recruited neural networks that are associated with mathematical learning (i.e., angular gyrus, left parietal and prefrontal cortex), women who were reminded of gender stereotypes about math ability did not recruit these regions, and instead revealed heightened activation in a neural region associated with social and emotional processing (ventral anterior cingulate cortex).
Collapse
Affiliation(s)
- Anne C. Krendl
- Department of Psychological and Brain Sciences, Dartmouth College
| | - Jennifer A. Richeson
- Department of Psychology and Institute for Policy Research, Northwestern University
| | | | | |
Collapse
|
2360
|
Taylor SF, Liberzon I. Neural correlates of emotion regulation in psychopathology. Trends Cogn Sci 2008; 11:413-8. [PMID: 17928261 DOI: 10.1016/j.tics.2007.08.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 07/20/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
What can psychopathology and its treatment tell us about cognitive emotional interactions? Standard approaches to interactions between emotion and cognition often adopt a variant of the idea that cognitive processes, subserved by dorsal and lateral cortical circuits, exert control and regulation of ventral, limbic brain areas associated with emotional expression and experience. However, it is becoming clear from studies on depression, post-traumatic stress disorder (PTSD) and obsessive compulsive disorder (OCD), that a binary, opponent theory of cognitive emotion interaction (CEI) and the dorsal-ventral model of neurocircuitry do not fully describe the data. We summarize recent research to suggest that networks of direct and indirect pathways exist by which cognition can regulate pathological emotion, and the inter-relationships of specific nodes within the networks need to be characterized.
Collapse
Affiliation(s)
- Stephan F Taylor
- University of Michigan Department of Psychiatry, 4250 Plymouth Rd, Ann Arbor, MI 48109-5765, USA.
| | | |
Collapse
|
2361
|
Yousif N, Bayford R, Wang S, Liu X. Quantifying the effects of the electrode-brain interface on the crossing electric currents in deep brain recording and stimulation. Neuroscience 2008; 152:683-91. [PMID: 18304747 DOI: 10.1016/j.neuroscience.2008.01.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 01/15/2008] [Accepted: 01/17/2008] [Indexed: 11/26/2022]
Abstract
A depth electrode-brain interface (EBI) is formed once electrodes are implanted into the human brain. We investigated the impact of the EBI on the crossing electric currents during both deep brain recording (DBR) and deep brain stimulation (DBS) over the acute, chronic and transitional stages post-implantation, in order to investigate and quantify the effect which changes at the EBI have on both DBR and DBS. We combined two complementary methods: (1) physiological recording of local field potentials via the implanted electrode in patients; and (2) computational simulations of an EBI model. Our depth recordings revealed that the physiological modulation of the EBI in the acute stage via brain pulsation selectively affected the crossing neural signals in a frequency-dependent manner, as the amplitude of the electrode potential was inversely correlated with that of the tremor-related oscillation, but not the beta oscillation. Computational simulations of DBS during the transitional period showed that the shielding effect of partial giant cell growth on the injected current could shape the field in an unpredictable manner. These results quantitatively demonstrated that physiological modulation of the EBI significantly affected the crossing currents in both DBR and DBS. Studying the microenvironment of the EBI may be a key step in investigating the mechanisms of DBR and DBS, as well as brain-computer interactions in general.
Collapse
Affiliation(s)
- N Yousif
- The Movement Disorders and Neurostimulation Unit, Department of Clinical Neuroscience, Division of Neuroscience and Mental Health, Faculty of Medicine, Imperial College London, 10 East, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK
| | | | | | | |
Collapse
|
2362
|
Dissociating affective evaluation and social cognitive processes in the ventral medial prefrontal cortex. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2008; 7:337-46. [PMID: 18189007 DOI: 10.3758/cabn.7.4.337] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent studies, various regions of the ventral medial prefrontal cortex (vmPFC) have been implicated in at least two potentially different mental functions: reasoning about the minds of other people (social cognition) and processing reward related information (affective evaluation). In this study, we test whether the activation in a specific area of the vmPFC, the para-anterior cingulate cortex (PACC), correlates with the reward value of stimuli in general or is specifically associated with social cognition. Participants performed a time estimation task with trial-to-trial feedback in which reward and socialcontext were manipulated separately. Reward was manipulated by giving either positive or negative feedback in the form of small squirts of fluid delivered orally. Social context was manipulated by instructing participants that positive and negative feedback was determined by another person or a computer. The data demonstrate a main effect of feedback, but not social context, in the PACC, suggesting that this area of the vmPFC serves a general function in evaluating and/or representing reward value. In addition, activity in a more anterior subregion of the vmPFC demonstrated reward-related sensitivity only in the social context. Another area that showed a similar interaction was the subgenual cingulate, but this region was only sensitive to negative feedback in the social condition. These findings suggest that, within the vmPFC, the PACC subserves primarily an affective function, whereas in other regions social context can modulate affective responses.
Collapse
|
2363
|
Leussis MP, Andersen SL. Is adolescence a sensitive period for depression? Behavioral and neuroanatomical findings from a social stress model. Synapse 2008; 62:22-30. [PMID: 17957735 DOI: 10.1002/syn.20462] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Sex differences in depressive symptoms emerge during adolescence, with females more at risk than males. However, adverse life events during development have greater impact on males. An animal model that incorporates behavioral and anatomical changes following adolescent stress is needed. EXPERIMENTAL DESIGN Sprague-Dawley rats were exposed to social stress (SS; isolation housing during P30-35) or remained group-housed (GRP) and tested in the forced swim test (FST), the triadic learned helplessness model (LH), and the elevated plus maze. Western immunoblots of myelin basic protein (MBP) and synaptophysin (SVP) and spinophillin indexed synaptic and dendritic plasticity, respectively. PRINCIPAL OBSERVATIONS At P36, SS increased climbing behavior in both sexes, and decreased the latency to immobility in females following a 15 min inescapable swim in the FST. Depressive-like behaviors were differentially elevated in both sexes 24 h later. GRP females exhibited higher levels of depression-related behaviors than GRP males in both FST and LH paradigms. SS significantly increased depressive behaviors in the FST in males, and impaired their ability to escape shock previously conditioned to be controllable. SS decreased open arm time in females only. The greatest reductions in synaptic plasticity proteins were observed in the prefrontal cortex: spinophillin (19.1%), SVP (7.9%), and MBP (48.7%, males only). Smaller reductions in spinophillin were observed in the hippocampus and amygdala. CONCLUSIONS Adolescent separation produces both behavioral and neural changes associated with stress-related depression and anxiety. Additional work is needed to improve our understanding of stress as it relates to depression during this vulnerable period of development.
Collapse
Affiliation(s)
- Melanie P Leussis
- Laboratory of Developmental Neuropharmacology, Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, Massachusetts 02478, USA
| | | |
Collapse
|
2364
|
Ressler KJ, Mayberg HS. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci 2008; 10:1116-24. [PMID: 17726478 PMCID: PMC2444035 DOI: 10.1038/nn1944] [Citation(s) in RCA: 723] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent decades have witnessed tremendous advances in the neuroscience of emotion, learning and memory, and in animal models for understanding depression and anxiety. This review focuses on new rationally designed psychiatric treatments derived from preclinical human and animal studies. Nonpharmacological treatments that affect disrupted emotion circuits include vagal nerve stimulation, rapid transcranial magnetic stimulation and deep brain stimulation, all borrowed from neurological interventions that attempt to target known pathological foci. Other approaches include drugs that are given in relation to specific learning events to enhance or disrupt endogenous emotional learning processes. Imaging data suggest that common regions of brain activation are targeted with pharmacological and somatic treatments as well as with the emotional learning in psychotherapy. Although many of these approaches are experimental, the rapidly developing understanding of emotional circuit regulation is likely to provide exciting and powerful future treatments for debilitating mood and anxiety disorders.
Collapse
Affiliation(s)
- Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Drive, Atlanta, Georgia 30329, USA.
| | | |
Collapse
|
2365
|
Abstract
The development of new treatments for depression is predicated upon identification of neural substrates and mechanisms that underlie its etiology and pathophysiology. The heterogeneity of depression indicates that its origin may lie in dysfunction of multiple brain regions. Here we evaluate adult hippocampal neurogenesis as a candidate mechanism for the etiology of depression and as a substrate for antidepressant action. Current evidence indicates that adult hippocampal neurogenesis may not be a major contributor to the development of depression, but may be required for some of the behavioral effects of antidepressants. We next revisit the functional differentiation of the hippocampus along the septo-temporal axis within the context of adult hippocampal neurogenesis and suggest that neurogenesis in the ventral dentate gyrus may be preferentially involved in regulation of emotion. Finally, we speculate on how increased adult hippocampal neurogenesis may modulate dentate gyrus function to confer the behavioral effects of antidepressants.
Collapse
Affiliation(s)
- Amar Sahay
- Department of Neuroscience, Division of Integrative Neuroscience, Columbia University, 1051 Riverside Drive, Box 87, PI Annex, Room 767B, New York, New York 10032, USA.
| | | |
Collapse
|
2366
|
Affiliation(s)
- R H Belmaker
- Ben Gurion University of the Negev, Beersheba, Israel.
| | | |
Collapse
|
2367
|
Berlim MT, Fleck MP, Turecki G. Current trends in the assessment and somatic treatment of resistant/refractory major depression: an overview. Ann Med 2008; 40:149-59. [PMID: 18293145 DOI: 10.1080/07853890701769728] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A significant proportion of depressed patients eventually present with treatment-resistant/refractory major depression (TRD), a debilitating condition that imposes significant health, social, and economic burdens. Recently, a growing level of consensus has been reached on the general meaning of TRD, according to which, depression is considered resistant when at least two trials with antidepressants from different pharmacologic classes (adequate in terms of dose, duration, outcome, and compliance) failed to achieve clinical remission. Regarding the management of TRD, a two-step approach is suggested, involving first the evaluation of factors that may contribute to treatment nonresponse (such as comorbid medical and psychiatric conditions), and second, the use of the four classical strategies for enhancing antidepressant efficacy (namely optimization, augmentation, combination, and switching). Finally, future research on TRD should include studies addressing, among other issues, the validity of the proposed definitional criteria, the evaluation of reliable predictors of treatment outcome, and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Marcelo T Berlim
- Depressive Disorders Program, and the McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
2368
|
Abstract
Surgery for psychiatric disorders first began in the early part of the last century when the therapeutic options for these patients were limited. The introduction of deep brain stimulation (DBS) has caused a new interest in the surgical treatment of these disorders. DBS may have some advantage over lesioning procedures used in the past. A critical review of the major DBS targets under investigation for Tourette's syndrome, obsessive-compulsive disorder, and major depression is presented. Current and future challenges for the use of DBS in psychiatric disorders are discussed, as well as a rationale for referring to this subspecialty as limbic disorders surgery based on the parallels with movement disorders surgery.
Collapse
Affiliation(s)
- Paul Sloan Larson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143-0112, USA.
| |
Collapse
|
2369
|
Soussou WV, Berger TW. Cognitive and Emotional Neuroprostheses. BRAIN-COMPUTER INTERFACES 2008. [DOI: 10.1007/978-1-4020-8705-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2370
|
The role of modern imaging modalities on deep brain stimulation targeting for mental illness. RECONSTRUCTIVE NEUROSURGERY 2008; 101:3-7. [DOI: 10.1007/978-3-211-78205-7_1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2371
|
Schlaepfer TE, Cohen MX, Frick C, Kosel M, Brodesser D, Axmacher N, Joe AY, Kreft M, Lenartz D, Sturm V. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 2008; 33:368-77. [PMID: 17429407 DOI: 10.1038/sj.npp.1301408] [Citation(s) in RCA: 625] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Deep brain stimulation (DBS) to different sites allows interfering with dysfunctional network function implicated in major depression. Because a prominent clinical feature of depression is anhedonia--the inability to experience pleasure from previously pleasurable activities--and because there is clear evidence of dysfunctions of the reward system in depression, DBS to the nucleus accumbens might offer a new possibility to target depressive symptomatology in otherwise treatment-resistant depression. Three patients suffering from extremely resistant forms of depression, who did not respond to pharmacotherapy, psychotherapy, and electroconvulsive therapy, were implanted with bilateral DBS electrodes in the nucleus accumbens. Stimulation parameters were modified in a double-blind manner, and clinical ratings were assessed at each modification. Additionally, brain metabolism was assessed 1 week before and 1 week after stimulation onset. Clinical ratings improved in all three patients when the stimulator was on, and worsened in all three patients when the stimulator was turned off. Effects were observable immediately, and no side effects occurred in any of the patients. Using FDG-PET, significant changes in brain metabolism as a function of the stimulation in fronto-striatal networks were observed. No unwanted effects of DBS other than those directly related to the surgical procedure (eg pain at sites of implantation) were observed. Dysfunctions of the reward system--in which the nucleus accumbens is a key structure--are implicated in the neurobiology of major depression and might be responsible for impaired reward processing, as evidenced by the symptom of anhedonia. These preliminary findings suggest that DBS to the nucleus accumbens might be a hypothesis-guided approach for refractory major depression.
Collapse
Affiliation(s)
- Thomas E Schlaepfer
- Department of Psychiatry and Psychotherapy, University Hospital, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2372
|
Neuromodulación quirúrgica. Nuevos horizontes en Neurocirugía. Neurocirugia (Astur) 2008. [DOI: 10.1016/s1130-1473(08)70238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2373
|
|
2374
|
Abstract
The advancement of electrical stimulation of the central nervous system has been a story of fits and bursts with numerous setbacks. In many ways, this history has paralleled the history of medicine and physics. We have moved from anecdotal observation to double-blinded, prospective randomized trials. We have moved from faradic stimulation to systems that lie completely under the skin and can deliver complex electrical currents to discrete areas of the brain while controlled through a device that is not much bigger than a PDA. This review will discuss how deep brain stimulation has developed into its current form, where we see the field going and the potential pitfalls along the way.
Collapse
Affiliation(s)
- Jason M Schwalb
- Department of Neurological Surgery, University of Rochester, Rochester, NY 14642, USA.
| | | |
Collapse
|
2375
|
Birdno MJ, Grill WM. Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics 2008; 5:14-25. [PMID: 18164480 PMCID: PMC2200868 DOI: 10.1016/j.nurt.2007.10.067] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Deep brain stimulation (DBS) is an established treatment for symptoms in movement disorders and is under investigation for symptom management in persons with psychiatric disorders and epilepsy. Nevertheless, there remains disagreement regarding the physiological mechanisms responsible for the actions of DBS, and this lack of understanding impedes both the design of DBS systems for treating novel diseases and the effective tuning of current DBS systems. Currently available data indicate that effective DBS overrides pathological bursts, low frequency oscillations, synchronization, and disrupted firing patterns present in movement disorders, and replaces them with more regularized firing. Although it is likely that the specific mechanism(s) by which DBS exerts its effects varies between diseases and target nuclei, the overriding of pathological activity appears to be ubiquitous. This review provides an overview of changes in motor symptoms with changes in DBS frequency and highlights parallels between the changes in motor symptoms and the changes in cellular activity that appear to underlie the motor symptoms.
Collapse
Affiliation(s)
- Merrill J. Birdno
- grid.26009.3d0000000419367961Department of Biomedical Engineering, Duke University, Hudson Hall, Room 136, Box 90281, 27708-0281 Durham, NC
| | - Warren M. Grill
- grid.26009.3d0000000419367961Department of Biomedical Engineering, Duke University, Hudson Hall, Room 136, Box 90281, 27708-0281 Durham, NC
| |
Collapse
|
2376
|
Towards construction of an ideal stereotactic brain atlas. Acta Neurochir (Wien) 2008; 150:1-13; discussion 13-4. [PMID: 18030414 DOI: 10.1007/s00701-007-1270-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 04/24/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND The role of the brain atlas is changing in many aspects with the advancements in stereotactic and functional neurosurgery. Therefore, there is a critical need to construct a new atlas. This paper addresses the definition and construction of an atlas, ideal (in our opinion) for stereotactic and functional neurosurgery. The essence of the new atlas is not only its population-based structural and functional content, but also its continuous "self-updatability" with the new clinical results obtained. METHOD The ideal atlas defined here contains four major components: brain models, knowledge database, tools, and clinical results. Towards its creation, a multi-atlas is proposed. The construction of the initial version of the multi-atlas is detailed with the probabilistic functional atlas (PFA), interpolated Talairach-Tournoux atlas, and enhanced Schaltenbrand-Wahren atlas. These atlases are put in a spatial register by matching their AC-PC distances and heights of the thalamus; the Schaltenbrand coronal and sagittal microseries are scaled laterally to match the target structure centroids with the locations of the best targets of the PFA. FINDINGS Construction of an initial version of the ideal stereotactic atlas is feasible at present from the available resources. To achieve that, our three atlases (PFA, Talairach and Schaltenbrand) are enhanced and combined together. A single lateral scaling factor per target structure is feasible to co-register the Schaltenbrand atlas with PFA in four situations (compensated against the third ventricle, non-compensated, bilateral, and non-bilateral). The STN has to be stretched by 18% more than the VIM on the Schaltenbrand coronal microseries, and the VIM has to be compressed by 13% less than the STN on the Schaltenbrand sagittal microseries. CONCLUSION The new multi-atlas can potentially be more useful than the currently employed atlases and will facilitate further development of the ideal atlas for stereotactic and functional neurosurgery.
Collapse
|
2377
|
Berger TW, Gerhardt G, Liker MA, Soussou W. The Impact of Neurotechnology on Rehabilitation. IEEE Rev Biomed Eng 2008; 1:157-97. [PMID: 22274903 DOI: 10.1109/rbme.2008.2008687] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Theodore W Berger
- Department of Biomedical Engineering, Center for Neural Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|
2378
|
Abstract
The 'executive' regions of the prefrontal cortex (PFC) such as the dorsolateral PFC (dlPFC) and its rodent equivalent medial PFC (mPFC) are thought to respond in concert with the 'limbic' regions of the PFC such as the orbitofrontal (OFC) cortex to orchestrate behavior that is consistent with context and expected outcome. Both groups of regions have been implicated in behavioral abnormalities associated with addiction and psychiatric disorders, in particular, schizophrenia and mood disorders. Theories about the pathophysiology of these disorders, however, incorporate abnormalities in discrete PFC regions independently of each other or assume they are one and the same and, thus, bunch them under umbrella of 'PFC dysfunction.' Emerging data from animal studies suggest that mPFC and OFC neurons display opposing patterns of plasticity during associative learning and in response to repeated exposure to psychostimulants. These data corroborate clinical studies reporting different patterns of activation in OFC versus dlPFC in individuals with schizophrenia or addictive disorders. These suggest that concomitant but divergent engagement of discrete PFC regions is critical for learning stimulus-outcome associations, and the execution of goal-directed behavior that is based on these associations. An atypical interplay between these regions may lead to abnormally high or low salience assigned to stimuli, resulting in symptoms that are fundamental to many psychiatric and addictive disorders, including attentional deficits, improper affective response to stimuli, and inflexible or impulsive behavior.
Collapse
Affiliation(s)
- Bita Moghaddam
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
2379
|
Bekar L, Libionka W, Tian GF, Xu Q, Torres A, Wang X, Lovatt D, Williams E, Takano T, Schnermann J, Bakos R, Nedergaard M. Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat Med 2007; 14:75-80. [PMID: 18157140 DOI: 10.1038/nm1693] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 11/29/2007] [Indexed: 12/11/2022]
Abstract
Deep brain stimulation (DBS) is a widely used neurosurgical approach to treating tremor and other movement disorders. In addition, the use of DBS in a number of psychiatric diseases, including obsessive-compulsive disorders and depression, is currently being tested. Despite the rapid increase in the number of individuals with surgically implanted stimulation electrodes, the cellular pathways involved in mediating the effects of DBS remain unknown. Here we show that DBS is associated with a marked increase in the release of ATP, resulting in accumulation of its catabolic product, adenosine. Adenosine A1 receptor activation depresses excitatory transmission in the thalamus and reduces both tremor- and DBS-induced side effects. Intrathalamic infusion of A1 receptor agonists directly reduces tremor, whereas adenosine A1 receptor-null mice show involuntary movements and seizure at stimulation intensities below the therapeutic level. Furthermore, our data indicate that endogenous adenosine mechanisms are active in tremor, thus supporting the clinical notion that caffeine, a nonselective adenosine receptor antagonist, can trigger or exacerbate essential tremor. Our findings suggest that nonsynaptic mechanisms involving the activation of A1 receptors suppress tremor activity and limit stimulation-induced side effects, thereby providing a new pharmacological target to replace or improve the efficacy of DBS.
Collapse
Affiliation(s)
- Lane Bekar
- Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester, Rochester, New York 14642, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2380
|
Koenigs M, Huey ED, Raymont V, Cheon B, Solomon J, Wassermann EM, Grafman J. Focal brain damage protects against post-traumatic stress disorder in combat veterans. Nat Neurosci 2007; 11:232-7. [PMID: 18157125 DOI: 10.1038/nn2032] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 11/29/2007] [Indexed: 11/09/2022]
Abstract
Post-traumatic stress disorder (PTSD) is an often debilitating mental illness that is characterized by recurrent distressing memories of traumatic events. PTSD is associated with hypoactivity in the ventromedial prefrontal cortex (vmPFC), hyperactivity in the amygdala and reduced volume in the hippocampus, but it is unknown whether these neuroimaging findings reflect the underlying cause or a secondary effect of the disorder. To investigate the causal contribution of specific brain areas to PTSD symptoms, we studied a unique sample of Vietnam War veterans who suffered brain injury and emotionally traumatic events. We found a substantially reduced occurrence of PTSD among those individuals with damage to one of two regions of the brain: the vmPFC and an anterior temporal area that included the amygdala. These results suggest that the vmPFC and amygdala are critically involved in the pathogenesis of PTSD.
Collapse
Affiliation(s)
- Michael Koenigs
- Cognitive Neuroscience Section, National Institute of Neurological Disorders and Stroke, US National Institutes of Health, 10 Center Drive, MSC 1440, Bethesda, Maryland, 20892-1440, USA
| | | | | | | | | | | | | |
Collapse
|
2381
|
Michelsen KA, van den Hove DLA, Schmitz C, Segers O, Prickaerts J, Steinbusch HWM. Prenatal stress and subsequent exposure to chronic mild stress influence dendritic spine density and morphology in the rat medial prefrontal cortex. BMC Neurosci 2007; 8:107. [PMID: 18093285 PMCID: PMC2266759 DOI: 10.1186/1471-2202-8-107] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 12/19/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Both prenatal stress (PS) and postnatal chronic mild stress (CMS) are associated with behavioral and mood disturbances in humans and rodents. The aim of this study was to reveal putative PS- and/or CMS-related changes in basal spine morphology and density of pyramidal neurons in the rat medial prefrontal cortex (mPFC). RESULTS We show that rats exposed to PS and/or CMS display changes in the morphology and number of basal spines on pyramidal neurons in the mPFC. CMS had a negative effect on spine densities, particularly on spines of the mushroom type, which are considered to form stronger and more stable synapses than other spine types. PS alone did not affect spine densities, but had a negative effect on the ratio of mushroom spines. In addition, PS seemed to make rats less responsive to some of the negative effects of CMS, which supports the notion that PS represents a predictive adaptive response. CONCLUSION The observed changes may represent a morphological basis of PS- and CMS-related disturbances, and future studies in the field should not only consider total spine densities, but also separate between different spine types.
Collapse
Affiliation(s)
- Kimmo A Michelsen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
2382
|
High-frequency deep brain stimulation of the nucleus accumbens region suppresses neuronal activity and selectively modulates afferent drive in rat orbitofrontal cortex in vivo. J Neurosci 2007; 27:12601-10. [PMID: 18003839 DOI: 10.1523/jneurosci.3750-07.2007] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
High-frequency deep-brain stimulation (DBS) of the nucleus accumbens (NAc) region is an effective therapeutic avenue for patients with treatment-resistant obsessive-compulsive disorder (OCD). Imaging studies suggest that DBS acts by suppressing the aberrant metabolism in the orbitofrontal cortex (OFC) that is a hallmark of OCD; however, little is known about the mechanisms by which this occurs. We examined the effects of 30 min NAc DBS at 130 Hz on spontaneously active OFC neurons and local field potentials (LFPs) in addition to evoked responses elicited by single-pulse stimulation of the NAc or mediodorsal thalamus (MD) in urethane-anesthetized rats. NAc DBS reduced the mean firing rate of OFC neurons, although neurons receiving monosynaptic input from MD were less affected and some putative interneurons were excited by DBS. Single-pulse stimulation of the NAc produced a robust inhibition in OFC neurons that was attenuated after DBS, whereas excitatory responses were unchanged. In contrast, after DBS inhibitory responses evoked from MD were unchanged, whereas excitatory responses were enhanced. NAc-evoked LFP responses were potentiated after DBS, whereas MD-evoked LFP responses were unchanged. NAc DBS also enhanced OFC spontaneous LFP oscillatory activity in the slow (0.5-4 Hz) frequency band. These results suggest that DBS of the NAc region may alleviate OCD symptoms by reducing activity in subsets of OFC neurons, potentially by driving recurrent inhibition though antidromic activation of corticostriatal axon collaterals. Moreover, selective potentiation of input to these inhibitory circuits may also contribute to the therapeutic effects produced by DBS in OCD patients.
Collapse
|
2383
|
Yousif N, Liu X. Modeling the current distribution across the depth electrode-brain interface in deep brain stimulation. Expert Rev Med Devices 2007; 4:623-31. [PMID: 17850197 PMCID: PMC2268755 DOI: 10.1586/17434440.4.5.623] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mismatch between the extensive clinical use of deep brain stimulation (DBS), which is being used to treat an increasing number of neurological disorders, and the lack of understanding of the underlying mechanisms is confounded by the difficulty of measuring the spread of electric current in the brain in vivo. In this article we present a brief review of the recent computational models that simulate the electric current and field distribution in 3D space and, consequently, make estimations of the brain volume being modulated by therapeutic DBS. Such structural modeling work can be categorized into three main approaches: target-specific modeling, models of instrumentation and modeling the electrode-brain interface. Comments are made for each of these approaches with emphasis on our electrode-brain interface modeling, since the stimulating current must travel across the electrode-brain interface in order to reach the surrounding brain tissue and modulate the pathological neural activity. For future modeling work, a combined approach needs to be taken to reveal the underlying mechanisms, and both structural and dynamic models need to be clinically validated to make reliable predictions about the therapeutic effect of DBS in order to assist clinical practice.
Collapse
Affiliation(s)
- Nada Yousif
- The Movement Disorders & Neurostimulation Unit, Department of Clinical Neuroscience, Division of Neuroscience and Mental Health, Faculty of Medicine, Imperial College London, UK.
| | | |
Collapse
|
2384
|
|
2385
|
Mnie-Filali O, El Mansari M, Scarna H, Zimmer L, Sánchez C, Haddjeri N. [Escitalopram: a selective inhibitor and allosteric modulator of the serotonin transporter]. Encephale 2007; 33:965-72. [PMID: 18789789 DOI: 10.1016/j.encep.2007.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 11/06/2007] [Indexed: 02/02/2023]
Abstract
Citalopram (Séropram) is an antidepressant of the selective serotonin (5-HT) reuptake inhibitor (SSRI) class, composed of equal amounts of S-enantiomer, escitalopram, and R-enantiomer, R-citalopram. Both clinical and preclinical studies have reported that escitalopram is a potent SSRI that possesses a faster onset of antidepressant activity in comparison with citalopram. Conversely, R-citalopram, although devoid of 5-HT reuptake inhibition property, was reported to counteract the effect of the S-enantiomer in several in vitro and in vivo experiments. For instance, microdialysis studies have shown that escitalopram increased the extracellular 5-HT levels in the frontal cortex and the ventral hippocampus, and this effect was prevented by concomitant injection of R-citalopram. The in vivo relevance of the antagonistic effect of R-citalopram on escitalopram efficacy was confirmed in dorsal raphe nucleus, a brain region known to be a target for SSRIs. In the later region, escitalopram was four times more potent than citalopram in suppressing the firing activity of 5-HT neurons and this effect of escitalopram was significantly prevented by R-citalopram. The antagonizing effect of R-citalopram on escitalopram efficacy was also observed in behavioural tests predictive of anxiolytic or antidepressant properties. In adult rats, R-citalopram reduced the anxiolytic-like effect of escitalopram obtained in the footshock-induced ultrasonic vocalization model, the conditioned fear model or the Vogel conflict and elevated plus maze tests. In validated chronic models with high predictive value for antidepressant activity, when escitalopram was administered for five weeks, either alone or with twice as much R-citalopram, the effect of the treatment regimens on reversal of hedonic deficit was significantly different. Importantly, chronic treatment with escitalopram reversed the decrease in cytogenesis in the rat dentate gyrus, induced by chronic mild stress. However, in naïve rats, while chronic treatment with R-citalopram did not modify the basal proliferation rate in the dentate gyrus, it blocked the increase induced by escitalopram when coadministered. This suggests that neuronal adaptive changes, which are essential for antidepressant response, are rapidly induced by escitalopram but prevented by R-citalopram coadministration. The attenuating effect of R-citalopram was suggested to underlie the delayed recovery of 5-HT neuronal activity following long-term treatment with citalopram versus escitalopram. This is confirmed since a treatment with R-citalopram antagonized the recovery of firing observed in escitalopram-treated rats. The exact mechanism by which R-citalopram exerts its action is not yet fully defined; however, an allosteric interaction between the enantiomers and the 5-HT transporter (SERT) has been proposed. In this context, in vitro studies have revealed the existence of at least two binding sites on SERT: (1) a primary high-affinity binding site or orthosteric site that mediates the inhibition of 5-HT reuptake and (2) an allosteric low-affinity binding site that modulates the binding of ligands at the primary site. In presence of escitalopram alone, both the primary and the allosteric sites are occupied. Thus, escitalopram exerts a stabilizing effect on this association to SERT, resulting in an effective inhibition of 5-HT reuptake activity. On the other hand, in the presence of the two enantiomers, R-citalopram binds to the allosteric site and decreases the escitalopram action on SERT. Such an innovative mechanism of action can constitute a basis for development of new allosteric antidepressants that demonstrate higher efficacy and earlier onset of therapeutic effect.
Collapse
Affiliation(s)
- O Mnie-Filali
- Laboratoire de neuropharmacologie, faculté de pharmacie, université de Lyon-1, 8, avenue Rockefeller, 69373 Lyon cedex 08, France
| | | | | | | | | | | |
Collapse
|
2386
|
Jiménez F, Velasco F, Salín-Pascual R, Velasco M, Nicolini H, Velasco AL, Castro G. Neuromodulation of the inferior thalamic peduncle for major depression and obsessive compulsive disorder. ACTA NEUROCHIRURGICA. SUPPLEMENT 2007; 97:393-8. [PMID: 17691327 DOI: 10.1007/978-3-211-33081-4_44] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuromodulation of the inferior thalamic peduncle is a new surgical treatment for major depression and obsessive-compulsive disorder. The inferior thalamic peduncle is a bundle of fibers connecting the orbito-frontal cortex with the non-specific thalamic system in a small area behind the fornix and anterior to the polar reticular thalamic nucleus. Electrical stimulation elicits characteristic frontal cortical responses (recruiting responses and direct current (DC)-shift) that confirm correct localization of this anatomical structure. A female with depression for 23 years and a male with obsessive-compulsive disorder for 9 years had stereotactic implantation of electrodes in the inferior thalamic peduncle and were evaluated over a long-term period. Initial OFF stimulation period (1 month) showed no consistent changes in the Hamilton Depression Scale (HAM-D), Yale Brown Obsessive Compulsive Scale (YBOCS), or Global Assessment of Functioning scale (GAF). The ON stimulation period (3-5 V, 130-Hz frequency, 450-msec pulse width in a continuous program) showed significant decrease in depression, obsession, and compulsion symptoms. GAF improved significantly in both cases. The neuropsychological tests battery showed no significant changes except from a reduction in the perseverative response of the obsessive-compulsive patient and better performance in manual praxias of the female depressive patient. Moderate increase in weight (5 kg on average) was observed in both cases.
Collapse
Affiliation(s)
- F Jiménez
- Functional Neurosurgery, Stereotactic and Radiosurgery Unit, Hospital General De México, Mexico City, Mexico.
| | | | | | | | | | | | | |
Collapse
|
2387
|
Sakas DE, Panourias IG, Singounas E, Simpson BA. Neurosurgery for psychiatric disorders: from the excision of brain tissue to the chronic electrical stimulation of neural networks. ACTA NEUROCHIRURGICA. SUPPLEMENT 2007; 97:365-74. [PMID: 17691325 DOI: 10.1007/978-3-211-33081-4_42] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neurosurgical treatment for psychiatric disorders has a long and controversial history dating back to antiquity. Both enthusiastic reports and social outcry have accompanied psychosurgical practice, particularly over the last century. Frontal lobotomy has probably been the only medical advance which was first awarded a Nobel prize in medicine and then irreparably stigmatized by scientific rejection and public criticism. In the present paper, the historical milestones of psychosurgery are briefly overviewed. The particular circumstances of the rise and fall of frontal lobotomy are also discussed. Furthermore, the clinical and surgical considerations of the four major psychosurgical procedures which are still in practice are presented. Over the last fifteen years, the advent of deep brain stimulation (DBS) methodology coupled with accurate stereotactic techniques and guided by elaborate neuroimaging methods have revolutionized neurosurgery, particularly for the alleviation of certain disabling movement disorders. Investigationally, chronic electrical stimulation of selected brain structures, clearly implicated in the pathophysiology of neuropsychiatric disorders, has already been applied with promising results. Given the tainted past of psychiatric neurosurgery, modern neuroscientists have to move forward cautiously, in a scientifically justified and ethically approved framework. The transition from the indiscriminate destruction of brain structures to the selected electrical modulation of neural networks lies ahead; contemporary neuroscientists would substantiate this aim but should remind the controversial history of the field.
Collapse
Affiliation(s)
- D E Sakas
- Medical School University of Athens, Evangelismos Hospital, Athens, Greece.
| | | | | | | |
Collapse
|
2388
|
Metabolic correlates of antidepressant and antipsychotic response in patients with psychotic depression undergoing electroconvulsive therapy. J ECT 2007; 23:265-73. [PMID: 18090701 DOI: 10.1097/yct.0b013e318150d56d] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Although electroconvulsive therapy (ECT) is a very effective treatment of depression and psychosis, the mechanisms by which this occurs are not fully delineated. The objective of this study was to investigate the functional alterations in brain metabolism in response to ECT through the use of positron emission tomography assessment of cerebral glucose metabolism before and after a course of ECT. METHODS Ten subjects with psychotic depression were studied with positron emission tomography using [F]fluorodeoxyglucose before and between 2 and 3 weeks after a course of ECT. Statistical parametric mapping and region of interest analyses of the anterior cingulate cortex (ACC) subregions (dorsal, rostral, subcallosal, and subgenual) and hippocampus were used to determine glucose metabolic changes from ECT. The Hamilton Depression Rating Scale and the Scale for Assessing Positive Symptoms were the primary measures used for assessing clinical changes from ECT. RESULTS Electroconvulsive therapy led to significant increases in the left subgenual ACC and hippocampal metabolism, which were directly correlated with each other and to a reduction in depression as measured by total Hamilton Depression Rating Scale scores. Better antidepressant responders had increased, whereas poorer responders had a decreased left subgenual ACC and hippocampal metabolism. The decrease in positive symptoms was also correlated with increased left hippocampal metabolism. CONCLUSIONS The antidepressant effect of ECT was correlated with increased metabolism in the left subgenual ACC and hippocampus, whereas the antipsychotic effect of ECT was only correlated with increased left hippocampal metabolism. This finding has implications to better understand the mechanism of antidepressant and antipsychotic effects of ECT.
Collapse
|
2389
|
Karssen AM, Her S, Li JZ, Patel PD, Meng F, Bunney WE, Jones EG, Watson SJ, Akil H, Myers RM, Schatzberg AF, Lyons DM. Stress-induced changes in primate prefrontal profiles of gene expression. Mol Psychiatry 2007; 12:1089-102. [PMID: 17893703 DOI: 10.1038/sj.mp.4002095] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stressful experiences that consistently increase cortisol levels appear to alter the expression of hundreds of genes in prefrontal limbic brain regions. Here, we investigate this hypothesis in monkeys exposed to intermittent social stress-induced episodes of hypercortisolism or a no-stress control condition. Prefrontal profiles of gene expression compiled from Affymetrix microarray data for monkeys randomized to the no-stress condition were consistent with microarray results published for healthy humans. In monkeys exposed to intermittent social stress, more genes than expected by chance appeared to be differentially expressed in ventromedial prefrontal cortex compared to monkeys not exposed to adult social stress. Most of these stress responsive candidate genes were modestly downregulated, including ubiquitin conjugation enzymes and ligases involved in synaptic plasticity, cell cycle progression and nuclear receptor signaling. Social stress did not affect gene expression beyond that expected by chance in dorsolateral prefrontal cortex or prefrontal white matter. Thirty four of 48 comparisons chosen for verification by quantitative real-time polymerase chain reaction (qPCR) were consistent with the microarray-predicted result. Furthermore, qPCR and microarray data were highly correlated. These results provide new insights on the regulation of gene expression in a prefrontal corticolimbic region involved in the pathophysiology of stress and major depression. Comparisons between these data from monkeys and those for ventromedial prefrontal cortex in humans with a history of major depression may help to distinguish the molecular signature of stress from other confounding factors in human postmortem brain research.
Collapse
Affiliation(s)
- A M Karssen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305-5485, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2390
|
Hsu DT, Price JL. Midline and intralaminar thalamic connections with the orbital and medial prefrontal networks in macaque monkeys. J Comp Neurol 2007; 504:89-111. [PMID: 17626282 DOI: 10.1002/cne.21440] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although the midline and intralaminar thalamic nuclei (MITN) were long believed to project "nonspecifically," they are now known from rat studies to have restricted connections to the prefrontal cortex. This has not been studied thoroughly in primates, however, and it is not known how MITN are associated with the "orbital" and "medial" prefrontal networks. This study examined the connections of MITN in cynomolgus monkeys (Macaca fascicularis). Experiments with retrograde and anterograde tracer injections into the orbital and medial prefrontal cortex (OMPFC) showed that MITN are strongly connected with the medial prefrontal network. The dorsal nuclei of the midline thalamus, including the paraventricular (Pa) and parataenial nuclei (Pt), had heavy connections with medial network areas 25, 32, and 14c in the subgenual region. Areas 13a and 12o, which are associated with both networks, were strongly connected with the Pt and the central intermedial nucleus, respectively. Otherwise, orbital network areas had weak connections with MITN. Anterograde tracer injections into the dorsal midline thalamus resulted in heavy terminal labeling in the medial prefrontal network, most notably in areas ventral to the genu of the corpus callosum (25, 32, and 14c), but also in adjacent areas (13a and 13b). Retrograde tracer injection into the dorsal midline labeled similar areas. The medial network, particularly the subgenual region, is involved in visceral and emotional control and has been implicated in mood disorders. The strong connections between the subgenual cortex and the Pa provide a pathway through which stress signals from the Pa may influence these prefrontal circuits.
Collapse
Affiliation(s)
- David T Hsu
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
2391
|
Abstract
BACKGROUND Deep brain stimulation (DBS) has emerged as an important treatment for medication refractory movement and neuropsychiatric disorders. General neurologists and even general practitioners may be called upon to screen potential candidates for DBS. The patient selection process plays an important role in this procedure. REVIEW SUMMARY In this article, we discuss "pearls" for the clinician who may be called upon to identify appropriate candidates for DBS. Additionally, we will discuss the important points that should be considered when referring patients for surgical intervention. CONCLUSION Diagnosis, response to levodopa, cognitive status, psychiatric status, access to care, and patient expectations are all essential elements of the patient selection process for DBS. These areas must be adequately addressed prior to any surgical procedure.
Collapse
Affiliation(s)
- Ramon L Rodriguez
- Department of Neurology, University of Florida Movement Disorders Center, McKnight Brain Institute, Gainesville, Florida, USA.
| | | | | | | |
Collapse
|
2392
|
Cenquizca LA, Swanson LW. Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex. BRAIN RESEARCH REVIEWS 2007; 56:1-26. [PMID: 17559940 PMCID: PMC2171036 DOI: 10.1016/j.brainresrev.2007.05.002] [Citation(s) in RCA: 435] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 05/02/2007] [Accepted: 05/02/2007] [Indexed: 11/25/2022]
Abstract
The spatial distribution of axonal projections descending from rat field CA1 to thalamus and hypothalamus was analyzed previously with the PHAL method [Cenquizca, L.A., Swanson, L.W. 2006. An analysis of direct hippocampal cortical field CA1 axonal projections to diencephalon in the rat. J Comp Neurol 497:101-114.]. The same experimental material was used here to define the topography of field CA1 association projections to other cerebral cortical areas. First, the results confirm and extend known intrahippocampal formation inputs to dentate gyrus, subiculum, presubiculum, parasubiculum, and entorhinal area, which are arranged generally along the formation's transverse axis and dominated by the subicular projection-by far the densest established by field CA1 anywhere in the brain. And second, field CA1 innervates a virtually complete ring of extrahippocampal formation cortex via three routes. A dorsal pathway from the dorsal third of field CA1 innervates moderately the retrosplenial area; a moderately strong ventral pathway from the ventral two thirds of field CA1 passing through the longitudinal association bundle sends offshoots to visual, auditory, somatosensory, gustatory, main and accessory olfactory, and visceral areas-as well as the basolateral amygdalar complex and the agranular insular and orbital areas; and a cortical-subcortical-cortical pathway through the fornix from the whole longitudinal extent of field CA1 innervates rather strongly a rostral region that includes the tenia tecta along with the anterior cingulate, prelimbic, infralimbic, and orbital areas. The functional consequences of long-term potentiation in field CA1 projection neurons remain to be explored.
Collapse
Affiliation(s)
- Lee A Cenquizca
- Department of Life Sciences, Los Angeles City College, Los Angeles, CA 90029, USA
| | | |
Collapse
|
2393
|
Butler T, Imperato-McGinley J, Pan H, Voyer D, Cunningham-Bussel AC, Chang L, Zhu YS, Cordero JJ, Stern E, Silbersweig D. Sex specificity of ventral anterior cingulate cortex suppression during a cognitive task. Hum Brain Mapp 2007; 28:1206-1212. [PMID: 17315226 PMCID: PMC6871468 DOI: 10.1002/hbm.20340] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 08/16/2006] [Accepted: 09/08/2006] [Indexed: 11/07/2022] Open
Abstract
Ventral anterior cingulate cortex (vACC) is a highly interconnected brain region considered to reflect the sometimes competing demands of cognition and emotion. A reciprocal relationship between vACC and dorsal ACC (dACC) may play a role in maintaining this balance between cognitive and emotional processing. Using functional MRI in association with a cognitively-demanding visuospatial task (mental rotation), we found that only women demonstrated vACC suppression and inverse functional connectivity with dACC. Sex differences in vACC functioning--previously described under conditions of negative emotion--are extended here to cognition. Consideration of participant sex is essential to understanding the role of vACC in cognitive and emotional processing.
Collapse
Affiliation(s)
- Tracy Butler
- Functional Neuroimaging Laboratory, Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2394
|
Kosel M, Sturm V, Frick C, Lenartz D, Zeidler G, Brodesser D, Schlaepfer TE. Mood improvement after deep brain stimulation of the internal globus pallidus for tardive dyskinesia in a patient suffering from major depression. J Psychiatr Res 2007; 41:801-3. [PMID: 16962613 DOI: 10.1016/j.jpsychires.2006.07.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 07/17/2006] [Accepted: 07/18/2006] [Indexed: 01/11/2023]
Abstract
Deep brain stimulation (DBS) has the unique characteristic to very precisely target brain structures being part of functional brain circuits in order to reversibly modulate their function. It is an established adjunctive treatment of advanced Parkinson's disease and has virtually replaced ablative techniques in this indication. Several cases have been published relating effectiveness in neuroleptics-induced tardive dyskinesia. It is also investigated as a potential treatment of mood disorders. We report on the case of a 62 years old female suffering from a treatment refractory major depressive episode with comorbid neuroleptic-induced tardive dyskinesia. She was implanted a deep brain stimulation treatment system bilaterally in the globus pallidus internus and stimulated for 18 months. As well the dyskinesia as also the symptoms of depression improved substantially as measured by the Hamilton Rating Scale of Depression (HRSD) score and the Burke-Fahn-Marsden-Dystonia-Rating-Scale (BFMDRS) score. Scores dropped for HRSD from 26 at baseline preoperatively to 13 after 18 months; and for BFMDRS from 27 to 17.5. This case illustrates the potential of deep brain stimulation as a technique to be investigated in the treatment of severe and disabling psychiatric and movement disorders. DBS at different intracerebral targets being actually investigated for major depression might have similar antidepressant properties because they interact with the same cortico-basal ganglia-thalamocortical network found to be dysfunctional in major depression.
Collapse
Affiliation(s)
- Markus Kosel
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
2395
|
Houenou J, Wessa M, Douaud G, Leboyer M, Chanraud S, Perrin M, Poupon C, Martinot JL, Paillere-Martinot ML. Increased white matter connectivity in euthymic bipolar patients: diffusion tensor tractography between the subgenual cingulate and the amygdalo-hippocampal complex. Mol Psychiatry 2007; 12:1001-10. [PMID: 17471288 DOI: 10.1038/sj.mp.4002010] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bipolar disorder has been associated with anatomical as well as functional abnormalities in a brain network that mediates normal and impaired emotion regulation. Previous brain imaging studies have highlighted the subgenual cingulate (SC) and the amygdalo-hippocampal (AH) complex as core regions of this network. Thus we investigated white matter (WM) fiber tracts between the SC and the AH region, the uncinate fasciculus, as well as between two control regions (pons and cerebellum), using diffusion tensor imaging tractography in 16 euthymic bipolar patients (BP) and 16 sex-, age- and handedness-matched controls. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of the reconstructed fiber bundle and the number of virtual reconstructed fibers were compared between groups. The tractography results revealed a significantly increased number of reconstructed fibers between the left SC and left AH in BP as compared to healthy controls. FA and ADC of the reconstructed fiber tract did not differ significantly between the groups. Furthermore, no significant group differences were observed neither for reconstructed fiber tracts between the right SC and right AH nor between the control regions. The present results suggest an altered WM pathway between the left SC and AH region and thus extend previous findings of anatomical and functional modifications in these structures in BP.
Collapse
Affiliation(s)
- J Houenou
- INSERM, U797, Research Unit Neuroimaging and Psychiatry, IFR49, Orsay, France
| | | | | | | | | | | | | | | | | |
Collapse
|
2396
|
Simmons A, Matthews SC, Paulus MP, Stein MB. Intolerance of uncertainty correlates with insula activation during affective ambiguity. Neurosci Lett 2007; 430:92-7. [PMID: 18079060 DOI: 10.1016/j.neulet.2007.10.030] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 08/30/2007] [Accepted: 10/16/2007] [Indexed: 11/27/2022]
Abstract
Intolerance of uncertainty (IU), or the increased affective response to situations with uncertain outcomes, is an important component process of anxiety disorders. Increased IU is observed in panic disorder (PD), obsessive compulsive disorder (OCD) and generalized anxiety disorder (GAD), and is thought to relate to dysfunctional behaviors and thought patterns in these disorders. Identifying what brain systems are associated with IU would contribute to a comprehensive model of anxiety processing, and increase our understanding of the neurobiology of anxiety disorders. Here, we used a behavioral task, Wall of Faces (WOFs), during functional magnetic resonance imaging (fMRI), which probes both affect and ambiguity, to examine the neural circuitry of IU in 14 (10 females) college age (18.8 years) subjects. All subjects completed the Intolerance of Uncertainty Scale (IUS), Anxiety Sensitivity Index (ASI), and a measure of neuroticism (i.e. the NEO-N). IUS scores but neither ASI nor NEO-N scores, correlated positively with activation in bilateral insula during affective ambiguity. Thus, the experience of IU during certain types of emotion processing may relate to the degree to which bilateral insula processes uncertainty. Previously observed insula hyperactivity in anxiety disorder individuals may therefore be directly linked to altered processes of uncertainty.
Collapse
Affiliation(s)
- Alan Simmons
- Laboratory of Biological Dynamics and Theoretical Medicine, USA.
| | | | | | | |
Collapse
|
2397
|
Elias WJ, Fu KM, Frysinger RC. Cortical and subcortical brain shift during stereotactic procedures. J Neurosurg 2007; 107:983-8. [DOI: 10.3171/jns-07/11/0983] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The success of stereotactic surgery depends upon accuracy. Tissue deformation, or brain shift, can result in clinically significant errors. The authors measured cortical and subcortical brain shift during stereotactic surgery and assessed several variables that may affect it.
Methods
Preoperative and postoperative magnetic resonance imaging volumes were fused and 3D vectors of deviation were calculated for the anterior commissure (AC), posterior commissure (PC), and frontal cortex. Potential preoperative (age, diagnosis, and ventricular volume), intraoperative (stereotactic target, penetration of ventricles, and duration of surgery), and postoperative (volume of pneumocephalus) variables were analyzed and correlated with cortical (frontal cortex) and subcortical (AC, PC) deviations.
Results
Of 66 cases, nine showed a shift of the AC by more than 1.5 mm, and five by more than 2.0 mm. The largest AC shift was 5.67 mm. Deviation in the x, y, and z dimensions for each case was determined, and most of the cortical and subcortical shift occurred in the posterior direction. The mean 3D vector deviations for frontal cortex, AC, and PC were 3.5 ± 2.0, 1.0 ± 0.8, and 0.7 ± 0.5 mm, respectively. The mean change in AC–PC length was −0.2 ± −0.9 mm (range −4.28 to 1.66 mm). The volume of postoperative pneumocephalus, assumed to represent cerebrospinal fluid (CSF) loss, was significantly correlated with shift of the frontal cortex (r = 0.640, 64 degrees of freedom, p < 0.001) and even more strongly with shift of the AC (r = 0.754, p < 0.001). No other factors were significantly correlated with AC shift. Interestingly, penetration of the ventricles during electrode insertion, whether unilateral or bilateral, did not affect volume of pneumocephalus.
Conclusions
Cortical and subcortical brain shift occurs during stereotactic surgery as a direct function of the volume of pneumocephalus, which probably reflects the volume of CSF that is lost. Clinically significant shifts appear to be uncommon, but stereotactic surgeons should be vigilant in preventing CSF loss.
Collapse
|
2398
|
Abstract
Deep-brain stimulation (DBS) is a clinical intervention that has provided remarkable therapeutic benefits for otherwise treatment-resistant movement and affective disorders. The resulting direct causal manipulation of both local and distributed brain networks is not only clinically helpful but can also help to provide novel fundamental insights into brain function. In particular, DBS can be used in conjunction with methods such as local field potentials and magnetoencephalography to map the underlying mechanisms of normal and abnormal oscillatory synchronization in the brain. The precise mechanisms of action for DBS remain uncertain but here we present an overview of the clinical efficacy of DBS, its neural mechanisms and potential future applications.
Collapse
Affiliation(s)
- Morten L Kringelbach
- University of Oxford, Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK and, University of Aarhus, Centre for Functionally Integrative Neuroscience (CFIN), Aarhus University Hospital, Århus Sygehus Nørrebrogade 44 Building 30, 8000 Århus C, Denmark
| | - Sarah LF Owen
- University of Oxford, Department of Physiology, Anatomy & Genetics, Parks Road, Oxford, OX1 3PT, UK
| | - Tipu Z Aziz
- University of Oxford, Department of Physiology, Anatomy & Genetics, Parks Road, Oxford, OX1 3PT, UK and, John Radcliffe Hospital, Nuffield Department of Surgery, Oxford, UK
| |
Collapse
|
2399
|
Vasic N, Wolf RC, Walter H. [Executive functions in patients with depression. The role of prefrontal activation]. DER NERVENARZT 2007; 78:628, 630-2, 634-6 passim. [PMID: 17279398 DOI: 10.1007/s00115-006-2240-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Depression is a multifarious disease, having an impact on most aspects of everyday life. Cognitive deficits cause considerable impairments and restraints in performance and have become one of the major clinical and research foci in recent years. According to previous work, deficits in executive functioning seem to be particularly prominent. At present only a few functional neuroimaging studies investigated the neurofunctional correlates aimed at these deficits by using specific activation tasks. These findings are somewhat controversial, revealing prefrontal hypo- as well as hyperactivation as a substrate of executive performance. This paper reviews current functional neuroimaging findings within a framework of depression as a dysfunction in limbic-cortical circuits. As a conclusion, the concept of "simple" hypofrontality does not offer a satisfactory explanation. Rather, a more dynamic model will be necessary in order to achieve a more realistic concept of executive deficits in depression.
Collapse
Affiliation(s)
- N Vasic
- Abteilung Psychiatrie III, Universitätsklinikum Ulm, Leimgrubenweg 12-14, 89075 Ulm.
| | | | | |
Collapse
|
2400
|
Schläpfer T. Hirnstimulationsverfahren bei Therapieresistenz. DER NERVENARZT 2007; 78 Suppl 3:575-81; quiz 582-3. [DOI: 10.1007/s00115-007-2371-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|