2401
|
O'Leary VB, Ovsepian SV, Smida J, Atkinson MJ. PARTICLE - The RNA podium for genomic silencers. J Cell Physiol 2019; 234:19464-19470. [PMID: 31058319 DOI: 10.1002/jcp.28739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/25/2019] [Accepted: 04/10/2019] [Indexed: 12/31/2022]
Abstract
Radiation exposure can evoke cellular stress responses. Emerging recognition that long non-coding RNAs (lncRNAs) act as regulators of gene expression has broadened the spectra of molecules controlling the genomic landscape upon alterations in environmental conditions. Knowledge of the mechanisms responding to low dose irradiation (LDR) exposure is very limited yet most likely involve subtle ancillary molecular pathways other than those protecting the cell from direct cellular damage. The discovery that transcription of the lncRNA PARTICLE (promoter of MAT2A- antisense radiation-induced circulating lncRNA; PARTICL) becomes dramatically instigated within a day after LDR exposure introduced a new gene regulator onto the biological landscape. PARTICLE affords an RNA binding platform for genomic silencers such as DNA methyltransferase 1 and histone tri-methyltransferases to reign in the expression of tumor suppressors such as its neighboring MAT2A in cis as well as WWOX in trans. In silico evidence offers scope to speculate that PARTICLE exploits the abundance of Hoogsten bonds that exist throughout mammalian genomes for triplex formation, presumably a vital feature within this RNA silencer. PARTICLE may provide a buffering riboswitch platform for S-adenosylmethionine. The correlation of PARTICLE triplex formation sites within tumor suppressor genes and their abundance throughout the genome at cancer-related hotspots offers an insight into potential avenues worth exploring in future therapeutic endeavors.
Collapse
Affiliation(s)
- Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská, Prague, Czech Republic.,Institute of Radiation Biology, Helmholtz Zentrum Munich - German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
| | - Saak V Ovsepian
- RP1 Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic
| | - Jan Smida
- Institute of Radiation Biology, Helmholtz Zentrum Munich - German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
| | - Michael J Atkinson
- Institute of Radiation Biology, Helmholtz Zentrum Munich - German Research Center for Environmental Health, Neuherberg, Bavaria, Germany.,Chair of Radiation Biology, Technical University Munich, Munich, Germany
| |
Collapse
|
2402
|
Abstract
A diverse catalog of long noncoding RNAs (lncRNAs), which lack protein-coding potential, are transcribed from the mammalian genome. They are emerging as important regulators in gene expression networks by controlling nuclear architecture and transcription in the nucleus and by modulating mRNA stability, translation and post-translational modifications in the cytoplasm. In this Review, we highlight recent progress in cellular functions of lncRNAs at the molecular level in mammalian cells.
Collapse
|
2403
|
Melia T, Waxman DJ. Sex-Biased lncRNAs Inversely Correlate With Sex-Opposite Gene Coexpression Networks in Diversity Outbred Mouse Liver. Endocrinology 2019; 160:989-1007. [PMID: 30840070 PMCID: PMC6449536 DOI: 10.1210/en.2018-00949] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/27/2019] [Indexed: 01/05/2023]
Abstract
Sex differences in liver gene expression are determined by pituitary growth hormone secretion patterns, which regulate sex-dependent liver transcription factors and establish sex-specific chromatin states. Hypophysectomy (hypox) identifies two major classes of liver sex-biased genes, defined by their sex-dependent positive or negative responses to pituitary hormone ablation. However, the mechanisms that underlie each hypox-response class are unknown. We sought to discover candidate, regulatory, long noncoding RNAs (lncRNAs) controlling responsiveness to hypox. We characterized gene structures and expression patterns for 15,558 mouse liver-expressed lncRNAs, including many sex-specific lncRNAs regulated during postnatal development or subject to circadian regulation. Using the high natural allelic variance of Diversity Outbred (DO) mice, we discovered tightly coexpressed clusters of sex-specific protein-coding genes (gene modules) in male and female DO liver. Remarkably, many gene modules were strongly enriched for sex-specific genes within a single hypox-response class, indicating that the genetic heterogeneity of DO mice encompasses responsiveness to hypox. Moreover, several distant gene modules were enriched for gene subsets of the same hypox-response class, highlighting the complex regulation of hypox-responsiveness. Finally, we identified eight sex-specific lncRNAs with strong negative regulatory potential, as indicated by their strong negative correlation of expression across DO mouse livers with that of protein-coding gene modules enriched for genes of the opposite sex bias and inverse hypox-response class. These findings reveal an important role for genetic factors in regulating responsiveness to hypox, and present testable hypotheses for the roles of sex-biased liver lncRNAs in controlling the sex-bias of liver gene expression.
Collapse
Affiliation(s)
- Tisha Melia
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts
- Correspondence: David J. Waxman, PhD, Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts 02215. E-mail:
| |
Collapse
|
2404
|
Xiao L, Gorospe M, Wang JY. Long noncoding RNAs in intestinal epithelium homeostasis. Am J Physiol Cell Physiol 2019; 317:C93-C100. [PMID: 31042423 DOI: 10.1152/ajpcell.00092.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The epithelium of the mammalian intestinal mucosa is a rapidly self-renewing tissue in the body, and its homeostasis is preserved through well-controlled mechanisms. Long noncoding RNAs (lncRNAs) regulate a variety of biological functions and are intimately involved in the pathogenesis of diverse human diseases. Here we highlight the roles of several lncRNAs expressed in the intestinal epithelium, including uc.173, SPRY4-IT1, H19, and Gata6, in maintaining the integrity of the intestinal epithelium, focusing on the emerging evidence of lncRNAs in the regulation of intestinal mucosal regeneration and epithelial barrier function. We also discuss recent results that the interactions between lncRNAs with microRNAs and the RNA-binding protein HuR influence epithelial homeostasis. With rapidly advancing knowledge of lncRNAs, there is also growing recognition that lncRNAs in the intestinal epithelium might be promising therapeutic targets in our efforts to protect the integrity of the intestinal epithelium in response to stressful environments.
Collapse
Affiliation(s)
- Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine , Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center , Baltimore, Maryland
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health , Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine , Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center , Baltimore, Maryland.,Department of Pathology, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
2405
|
Hirose T, Yamazaki T, Nakagawa S. Molecular anatomy of the architectural NEAT1 noncoding RNA: The domains, interactors, and biogenesis pathway required to build phase-separated nuclear paraspeckles. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1545. [PMID: 31044562 DOI: 10.1002/wrna.1545] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs (lncRNAs) are extremely diverse and have various significant physiological functions. lncRNAs generally associate with specific sets of RNA-binding proteins (RBPs) to form functional ribonucleoprotein (RNP) complexes. NEAT1 is a highly abundant lncRNA in the mammalian cell nucleus that associates with specific RBPs to form NEAT1 RNPs. Intriguingly, cellular NEAT1 RNPs are extraordinarily large and can be detected using an optical microscope. These gigantic RNPs, so-called paraspeckles, are a type of membraneless nuclear body. Paraspeckles contain approximately 50 NEAT1 RNA molecules together with characteristic RBPs possessing aggregation-prone prion-like domains. Paraspeckle formation proceeds on the nascent NEAT1 transcript in conjunction with NEAT1 biogenesis, which exhibits various features that differ from those exhibited by mRNA biogenesis, including a lack of introns, noncanonical 3' end formation, and nuclear retention. These unique features may be required for the mechanism of paraspeckle formation. NEAT1 possesses three distinct RNA domains (A, B, and C), which function in stabilization (A), isoform switching (B), and paraspeckle assembly (C). In particular, the central C domain contains smaller subdomains that are high-affinity binding sites for the essential paraspeckle proteins (NONO and SFPQ) that subsequently polymerize along NEAT1. Subsequent recruitment of additional essential PSPs (FUS and RBM14) induces liquid-liquid phase separation to build a massive paraspeckle structure. Thus, the molecular anatomy of the NEAT1 arcRNA provides an ideal model to understand how lncRNAs form the functional RNP machinery. This article is characterized under: RNA Export and Localization > Nuclear Export/Import RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Tetsuro Hirose
- Laboratory of RNA Biofucntion, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Yamazaki
- Laboratory of RNA Biofucntion, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2406
|
Rossi M, Bucci G, Rizzotto D, Bordo D, Marzi MJ, Puppo M, Flinois A, Spadaro D, Citi S, Emionite L, Cilli M, Nicassio F, Inga A, Briata P, Gherzi R. LncRNA EPR controls epithelial proliferation by coordinating Cdkn1a transcription and mRNA decay response to TGF-β. Nat Commun 2019; 10:1969. [PMID: 31036808 PMCID: PMC6488594 DOI: 10.1038/s41467-019-09754-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 03/27/2019] [Indexed: 12/25/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as regulators of fundamental biological processes. Here we report on the characterization of an intergenic lncRNA expressed in epithelial tissues which we termed EPR (Epithelial cell Program Regulator). EPR is rapidly downregulated by TGF-β and its sustained expression largely reshapes the transcriptome, favors the acquisition of epithelial traits, and reduces cell proliferation in cultured mammary gland cells as well as in an animal model of orthotopic transplantation. EPR generates a small peptide that localizes at epithelial cell junctions but the RNA molecule per se accounts for the vast majority of EPR-induced gene expression changes. Mechanistically, EPR interacts with chromatin and regulates Cdkn1a gene expression by affecting both its transcription and mRNA decay through its association with SMAD3 and the mRNA decay-promoting factor KHSRP, respectively. We propose that EPR enables epithelial cells to control proliferation by modulating waves of gene expression in response to TGF-β. Several lncRNAs are regulated by TGF-β. Here the authors report that an intergenic lncRNA —EPR— is a component of the TGF-β signaling pathway and controls epithelial cell proliferation by altering transcription and mRNA decay of Cdkn1a. EPR overexpression restrains tumor growth of orthotopically transplanted mice.
Collapse
Affiliation(s)
- Martina Rossi
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy.,DIMES Sezione Biochimica-Università di Genova, 16132, Genova, Italy
| | - Gabriele Bucci
- Center of Translational Genomics and Bioinformatics, IRCCS Ospedale San Raffaele, 20132, Milano, Italy
| | - Dario Rizzotto
- Laboratory of Transcriptional Networks, Center for Integrative Biology, CIBIO, University of Trento, 38123, Trento, Italy
| | - Domenico Bordo
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| | - Matteo J Marzi
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139, Milano, Italy
| | - Margherita Puppo
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy.,DIMES Sezione Biochimica-Università di Genova, 16132, Genova, Italy
| | - Arielle Flinois
- Department of Cell Biology, University of Geneve, 1211, Geneve, Switzerland
| | - Domenica Spadaro
- Department of Cell Biology, University of Geneve, 1211, Geneve, Switzerland
| | - Sandra Citi
- Department of Cell Biology, University of Geneve, 1211, Geneve, Switzerland
| | - Laura Emionite
- Animal Facility, IRCCS Policlinico San Martino, 16132, Genova, Italy
| | - Michele Cilli
- Animal Facility, IRCCS Policlinico San Martino, 16132, Genova, Italy
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139, Milano, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Center for Integrative Biology, CIBIO, University of Trento, 38123, Trento, Italy.
| | - Paola Briata
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy.
| | - Roberto Gherzi
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy.
| |
Collapse
|
2407
|
Zhu J, Wang Y, Yu W, Xia K, Huang Y, Wang J, Liu B, Tao H, Liang C, Li F. Long Noncoding RNA: Function and Mechanism on Differentiation of Mesenchymal Stem Cells and Embryonic Stem Cells. Curr Stem Cell Res Ther 2019; 14:259-267. [PMID: 30479219 DOI: 10.2174/1574888x14666181127145809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/20/2018] [Accepted: 11/22/2018] [Indexed: 12/30/2022]
Abstract
Background:Long suspected as transcriptional noise, recently recognized, long non-coding
RNAs (lncRNAs) are emerging as an indicator, biomarker and therapy target in the physiologic and
pathologic process. Mesenchymal stem cells and embryonic stem cells are important source for normal
and therapeutic tissue repair. However, the mechanism of stem cell differentiation is not completely
understood. Research on lncRNAs may provide novel insights into the mechanism of differentiation
process of the stem cell which is important for the application of stem cell therapy. The lncRNAs field
is still very young, new insights into lncRNAs function are emerging to a greater understanding of biological
processes.
Objective:
In this review, we summarize the recent researches studying lncRNAs and illustrate how
they act in the differentiation of the mesenchymal stem cells and embryonic stem cells, and discuss
some future directions in this field.
Results:
Numerous lncRNAs were differentially expressed during differentiation of mesenchymal stem
cells and embryonic stem cells. LncRNAs were able to regulate the differentiation processes through
epigenetic regulation, transcription regulation and post-transcription regulation.
Conclusion:
LncRNAs are involved in the differentiation process of mesenchymal stem cells and embryonic
stem cells, and they could become promising indicator, biomarker and therapeutic targets in the
physiologic and pathologic process. However, the mechanisms of the role of lncRNAs still require further
investigation.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Yitian Wang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Wei Yu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Kaishun Xia
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Yuluan Huang
- Department of Gynecologic Oncology, Women`s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junjie Wang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Bing Liu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Huimin Tao
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Chengzhen Liang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Fangcai Li
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| |
Collapse
|
2408
|
Han Z, Xue W, Tao L, Lou Y, Qiu Y, Zhu F. Genome-wide identification and analysis of the eQTL lncRNAs in multiple sclerosis based on RNA-seq data. Brief Bioinform 2019; 21:1023-1037. [PMID: 31323688 DOI: 10.1093/bib/bbz036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/29/2022] Open
Abstract
Abstract
The pathogenesis of multiple sclerosis (MS) is significantly regulated by long noncoding RNAs (lncRNAs), the expression of which is substantially influenced by a number of MS-associated risk single nucleotide polymorphisms (SNPs). It is thus hypothesized that the dysregulation of lncRNA induced by genomic variants may be one of the key molecular mechanisms for the pathology of MS. However, due to the lack of sufficient data on lncRNA expression and SNP genotypes of the same MS patients, such molecular mechanisms underlying the pathology of MS remain elusive. In this study, a bioinformatics strategy was applied to obtain lncRNA expression and SNP genotype data simultaneously from 142 samples (51 MS patients and 91 controls) based on RNA-seq data, and an expression quantitative trait loci (eQTL) analysis was conducted. In total, 2383 differentially expressed lncRNAs were identified as specifically expressing in brain-related tissues, and 517 of them were affected by SNPs. Then, the functional characterization, secondary structure changes and tissue and disease specificity of the cis-eQTL SNPs and lncRNA were assessed. The cis-eQTL SNPs were substantially and specifically enriched in neurological disease and intergenic region, and the secondary structure was altered in 17.6% of all lncRNAs in MS. Finally, the weighted gene coexpression network and gene set enrichment analyses were used to investigate how the influence of SNPs on lncRNAs contributed to the pathogenesis of MS. As a result, the regulation of lncRNAs by SNPs was found to mainly influence the antigen processing/presentation and mitogen-activated protein kinases (MAPK) signaling pathway in MS. These results revealed the effectiveness of the strategy proposed in this study and give insight into the mechanism (SNP-mediated modulation of lncRNAs) underlying the pathology of MS.
Collapse
Affiliation(s)
- Zhijie Han
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Yan Lou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunqing Qiu
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Zhu
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| |
Collapse
|
2409
|
Human skin long noncoding RNA WAKMAR1 regulates wound healing by enhancing keratinocyte migration. Proc Natl Acad Sci U S A 2019; 116:9443-9452. [PMID: 31019085 PMCID: PMC6511036 DOI: 10.1073/pnas.1814097116] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although constituting the majority of the transcriptional output of the human genome, the functional importance of long noncoding RNAs (lncRNAs) has only recently been recognized. The role of lncRNAs in wound healing is virtually unknown. Our study focused on a skin-specific lncRNA, termed “wound and keratinocyte migration-associated lncRNA 1” (WAKMAR1), which is down-regulated in wound-edge keratinocytes of human chronic nonhealing wounds compared with normal wounds under reepithelialization. We identified WAKMAR1 as being critical for keratinocyte migration and its deficiency as impairing wound reepithelialization. Mechanistically, WAKMAR1 interacts with DNA methyltransferases and interferes with the promoter methylation of the E2F1 gene, which is a key transcription factor controlling a network of migratory genes. This line of evidence demonstrates that lncRNAs play an essential role in human skin wound healing. An increasing number of studies reveal the importance of long noncoding RNAs (lncRNAs) in gene expression control underlying many physiological and pathological processes. However, their role in skin wound healing remains poorly understood. Our study focused on a skin-specific lncRNA, LOC105372576, whose expression was increased during physiological wound healing. In human nonhealing wounds, however, its level was significantly lower compared with normal wounds under reepithelialization. We characterized LOC105372576 as a nuclear-localized, RNAPII-transcribed, and polyadenylated lncRNA. In keratinocytes, its expression was induced by TGF-β signaling. Knockdown of LOC105372576 and activation of its endogenous transcription, respectively, reduced and increased the motility of keratinocytes and reepithelialization of human ex vivo skin wounds. Therefore, LOC105372576 was termed “wound and keratinocyte migration-associated lncRNA 1” (WAKMAR1). Further study revealed that WAKMAR1 regulated a network of protein-coding genes important for cell migration, most of which were under the control of transcription factor E2F1. Mechanistically, WAKMAR1 enhanced E2F1 expression by interfering with E2F1 promoter methylation through the sequestration of DNA methyltransferases. Collectively, we have identified a lncRNA important for keratinocyte migration, whose deficiency may be involved in the pathogenesis of chronic wounds.
Collapse
|
2410
|
Zhang L, Hu J, Li J, Yang Q, Hao M, Bu L. Long noncoding RNA LINC-PINT inhibits non-small cell lung cancer progression through sponging miR-218-5p/PDCD4. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1595-1602. [PMID: 31010333 DOI: 10.1080/21691401.2019.1605371] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Libin Zhang
- Department of Thoracic Surgery, First People’s Hospital of Yunnan Province, Kunming, China
| | - Jing Hu
- Department of Medical Oncology, First People’s Hospital of Yunnan Province, Kunming, China
| | - Jiagui Li
- Department of Thoracic Surgery, First People’s Hospital of Yunnan Province, Kunming, China
| | - Qiuju Yang
- Anesthesia Department, First People’s Hospital of Yunnan Province, Kunming, China
| | - Menghui Hao
- Department of Thoracic Surgery, Kailuan General Hospital affiliated to North China University of Technology, Tangshang, China
| | - Liang Bu
- Department of Thoracic Surgery, First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
2411
|
Han Y, Branon TC, Martell JD, Boassa D, Shechner D, Ellisman MH, Ting A. Directed Evolution of Split APEX2 Peroxidase. ACS Chem Biol 2019; 14:619-635. [PMID: 30848125 PMCID: PMC6548188 DOI: 10.1021/acschembio.8b00919] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
APEX is an engineered peroxidase that catalyzes the oxidation of a wide range of substrates, facilitating its use in a variety of applications from subcellular staining for electron microscopy to proximity biotinylation for spatial proteomics and transcriptomics. To further advance the capabilities of APEX, we used directed evolution to engineer a split APEX tool (sAPEX). A total of 20 rounds of fluorescence activated cell sorting (FACS)-based selections from yeast-displayed fragment libraries, using 3 different surface display configurations, produced a 200-amino-acid N-terminal fragment (with 9 mutations relative to APEX2) called "AP" and a 50-amino-acid C-terminal fragment called "EX". AP and EX fragments were each inactive on their own but were reconstituted to give peroxidase activity when driven together by a molecular interaction. We demonstrate sAPEX reconstitution in the mammalian cytosol, on engineered RNA motifs within a non-coding RNA scaffold, and at mitochondria-endoplasmic reticulum contact sites.
Collapse
Affiliation(s)
- Yisu Han
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Tess Caroline Branon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Chemistry, Stanford University, Stanford, California, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Jeffrey D. Martell
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Daniela Boassa
- Department of Neuroscience, University of California San Diego, La Jolla, California, USA
| | - David Shechner
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Mark H. Ellisman
- Department of Neuroscience, University of California San Diego, La Jolla, California, USA
| | - Alice Ting
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Chemistry, Stanford University, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
2412
|
Gugnoni M, Ciarrocchi A. Long Noncoding RNA and Epithelial Mesenchymal Transition in Cancer. Int J Mol Sci 2019; 20:ijms20081924. [PMID: 31003545 PMCID: PMC6515529 DOI: 10.3390/ijms20081924] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a multistep process that allows epithelial cells to acquire mesenchymal properties. Fundamental in the early stages of embryonic development, this process is aberrantly activated in aggressive cancerous cells to gain motility and invasion capacity, thus promoting metastatic phenotypes. For this reason, EMT is a central topic in cancer research and its regulation by a plethora of mechanisms has been reported. Recently, genomic sequencing and functional genomic studies deepened our knowledge on the fundamental regulatory role of noncoding DNA. A large part of the genome is transcribed in an impressive number of noncoding RNAs. Among these, long noncoding RNAs (lncRNAs) have been reported to control several biological processes affecting gene expression at multiple levels from transcription to protein localization and stability. Up to now, more than 8000 lncRNAs were discovered as selectively expressed in cancer cells. Their elevated number and high expression specificity candidate these molecules as a valuable source of biomarkers and potential therapeutic targets. Rising evidence currently highlights a relevant function of lncRNAs on EMT regulation defining a new layer of involvement of these molecules in cancer biology. In this review we aim to summarize the findings on the role of lncRNAs on EMT regulation and to discuss their prospective potential value as biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Mila Gugnoni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| |
Collapse
|
2413
|
Zhi Y, Abudoureyimu M, Zhou H, Wang T, Feng B, Wang R, Chu X. FOXM1-Mediated LINC-ROR Regulates the Proliferation and Sensitivity to Sorafenib in Hepatocellular Carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:576-588. [PMID: 31082791 PMCID: PMC6514537 DOI: 10.1016/j.omtn.2019.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 01/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-associated death worldwide. Indeed, despite the benefit of sorafenib in the treatment of some patients with HCC, the majority of these patients have a poor response to or intolerance of sorafenib, resulting in further tumor progression. Exploring the mechanisms underlying sorafenib resistance is essential to the treatment of HCC. Long noncoding RNAs (lncRNAs) are known as participants in tumorigenesis. In this study, we identified that long intergenic non-protein coding RNA, regulator of reprogramming (LINC-ROR), was upregulated in HCC cell lines, which was transcriptionally activated by FOXM1. Furthermore, the sponging of miR-876-5p by LINC-ROR released FOXM1, thereby forming a positive-feedback loop. Additionally, we demonstrated that upregulation of both FOXM1 and LINC-ROR impaired the sensitivity to sorafenib in HCC cells. The role of this feedback loop was demonstrated by rescue assays. These results revealed a novel molecular feedback loop between LINC-ROR and FOXM1 and elucidated their functions in sorafenib sensitivity of HCC cell lines.
Collapse
Affiliation(s)
- Yingru Zhi
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Mubalake Abudoureyimu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Hao Zhou
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Ting Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
2414
|
Tano A, Kadota Y, Morimune T, Jam FA, Yukiue H, Bellier JP, Sokoda T, Maruo Y, Tooyama I, Mori M. The juvenility-associated long noncoding RNA Gm14230 maintains cellular juvenescence. J Cell Sci 2019; 132:jcs.227801. [PMID: 30872457 DOI: 10.1242/jcs.227801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
Juvenile animals possess distinct properties that are missing in adults. These properties include capabilities for higher growth, faster wound healing, plasticity and regeneration. However, the molecular mechanisms underlying these juvenile physiological properties are not fully understood. To obtain insight into the distinctiveness of juveniles from adults at the molecular level, we assessed long noncoding RNAs (lncRNAs) that are highly expressed selectively in juvenile cells. The noncoding elements of the transcriptome were investigated in hepatocytes and cardiomyocytes isolated from juvenile and adult mice. Here, we identified 62 juvenility-associated lncRNAs (JAlncs), which are selectively expressed in both hepatocytes and cardiomyocytes from juvenile mice. Among these common (shared) JAlncs, Gm14230 is evolutionarily conserved and is essential for cellular juvenescence. Loss of Gm14230 impairs cell growth and causes cellular senescence. Gm14230 safeguards cellular juvenescence through recruiting the histone methyltransferase Ezh2 to Tgif2, thereby repressing the functional role of Tgif2 in cellular senescence. Thus, we identify Gm14230 as a juvenility-selective lncRNA required to maintain cellular juvenescence.
Collapse
Affiliation(s)
- Ayami Tano
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Yosuke Kadota
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Takao Morimune
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.,Department of Pediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Faidruz Azura Jam
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Haruka Yukiue
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Jean-Pierre Bellier
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Tatsuyuki Sokoda
- Department of Pediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Masaki Mori
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
2415
|
Hadjicharalambous MR, Roux BT, Csomor E, Feghali-Bostwick CA, Murray LA, Clarke DL, Lindsay MA. Long intergenic non-coding RNAs regulate human lung fibroblast function: Implications for idiopathic pulmonary fibrosis. Sci Rep 2019; 9:6020. [PMID: 30988425 PMCID: PMC6465406 DOI: 10.1038/s41598-019-42292-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 03/28/2019] [Indexed: 12/23/2022] Open
Abstract
Phenotypic changes in lung fibroblasts are believed to contribute to the development of Idiopathic Pulmonary Fibrosis (IPF), a progressive and fatal lung disease. Long intergenic non-coding RNAs (lincRNAs) have been identified as novel regulators of gene expression and protein activity. In non-stimulated cells, we observed reduced proliferation and inflammation but no difference in the fibrotic response of IPF fibroblasts. These functional changes in non-stimulated cells were associated with changes in the expression of the histone marks, H3K4me1, H3K4me3 and H3K27ac indicating a possible involvement of epigenetics. Following activation with TGF-β1 and IL-1β, we demonstrated an increased fibrotic but reduced inflammatory response in IPF fibroblasts. There was no significant difference in proliferation following PDGF exposure. The lincRNAs, LINC00960 and LINC01140 were upregulated in IPF fibroblasts. Knockdown studies showed that LINC00960 and LINC01140 were positive regulators of proliferation in both control and IPF fibroblasts but had no effect upon the fibrotic response. Knockdown of LINC01140 but not LINC00960 increased the inflammatory response, which was greater in IPF compared to control fibroblasts. Overall, these studies demonstrate for the first time that lincRNAs are important regulators of proliferation and inflammation in human lung fibroblasts and that these might mediate the reduced inflammatory response observed in IPF-derived fibroblasts.
Collapse
Affiliation(s)
- Marina R Hadjicharalambous
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Benoit T Roux
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Eszter Csomor
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Carol A Feghali-Bostwick
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, USA
| | | | - Deborah L Clarke
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, United Kingdom.,Boehringer Ingelheim Ltd, Ellesfield Avenue, Bracknell, Berkshire, RG12 8YS, United Kingdom
| | - Mark A Lindsay
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.
| |
Collapse
|
2416
|
Revealing the dominant long noncoding RNAs responding to the infection with Colletotrichum gloeosporioides in Hevea brasiliensis. Biol Direct 2019; 14:7. [PMID: 30987641 PMCID: PMC6466799 DOI: 10.1186/s13062-019-0235-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/18/2019] [Indexed: 02/02/2023] Open
Abstract
Background Rubber tree (Hevea brasiliensis) acts as an important tropic economic crop and rubber tree anthracnose, mainly caused by Colletotrichum gloeosporioides, is one of the most common fungal disease, which leads to serious loss of rubber production. Therefore, the investigation on disease resistance is of great worldwide significance. In the past decades, substantial progress has been made on coding gene families related with plant disease resistance. However, in rubber tree, whether the disease resistance mechanism involves noncoding RNAs, especially long noncoding RNAs (lncRNAs), still remains poorly understood. Results Here, we modeled the development of H. brasiliensis leaf samples inoculated with C. gloeosporioides at divergent stages, explored to identify the expressed ncRNAs by RNA-seq, and investigated the dominant lncRNAs responding to the infection, through constructing a co-expressed network systematically. On the dominant lncRNAs, we explored the potential functional role of lncRNA11254 recruiting the transcription factor, and that lncRNA11041 and lncRNA11205 probably stimulate the accumulation of corresponding disease responsive miRNAs, and further modulate the expressions of target genes, accompanying with experimental examination. Conclusions Take together, computational analyses in silico and experimental evidences in our research collectively revealed the responsive roles of dominant lncRNAs to the pathogen. The results will provide new perspectives to unveil the plant disease resistance mechanisms, and will presumably provide a new theoretical basis and candidate prognostic markers for the optimization and innovation of genetic breeding for rubber tree. Reviewers This article was reviewed by Ryan McGinty and Roland Huber. Electronic supplementary material The online version of this article (10.1186/s13062-019-0235-z) contains supplementary material, which is available to authorized users.
Collapse
|
2417
|
Zhang Q, Chao TC, Patil VS, Qin Y, Tiwari SK, Chiou J, Dobin A, Tsai CM, Li Z, Dang J, Gupta S, Urdahl K, Nizet V, Gingeras TR, Gaulton KJ, Rana TM. The long noncoding RNA ROCKI regulates inflammatory gene expression. EMBO J 2019; 38:e100041. [PMID: 30918008 PMCID: PMC6463213 DOI: 10.15252/embj.2018100041] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) can regulate target gene expression by acting in cis (locally) or in trans (non-locally). Here, we performed genome-wide expression analysis of Toll-like receptor (TLR)-stimulated human macrophages to identify pairs of cis-acting lncRNAs and protein-coding genes involved in innate immunity. A total of 229 gene pairs were identified, many of which were commonly regulated by signaling through multiple TLRs and were involved in the cytokine responses to infection by group B Streptococcus We focused on elucidating the function of one lncRNA, named lnc-MARCKS or ROCKI (Regulator of Cytokines and Inflammation), which was induced by multiple TLR stimuli and acted as a master regulator of inflammatory responses. ROCKI interacted with APEX1 (apurinic/apyrimidinic endodeoxyribonuclease 1) to form a ribonucleoprotein complex at the MARCKS promoter. In turn, ROCKI-APEX1 recruited the histone deacetylase HDAC1, which removed the H3K27ac modification from the promoter, thus reducing MARCKS transcription and subsequent Ca2+ signaling and inflammatory gene expression. Finally, genetic variants affecting ROCKI expression were linked to a reduced risk of certain inflammatory and infectious disease in humans, including inflammatory bowel disease and tuberculosis. Collectively, these data highlight the importance of cis-acting lncRNAs in TLR signaling, innate immunity, and pathophysiological inflammation.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Ti-Chun Chao
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Veena S Patil
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Yue Qin
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Shashi Kant Tiwari
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Joshua Chiou
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | | | - Chih-Ming Tsai
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Zhonghan Li
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Jason Dang
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Shagun Gupta
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Kevin Urdahl
- Center for Infectious Disease Research (CIDR), Seattle, WA, USA
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | | | - Kyle J Gaulton
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Tariq M Rana
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
2418
|
Esposito R, Bosch N, Lanzós A, Polidori T, Pulido-Quetglas C, Johnson R. Hacking the Cancer Genome: Profiling Therapeutically Actionable Long Non-coding RNAs Using CRISPR-Cas9 Screening. Cancer Cell 2019; 35:545-557. [PMID: 30827888 DOI: 10.1016/j.ccell.2019.01.019] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/20/2018] [Accepted: 01/28/2019] [Indexed: 12/26/2022]
Abstract
Long non-coding RNAs (lncRNAs) represent a huge reservoir of potential cancer targets. Such "onco-lncRNAs" have resisted traditional RNAi methods, but CRISPR-Cas9 genome editing now promises functional screens at high throughput and low cost. The unique biology of lncRNAs demands screening strategies distinct from protein-coding genes. The first such screens have identified hundreds of onco-lncRNAs promoting cell proliferation and drug resistance. Ongoing developments will further improve screen performance and translational relevance. This Review aims to highlight the potential of CRISPR screening technology for discovering new onco-lncRNAs, and to guide molecular oncologists wishing to apply it to their cancer of interest.
Collapse
Affiliation(s)
- Roberta Esposito
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Núria Bosch
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Andrés Lanzós
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Taisia Polidori
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Carlos Pulido-Quetglas
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
2419
|
Wu Y, Yang X, Chen Z, Tian L, Jiang G, Chen F, Li J, An P, Lu L, Luo N, Du J, Shan H, Liu H, Wang H. m 6A-induced lncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Mol Cancer 2019; 18:87. [PMID: 30979372 PMCID: PMC6461827 DOI: 10.1186/s12943-019-1014-2] [Citation(s) in RCA: 288] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/26/2019] [Indexed: 02/08/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have emerged as critical players in cancer progression, but their functions in colorectal cancer (CRC) metastasis have not been systematically clarified. Methods lncRNA expression profiles in matched normal and CRC tissue were checked using microarray analysis. The biological roles of a novel lncRNA, namely RP11-138 J23.1 (RP11), in development of CRC were checked both in vitro and in vivo. Its association with clinical progression of CRC was further analyzed. Results RP11 was highly expressed in CRC tissues, and its expression increased with CRC stage in patients. RP11 positively regulated the migration, invasion and epithelial mesenchymal transition (EMT) of CRC cells in vitro and enhanced liver metastasis in vivo. Post-translational upregulation of Zeb1, an EMT-related transcription factor, was essential for RP11-induced cell dissemination. Mechanistically, the RP11/hnRNPA2B1/mRNA complex accelerated the mRNA degradation of two E3 ligases, Siah1 and Fbxo45, and subsequently prevented the proteasomal degradation of Zeb1. m6A methylation was involved in the upregulation of RP11 by increasing its nuclear accumulation. Clinical analysis showed that m6A can regulate the expression of RP11, further, RP11 regulated Siah1-Fbxo45/Zeb1 was involved in the development of CRC. Conclusions m6A-induced lncRNA RP11 can trigger the dissemination of CRC cells via post-translational upregulation of Zeb1. Considering the high and specific levels of RP11 in CRC tissues, our present study paves the way for further investigations of RP11 as a predictive biomarker or therapeutic target for CRC. Electronic supplementary material The online version of this article (10.1186/s12943-019-1014-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yingmin Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Xiangling Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Zhuojia Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Lin Tian
- Department of Pharmacy, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Feng Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Jiexin Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Panpan An
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Linlin Lu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Nan Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Jun Du
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Hong Shan
- Key Laboratory of Biomedical Imaging of Guangdong Province, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Huanliang Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China. .,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
| | - Hongsheng Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
2420
|
Du Q, Hoover AR, Dozmorov I, Raj P, Khan S, Molina E, Chang TC, de la Morena MT, Cleaver OB, Mendell JT, van Oers NSC. MIR205HG Is a Long Noncoding RNA that Regulates Growth Hormone and Prolactin Production in the Anterior Pituitary. Dev Cell 2019; 49:618-631.e5. [PMID: 30982661 DOI: 10.1016/j.devcel.2019.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/21/2018] [Accepted: 03/13/2019] [Indexed: 01/09/2023]
Abstract
MicroRNAs (miRNAs) are processed from primary miRNA transcripts (pri-miRNAs), many of which are annotated as long noncoding RNAs (lncRNAs). We assessed whether MIR205HG, the host gene for miR-205, has independent functions as an lncRNA. Comparing mice with targeted deletions of MIR205HG and miR-205 revealed a functional role for the lncRNA in the anterior pituitary. Mice lacking MIR205HG had a temporal reduction in Pit1, growth hormone, and prolactin. This was mediated, in part, through the ability of this lncRNA to bind and regulate the transcriptional activity of Pit1 in conjunction with Zbtb20. Knockdown of MIR205HG in lactotropes decreased the expression of Pit1, Zbtb20, prolactin, and growth hormone, while its overexpression enhanced the levels of these transcripts. The effects of MIR205HG on the pituitary were independent of miR-205. The data support a role for MIR205HG as an lncRNA that regulates growth hormone and prolactin production in the anterior pituitary.
Collapse
Affiliation(s)
- Qiumei Du
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ashley R Hoover
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Igor Dozmorov
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Prithvi Raj
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Shaheen Khan
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Erika Molina
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Tsung-Cheng Chang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Maria Teresa de la Morena
- Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Ondine B Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Nicolai S C van Oers
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
2421
|
Shields EJ, Petracovici AF, Bonasio R. lncRedibly versatile: biochemical and biological functions of long noncoding RNAs. Biochem J 2019; 476:1083-1104. [PMID: 30971458 PMCID: PMC6745715 DOI: 10.1042/bcj20180440] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are transcripts that do not code for proteins, but nevertheless exert regulatory effects on various biochemical pathways, in part via interactions with proteins, DNA, and other RNAs. LncRNAs are thought to regulate transcription and other biological processes by acting, for example, as guides that target proteins to chromatin, scaffolds that facilitate protein-protein interactions and complex formation, and orchestrators of phase-separated compartments. The study of lncRNAs has reached an exciting time, as recent advances in experimental and computational methods allow for genome-wide interrogation of biochemical and biological mechanisms of these enigmatic transcripts. A better appreciation for the biochemical versatility of lncRNAs has allowed us to begin closing gaps in our knowledge of how they act in diverse cellular and organismal contexts, including development and disease.
Collapse
Affiliation(s)
- Emily J Shields
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
| | - Ana F Petracovici
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
- Graduate Group in Genetics and Epigenetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A.
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
| |
Collapse
|
2422
|
Identification and Expression Analysis of Long Noncoding RNAs in Fat-Tail of Sheep Breeds. G3-GENES GENOMES GENETICS 2019; 9:1263-1276. [PMID: 30787031 PMCID: PMC6469412 DOI: 10.1534/g3.118.201014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Emerging evidence suggests that long non-coding RNAs (lncRNAs) participate in the regulation of a diverse range of biological processes. However, most studies have been focused on a few established model organisms and little is known about lncRNAs in fat-tail development in sheep. Here, the first profile of lncRNA in sheep fat-tail along with their possible roles in fat deposition were investigated, based on a comparative transcriptome analysis between fat-tailed (Lori-Bakhtiari) and thin-tailed (Zel) Iranian sheep breeds. Among all identified lncRNAs candidates, 358 and 66 transcripts were considered novel intergenic (lincRNAs) and novel intronic (ilncRNAs) corresponding to 302 and 58 gene loci, respectively. Our results indicated that a low percentage of the novel lncRNAs were conserved. Also, synteny analysis identified 168 novel lincRNAs with the same syntenic region in human, bovine and chicken. Only seven lncRNAs were identified as differentially expressed genes between fat and thin tailed breeds. Q-RT-PCR results were consistent with the RNA-Seq data and validated the findings. Target prediction analysis revealed that the novel lncRNAs may act in cis or trans and regulate the expression of genes that are involved in the lipid metabolism. A gene regulatory network including lncRNA-mRNA interactions were constructed and three significant modules were found, with genes relevant to lipid metabolism, insulin and calcium signaling pathway. Moreover, integrated analysis with AnimalQTLdb database further suggested six lincRNAs and one ilncRNAs as candidates of sheep fat-tail development. Our results highlighted the putative contributions of lncRNAs in regulating expression of genes associated with fat-tail development in sheep.
Collapse
|
2423
|
Zhang Z, Tang J, Di R, Liu Q, Wang X, Gan S, Zhang X, Zhang J, Hu W, Chu M. Comparative Transcriptomics Reveal Key Sheep (Ovis aries) Hypothalamus LncRNAs that Affect Reproduction. Animals (Basel) 2019; 9:E152. [PMID: 30965601 PMCID: PMC6523726 DOI: 10.3390/ani9040152] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/31/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
The diverse functions of long noncoding RNAs (lncRNAs), which execute their functions mainly through modulating the activities of their target genes, have been have been widely studied for many years (including a number of studies involving lncRNAs in the ovary and uterus). Herein, for the first time, we detect lncRNAs in sheep hypothalami with FecB++ through RNA Sequencing (RNA-Seq) and identify a number of known and novel lncRNAs, with 622 and 809 found to be differentially expressed in polytocous sheep in the follicular phase (PF) vs. monotocous sheep in the follicular phase (MF) and polytocous sheep in the luteal phase (PL) vs. monotocous sheep in the luteal phase (ML), respectively. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed based on the predicted target genes. The most highly enriched GO terms (at the molecular function level) included carbonyl reductase (NADPH), 15-hydroxyprostaglandin dehydrogenase (NADP+), and prostaglandin-E2 9-reductase activity in PF vs. MF, and phosphatidylinositol-3,5-bisphosphate binding in PL vs. ML was associated with sheep fecundity. Interestingly, the phenomena of valine, leucine, and isoleucine degradation in PL vs. ML, and valine, leucine, and isoleucine biosynthesis in PF vs. MF, were present. In addition, the interactome of lncRNA and its targets showed that MSTRG.26777 and its cis-targets ENSOARG00000013744, ENSOARG00000013700, and ENSOARG00000013777, and MSTRG.105228 and its target WNT7A may participate in the sheep reproductive process at the hypothalamus level. Significantly, MSTRG.95128 and its cis-target Forkhead box L1 (FOXG1) were shown to be upregulated in PF vs. MF but downregulated in PL vs. ML. All of these results may be attributed to discoveries of new candidate genes and pathways related to sheep reproduction, and they may provide new views for understanding sheep reproduction without the effects of the FecB mutation.
Collapse
Affiliation(s)
- Zhuangbiao Zhang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jishun Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China.
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China.
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China.
| | - Wenping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2424
|
The Long Non-Coding RNA lep-5 Promotes the Juvenile-to-Adult Transition by Destabilizing LIN-28. Dev Cell 2019; 49:542-555.e9. [PMID: 30956008 DOI: 10.1016/j.devcel.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 10/02/2018] [Accepted: 03/06/2019] [Indexed: 12/28/2022]
Abstract
Biological roles for most long non-coding RNAs (lncRNAs) remain mysterious. Here, using forward genetics, we identify lep-5, a lncRNA acting in the C. elegans heterochronic (developmental timing) pathway. Loss of lep-5 delays hypodermal maturation and male tail tip morphogenesis (TTM), hallmarks of the juvenile-to-adult transition. We find that lep-5 is a ∼600 nt cytoplasmic RNA that is conserved across Caenorhabditis and possesses three essential secondary structure motifs but no essential open reading frames. lep-5 expression is temporally controlled, peaking prior to TTM onset. Like the Makorin LEP-2, lep-5 facilitates the degradation of LIN-28, a conserved miRNA regulator specifying the juvenile state. Both LIN-28 and LEP-2 associate with lep-5 in vivo, suggesting that lep-5 directly regulates LIN-28 stability and may function as an RNA scaffold. These studies identify a key biological role for a lncRNA: by regulating protein stability, it provides a temporal cue to facilitate the juvenile-to-adult transition.
Collapse
|
2425
|
Degirmenci U, Li J, Lim YC, Siang DTC, Lin S, Liang H, Sun L. Silencing an insulin-induced lncRNA, LncASIR, impairs the transcriptional response to insulin signalling in adipocytes. Sci Rep 2019; 9:5608. [PMID: 30948776 PMCID: PMC6449399 DOI: 10.1038/s41598-019-42162-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/26/2019] [Indexed: 01/09/2023] Open
Abstract
Long noncoding RNA(lncRNA)s are new regulators governing the metabolism in adipose tissue. In this study, we aimed to understand how lncRNAs respond to insulin signalling and explore whether lncRNAs have a functional role in insulin signalling pathway. We treated primary adipocyte cultures with insulin and collected RNA for RNA-sequencing to profile the non-coding transcriptome changes, through which we identified a top Adipose Specific Insulin Responsive LncRNA (LncASIR). To determine its biological function, we knocked down LncASIR using dcas9-KRAB, followed by RNA-seq to examine the effect on insulin-induced gene expression program. We identified a set of lncRNAs regulated by insulin signalling pathway. LncASIR is transcribed from a super enhancer region and responds robustly to insulin treatment. Silencing LncASIR resulted in an impaired global insulin-responsive gene program. LncASIR is a novel and integral component in the insulin signalling pathway in adipocytes.
Collapse
Affiliation(s)
- Ufuk Degirmenci
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Jia Li
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Yen Ching Lim
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Diana Teh Chee Siang
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Shibo Lin
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hui Liang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| |
Collapse
|
2426
|
Ramón Y Cajal S, Segura MF, Hümmer S. Interplay Between ncRNAs and Cellular Communication: A Proposal for Understanding Cell-Specific Signaling Pathways. Front Genet 2019; 10:281. [PMID: 31001323 PMCID: PMC6454836 DOI: 10.3389/fgene.2019.00281] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/14/2019] [Indexed: 01/09/2023] Open
Abstract
Intercellular communication is essential for the development of specialized cells, tissues, and organs and is critical in a variety of diseases including cancer. Current knowledge states that different cell types communicate by ligand–receptor interactions: hormones, growth factors, and cytokines are released into the extracellular space and act on receptors, which are often expressed in a cell-type-specific manner. Non-coding RNAs (ncRNAs) are emerging as newly identified communicating factors in both physiological and pathological states. This class of RNA encompasses microRNAs (miRNAs, well-studied post-transcriptional regulators of gene expression), long non-coding RNAs (lncRNAs) and other ncRNAs. lncRNAs are diverse in length, sequence, and structure (linear or circular), and their functions are described as transcriptional regulation, induction of epigenetic changes and even direct regulation of protein activity. They have also been reported to act as miRNA sponges, interacting with miRNA and modulating its availability to endogenous mRNA targets. Importantly, lncRNAs may have a cell-type-specific expression pattern. In this paper, we propose that lncRNA–miRNA interactions, analogous to receptor–ligand interactions, are responsible for cell-type-specific outcomes. Specific binding of miRNAs to lncRNAs may drive cell-type-specific signaling cascades and modulate biochemical feedback loops that ultimately determine cell identity and response to stress factors.
Collapse
Affiliation(s)
- Santiago Ramón Y Cajal
- Department of Pathology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain.,Translational Molecular Pathology, Vall d'Hebron Research Institute, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Miguel F Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Stefan Hümmer
- Translational Molecular Pathology, Vall d'Hebron Research Institute, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| |
Collapse
|
2427
|
Plassais J, Kim J, Davis BW, Karyadi DM, Hogan AN, Harris AC, Decker B, Parker HG, Ostrander EA. Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nat Commun 2019; 10:1489. [PMID: 30940804 PMCID: PMC6445083 DOI: 10.1038/s41467-019-09373-w] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 03/06/2019] [Indexed: 01/14/2023] Open
Abstract
Domestic dog breeds are characterized by an unrivaled diversity of morphologic traits and breed-associated behaviors resulting from human selective pressures. To identify the genetic underpinnings of such traits, we analyze 722 canine whole genome sequences (WGS), documenting over 91 million single nucleotide and small indels, creating a large catalog of genomic variation for a companion animal species. We undertake both selective sweep analyses and genome wide association studies (GWAS) inclusive of over 144 modern breeds, 54 wild canids and a hundred village dogs. Our results identify variants of strong impact associated with 16 phenotypes, including body weight variation which, when combined with existing data, explain greater than 90% of body size variation in dogs. We thus demonstrate that GWAS and selection scans performed with WGS are powerful complementary methods for expanding the utility of companion animal systems for the study of mammalian growth and biology.
Collapse
Affiliation(s)
- Jocelyn Plassais
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jaemin Kim
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian W Davis
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Texas A&M University, College Station, TX, 77840, USA
| | - Danielle M Karyadi
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Laboratory of Genetic Susceptibility, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Andrew N Hogan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alex C Harris
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brennan Decker
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Heidi G Parker
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2428
|
Jukam D, Limouse C, Smith OK, Risca VI, Bell JC, Straight AF. Chromatin-Associated RNA Sequencing (ChAR-seq). CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2019; 126:e87. [PMID: 30786161 PMCID: PMC7670654 DOI: 10.1002/cpmb.87] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
RNA is a fundamental component of chromatin. Noncoding RNAs (ncRNAs) can associate with chromatin to influence gene expression and chromatin state; many also act at long distances from their transcriptional origin. Yet we know almost nothing about the functions or sites of action for most ncRNAs. Current methods to identify sites of RNA interaction with the genome are limited to the study of a single RNA at a time. Here we describe a protocol for ChAR-seq, a strategy to identify all chromatin-associated RNAs and map their DNA contacts genome-wide. In ChAR-seq, proximity ligation of RNA and DNA to a linker molecule is used to construct a chimeric RNA-DNA molecule that is converted to DNA for sequencing. In a single assay, ChAR-seq can discover de novo chromatin interactions of distinct RNAs, including nascent transcripts, splicing RNAs, and long noncoding RNAs (lncRNAs). Resulting "maps" of genome-bound RNAs should provide new insights into RNA biology. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- David Jukam
- Department of Biology, Stanford University, Stanford, California
| | - Charles Limouse
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California
| | - Owen K. Smith
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California
| | - Viviana I. Risca
- Department of Genetics, Stanford University School of Medicine, Stanford, California
- Present Address: Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, New York
| | - Jason C. Bell
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California
- Present Address: 10X Genomics, Pleasanton, California
| | - Aaron F. Straight
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
2429
|
Li Y, Egranov SD, Yang L, Lin C. Molecular mechanisms of long noncoding RNAs-mediated cancer metastasis. Genes Chromosomes Cancer 2019; 58:200-207. [PMID: 30350428 PMCID: PMC10642708 DOI: 10.1002/gcc.22691] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/03/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer metastasis is a multistep process that requires cancer cells to leave the primary site, survive in the blood stream, and finally colonize at a distant organ. It is the major cause of cancer morbidity and mortality. The organ-specific colonization requires close interaction and communication between cancer cells and host organs. Noncoding RNAs represent the majority of the transcriptome, with long noncoding RNAs (lncRNAs) making up a significant proportion. It has been suggested that lncRNAs play a key role in all stages of tumorigenesis and metastasis. This review will provide an overview of how lncRNAs are involved in cancer cell colonization in specific organ sites and the underlying mechanisms as well as therapeutic strategies.
Collapse
Affiliation(s)
- Yajuan Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sergey D. Egranov
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
2430
|
Almenar-Pérez E, Ovejero T, Sánchez-Fito T, Espejo JA, Nathanson L, Oltra E. Epigenetic Components of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Uncover Potential Transposable Element Activation. Clin Ther 2019; 41:675-698. [PMID: 30910331 DOI: 10.1016/j.clinthera.2019.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Studies to determine epigenetic changes associated with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) remain scarce; however, current evidence clearly shows that methylation patterns of genomic DNA and noncoding RNA profiles of immune cells differ between patients and healthy subjects, suggesting an active role of these epigenetic mechanisms in the disease. The present study compares and contrasts the available ME/CFS epigenetic data in an effort to evidence overlapping pathways capable of explaining at least some of the dysfunctional immune parameters linked to this disease. METHODS A systematic search of the literature evaluating the ME/CFS epigenome landscape was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. Differential DNA methylation and noncoding RNA differential expression patterns associated with ME/CFS were used to screen for the presence of transposable elements using the Dfam browser, a search program nurtured with the Repbase repetitive sequence database and the RepeatMasker annotation tool. FINDINGS Unexpectedly, particular associations of transposable elements and ME/CFS epigenetic hallmarks were uncovered. A model for the disease emerged involving transcriptional induction of endogenous dormant transposons and structured cellular RNA interactions, triggering the activation of the innate immune system without a concomitant active infection. IMPLICATIONS Repetitive sequence filters (ie, RepeatMasker) should be avoided when analyzing transcriptomic data to assess the potential participation of repetitive sequences ("junk repetitive DNA"), representing >45% of the human genome, in the onset and evolution of ME/CFS. In addition, transposable element screenings aimed at designing cost-effective, focused empirical assays that can confirm or disprove the suspected involvement of transposon transcriptional activation in this disease, following the pilot strategy presented here, will require databases gathering large ME/CFS epigenetic datasets.
Collapse
Affiliation(s)
- Eloy Almenar-Pérez
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Tamara Ovejero
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Teresa Sánchez-Fito
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - José A Espejo
- School of Experimental Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Lubov Nathanson
- Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA; Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Elisa Oltra
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain; Unidad Mixta CIPF-UCV, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
2431
|
The long noncoding RNA Falcor regulates Foxa2 expression to maintain lung epithelial homeostasis and promote regeneration. Genes Dev 2019; 33:656-668. [PMID: 30923168 PMCID: PMC6546060 DOI: 10.1101/gad.320523.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/06/2019] [Indexed: 01/09/2023]
Abstract
Swarr et al. identified a regulatory feedback loop between Foxa2 and a downstream lncRNA, Falcor, in the lung. Transcription factors (TFs) are dosage-sensitive master regulators of gene expression, with haploinsufficiency frequently leading to life-threatening disease. Numerous mechanisms have evolved to tightly regulate the expression and activity of TFs at the transcriptional, translational, and posttranslational levels. A subset of long noncoding RNAs (lncRNAs) is spatially correlated with transcription factors in the genome, but the regulatory relationship between these lncRNAs and their neighboring TFs is unclear. We identified a regulatory feedback loop between the TF Foxa2 and a downstream lncRNA, Falcor (Foxa2-adjacent long noncoding RNA). Foxa2 directly represses Falcor expression by binding to its promoter, while Falcor functions in cis to positively regulate the expression of Foxa2. In the lung, loss of Falcor is sufficient to lead to chronic inflammatory changes and defective repair after airway epithelial injury. Moreover, disruption of the Falcor–Foxa2 regulatory feedback loop leads to altered cell adhesion and migration, in turn resulting in chronic peribronchial airway inflammation and goblet cell metaplasia. These data reveal that the lncRNA Falcor functions within a regulatory feedback loop to fine-tune the expression of Foxa2, maintain airway epithelial homeostasis, and promote regeneration.
Collapse
|
2432
|
Shang W, Gao Y, Tang Z, Zhang Y, Yang R. The Pseudogene Olfr29-ps1 Promotes the Suppressive Function and Differentiation of Monocytic MDSCs. Cancer Immunol Res 2019; 7:813-827. [PMID: 30914411 DOI: 10.1158/2326-6066.cir-18-0443] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/11/2018] [Accepted: 03/22/2019] [Indexed: 11/16/2022]
Abstract
Long noncoding RNA (lncRNA) plays a critical role in many biological processes, such as cell differentiation and development. However, few studies about lncRNAs regulating the differentiation and development of myeloid-derived suppressor cells (MDSCs) exist. In this study, we identified a lncRNA pseudogene, Olfr29-ps1, which was expressed in MDSCs and upregulated by the proinflammatory cytokine IL6. The Olfr29-ps1 in vertebrates is conserved, and the similarity between the Olfr29-ps1 and human OR1F2P sequence is 43%. This lncRNA promoted the immunosuppressive function and differentiation of monocytic (Mo-)MDSCs in vitro and in vivo It directly sponged miR-214-3p to downregulate miR-214-3p, which may target MyD88 to modulate the differentiation and development of MDSCs. The functions of Olfr29-ps1 were dependent on IL6-mediated N 6-methyladenosine (m6A) modification, which not only enhanced Olfr29-ps1, but also promoted the interaction of Olfr29-ps1 with miR-214-3p Thus, our results demonstrated that the pseudogene Olfr29-ps1 may regulate the differentiation and function of MDSCs through a m6A-modified Olfr29-ps1/miR-214-3p/MyD88 regulatory network, revealing a mechanism for the regulation of myeloid cells and also providing potential targets for antitumor immunotherapy.
Collapse
Affiliation(s)
- Wencong Shang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yunhuan Gao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Zhenzhen Tang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China. .,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
2433
|
Liang M, Hu K, He C, Zhou J, Liao Y. Upregulated lncRNA Gm2044 inhibits male germ cell development by acting as miR-202 host gene. Anim Cells Syst (Seoul) 2019; 23:128-134. [PMID: 30949400 PMCID: PMC6440523 DOI: 10.1080/19768354.2019.1591506] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/07/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been found to participate in the regulation of human spermatogenic cell development. However, little is known about the abnormal expression of lncRNAs associated with spermatogenic failure and their molecular mechanisms. Using lncRNA microarray of testicular tissue for male infertility and bioinformatics methods, we identified the relatively conserved lncRNA Gm2044 which may play important roles in non-obstructive azoospermia. The UCSC Genome Browser showed that lncRNA Gm2044 is the miR-202 host gene. This study revealed that lncRNA Gm2044 and miR-202 were significantly increased in non-obstructive azoospermia of spermatogonial arrest. The mRNA and protein levels of Rbfox2, a known direct target gene of miR-202, were regulated by lncRNA Gm2044. Furthermore, the miR-202-Rbfox2 signalling pathway was shown to mediate the suppressive effects of lncRNA Gm2044 on the proliferation of human testicular embryonic carcinoma cells. Understanding of the molecular signalling pathways for lncRNA-regulated spermatogenesis will provide new clues into the pathogenesis and treatment of patients with male infertility.
Collapse
Affiliation(s)
- Meng Liang
- Department of Biological Sciences, Bengbu Medical College, Bengbu, People's Republic of China
| | - Ke Hu
- Department of Biological Sciences, Bengbu Medical College, Bengbu, People's Republic of China
| | - Chaofan He
- Department of Biological Sciences, Bengbu Medical College, Bengbu, People's Republic of China
| | - Jinzhao Zhou
- Department of Biological Sciences, Bengbu Medical College, Bengbu, People's Republic of China
| | - Yaping Liao
- Department of Biological Sciences, Bengbu Medical College, Bengbu, People's Republic of China
| |
Collapse
|
2434
|
Gu X, Wang L, Boldrup L, Coates PJ, Fahraeus R, Sgaramella N, Wilms T, Nylander K. AP001056.1, A Prognosis-Related Enhancer RNA in Squamous Cell Carcinoma of the Head and Neck. Cancers (Basel) 2019; 11:cancers11030347. [PMID: 30862109 PMCID: PMC6468641 DOI: 10.3390/cancers11030347] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/24/2022] Open
Abstract
A growing number of long non-coding RNAs (lncRNAs) have been linked to squamous cell carcinoma of the head and neck (SCCHN). A subclass of lncRNAs, termed enhancer RNAs (eRNAs), are derived from enhancer regions and could contribute to enhancer function. In this study, we developed an integrated data analysis approach to identify key eRNAs in SCCHN. Tissue-specific enhancer-derived RNAs and their regulated genes previously predicted using the computational pipeline PreSTIGE, were considered as putative eRNA-target pairs. The interactive web servers, TANRIC (the Atlas of Noncoding RNAs in Cancer) and cBioPortal, were used to explore the RNA levels and clinical data from the Cancer Genome Atlas (TCGA) project. Requiring that key eRNAs should show significant associations with overall survival (Kaplan⁻Meier log-rank test, p < 0.05) and the predicted target (correlation coefficient r > 0.4, p < 0.001), we identified five key eRNA candidates. The most significant survival-associated eRNA was AP001056.1 with ICOSLG encoding an immune checkpoint protein as its regulated target. Another 1640 genes also showed significant correlation with AP001056.1 (r > 0.4, p < 0.001), with the "immune system process" being the most significantly enriched biological process (adjusted p < 0.001). Our results suggest that AP001056.1 is a key immune-related eRNA in SCCHN with a positive impact on clinical outcome.
Collapse
Affiliation(s)
- Xiaolian Gu
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden.
| | - Lixiao Wang
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden.
| | - Linda Boldrup
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden.
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic.
| | - Robin Fahraeus
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden.
- RECAMO, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic.
- Équipe Labellisée Ligue Contre le Cancer, INSERM UMRS1162, Institut de Génétique Moléculaire, Université Paris 7, IUH Hôpital St. Louis, 75010 Paris, France.
| | - Nicola Sgaramella
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden.
| | - Torben Wilms
- Department of Clinical Sciences/ENT, Umeå University, 90185 Umeå, Sweden.
| | - Karin Nylander
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden.
| |
Collapse
|
2435
|
High LINC00536 expression promotes tumor progression and poor prognosis in bladder cancer. Exp Cell Res 2019; 378:32-40. [PMID: 30851243 DOI: 10.1016/j.yexcr.2019.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 12/17/2022]
Abstract
Growing evidences demonstrate that long non-coding RNAs (lncRNAs) contribute to the cancer initiation and progression and are considered as promising diagnostic and therapeutic targets of multiple cancers. However, the definite role of LINC00536 in bladder cancer (BC) remains unclear. In the present study, we found LINC00536 expression was highly expressed in BC tissues compared with controls and negatively associated with survival rate in BC patients. Gain-of-function assays indicated that LINC00536 overexpression promoted the proliferation, migration and invasion, whereas LINC00536 knockdown attenuated the cell phenotypes above in BC cell lines. In vivo assay illustrated that LINC00536 knockdown inhibited BC growth in vivo. Mechanistically, Wnt3a was identified as the target of LINC00536. LINC00536 promoted malignant phenotypes via activating the Wnt3a/β-Catenin signaling. Wnt3a knockdown reversed the increase of proliferation, migration, and invasion abilities of BC cells induced by LINC00536 overexpression. In summary, our findings demonstrated that LINC00536 promoted BC progression by modulating the Wnt3a/β-Catenin signaling.
Collapse
|
2436
|
Pan Y, Liu G, Wang D, Li Y. Analysis of lncRNA-Mediated ceRNA Crosstalk and Identification of Prognostic Signature in Head and Neck Squamous Cell Carcinoma. Front Pharmacol 2019; 10:150. [PMID: 30886579 PMCID: PMC6409312 DOI: 10.3389/fphar.2019.00150] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/08/2019] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNA (lncRNA) can act as ceRNA to regulate the expression of target genes by sponging miRNAs, and therefore plays an essential role in tumor initiation and progression. However, functional roles and regulatory mechanisms of lncRNAs as ceRNAs in head and neck squamous cell carcinoma (HNSCC) remain to be determined. We downloaded RNA sequence profiles from The Cancer Genome Atlas (TCGA) database, and identified the differential RNAs by bioinformatics. Then we analyzed the biological processes of differential expressed RNAs (DER), and established their interaction networks and pathway analysis to find out potential biological effects of these DERs. Besides, we also explored the relationship between the DERs and prognosis of HNSCC patients. We obtained 525 tumor samples and 44 paracancerous controls, and there were 1081 DElncRNAs, 1889 DEmRNAs, and 145 DEmiRNAs. GO and KEGG pathways analysis of these DEmRNAs were mainly involved in "Protein digestion and absorption," "Calcium signaling pathway," and "ECM-receptor interaction." The analysis of the ceRNA network identified 61 DElncRNAs as functional ceRNAs whose dysregulated expression may affect the expression of oncogenes/tumor suppressor genes. Furthermore, univariate and multivariate Cox regression analysis revealed that 4 DElncRNAs, 3 EDmiRNAs, and 6 DEmRNAs can predict survival with high accuracy. Survival analysis found that 4 lncRNAs was related to prognostic, including overexpressed RP11-366H4.1, HOTTIP, RP11-865I6.2, and RP11-275N1.1 patients had a worse survival. In conclusion, through constructing the ceRNA network in HNSCC patients, we identified key lncRNA-miRNA-mRNA network in HNSCC. All the DERs might participate in varieties of pathways in the initiation, progression, and invasion of HNSCC. Furthermore, some miRNAs (hsa-mir-99a, hsa-mir-337, and hsa-mir-137) and mRNAs (NOSTRIN, TIMP4, GRB14, HOXB9, CELSR3, and ADGRD2) may be the prognostic genes of HNSCC. This study provided a new target and theoretical basis for further research on molecular mechanisms and biomarkers.
Collapse
Affiliation(s)
- Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Dujuan Wang
- Department of Clinical Pathology, Houjie Hospital of Dongguan, The Affiliated Houjie Hospital of Guangdong Medical University, Dongguan, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
2437
|
Miano JM, Long X, Lyu Q. CRISPR links to long noncoding RNA function in mice: A practical approach. Vascul Pharmacol 2019; 114:1-12. [PMID: 30822570 PMCID: PMC6435418 DOI: 10.1016/j.vph.2019.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/29/2022]
Abstract
Next generation sequencing has uncovered a trove of short noncoding RNAs (e.g., microRNAs) and long noncoding RNAs (lncRNAs) that act as molecular rheostats in the control of diverse homeostatic processes. Meanwhile, the tsunamic emergence of clustered regularly interspaced short palindromic repeats (CRISPR) editing has transformed our influence over all DNA-carrying entities, heralding global CRISPRization. This is evident in biomedical research where the ease and low-cost of CRISPR editing has made it the preferred method of manipulating the mouse genome, facilitating rapid discovery of genome function in an in vivo context. Here, CRISPR genome editing components are updated for elucidating lncRNA function in mice. Various strategies are highlighted for understanding the function of lncRNAs residing in intergenic sequence space, as host genes that harbor microRNAs or other genes, and as natural antisense, overlapping or intronic genes. Also discussed is CRISPR editing of mice carrying human lncRNAs as well as the editing of competing endogenous RNAs. The information described herein should assist labs in the rigorous design of experiments that interrogate lncRNA function in mice where complex disease processes can be modeled thus accelerating translational discovery.
Collapse
Affiliation(s)
- Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America.
| | - Xiaochun Long
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States of America
| | - Qing Lyu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| |
Collapse
|
2438
|
Zhuang R, Zhang X, Lu D, Wang J, Zhuo J, Wei X, Ling Q, Xie H, Zheng S, Xu X. lncRNA DRHC inhibits proliferation and invasion in hepatocellular carcinoma via c-Myb-regulated MEK/ERK signaling. Mol Carcinog 2019; 58:366-375. [PMID: 30362626 DOI: 10.1002/mc.22934] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/27/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022]
Abstract
Accumulating evidence indicates that long non-coding RNAs (lncRNAs) play a crucial role in hepatocellular carcinoma (HCC). Here, we reported a novel lncRNA, CTC-505O3 (lncRNA DRHC), that was downregulated in HCC and its low expression was associated with dismal survival. Gain-of-function studies indicated that it inhibited proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in HCC cell lines in vitro. lncRNA DRHC also inhibited tumorigenicity in vivo. In mechanistic experiments, GO analysis based on NGS indicated that MAPK signaling was most affected. The result was confirmed by Western blot and this effect was abolished either by MEK1/2 specific inhibitor Trametinib or ERK1/2 inhibitor SCH772984. In addition, differences in proliferation and invasion were abrogated by Trametinib. Moreover, we found that lncRNA DRHC interacted with MYBBP1A and modulated MEK/ERK signaling via c-Myb. Taken together, our findings indicate that the lncRNA DRHC play a key role in HCC progression and may serve as a novel therapeutic target.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation
- DNA-Binding Proteins
- Epithelial-Mesenchymal Transition
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- MAP Kinase Kinase 1/genetics
- MAP Kinase Kinase 1/metabolism
- MAP Kinase Kinase 2/genetics
- MAP Kinase Kinase 2/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Neoplasm Invasiveness
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nucleocytoplasmic Transport Proteins/genetics
- Nucleocytoplasmic Transport Proteins/metabolism
- Prognosis
- Proto-Oncogene Proteins c-myb/genetics
- Proto-Oncogene Proteins c-myb/metabolism
- RNA, Long Noncoding/genetics
- RNA-Binding Proteins
- Signal Transduction
- Survival Rate
- Transcription Factors
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Runzhou Zhuang
- Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Xuanyu Zhang
- Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Di Lu
- Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Jianguo Wang
- Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Jianyong Zhuo
- Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Xuyong Wei
- Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Qi Ling
- Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Haiyang Xie
- Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Shusen Zheng
- Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Xiao Xu
- Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
2439
|
Cao M, Zhao J, Hu G. Genome-wide methods for investigating long noncoding RNAs. Biomed Pharmacother 2019; 111:395-401. [PMID: 30594777 PMCID: PMC6401243 DOI: 10.1016/j.biopha.2018.12.078] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/27/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are large RNA transcripts that do not code for proteins but exert their effects in the form of RNA. To date many thousands of lncRNAs have been identified, their molecular functions and mechanisms of action however are largely unknown. The development of high-throughput experimental technologies, such as ChIRP (Chromatin isolation by RNA purification), CHART (Capture Hybridization Analysis of RNA Targets), RAP (RNA antisense purification), RIP (RNA Immunoprecipitation), CLIP (cross-linking and immunoprecipitation) and RNA pull-down, has led to a rapid expansion of lncRNA research and resulted in many publicly-available databases. This review provides an overview of the current methodologies available for discovering and investigating functions of lncRNAs in various human diseases. A comparison and application of these methods are also included. Finally, this paper surveys current databases containing annotations, interactome networks and functions of lncRNAs. The appropriate use of these methods and databases will provide not only high-resolution functional features of lncRNAs, but also enhance our understanding of the underlying mechanisms by which lncRNAs regulate a variety of biological processes.
Collapse
Affiliation(s)
- Mei Cao
- Core Laboratory, School of Medicine, Sichuan Provincial People's Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Jian Zhao
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610064, People's Republic of China.
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
2440
|
Basavappa M, Cherry S, Henao-Mejia J. Long noncoding RNAs and the regulation of innate immunity and host-virus interactions. J Leukoc Biol 2019; 106:83-93. [PMID: 30817056 DOI: 10.1002/jlb.3mir0918-354r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Immune responses are both pathogen and cell type-specific. The innate arm of immunity is characterized by rapid intracellular signaling cascades resulting in the production of hundreds of antimicrobial effectors that protect the host organism. Long noncoding RNAs have been shown to operate as potent modulators of both RNA and protein function throughout cell biology. Emerging data suggest that this is also true within innate immunity. LncRNAs have been shown to regulate both innate immune cell identity and the transcription of gene expression programs critical for innate immune responses. Here, we review the diverse roles of lncRNAs within innate defense with a specific emphasis on host-virus interactions.
Collapse
Affiliation(s)
- Megha Basavappa
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2441
|
Comprehensive analysis of differentially expressed profiles of long non-coding RNAs and messenger RNAs in kaolin-induced hydrocephalus. Gene 2019; 697:184-193. [PMID: 30797995 DOI: 10.1016/j.gene.2019.02.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/04/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUNDS The pathophysiology of hydrocephalus induced brain damage remains unclear. Long non-coding RNAs (lncRNAs) have been demonstrated to be implicated in many central nervous system diseases. However, the roles of lncRNAs in hydrocephalus injury are poorly understood. METHODS The present study depicted the expression profiles of lncRNAs and messenger RNAs (mRNAs) in C57BL/6 mice with kaolin-induced hydrocephalus and saline controls using high-throughput RNA sequencing. Afterward, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to identify potential targets that correlated with hydrocephalus. In addition, co-expression networks and cis- and trans-regulation were predicted using bioinformatics methods. Finally, representative lncRNAs and mRNAs were further validation using quantitative real-time polymerase chain reaction. RESULTS A total of 1575 lncRNAs and 1168 mRNAs were differentially expressed (DE) in hydrocephalus. GO and KEGG analyses indicated several immune and inflammatory response-associated pathways may be important in the hydrocephalus. Besides, functional enrichment analysis based on co-expression network showed several similar pathways, such as chemokine signaling pathway, phagosome, MAPK signaling pathway and complement and coagulation cascade. Cis-regulation prediction revealed 5 novel lncRNAs might regulate their nearby coding genes, and trans-regulation revealed several lncRNAs participate in pathways regulated by transcription factors, including BPTF, FOXM1, NR5A2, P2RX5, and NR6A1. CONCLUSIONS In conclusion, our results provide candidate genes involved in hydrocephalus and suggest a new perspective on the modulation of lncRNAs in hydrocephalus.
Collapse
|
2442
|
Zhuang M, Zhao S, Jiang Z, Wang S, Sun P, Quan J, Yan D, Wang X. MALAT1 sponges miR-106b-5p to promote the invasion and metastasis of colorectal cancer via SLAIN2 enhanced microtubules mobility. EBioMedicine 2019; 41:286-298. [PMID: 30797712 PMCID: PMC6444028 DOI: 10.1016/j.ebiom.2018.12.049] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/06/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023] Open
Abstract
Background The low expression of miR93/25 (members of miR-106b~25 cluster) promoted the invasion and metastasis of colon cancer cells, which predicted poor survival. However, the role of miR-106b-5p, the member of miR-106b~25 cluster, in colorectal cancer (CRC) remains unclear. Methods Bioinformatics methods were used to predict the potential pairs of lncRNA-miRNA-mRNA. In situ hybridization and qPCR were used to evaluate the expression of MALAT1 and miR-106b-5p in the paraffin-embedded normal and CRC tissues. Kaplan–Meier analysis with the log-rank test was used for survival analyses. Immunohistochemistry staining was applied to investigate the expression of SLAIN2. Fluorescence recovery after photobleaching assay was applied to observe the microtubule (MT) mobility. In vitro and in vivo invasion and metastasis assays were used to explore the function of MALAT1/miR-106b-5p/SLAIN2 in the progression of CRC. Findings miR-106b-5p was identified as a suppressor in CRC. Functionally, ectopic or silencing the expression of miR-106b-5p inhibited or promoted the invasion and metastasis of CRC cells in vitro and in vivo. The long non-coding RNA MALAT1 regulated the miR-106b-5p expression and further mediated the mobility of SLAIN2-related MTs by functioning as a competing endogenous RNA in vitro and in vivo, which resulted in the progression of CRC. Clinically, low miR-106b-5p expression predicted poor survival of CRC patients, especially in combination with high MALAT1/ SLAIN2 expression. Interpretation miR-106b-5p served as a suppressor in combination with MALAT1/miR-106b-5p/SLAIN2, which might be a group of potential prognostic biomarkers in the prognosis of CRC. Fund This work was supported by National Program Project for Precision Medicine in National Research and Development Plan of China (2016YFC0905300), National Natural Science Foundation of China (81572930), National Key Research and Development Program of the Ministry of Science and Technology of China (2016YFC0905303, 2016YFC1303200), Beijing Science and Technology Program (D17110002617004), Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (2018PT32012), CAMS Innovation Fund for Medical Sciences (CIFMS) (2016-I2M-1-001), Incentive Fund for Academic Leaders of Oncology Hospital, Chinese Academy of Medical Sciences (RC2016003), and Beijing Hope Run Special Fund from Cancer Foundation of China (LC2017A19). The project of Shanghai Jiaotong Univversity (YG2017QN30).
Collapse
Affiliation(s)
- Meng Zhuang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - Senlin Zhao
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - Song Wang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Sun
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jichuan Quan
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - Dongwang Yan
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xishan Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
2443
|
Shihabudeen Haider Ali MS, Cheng X, Moran M, Haemmig S, Naldrett MJ, Alvarez S, Feinberg MW, Sun X. LncRNA Meg3 protects endothelial function by regulating the DNA damage response. Nucleic Acids Res 2019; 47:1505-1522. [PMID: 30476192 PMCID: PMC6379667 DOI: 10.1093/nar/gky1190] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 01/10/2023] Open
Abstract
The role of long non-coding RNAs (lncRNAs) in regulating endothelial function through the DNA damage response (DDR) remains poorly understood. In this study, we demonstrate that lncRNA maternally expressed gene 3 (Meg3) interacts with the RNA binding protein polypyrimidine tract binding protein 3 (PTBP3) to regulate gene expression and endothelial function through p53 signaling ─ a major coordinator of apoptosis and cell proliferation triggered by the DDR. Meg3 expression is induced in endothelial cells (ECs) upon p53 activation. Meg3 silencing induces DNA damage, activates p53 signaling, increases the expression of p53 target genes, promotes EC apoptosis, and inhibits EC proliferation. Mechanistically, Meg3 silencing reduces the interaction of p53 with Mdm2, induces p53 expression, and promotes the association of p53 with the promoters of a subset of p53 target genes. PTBP3 silencing recapitulates the effects of Meg3 deficiency on the expression of p53 target genes, EC apoptosis and proliferation. The Meg3-dependent association of PTBP3 with the promoters of p53 target genes suggests that Meg3 and PTBP3 restrain p53 activation. Our studies reveal a novel role of Meg3 and PTBP3 in regulating p53 signaling and endothelial function, which may serve as novel targets for therapies to restore endothelial homeostasis.
Collapse
Affiliation(s)
| | - Xiao Cheng
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Matthew Moran
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Stefan Haemmig
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Naldrett
- Proteomics and Metabolomics Facility, Center for Biotechnology, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Center for Biotechnology, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
- Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
2444
|
Akay A, Jordan D, Navarro IC, Wrzesinski T, Ponting CP, Miska EA, Haerty W. Identification of functional long non-coding RNAs in C. elegans. BMC Biol 2019; 17:14. [PMID: 30777050 PMCID: PMC6378714 DOI: 10.1186/s12915-019-0635-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Functional characterisation of the compact genome of the model organism Caenorhabditis elegans remains incomplete despite its sequencing 20 years ago. The last decade of research has seen a tremendous increase in the number of non-coding RNAs identified in various organisms. While we have mechanistic understandings of small non-coding RNA pathways, long non-coding RNAs represent a diverse class of active transcripts whose function remains less well characterised. RESULTS By analysing hundreds of published transcriptome datasets, we annotated 3392 potential lncRNAs including 143 multi-exonic loci that showed increased nucleotide conservation and GC content relative to other non-coding regions. Using CRISPR/Cas9 genome editing, we generated deletion mutants for ten long non-coding RNA loci. Using automated microscopy for in-depth phenotyping, we show that six of the long non-coding RNA loci are required for normal development and fertility. Using RNA interference-mediated gene knock-down, we provide evidence that for two of the long non-coding RNA loci, the observed phenotypes are dependent on the corresponding RNA transcripts. CONCLUSIONS Our results highlight that a large section of the non-coding regions of the C. elegans genome remains unexplored. Based on our in vivo analysis of a selection of high-confidence lncRNA loci, we expect that a significant proportion of these high-confidence regions is likely to have a biological function at either the genomic or the transcript level.
Collapse
Affiliation(s)
- Alper Akay
- Wellcome CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - David Jordan
- Wellcome CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Isabela Cunha Navarro
- Wellcome CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | | | - Chris P Ponting
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Eric A Miska
- Wellcome CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
| | | |
Collapse
|
2445
|
Abstract
Mammalian sex determination is triggered by activation of the mammalian sex-determining gene, Sry, in a spatially and temporally controlled manner. Because reduced or delayed Sry expression results in male-to-female sex reversal, male development is highly dependent on the accurate transcription of Sry. SRY dysregulation is a potential cause of human disorders of sex development (DSD). In addition to changes in DNA sequences, gene expression is regulated by epigenetic mechanisms. Epigenetic regulation ensures spatial and temporal accuracy of the expression of developmentally regulated genes. Epigenetic regulation such as histone tail modification, DNA methylation, chromatin remodeling, and non-coding RNA regulation engages several biological processes in multicellular organisms. In recent years, it has been revealed that various types of epigenetic regulation are involved in accurate gonadal differentiation in mammals. In particular, histone modification plays an integral part in sex determination, which is the first step of gonadal differentiation. Here, we focus on the findings on the epigenetic modifications that regulate Sry expression. Finally, we discuss the role of metabolism that potentially alters the epigenetic state in response to environmental cues.
Collapse
Affiliation(s)
- Shingo Miyawaki
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan; Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Makoto Tachibana
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan; Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| |
Collapse
|
2446
|
Long Noncoding RNAs in the Regulation of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1318795. [PMID: 30911342 PMCID: PMC6398004 DOI: 10.1155/2019/1318795] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/29/2018] [Accepted: 12/18/2018] [Indexed: 12/25/2022]
Abstract
Oxidative stress takes responsibility for various diseases, such as chronic obstructive pulmonary disease (COPD), Alzheimer's disease (AD), and cardiovascular disease; nevertheless, there is still a lack of specific biomarkers for the guidance of diagnosis and treatment of oxidative stress-related diseases. In recent years, growing studies have documented that oxidative stress has crucial correlations with long noncoding RNAs (lncRNAs), which have been identified as important transcriptions involving the process of oxidative stress, inflammation, etc. and been regarded as the potential specific biomarkers. In this paper, we review links between oxidative stress and lncRNAs, highlight lncRNAs that refer to oxidative stress, and conclude that lncRNAs have played a negative or positive role in the oxidation/antioxidant system, which may be helpful for the further investigation of specific biomarkers of oxidative stress-related diseases.
Collapse
|
2447
|
Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease. Noncoding RNA 2019; 5:ncrna5010017. [PMID: 30781588 PMCID: PMC6468922 DOI: 10.3390/ncrna5010017] [Citation(s) in RCA: 395] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
The identification of RNAs that are not translated into proteins was an important breakthrough, defining the diversity of molecules involved in eukaryotic regulation of gene expression. These non-coding RNAs can be divided into two main classes according to their length: short non-coding RNAs, such as microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). The lncRNAs in association with other molecules can coordinate several physiological processes and their dysfunction may impact in several pathologies, including cancer and infectious diseases. They can control the flux of genetic information, such as chromosome structure modulation, transcription, splicing, messenger RNA (mRNA) stability, mRNA availability, and post-translational modifications. Long non-coding RNAs present interaction domains for DNA, mRNAs, miRNAs, and proteins, depending on both sequence and secondary structure. The advent of new generation sequencing has provided evidences of putative lncRNAs existence; however, the analysis of transcriptomes for their functional characterization remains a challenge. Here, we review some important aspects of lncRNA biology, focusing on their role as regulatory elements in gene expression modulation during physiological and disease processes, with implications in host and pathogens physiology, and their role in immune response modulation.
Collapse
|
2448
|
Pyfrom SC, Luo H, Payton JE. PLAIDOH: a novel method for functional prediction of long non-coding RNAs identifies cancer-specific LncRNA activities. BMC Genomics 2019; 20:137. [PMID: 30767760 PMCID: PMC6377765 DOI: 10.1186/s12864-019-5497-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) exhibit remarkable cell-type specificity and disease association. LncRNA's functional versatility includes epigenetic modification, nuclear domain organization, transcriptional control, regulation of RNA splicing and translation, and modulation of protein activity. However, most lncRNAs remain uncharacterized due to a shortage of predictive tools available to guide functional experiments. RESULTS To address this gap for lymphoma-associated lncRNAs identified in our studies, we developed a new computational method, Predicting LncRNA Activity through Integrative Data-driven 'Omics and Heuristics (PLAIDOH), which has several unique features not found in other methods. PLAIDOH integrates transcriptome, subcellular localization, enhancer landscape, genome architecture, chromatin interaction, and RNA-binding (eCLIP) data and generates statistically defined output scores. PLAIDOH's approach identifies and ranks functional connections between individual lncRNA, coding gene, and protein pairs using enhancer, transcript cis-regulatory, and RNA-binding protein interactome scores that predict the relative likelihood of these different lncRNA functions. When applied to 'omics datasets that we collected from lymphoma patients, or to publicly available cancer (TCGA) or ENCODE datasets, PLAIDOH identified and prioritized well-known lncRNA-target gene regulatory pairs (e.g., HOTAIR and HOX genes, PVT1 and MYC), validated hits in multiple lncRNA-targeted CRISPR screens, and lncRNA-protein binding partners (e.g., NEAT1 and NONO). Importantly, PLAIDOH also identified novel putative functional interactions, including one lymphoma-associated lncRNA based on analysis of data from our human lymphoma study. We validated PLAIDOH's predictions for this lncRNA using knock-down and knock-out experiments in lymphoma cell models. CONCLUSIONS Our study demonstrates that we have developed a new method for the prediction and ranking of functional connections between individual lncRNA, coding gene, and protein pairs, which were validated by genetic experiments and comparison to published CRISPR screens. PLAIDOH expedites validation and follow-on mechanistic studies of lncRNAs in any biological system. It is available at https://github.com/sarahpyfrom/PLAIDOH .
Collapse
Affiliation(s)
- Sarah C. Pyfrom
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Hong Luo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Jacqueline E. Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
2449
|
Dangelmaier E, Lazar SB, Lal A. Long noncoding RNAs: p53's secret weapon in the fight against cancer? PLoS Biol 2019; 17:e3000143. [PMID: 30759134 PMCID: PMC6391031 DOI: 10.1371/journal.pbio.3000143] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/26/2019] [Indexed: 12/22/2022] Open
Abstract
p53 regulates the expression of hundreds of genes. Recent surprising observations indicate that no single protein-coding gene controls the tumor suppressor effects of p53. This raises the possibility that a subset of these genes, regulated by a p53-induced long noncoding RNA (lncRNA), could control p53’s tumor suppressor function. We propose molecular mechanisms through which lncRNAs could regulate this subset of genes and hypothesize an exciting, direct role of lncRNAs in p53’s genome stability maintenance function. Exploring these mechanisms could reveal lncRNAs as indispensable mediators of p53 and lay the foundation for understanding how other transcription factors could act via lncRNAs. Transcription factors regulate hundreds of genes, a subset of which could mediate its effects in a given context. This Unsolved Mystery article explores mechanisms by which long noncoding RNAs might regulate such a subset downstream of p53, a well-studied transcription factor and major tumor suppressor.
Collapse
Affiliation(s)
- Emily Dangelmaier
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sarah B. Lazar
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
2450
|
Sun Y, Ma L. New Insights into Long Non-Coding RNA MALAT1 in Cancer and Metastasis. Cancers (Basel) 2019; 11:cancers11020216. [PMID: 30781877 PMCID: PMC6406606 DOI: 10.3390/cancers11020216] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is one of the most abundant, long non-coding RNAs (lncRNAs) in normal tissues. This lncRNA is highly conserved among mammalian species, and based on in vitro results, has been reported to regulate alternative pre-mRNA splicing and gene expression. However, Malat1 knockout mice develop and grow normally, and do not show alterations in alternative splicing. While MALAT1 was originally described as a prognostic marker of lung cancer metastasis, emerging evidence has linked this lncRNA to other cancers, such as breast cancer, prostate cancer, pancreatic cancer, glioma, and leukemia. The role described for MALAT1 is dependent on the cancer types and the experimental model systems. Notably, different or opposite phenotypes resulting from different strategies for inactivating MALAT1 have been observed, which led to distinct models for MALAT1's functions and mechanisms of action in cancer and metastasis. In this review, we reflect on different experimental strategies used to study MALAT1's functions, and discuss the current mechanistic models of this highly abundant and conserved lncRNA.
Collapse
Affiliation(s)
- Yutong Sun
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Li Ma
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|