201
|
Cost or price of sequencing? Implications for economic evaluations in genomic medicine. Genet Med 2021; 23:1833-1835. [PMID: 34113006 DOI: 10.1038/s41436-021-01223-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 11/08/2022] Open
|
202
|
Kobren SN, Baldridge D, Velinder M, Krier JB, LeBlanc K, Esteves C, Pusey BN, Züchner S, Blue E, Lee H, Huang A, Bastarache L, Bican A, Cogan J, Marwaha S, Alkelai A, Murdock DR, Liu P, Wegner DJ, Paul AJ, Sunyaev SR, Kohane IS. Commonalities across computational workflows for uncovering explanatory variants in undiagnosed cases. Genet Med 2021; 23:1075-1085. [PMID: 33580225 PMCID: PMC8187147 DOI: 10.1038/s41436-020-01084-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Genomic sequencing has become an increasingly powerful and relevant tool to be leveraged for the discovery of genetic aberrations underlying rare, Mendelian conditions. Although the computational tools incorporated into diagnostic workflows for this task are continually evolving and improving, we nevertheless sought to investigate commonalities across sequencing processing workflows to reveal consensus and standard practice tools and highlight exploratory analyses where technical and theoretical method improvements would be most impactful. METHODS We collected details regarding the computational approaches used by a genetic testing laboratory and 11 clinical research sites in the United States participating in the Undiagnosed Diseases Network via meetings with bioinformaticians, online survey forms, and analyses of internal protocols. RESULTS We found that tools for processing genomic sequencing data can be grouped into four distinct categories. Whereas well-established practices exist for initial variant calling and quality control steps, there is substantial divergence across sites in later stages for variant prioritization and multimodal data integration, demonstrating a diversity of approaches for solving the most mysterious undiagnosed cases. CONCLUSION The largest differences across diagnostic workflows suggest that advances in structural variant detection, noncoding variant interpretation, and integration of additional biomedical data may be especially promising for solving chronically undiagnosed cases.
Collapse
Affiliation(s)
| | - Dustin Baldridge
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Matt Velinder
- Center for Genomic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Joel B Krier
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kimberly LeBlanc
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Cecilia Esteves
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Barbara N Pusey
- National Human Genome Research Institute (NHGRI) at the National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stephan Züchner
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami Health System, Miami, FL, USA
| | - Elizabeth Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Hane Lee
- Department of Human Genetics, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Alden Huang
- Department of Human Genetics, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna Bican
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joy Cogan
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shruti Marwaha
- Stanford Center for Undiagnosed Diseases, Stanford, CA, USA
| | - Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York City, NY, USA
| | - David R Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Daniel J Wegner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander J Paul
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Shamil R Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Isaac S Kohane
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
203
|
Krude H, Mundlos S, Øien NC, Opitz R, Schuelke M. What can go wrong in the non-coding genome and how to interpret whole genome sequencing data. MED GENET-BERLIN 2021; 33:121-131. [PMID: 38836035 PMCID: PMC11007630 DOI: 10.1515/medgen-2021-2071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/24/2021] [Indexed: 06/06/2024]
Abstract
Whole exome sequencing discovers causative mutations in less than 50 % of rare disease patients, suggesting the presence of additional mutations in the non-coding genome. So far, non-coding mutations have been identified in less than 0.2 % of individuals with genetic diseases listed in the ClinVar database and exhibit highly diverse molecular mechanisms. In contrast to our capability to sequence the whole genome, our ability to discover and functionally confirm such non-coding mutations is lagging behind severely. We discuss the problems and present examples of confirmed mutations in deep intronic sequences, non-coding triplet repeats, enhancers, and larger structural variants and highlight their proposed disease mechanisms. Finally, we discuss the type of data that would be required to establish non-coding mutation detection in routine diagnostics.
Collapse
Affiliation(s)
- Heiko Krude
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Mundlos
- Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nancy Christine Øien
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robert Opitz
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus Schuelke
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
204
|
Zampieri S, Cattarossi S, Pavan E, Barbato A, Fiumara A, Peruzzo P, Scarpa M, Ciana G, Dardis A. Accurate Molecular Diagnosis of Gaucher Disease Using Clinical Exome Sequencing as a First-Tier Test. Int J Mol Sci 2021; 22:ijms22115538. [PMID: 34073924 PMCID: PMC8197298 DOI: 10.3390/ijms22115538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Gaucher disease (GD) is an autosomal recessive lysosomal disorder due to beta-glucosidase gene (GBA) mutations. The molecular diagnosis of GD is complicated by the presence of recombinant alleles originating from a highly homologous pseudogene. Clinical exome sequencing (CES) is a rapid genetic approach for identifying disease-causing mutations. However, copy number variation and recombination events are poorly detected, and further investigations are required to avoid mis-genotyping. The aim of this work was to set-up an integrated strategy for GD patients genotyping using CES as a first-line test. Eight patients diagnosed with GD were analyzed by CES. Five patients were fully genotyped, while three were revealed to be homozygous for mutations that were not confirmed in the parents. Therefore, MLPA (multiplex ligation-dependent probe amplification) and specific long-range PCR were performed, and two recombinant alleles, one of them novel, and one large deletion were identified. Furthermore, an MLPA assay performed in one family resulted in the identification of an additional novel mutation (p.M124V) in a relative, in trans with the known p.N409S mutation. In conclusion, even though CES has become extensively used in clinical practice, our study emphasizes the importance of a comprehensive molecular strategy to provide proper GBA genotyping and genetic counseling.
Collapse
Affiliation(s)
- Stefania Zampieri
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy
| | - Silvia Cattarossi
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy
| | - Eleonora Pavan
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy
| | - Antonio Barbato
- Department of Clinical Medicine and Surgery, Federico II University Hospital, 80131 Naples, Italy
| | - Agata Fiumara
- Pediatric Unit, Regional Referral Center for Inherited Metabolic Disease, University of Catania, 95123 Catania, Italy
| | - Paolo Peruzzo
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy
| | - Maurizio Scarpa
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy
| | - Giovanni Ciana
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
205
|
Mannucci I, Dang NDP, Huber H, Murry JB, Abramson J, Althoff T, Banka S, Baynam G, Bearden D, Beleza-Meireles A, Benke PJ, Berland S, Bierhals T, Bilan F, Bindoff LA, Braathen GJ, Busk ØL, Chenbhanich J, Denecke J, Escobar LF, Estes C, Fleischer J, Groepper D, Haaxma CA, Hempel M, Holler-Managan Y, Houge G, Jackson A, Kellogg L, Keren B, Kiraly-Borri C, Kraus C, Kubisch C, Le Guyader G, Ljungblad UW, Brenman LM, Martinez-Agosto JA, Might M, Miller DT, Minks KQ, Moghaddam B, Nava C, Nelson SF, Parant JM, Prescott T, Rajabi F, Randrianaivo H, Reiter SF, Schuurs-Hoeijmakers J, Shieh PB, Slavotinek A, Smithson S, Stegmann APA, Tomczak K, Tveten K, Wang J, Whitlock JH, Zweier C, McWalter K, Juusola J, Quintero-Rivera F, Fischer U, Yeo NC, Kreienkamp HJ, Lessel D. Genotype-phenotype correlations and novel molecular insights into the DHX30-associated neurodevelopmental disorders. Genome Med 2021; 13:90. [PMID: 34020708 PMCID: PMC8140440 DOI: 10.1186/s13073-021-00900-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/28/2021] [Indexed: 12/27/2022] Open
Abstract
Background We aimed to define the clinical and variant spectrum and to provide novel molecular insights into the DHX30-associated neurodevelopmental disorder. Methods Clinical and genetic data from affected individuals were collected through Facebook-based family support group, GeneMatcher, and our network of collaborators. We investigated the impact of novel missense variants with respect to ATPase and helicase activity, stress granule (SG) formation, global translation, and their effect on embryonic development in zebrafish. SG formation was additionally analyzed in CRISPR/Cas9-mediated DHX30-deficient HEK293T and zebrafish models, along with in vivo behavioral assays. Results We identified 25 previously unreported individuals, ten of whom carry novel variants, two of which are recurrent, and provide evidence of gonadal mosaicism in one family. All 19 individuals harboring heterozygous missense variants within helicase core motifs (HCMs) have global developmental delay, intellectual disability, severe speech impairment, and gait abnormalities. These variants impair the ATPase and helicase activity of DHX30, trigger SG formation, interfere with global translation, and cause developmental defects in a zebrafish model. Notably, 4 individuals harboring heterozygous variants resulting either in haploinsufficiency or truncated proteins presented with a milder clinical course, similar to an individual harboring a de novo mosaic HCM missense variant. Functionally, we established DHX30 as an ATP-dependent RNA helicase and as an evolutionary conserved factor in SG assembly. Based on the clinical course, the variant location, and type we establish two distinct clinical subtypes. DHX30 loss-of-function variants cause a milder phenotype whereas a severe phenotype is caused by HCM missense variants that, in addition to the loss of ATPase and helicase activity, lead to a detrimental gain-of-function with respect to SG formation. Behavioral characterization of dhx30-deficient zebrafish revealed altered sleep-wake activity and social interaction, partially resembling the human phenotype. Conclusions Our study highlights the usefulness of social media to define novel Mendelian disorders and exemplifies how functional analyses accompanied by clinical and genetic findings can define clinically distinct subtypes for ultra-rare disorders. Such approaches require close interdisciplinary collaboration between families/legal representatives of the affected individuals, clinicians, molecular genetics diagnostic laboratories, and research laboratories. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-021-00900-3.
Collapse
Affiliation(s)
- Ilaria Mannucci
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Nghi D P Dang
- Department of Pharmacology and Toxicology, University of Alabama, Birmingham, USA
| | - Hannes Huber
- Department of Biochemistry, Theodor Boveri Institute, Biocenter of the University of Würzburg, 97070, Würzburg, Germany
| | - Jaclyn B Murry
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,UCLA Clinical Genomics Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeff Abramson
- Department of Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Thorsten Althoff
- Department of Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK.,Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gareth Baynam
- Faculty of Medicine and Health Sciences, University of Western Australia, Perth, WA, Australia.,Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Perth, Australia.,Telethon Kids Institute, Perth, Australia
| | - David Bearden
- Division of Child Neurology, Department of Neurology, University of Rochester School of Medicine, Rochester, NY, USA
| | - Ana Beleza-Meireles
- Clinical Genetics Department, University Hospitals Bristol and Weston, Bristol, UK
| | - Paul J Benke
- Joe DiMaggio Children's Hospital, Hollywood, FL, USA
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, 5021, Bergen, Norway
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Frederic Bilan
- Department of Medical Genetics, Centre Hospitalier Universitaire de Poitiers, Poitiers, France.,Laboratoire de Neurosciences Cliniques et Expérimentales-INSERM U1084, Université de Poitiers, Poitiers, France
| | - Laurence A Bindoff
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | | - Øyvind L Busk
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Jirat Chenbhanich
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Eppendorf, 20246, Hamburg, Germany
| | - Luis F Escobar
- Peyton Manning Children's Hospital, Ascension Health, Indianapolis, IN, USA
| | - Caroline Estes
- Peyton Manning Children's Hospital, Ascension Health, Indianapolis, IN, USA
| | - Julie Fleischer
- Department of Pediatrics, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Daniel Groepper
- Department of Pediatrics, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Charlotte A Haaxma
- Department of Pediatric Neurology, Amalia Children's Hospital and Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Yolanda Holler-Managan
- Division of Neurology, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital, 5021, Bergen, Norway
| | - Adam Jackson
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK.,Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Boris Keren
- Département de Génétique, Hôpital La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Gwenael Le Guyader
- Department of Medical Genetics, Centre Hospitalier Universitaire de Poitiers, Poitiers, France.,Laboratoire de Neurosciences Cliniques et Expérimentales-INSERM U1084, Université de Poitiers, Poitiers, France
| | - Ulf W Ljungblad
- Department of Pediatrics, Vestfold Hospital, 3116, Tønsberg, Norway
| | | | - Julian A Martinez-Agosto
- UCLA Clinical Genomics Center, University of California Los Angeles, Los Angeles, CA, USA.,Semel Institute of Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.,Department of Pediatrics, Division of Medical Genetics at David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Human Genetics at David Geffen School of Medicine University of California Los Angeles, Los Angeles, CA, USA
| | - Matthew Might
- Department of Medicine, Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, 510 20th St S, Birmingham, AL, 35210, USA
| | - David T Miller
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Kelly Q Minks
- Division of Child Neurology, Department of Neurology, University of Rochester School of Medicine, Rochester, NY, USA
| | | | - Caroline Nava
- Département de Génétique, Hôpital La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Stanley F Nelson
- UCLA Clinical Genomics Center, University of California Los Angeles, Los Angeles, CA, USA.,Department of Human Genetics at David Geffen School of Medicine University of California Los Angeles, Los Angeles, CA, USA.,Center for Duchenne Muscular Dystrophy, University of California Los Angeles, Los Angeles, CA, USA
| | - John M Parant
- Department of Pharmacology and Toxicology, University of Alabama, Birmingham, USA
| | - Trine Prescott
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Farrah Rajabi
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Hanitra Randrianaivo
- UF de Génétique Médicale, GHSR, CHU de La Réunion, Saint Pierre, La Réunion, France
| | - Simone F Reiter
- Department of Medical Genetics, Haukeland University Hospital, 5021, Bergen, Norway
| | | | - Perry B Shieh
- Department of Neurology at David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Anne Slavotinek
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Sarah Smithson
- Clinical Genetics Department, University Hospitals Bristol and Weston, Bristol, UK
| | - Alexander P A Stegmann
- Department of Human Genetics, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Kinga Tomczak
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Jun Wang
- Department of Pharmacology and Toxicology, University of Alabama, Birmingham, USA
| | - Jordan H Whitlock
- Department of Medicine, Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, 510 20th St S, Birmingham, AL, 35210, USA
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.,Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | | | | | - Fabiola Quintero-Rivera
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,UCLA Clinical Genomics Center, University of California Los Angeles, Los Angeles, CA, USA.,Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri Institute, Biocenter of the University of Würzburg, 97070, Würzburg, Germany
| | - Nan Cher Yeo
- Department of Pharmacology and Toxicology, University of Alabama, Birmingham, USA.
| | - Hans-Jürgen Kreienkamp
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
206
|
Abstract
Our understanding of genetic disease(s) has increased exponentially since the completion of human genome sequencing and the development of numerous techniques to detect genetic variants. These techniques have not only allowed us to diagnose genetic disease, but in so doing, also provide increased understanding of the pathogenesis of these diseases to aid in developing appropriate therapeutic options. Additionally, the advent of next-generation or massively parallel sequencing (NGS/MPS) is increasingly being used in the clinical setting, as it can detect a number of abnormalities from point mutations to chromosomal rearrangements as well as aberrations within the transcriptome. In this article, we will discuss the use of multiple techniques that are used in genetic diagnosis. © 2020 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Rashmi S Goswami
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Sunnybrook Research Institute, Biological Sciences, Odette Cancer Research Program, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Shuko Harada
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
207
|
Daich Varela M, Ullah E, Yousaf S, Brooks BP, Hufnagel RB, Huryn LA. PDE6C: Novel Mutations, Atypical Phenotype, and Differences Among Children and Adults. Invest Ophthalmol Vis Sci 2021; 61:1. [PMID: 33001157 PMCID: PMC7545085 DOI: 10.1167/iovs.61.12.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Purpose Genetic variation in PDE6C is associated with achromatopsia and cone dystrophy, with only a few reports of cone-rod dystrophy in the literature. We describe two pediatric and two adult patients with PDE6C related cone and cone-rod dystrophy and the first longitudinal data of a pediatric patient with PDE6C-related cone dystrophy. Methods This cohort of four patients underwent comprehensive ophthalmologic evaluation at the National Eye Institute's Ophthalmic Genetics clinic, including visual field testing, retinal imaging and electroretinogram (ERG). Next-generation sequencing-based genetic testing was performed and subsequent analysis of the variants was done through three-dimensional protein models generated by Phyre2 and Chimera. Results All cases shared decreased best-corrected visual acuity and poor color discrimination. Three of the four patients had a cone-rod dystrophy, presenting with an ERG showing decreased amplitude on both photopic and scotopic waveforms and a mild to moderately constricted visual field. One of the children was diagnosed with cone dystrophy, having a preserved peripheral field. The children had none to minor structural retinal changes, whereas the adults had clear macular dystrophy. Conclusions PDE6C-related cone-rod dystrophy consists of a severe phenotype characterized by early-onset nystagmus, decreased best-corrected visual acuity, poor color discrimination, progressive constriction of the visual field, and night blindness. Our work contributes with valuable information toward understanding the visual prognosis and allelic heterogeneity of PDE6C-related cone and cone-rod dystrophy.
Collapse
Affiliation(s)
- Malena Daich Varela
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ehsan Ullah
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sairah Yousaf
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Laryssa A Huryn
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
208
|
Population Genomic Screening for Genetic Etiologies of Neurodevelopmental/Psychiatric Disorders Demonstrates Personal Utility and Positive Participant Responses. J Pers Med 2021; 11:jpm11050365. [PMID: 34062946 PMCID: PMC8147408 DOI: 10.3390/jpm11050365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Genomic variants that cause neurodevelopmental/psychiatric disorders (NPD) are relatively prevalent and highly penetrant. This study aimed to understand adults’ immediate responses to receiving NPD-related results to inform inclusion in population-based genomic screening programs. Nine recurrent, pathogenic copy number variants (CNVs) were identified from research exome data, clinically confirmed, and disclosed to adult participants of the Geisinger MyCode Community Health Initiative DiscovEHR cohort by experienced genetic counselors. A subset of in-person genetic counseling sessions (n = 27) were audio-recorded, transcribed, and coded using a grounded theory approach. Participant reactions were overwhelmingly positive and indicated that an NPD genetic etiology was highly valuable and personally useful. Participants frequently reported learning disabilities or other NPD that were not documented in their electronic health records and noted difficulties obtaining support for NPD needs. Most intended to share their genetic result with family members and health care providers and were interested in how their result could improve their healthcare. This study indicates that results from population-based NPD genomic screening can provide personal value for adults with NPD, were viewed positively by participants, and could improve clinical outcomes by informing symptom monitoring for NPD and co-morbidities, promoting improved health behaviors, and enhancing psychotherapeutic approaches.
Collapse
|
209
|
Rehder C, Bean LJH, Bick D, Chao E, Chung W, Das S, O'Daniel J, Rehm H, Shashi V, Vincent LM. Next-generation sequencing for constitutional variants in the clinical laboratory, 2021 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021; 23:1399-1415. [PMID: 33927380 DOI: 10.1038/s41436-021-01139-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/17/2022] Open
Abstract
Next-generation sequencing (NGS) technologies are now established in clinical laboratories as a primary testing modality in genomic medicine. These technologies have reduced the cost of large-scale sequencing by several orders of magnitude. It is now cost-effective to analyze an individual with disease-targeted gene panels, exome sequencing, or genome sequencing to assist in the diagnosis of a wide array of clinical scenarios. While clinical validation and use of NGS in many settings is established, there are continuing challenges as technologies and the associated informatics evolve. To assist clinical laboratories with the validation of NGS methods and platforms, the ongoing monitoring of NGS testing to ensure quality results, and the interpretation and reporting of variants found using these technologies, the American College of Medical Genetics and Genomics (ACMG) has developed the following technical standards.
Collapse
Affiliation(s)
| | - Lora J H Bean
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - David Bick
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Elizabeth Chao
- Division of Genetics and Genomics, Department of Pediatrics, University of California, Irvine, CA, USA
| | - Wendy Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | - Soma Das
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Julianne O'Daniel
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Heidi Rehm
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vandana Shashi
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Lisa M Vincent
- Division of Pathology & Laboratory Medicine, Children's National Health System, Washington, DC, USA.,Departments of Pathology and Pediatrics, George Washington University, Washington, DC, USA
| | | |
Collapse
|
210
|
Molina-Ramírez LP, Kyle C, Ellingford JM, Wright R, Taylor A, Bhaskar SS, Campbell C, Jackson H, Fairclough A, Rousseau A, Burghel GJ, Dutton L, Banka S, Briggs TA, Clayton-Smith J, Douzgou S, Jones EA, Kingston HM, Kerr B, Ealing J, Somarathi S, Chandler KE, Stuart HM, Burkitt-Wright EM, Newman WG, Bruce IA, Black GC, Gokhale D. Personalised virtual gene panels reduce interpretation workload and maintain diagnostic rates of proband-only clinical exome sequencing for rare disorders. J Med Genet 2021; 59:393-398. [PMID: 33879512 PMCID: PMC8961756 DOI: 10.1136/jmedgenet-2020-107303] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/17/2021] [Accepted: 02/14/2021] [Indexed: 01/20/2023]
Abstract
Purpose The increased adoption of genomic strategies in the clinic makes it imperative for diagnostic laboratories to improve the efficiency of variant interpretation. Clinical exome sequencing (CES) is becoming a valuable diagnostic tool, capable of meeting the diagnostic demand imposed by the vast array of different rare monogenic disorders. We have assessed a clinician-led and phenotype-based approach for virtual gene panel generation for analysis of targeted CES in patients with rare disease in a single institution. Methods Retrospective survey of 400 consecutive cases presumed by clinicians to have rare monogenic disorders, referred on singleton basis for targeted CES. We evaluated diagnostic yield and variant workload to characterise the usefulness of a clinician-led approach for generation of virtual gene panels that can incorporate up to three different phenotype-driven gene selection methods. Results Abnormalities of the nervous system (54.5%), including intellectual disability, head and neck (19%), skeletal system (16%), ear (15%) and eye (15%) were the most common clinical features reported in referrals. Combined phenotype-driven strategies for virtual gene panel generation were used in 57% of cases. On average, 7.3 variants (median=5) per case were retained for clinical interpretation. The overall diagnostic rate of proband-only CES using personalised phenotype-driven virtual gene panels was 24%. Conclusions Our results show that personalised virtual gene panels are a cost-effective approach for variant analysis of CES, maintaining diagnostic yield and optimising the use of resources for clinical genomic sequencing in the clinic.
Collapse
Affiliation(s)
- Leslie Patricia Molina-Ramírez
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Claire Kyle
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Jamie M Ellingford
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Ronnie Wright
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Algy Taylor
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Sanjeev S Bhaskar
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Christopher Campbell
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Harriet Jackson
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Adele Fairclough
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Abigail Rousseau
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - George J Burghel
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Laura Dutton
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Siddharth Banka
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Tracy A Briggs
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Jill Clayton-Smith
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Sofia Douzgou
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Elizabeth A Jones
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Helen M Kingston
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Bronwyn Kerr
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - John Ealing
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK.,Department of Neurology, Salford Royal NHS Foundation Trust, Salford, Salford, UK
| | - Suresh Somarathi
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Kate E Chandler
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Helen M Stuart
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Emma Mm Burkitt-Wright
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - William G Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Iain A Bruce
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Paediatric ENT Department, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Graeme C Black
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK .,North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - David Gokhale
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| |
Collapse
|
211
|
Barp A, Mosca L, Sansone VA. Facilitations and Hurdles of Genetic Testing in Neuromuscular Disorders. Diagnostics (Basel) 2021; 11:diagnostics11040701. [PMID: 33919863 PMCID: PMC8070835 DOI: 10.3390/diagnostics11040701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Neuromuscular disorders (NMDs) comprise a heterogeneous group of disorders that affect about one in every thousand individuals worldwide. The vast majority of NMDs has a genetic cause, with about 600 genes already identified. Application of genetic testing in NMDs can be useful for several reasons: correct diagnostic definition of a proband, extensive familial counselling to identify subjects at risk, and prenatal diagnosis to prevent the recurrence of the disease; furthermore, identification of specific genetic mutations still remains mandatory in some cases for clinical trial enrollment where new gene therapies are now approaching. Even though genetic analysis is catching on in the neuromuscular field, pitfalls and hurdles still remain and they should be taken into account by clinicians, as for example the use of next generation sequencing (NGS) where many single nucleotide variants of “unknown significance” can emerge, complicating the correct interpretation of genotype-phenotype relationship. Finally, when all efforts in terms of molecular analysis have been carried on, a portion of patients affected by NMDs still remain “not genetically defined”. In the present review we analyze the evolution of genetic techniques, from Sanger sequencing to NGS, and we discuss “facilitations and hurdles” of genetic testing which must always be balanced by clinicians, in order to ensure a correct diagnostic definition, but taking always into account the benefit that the patient could obtain especially in terms of “therapeutic offer”.
Collapse
Affiliation(s)
- Andrea Barp
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, Piazza Ospedale Maggiore 3, 20162 Milano, Italy;
- Correspondence:
| | - Lorena Mosca
- Medical Genetics Unit, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162 Milano, Italy;
| | - Valeria Ada Sansone
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, Piazza Ospedale Maggiore 3, 20162 Milano, Italy;
| |
Collapse
|
212
|
Abstract
Neuromuscular disorders (NMDs) comprise a heterogeneous group of disorders that affect about one in every thousand individuals worldwide. The vast majority of NMDs has a genetic cause, with about 600 genes already identified. Application of genetic testing in NMDs can be useful for several reasons: correct diagnostic definition of a proband, extensive familial counselling to identify subjects at risk, and prenatal diagnosis to prevent the recurrence of the disease; furthermore, identification of specific genetic mutations still remains mandatory in some cases for clinical trial enrollment where new gene therapies are now approaching. Even though genetic analysis is catching on in the neuromuscular field, pitfalls and hurdles still remain and they should be taken into account by clinicians, as for example the use of next generation sequencing (NGS) where many single nucleotide variants of "unknown significance" can emerge, complicating the correct interpretation of genotype-phenotype relationship. Finally, when all efforts in terms of molecular analysis have been carried on, a portion of patients affected by NMDs still remain "not genetically defined". In the present review we analyze the evolution of genetic techniques, from Sanger sequencing to NGS, and we discuss "facilitations and hurdles" of genetic testing which must always be balanced by clinicians, in order to ensure a correct diagnostic definition, but taking always into account the benefit that the patient could obtain especially in terms of "therapeutic offer".
Collapse
Affiliation(s)
- Andrea Barp
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, Piazza Ospedale Maggiore 3, 20162 Milano, Italy
| | - Lorena Mosca
- Medical Genetics Unit, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162 Milano, Italy
| | - Valeria Ada Sansone
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, Piazza Ospedale Maggiore 3, 20162 Milano, Italy
| |
Collapse
|
213
|
The Utility of Whole Exome Sequencing in Diagnosing Pediatric Neurological Disorders. Balkan J Med Genet 2021; 23:17-24. [PMID: 33816068 PMCID: PMC8009565 DOI: 10.2478/bjmg-2020-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Pediatric neurological disorders have a wide spectrum of clinical presentations and can be challenging to diagnose. Whole exome sequencing (WES) is increasingly becoming an integral diagnostic tool in medicine. It is cost-effective and has high diagnostic yield, especially in consanguineous populations. This study aims to review WES results and its value in diagnosing neurological disorders. A retrospective chart review was performed for WES results between the period of January 2018 to November 2019. Whole exome sequencing was requested for children with unexplained neurological signs and symptoms such as epilepsy, developmental delay, visual impairment, spasticity, hypotonia and magnetic resonance imaging (MRI) brain changes. It was conducted for children in a pediatric neurology clinic of a tertiary center at Jeddah, Saudi Arabia. Twenty-six children with undiagnosed neurological conditions were identified and underwent WES diagnosis. Nineteen patients (73.0%) of the cohort were diagnosed with pathogenic variants, likely pathogenic variants or variants of unknown significance (VUS). Consanguinity was positive in 18 families of the cohort (69.0%). Seven patients showed homozygous mutations. Five patients had heterozygous mutations. There were six patients with VUS and six patients had negative WES results. Whole exome sequencing showed a high diagnostic rate in this group of children with variable neurological disorders.
Collapse
|
214
|
Gannamani R, van der Veen S, van Egmond M, de Koning TJ, Tijssen MAJ. Challenges in Clinicogenetic Correlations: One Phenotype - Many Genes. Mov Disord Clin Pract 2021; 8:311-321. [PMID: 33816658 PMCID: PMC8015914 DOI: 10.1002/mdc3.13163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/11/2022] Open
Abstract
Background In the field of movement disorders, what you see (phenotype) is seldom what you get (genotype). Whereas 1 phenotype was previously associated to 1 gene, the advent of next‐generation sequencing (NGS) has facilitated an exponential increase in disease‐causing genes and genotype–phenotype correlations, and the “one‐phenotype‐many‐genes” paradigm has become prominent. Objectives To highlight the “one‐phenotype‐many‐genes” paradigm by discussing the main challenges, perspectives on how to address them, and future directions. Methods We performed a scoping review of the various aspects involved in identifying the underlying molecular cause of a movement disorder phenotype. Results The notable challenges are (1) the lack of gold standards, overlap in clinical spectrum of different movement disorders, and variability in the interpretation of classification systems; (2) selecting which patients benefit from genetic tests and the choice of genetic testing; (3) problems in the variant interpretation guidelines; (4) the filtering of variants associated with disease; and (5) the lack of standardized, complete, and up‐to‐date gene lists. Perspectives to address these include (1) deep phenotyping and genotype–phenotype integration, (2) adherence to phenotype‐specific diagnostic algorithms, (3) implementation of current and complementary bioinformatic tools, (4) a clinical‐molecular diagnosis through close collaboration between clinicians and genetic laboratories, and (5) ongoing curation of gene lists and periodic reanalysis of genetic sequencing data. Conclusions Despite the rapidly emerging possibilities of NGS, there are still many steps to take to improve the genetic diagnostic yield. Future directions, including post‐NGS phenotyping and cohort analyses enriched by genotype–phenotype integration and gene networks, ought to be pursued to accelerate identification of disease‐causing genes and further improve our understanding of disease biology.
Collapse
Affiliation(s)
- Rahul Gannamani
- Department of Neurology University of Groningen, University Medical Centre Groningen Groningen The Netherlands.,Department of Genetics University of Groningen, University Medical Centre Groningen Groningen The Netherlands.,Expertise Centre Movement Disorders Groningen University Medical Centre Groningen Groningen The Netherlands
| | - Sterre van der Veen
- Department of Neurology University of Groningen, University Medical Centre Groningen Groningen The Netherlands.,Expertise Centre Movement Disorders Groningen University Medical Centre Groningen Groningen The Netherlands
| | - Martje van Egmond
- Department of Neurology University of Groningen, University Medical Centre Groningen Groningen The Netherlands.,Expertise Centre Movement Disorders Groningen University Medical Centre Groningen Groningen The Netherlands
| | - Tom J de Koning
- Department of Genetics University of Groningen, University Medical Centre Groningen Groningen The Netherlands.,Expertise Centre Movement Disorders Groningen University Medical Centre Groningen Groningen The Netherlands.,Pediatrics, Department of Clinical Sciences Lund University Lund Sweden
| | - Marina A J Tijssen
- Department of Neurology University of Groningen, University Medical Centre Groningen Groningen The Netherlands.,Expertise Centre Movement Disorders Groningen University Medical Centre Groningen Groningen The Netherlands
| |
Collapse
|
215
|
Vinkšel M, Writzl K, Maver A, Peterlin B. Improving diagnostics of rare genetic diseases with NGS approaches. J Community Genet 2021; 12:247-256. [PMID: 33452619 PMCID: PMC8141085 DOI: 10.1007/s12687-020-00500-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
According to a rough estimate, one in fifteen people worldwide is affected by a rare disease. Rare diseases are therefore common in clinical practice; however, timely diagnosis of rare diseases is still challenging. Introduction of novel methods based on next-generation sequencing (NGS) technology offers a successful diagnosis of genetically heterogeneous disorders, even in case of unclear clinical diagnostic hypothesis. However, the application of novel technology differs among the centres and health systems significantly. Our goal is to discuss the impact of the implementation of NGS in the diagnosis of rare diseases and present advantages along with challenges of diagnostic approach. Systematic implementation of NGS in health systems can significantly improve the access of patients with rare diseases to diagnosis and reduce the dependence of national health systems for cross-border collaboration.
Collapse
Affiliation(s)
- Mateja Vinkšel
- Clinical Institute of Genomic Medicine, University medical Centre Ljubljana, Zaloška cesta 7, Ljubljana, Slovenia
| | - Karin Writzl
- Clinical Institute of Genomic Medicine, University medical Centre Ljubljana, Zaloška cesta 7, Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University medical Centre Ljubljana, Zaloška cesta 7, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University medical Centre Ljubljana, Zaloška cesta 7, Ljubljana, Slovenia.
| |
Collapse
|
216
|
Sukenik-Halevy R, Ruhrman-Shahar N, Orenstein N, Gonzaga-Jauregui C, Shuldiner AR, Magal N, Hagari O, Azulay N, Lidzbarsky GA, Bazak L, Basel-Salmon L. The diagnostic efficacy of exome data analysis using fixed neurodevelopmental gene lists: Implications for prenatal setting. Prenat Diagn 2021; 41:701-707. [PMID: 33686681 DOI: 10.1002/pd.5929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/16/2021] [Accepted: 02/28/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Laboratories performing prenatal exome sequencing (ES) frequently limit analysis to predetermined gene lists. We used a diagnostic postnatal ES cohort to assess how many of the genes diagnosed are not included in a number of select fixed lists used for prenatal diagnosis. METHODS Of 601 postnatal ES tests, pathogenic variants related to neurodevelopmental disorders were detected in 138 probands. We evaluated if causative genes were present in the following: (1) Developmental Disorders Genotype-Phenotype database list, (2) a commercial laboratory list for prenatal ES, (3) the PanelApp fetal anomalies panel, and (4) a published list used for prenatal diagnosis by ES (Prenatal Assessment of Genomes and Exomes study). RESULTS The percentages of cases where the diagnosed gene was not included in the selected four lists were; 11.6%, 17.24%, 23.2%, and 10.9%, respectively. In 13/138 (9.4%) cases, the causative gene was not included in any of the lists; in 4/13 (∼30%) cases noninclusion was explained by a relatively recent discovery of gene-phenotype association. CONCLUSIONS A significant number of genes related to neurocognitive phenotypes are not included in some of the lists used for prenatal ES data interpretation. These are not only genes related to recently discovered disorders, but also genes with well-established gene-phenotype.
Collapse
Affiliation(s)
- Rivka Sukenik-Halevy
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noa Ruhrman-Shahar
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Naama Orenstein
- Pediatric Genetics Clinic, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | | | | | - Nurit Magal
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Ofir Hagari
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Noy Azulay
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Gabriel A Lidzbarsky
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Lily Bazak
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Lina Basel-Salmon
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Genetics Clinic, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel
| |
Collapse
|
217
|
Najafi K, Mehrjoo Z, Ardalani F, Ghaderi-Sohi S, Kariminejad A, Kariminejad R, Najmabadi H. Identifying the causes of recurrent pregnancy loss in consanguineous couples using whole exome sequencing on the products of miscarriage with no chromosomal abnormalities. Sci Rep 2021; 11:6952. [PMID: 33772059 PMCID: PMC7997959 DOI: 10.1038/s41598-021-86309-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/08/2021] [Indexed: 12/26/2022] Open
Abstract
Recurrent miscarriages occur in about 5% of couples trying to conceive. In the past decade, the products of miscarriage have been studied using array comparative genomic hybridization (a-CGH). Within the last decade, an association has been proposed between miscarriages and single or multigenic changes, introducing the possibility of detecting other underlying genetic factors by whole exome sequencing (WES). We performed a-CGH on the products of miscarriage from 1625 Iranian women in consanguineous or non-consanguineous marriages. WES was carried out on DNA extracted from the products of miscarriage from 20 Iranian women in consanguineous marriages and with earlier normal genetic testing. Using a-CGH, a statistically significant difference was detected between the frequency of imbalances in related vs. unrelated couples (P < 0.001). WES positively identified relevant alterations in 11 genes in 65% of cases. In 45% of cases, we were able to classify these variants as pathogenic or likely pathogenic, according to the American College of Medical Genetics and Genomics guidelines, while in the remainder, the variants were classified as of unknown significance. To the best of our knowledge, our study is the first to employ WES on the products of miscarriage in consanguineous families with recurrent miscarriages regardless of the presence of fetal abnormalities. We propose that WES can be helpful in making a diagnosis of lethal disorders in consanguineous couples after prior genetic testing.
Collapse
Affiliation(s)
- Kimia Najafi
- Genetic Research Center, National Reference Laboratory for Prenatal Diagnosis, University of Social Welfare and Rehabilitation Sciences, Koodakyar Avenue, Daneshjoo Blvd, Evin, Tehran, 1985713834, Iran
- Kariminejad-Najmabadi Pathology and Genetics Center, #2, West Side of Sanat Sq.-Metro Station, Shahrak Gharb, Tehran, 1466713713, Iran
| | - Zohreh Mehrjoo
- Genetic Research Center, National Reference Laboratory for Prenatal Diagnosis, University of Social Welfare and Rehabilitation Sciences, Koodakyar Avenue, Daneshjoo Blvd, Evin, Tehran, 1985713834, Iran
| | - Fariba Ardalani
- Genetic Research Center, National Reference Laboratory for Prenatal Diagnosis, University of Social Welfare and Rehabilitation Sciences, Koodakyar Avenue, Daneshjoo Blvd, Evin, Tehran, 1985713834, Iran
| | - Siavash Ghaderi-Sohi
- Kariminejad-Najmabadi Pathology and Genetics Center, #2, West Side of Sanat Sq.-Metro Station, Shahrak Gharb, Tehran, 1466713713, Iran
| | - Ariana Kariminejad
- Kariminejad-Najmabadi Pathology and Genetics Center, #2, West Side of Sanat Sq.-Metro Station, Shahrak Gharb, Tehran, 1466713713, Iran
| | - Roxana Kariminejad
- Kariminejad-Najmabadi Pathology and Genetics Center, #2, West Side of Sanat Sq.-Metro Station, Shahrak Gharb, Tehran, 1466713713, Iran
| | - Hossein Najmabadi
- Genetic Research Center, National Reference Laboratory for Prenatal Diagnosis, University of Social Welfare and Rehabilitation Sciences, Koodakyar Avenue, Daneshjoo Blvd, Evin, Tehran, 1985713834, Iran.
- Kariminejad-Najmabadi Pathology and Genetics Center, #2, West Side of Sanat Sq.-Metro Station, Shahrak Gharb, Tehran, 1466713713, Iran.
| |
Collapse
|
218
|
Fridman H, Bormans C, Einhorn M, Au D, Bormans A, Porat Y, Sanchez LF, Manning B, Levy-Lahad E, Behar DM. Performance comparison: exome sequencing as a single test replacing Sanger sequencing. Mol Genet Genomics 2021; 296:653-663. [PMID: 33694043 DOI: 10.1007/s00438-021-01772-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/02/2021] [Indexed: 01/23/2023]
Abstract
Next generation sequencing tests are used routinely as first-choice tests in the clinic. However, systematic performance comparing the results of exome sequencing as a single test replacing Sanger sequencing of targeted gene(s) is still lacking. Performance comparison data are critically important for clinical case management. In this study, we compared Sanger-sequencing results of 258 genes to those obtained from next generation sequencing (NGS) using two exome-sequencing enrichment kits: Agilent-SureSelectQXT and Illumina-Nextera. Sequencing was performed on leukocytes and buccal-derived DNA from a single individual, and all 258 genes were sequenced a total of 11 times (using different sequencing methods and DNA sources). Sanger sequencing was completed for all exons, including flanking ± 8 bp regions. For the 258 genes, NGS mean coverage was > 20 × for > 98 and > 91% of the regions targeted by SureSelect and Nextera, respectively. Overall, 449 variants were identified in at least one experiment, and 407/449 (90.6%) were detected by all. Of the 42 discordant variants, 23 were determined as true calls, summing-up to a truth set of 430 variants. Sensitivity of true-variant detection was 99% for Sanger sequencing and 97-100% for the NGS experiments. Mean false-positive rates were 3.7E-6 for Sanger sequencing, 2.5E-6 for SureSelect-NGS and 5.2E-6 for Nextera-NGS. Our findings suggest a high overall concordance between Sanger sequencing and NGS performances. Both methods demonstrated false-positive and false-negative calls. High clinical suspicion for a specific diagnosis should, therefore, override negative results of either Sanger sequencing or NGS.
Collapse
Affiliation(s)
- Hila Fridman
- Medical Genetics Institute, Shaare Zedek Medical Center, 91031, Jerusalem, Israel. .,Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| | | | - Moshe Einhorn
- Data Analysis Group, 6688218, Genoox, Tel Aviv, Israel
| | - Daniel Au
- Genomic Research Center, Gene By Gene, Houston, TX, 77008, USA
| | - Arjan Bormans
- Genomic Research Center, Gene By Gene, Houston, TX, 77008, USA
| | - Yuval Porat
- Data Analysis Group, 6688218, Genoox, Tel Aviv, Israel
| | | | - Brent Manning
- Genomic Research Center, Gene By Gene, Houston, TX, 77008, USA
| | - Ephrat Levy-Lahad
- Medical Genetics Institute, Shaare Zedek Medical Center, 91031, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Doron M Behar
- Genomic Research Center, Gene By Gene, Houston, TX, 77008, USA
| |
Collapse
|
219
|
Sanger sequencing is no longer always necessary based on a single-center validation of 1109 NGS variants in 825 clinical exomes. Sci Rep 2021; 11:5697. [PMID: 33707547 PMCID: PMC7952542 DOI: 10.1038/s41598-021-85182-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/22/2021] [Indexed: 01/20/2023] Open
Abstract
Despite the improved accuracy of next-generation sequencing (NGS), it is widely accepted that variants need to be validated using Sanger sequencing before reporting. Validation of all NGS variants considerably increases the turnaround time and costs of clinical diagnosis. We comprehensively assessed this need in 1109 variants from 825 clinical exomes, the largest sample set to date assessed using Illumina chemistry reported. With a concordance of 100%, we conclude that Sanger sequencing can be very useful as an internal quality control, but not so much as a verification method for high-quality single-nucleotide and small insertion/deletions variants. Laboratories might validate and establish their own thresholds before discontinuing Sanger confirmation studies. We also expand and validate 23 copy number variations detected by exome sequencing in 20 samples, observing a concordance of 95.65% (22/23).
Collapse
|
220
|
Chenbhanich J, Hu Y, Hetts S, Cooke D, Dowd C, Devine P, Russell B, Kang SHL, Chang VY, Abla AA, Cornett P, Yeh I, Lee H, Martinez-Agosto JA, Frieden IJ, Shieh JT. Segmental overgrowth and aneurysms due to mosaic PDGFRB p.(Tyr562Cys). Am J Med Genet A 2021; 185:1430-1436. [PMID: 33683022 DOI: 10.1002/ajmg.a.62126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/18/2020] [Accepted: 01/14/2021] [Indexed: 01/19/2023]
Abstract
Activating variants in the platelet-derived growth factor receptor β gene (PDGFRB) have been associated with Kosaki overgrowth syndrome, infantile myofibromatosis, and Penttinen premature aging syndrome. A recently described phenotype with fusiform aneurysm has been associated with mosaic PDGFRB c.1685A > G p.(Tyr562Cys) variant. Few reports however have examined the vascular phenotypes and mosaic effects of PDGFRB variants. We describe clinical characteristics of two patients with a recurrent mosaic PDGFRB p.(Tyr562Cys) variant identified via next-generation sequencing-based genetic testing. We observed intracranial fusiform aneurysm in one patient and found an additional eight patients with aneurysms and phenotypes associated with PDGFRB-activating variants through literature search. The conditions caused by PDGFRB-activating variants share overlapping features including overgrowth, premature aged skin, and vascular malformations including aneurysms. Aneurysms are progressive and can result in morbidities and mortalities in the absence of successful intervention. Germline and/or somatic testing for PDGFRB gene should be obtained when PDGFRB activating variant-related phenotypes are present. Whole-body imaging of the arterial tree and echocardiography are recommended after diagnosis. Repeating the imaging study within a 6- to 12-month period after detection is reasonable. Finally, further evaluation for the effectiveness and safety profile of kinase inhibitors in this patient population is warranted.
Collapse
Affiliation(s)
- Jirat Chenbhanich
- Division of Medical Genetics, Department of Pediatrics, University of California, San Francisco, California, USA
| | - Yan Hu
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Steven Hetts
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Daniel Cooke
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Christopher Dowd
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Patrick Devine
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, California, USA.,Institute of Human Genetics, University of California, San Francisco, California, USA
| | | | - Bianca Russell
- Department of Pediatrics, Division of Medical Genetics, University of California Los Angeles, Los Angeles, California, USA
| | - Sung Hae L Kang
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Vivian Y Chang
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of California Los Angeles, Los Angeles, California, USA
| | - Adib A Abla
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Patricia Cornett
- Department of Hematology and Oncology, University of California, San Francisco, California, USA
| | - Iwei Yeh
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, California, USA.,Department of Dermatology, University of California, San Francisco, California, USA
| | - Hane Lee
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA.,Department of Human Genetics, University of California Los Angeles, Los Angeles, California, USA
| | - Julian A Martinez-Agosto
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.,Department of Human Genetics, University of California Los Angeles, Los Angeles, California, USA
| | - Ilona J Frieden
- Department of Dermatology, University of California, San Francisco, California, USA
| | - Joseph T Shieh
- Division of Medical Genetics, Department of Pediatrics, University of California, San Francisco, California, USA.,Institute of Human Genetics, University of California, San Francisco, California, USA
| |
Collapse
|
221
|
Schneider L, Cui F, Tripathi A. Isolation of target DNA using synergistic magnetic bead transport and electrokinetic flow. BIOMICROFLUIDICS 2021; 15:024104. [PMID: 33763161 PMCID: PMC7972524 DOI: 10.1063/5.0045307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/07/2021] [Indexed: 05/13/2023]
Abstract
The advent and dissemination of next-generation sequencing (NGS) technologies such as Illumina's sequencing platforms has brought forth vast reductions in the cost, time, and technical difficulties associated with DNA and RNA sequencing. Despite this trend, the workflow required to generate nucleic acid libraries for sequencing remains time-consuming and laborious. The following research proposes a method for simplifying and streamlining this process by replacing the manual washing steps of the common magnetic bead-based cleanup with a novel microfluidic method by integrating magnetic separation and electrokinetic purification (MSEP). Requiring no pumps, pipette mixing, vortexing, or centrifugation, MSEP relies on selective adsorption of target DNA onto the magnetic beads with subsequent transport of beads through a microchannel undergoing an antiparallel electroosmotic flow. The synergetic flow conditions were optimized using a simple electrohydrodynamic flow model. This work demonstrates that MSEP is as effective in eliminating adapter-dimers from the post-ligation library mix as the manual method while also greatly reducing the hands-on time and amount of pipetting required. Although MSEP has been applied specifically toward NGS library preparation at this time, it has the potential to be adapted and employed for any bead-based separation scheme, namely, solid phase extraction, sequence-specific hybridization, and immunoprecipitation on a microscale.
Collapse
Affiliation(s)
- Lindsay Schneider
- Center for Biomedical Engineering, School of Engineering, Brown University, 182 Hope Street, Providence, Rhode Island 02912, USA
| | - Francis Cui
- Center for Biomedical Engineering, School of Engineering, Brown University, 182 Hope Street, Providence, Rhode Island 02912, USA
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, 182 Hope Street, Providence, Rhode Island 02912, USA
| |
Collapse
|
222
|
Butz H, Blair J, Patócs A. Molecular genetic testing strategies used in diagnostic flow for hereditary endocrine tumour syndromes. Endocrine 2021; 71:641-652. [PMID: 33570725 PMCID: PMC8016766 DOI: 10.1007/s12020-021-02636-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/18/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Although current guidelines prefer the use of targeted testing or small-scale gene panels for identification of genetic susceptibility of hereditary endocrine tumour syndromes, next generation sequencing based strategies have been widely introduced into every day clinical practice. The application of next generation sequencing allows rapid testing of multiple genes in a cost effective manner. Increasing knowledge about these techniques and the demand from health care providers and society, shift the molecular genetic testing towards using high-throughput approaches. PURPOSE In this expert opinion, the authors consider the molecular diagnostic workflow step by step, evaluating options and challenges of gathering family information, pre- and post-test genetic counselling, technical and bioinformatical analysis related issues and difficulties in clinical interpretation focusing on molecular genetic testing of hereditary endocrine tumour syndromes. RESULT AND CONCLUSION Considering all these factors, a diagnostic genetic workflow is also proposed for selection of the best approach for testing of patients with hereditary genetic tumour syndromes in order to minimalize difficult interpretation, unwanted patient anxiety, unnecessary medical interventions and cost. There are potential benefits of utilizing high throughput approaches however, important limitations have to be considered and should discussed towards the clinicians and patients.
Collapse
Affiliation(s)
- Henriett Butz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
- Hereditary Cancers Research Group, Hungarian Academy of Sciences-Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Jo Blair
- Alder Hey Children's Hospital-NHS Foundation Trust, Liverpool, United Kingdom
| | - Attila Patócs
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.
- Hereditary Cancers Research Group, Hungarian Academy of Sciences-Semmelweis University, Budapest, Hungary.
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.
- Semmelweis University, Budapest, Hungary.
| |
Collapse
|
223
|
Abstract
Neurodevelopmental disorders are the most prevalent chronic medical conditions encountered in pediatric primary care. In addition to identifying appropriate descriptive diagnoses and guiding families to evidence-based treatments and supports, comprehensive care for individuals with neurodevelopmental disorders includes a search for an underlying etiologic diagnosis, primarily through a genetic evaluation. Identification of an underlying genetic etiology can inform prognosis, clarify recurrence risk, shape clinical management, and direct patients and families to condition-specific resources and supports. Here we review the utility of genetic testing in patients with neurodevelopmental disorders and describe the three major testing modalities and their yields - chromosomal microarray, exome sequencing (with/without copy number variant calling), and FMR1 CGG repeat analysis for fragile X syndrome. Given the diagnostic yield of genetic testing and the potential for clinical and personal utility, there is consensus that genetic testing should be offered to all patients with global developmental delay, intellectual disability, and/or autism spectrum disorder. Despite this recommendation, data suggest that a minority of children with autism spectrum disorder and intellectual disability have undergone genetic testing. To address this gap in care, we describe a structured but flexible approach to facilitate integration of genetic testing into clinical practice across pediatric specialties and discuss future considerations for genetic testing in neurodevelopmental disorders to prepare pediatric providers to care for patients with such diagnoses today and tomorrow.
Collapse
Affiliation(s)
- Juliann M. Savatt
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, United States
| | | |
Collapse
|
224
|
Roessler HI, Knoers NVAM, van Haelst MM, van Haaften G. Drug Repurposing for Rare Diseases. Trends Pharmacol Sci 2021; 42:255-267. [PMID: 33563480 DOI: 10.1016/j.tips.2021.01.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
Currently, there are about 7000 identified rare diseases, together affecting 10% of the population. However, fewer than 6% of all rare diseases have an approved treatment option, highlighting their tremendous unmet needs in drug development. The process of repurposing drugs for new indications, compared with the development of novel orphan drugs, is a time-saving and cost-efficient method resulting in higher success rates, which can therefore drastically reduce the risk of drug development for rare diseases. Although drug repurposing is not novel, new strategies have been developed in recent years to do it in a systematic and rational way. Here, we review applied methodologies, recent accomplished progress, and the challenges associated in drug repurposing for rare diseases.
Collapse
Affiliation(s)
- Helen I Roessler
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nine V A M Knoers
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Mieke M van Haelst
- Department of Clinical Genetics, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Clinical Genetics, Amsterdam University Medical Center, Location VUMC, VU University Amsterdam, Amsterdam, The Netherlands
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
225
|
Abstract
Primary immunodeficiency diseases (PIDs) are a rapidly growing, heterogeneous group of genetically determined diseases characterized by defects in the immune system. While individually rare, collectively PIDs affect between 1/1,000 and 1/5,000 people worldwide. The clinical manifestations of PIDs vary from susceptibility to infections to autoimmunity and bone marrow failure. Our understanding of the human immune response has advanced by investigation and discovery of genetic mechanisms of PIDs. Studying patients with isolated genetic variants in proteins that participate in complex signaling pathways has led to an enhanced understanding of host response to infection, and mechanisms of autoimmunity and autoinflammation. Identifying genetic mechanisms of PIDs not only furthers immunological knowledge but also benefits patients by dictating targeted therapies or hematopoietic stem cell transplantation. Here, we highlight several of these areas in the field of primary immunodeficiency, with a focus on the most recent advances.
Collapse
Affiliation(s)
- Erica G Schmitt
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine in St. Louis, Missouri 63110, USA; ,
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine in St. Louis, Missouri 63110, USA; ,
| |
Collapse
|
226
|
Schoch K, Esteves C, Bican A, Spillmann R, Cope H, McConkie-Rosell A, Walley N, Fernandez L, Kohler JN, Bonner D, Reuter C, Stong N, Mulvihill JJ, Novacic D, Wolfe L, Abdelbaki A, Toro C, Tifft C, Malicdan M, Gahl W, Liu P, Newman J, Goldstein DB, Hom J, Sampson J, Wheeler MT, Cogan J, Bernstein JA, Adams DR, McCray AT, Shashi V. Clinical sites of the Undiagnosed Diseases Network: unique contributions to genomic medicine and science. Genet Med 2021; 23:259-271. [PMID: 33093671 PMCID: PMC7867619 DOI: 10.1038/s41436-020-00984-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The NIH Undiagnosed Diseases Network (UDN) evaluates participants with disorders that have defied diagnosis, applying personalized clinical and genomic evaluations and innovative research. The clinical sites of the UDN are essential to advancing the UDN mission; this study assesses their contributions relative to standard clinical practices. METHODS We analyzed retrospective data from four UDN clinical sites, from July 2015 to September 2019, for diagnoses, new disease gene discoveries and the underlying investigative methods. RESULTS Of 791 evaluated individuals, 231 received 240 diagnoses and 17 new disease-gene associations were recognized. Straightforward diagnoses on UDN exome and genome sequencing occurred in 35% (84/240). We considered these tractable in standard clinical practice, although genome sequencing is not yet widely available clinically. The majority (156/240, 65%) required additional UDN-driven investigations, including 90 diagnoses that occurred after prior nondiagnostic exome sequencing and 45 diagnoses (19%) that were nongenetic. The UDN-driven investigations included complementary/supplementary phenotyping, innovative analyses of genomic variants, and collaborative science for functional assays and animal modeling. CONCLUSION Investigations driven by the clinical sites identified diagnostic and research paradigms that surpass standard diagnostic processes. The new diagnoses, disease gene discoveries, and delineation of novel disorders represent a model for genomic medicine and science.
Collapse
Affiliation(s)
- Kelly Schoch
- Division of Medical Genetics, Department of Pediatrics, Duke Health, Durham, NC, USA
| | - Cecilia Esteves
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Anna Bican
- Vanderbilt Center for Undiagnosed Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Division of Medical Genetics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca Spillmann
- Division of Medical Genetics, Department of Pediatrics, Duke Health, Durham, NC, USA
| | - Heidi Cope
- Division of Medical Genetics, Department of Pediatrics, Duke Health, Durham, NC, USA
| | - Allyn McConkie-Rosell
- Division of Medical Genetics, Department of Pediatrics, Duke Health, Durham, NC, USA
| | - Nicole Walley
- Division of Medical Genetics, Department of Pediatrics, Duke Health, Durham, NC, USA
| | - Liliana Fernandez
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
| | - Jennefer N Kohler
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
| | - Devon Bonner
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
| | - Chloe Reuter
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - John J Mulvihill
- Division of Genomic Medicine, National Human Genome Research Institute, Bethesda, MD, USA
- Undiagnosed Diseases Program, Common Fund, NIH Office of the Director, NIH, Bethesda, MD, USA
| | - Donna Novacic
- Undiagnosed Diseases Program, Common Fund, NIH Office of the Director, NIH, Bethesda, MD, USA
| | - Lynne Wolfe
- Undiagnosed Diseases Program, Common Fund, NIH Office of the Director, NIH, Bethesda, MD, USA
| | - Ayat Abdelbaki
- Undiagnosed Diseases Program, Common Fund, NIH Office of the Director, NIH, Bethesda, MD, USA
| | - Camilo Toro
- Undiagnosed Diseases Program, Common Fund, NIH Office of the Director, NIH, Bethesda, MD, USA
| | - Cyndi Tifft
- Undiagnosed Diseases Program, Common Fund, NIH Office of the Director, NIH, Bethesda, MD, USA
- Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, USA
| | - May Malicdan
- Undiagnosed Diseases Program, Common Fund, NIH Office of the Director, NIH, Bethesda, MD, USA
- Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - William Gahl
- Undiagnosed Diseases Program, Common Fund, NIH Office of the Director, NIH, Bethesda, MD, USA
- Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - John Newman
- Vanderbilt Center for Undiagnosed Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Jason Hom
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Jacinda Sampson
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
- Department of Neurology, Stanford School of Medicine, Stanford, CA, USA
| | - Matthew T Wheeler
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Joy Cogan
- Vanderbilt Center for Undiagnosed Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Division of Medical Genetics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan A Bernstein
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA
| | - David R Adams
- Undiagnosed Diseases Program, Common Fund, NIH Office of the Director, NIH, Bethesda, MD, USA
- Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, USA
| | - Alexa T McCray
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke Health, Durham, NC, USA.
| |
Collapse
|
227
|
Dempsey E, Haworth A, Ive L, Dubis R, Savage H, Serra E, Kenny J, Elmslie F, Greco E, Thilaganathan B, Mansour S, Homfray T, Drury S. A report on the impact of rapid prenatal exome sequencing on the clinical management of 52 ongoing pregnancies: a retrospective review. BJOG 2021; 128:1012-1019. [PMID: 32981126 DOI: 10.1111/1471-0528.16546] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Studies have shown that prenatal exome sequencing (PES) improves diagnostic yield in cases of fetal structural malformation. We have retrospectively analysed PES cases from two of the largest fetal medicine centres in the UK to determine the impact of results on management of a pregnancy. DESIGN A retrospective review of clinical case notes. SETTING Two tertiary fetal medicine centres. POPULATION Pregnancies with fetal structural abnormalities referred to clinical genetics via a multidisciplinary team. METHODS We retrospectively reviewed the notes of all patients who had undergone PES. DNA samples were obtained via chorionic villus sampling or amniocentesis. Variants were filtered using patient-specific panels and interpreted using American College of Medical Genetics guidelines. RESULTS A molecular diagnosis was made in 42% (18/43) ongoing pregnancies; of this group, there was a significant management implication in 44% (8/18). A positive result contributed to the decision to terminate a pregnancy in 16% (7/43) of cases. A negative result had a significant impact on management in two cases by affirming the decision to continue pregnancy. CONCLUSIONS We demonstrate that the results of PES can inform pregnancy management. Challenges include variant interpretation with limited phenotype information. These results emphasise the importance of the MDT and collecting phenotype and variant data. As this testing is soon to be widely available, we should look to move beyond diagnostic yield as a measure of the value of PES. TWEETABLE ABSTRACT Prenatal exome sequencing can aid decision-making in pregnancy management; review ahead of routine implementation in NHS.
Collapse
Affiliation(s)
- E Dempsey
- South West Thames Regional Genetics Service, London, UK.,School of Biological and Molecular Sciences, St George's University of London, London, UK
| | - A Haworth
- Congenica Ltd, Biodata Innovation Centre, Wellcome Trust Genome Campus, Hinxton, UK
| | - L Ive
- Congenica Ltd, Biodata Innovation Centre, Wellcome Trust Genome Campus, Hinxton, UK
| | - R Dubis
- Congenica Ltd, Biodata Innovation Centre, Wellcome Trust Genome Campus, Hinxton, UK
| | - H Savage
- Congenica Ltd, Biodata Innovation Centre, Wellcome Trust Genome Campus, Hinxton, UK
| | - E Serra
- Congenica Ltd, Biodata Innovation Centre, Wellcome Trust Genome Campus, Hinxton, UK
| | - J Kenny
- South West Thames Regional Genetics Service, London, UK
| | - F Elmslie
- South West Thames Regional Genetics Service, London, UK
| | - E Greco
- Harris Birthright Centre, King's College London, London, UK.,Barts Health NHS Trust, London, UK
| | - B Thilaganathan
- Fetal Medicine Centre, St George's Hospital, London, UK.,Vascular Biology Unit, St George's University of London, London, UK
| | - S Mansour
- South West Thames Regional Genetics Service, London, UK.,School of Biological and Molecular Sciences, St George's University of London, London, UK
| | - T Homfray
- South West Thames Regional Genetics Service, London, UK
| | - S Drury
- Congenica Ltd, Biodata Innovation Centre, Wellcome Trust Genome Campus, Hinxton, UK
| |
Collapse
|
228
|
Mis EK, Sega AG, Signer RH, Cartwright T, Ji W, Martinez-Agosto JA, Nelson SF, Palmer CGS, Lee H, Mitzelfelt T, Konstantino M, Jeffries L, Khokha MK, Marco E, Martin MG, Lakhani SA. Expansion of NEUROD2 phenotypes to include developmental delay without seizures. Am J Med Genet A 2021; 185:1076-1080. [PMID: 33438828 DOI: 10.1002/ajmg.a.62064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/29/2020] [Accepted: 12/09/2020] [Indexed: 01/23/2023]
Abstract
De novo heterozygous variants in the brain-specific transcription factor Neuronal Differentiation Factor 2 (NEUROD2) have been recently associated with early-onset epileptic encephalopathy and developmental delay. Here, we report an adolescent with developmental delay without seizures who was found to have a novel de novo heterozygous NEUROD2 missense variant, p.(Leu163Pro). Functional testing using an in vivo assay of neuronal differentiation in Xenopus laevis tadpoles demonstrated that the patient variant of NEUROD2 displays minimal protein activity, strongly suggesting a loss of function effect. In contrast, a second rare NEUROD2 variant, p.(Ala235Thr), identified in an adolescent with developmental delay but lacking parental studies for inheritance, showed normal in vivo NEUROD2 activity. We thus provide clinical, genetic, and functional evidence that NEUROD2 variants can lead to developmental delay without accompanying early-onset seizures, and demonstrate how functional testing can complement genetic data when determining variant pathogenicity.
Collapse
Affiliation(s)
- Emily K Mis
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Annalisa G Sega
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Rebecca H Signer
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | | | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Julian A Martinez-Agosto
- Deparment of Pediatrics, University of California Los Angeles, Los Angeles, California, USA.,Department of Human Genetics, University of California Los Angeles, Los Angeles, California, USA
| | - Stanley F Nelson
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA.,Deparment of Pediatrics, University of California Los Angeles, Los Angeles, California, USA.,Department of Human Genetics, University of California Los Angeles, Los Angeles, California, USA.,Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Christina G S Palmer
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA.,Department of Human Genetics, University of California Los Angeles, Los Angeles, California, USA.,Institute for Society and Genetics, University of California Los Angeles, Los Angeles, California, USA
| | - Hane Lee
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, USA.,Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Thomas Mitzelfelt
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Monica Konstantino
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Lauren Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Elysa Marco
- Cortica, San Rafael, California, USA.,Pediatric Brain Center, University of California San Francisco, San Francisco, California, USA
| | - Martin G Martin
- Deparment of Pediatrics, University of California Los Angeles, Los Angeles, California, USA
| | - Saquib A Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
229
|
Chen Y, Yan W, Xie Z, Guo W, Lu D, Lv Z, Zhang X. Comparative analysis of target gene exon sequencing by cognitive technology using a next generation sequencing platform in patients with lung cancer. Mol Clin Oncol 2021; 14:36. [PMID: 33414916 PMCID: PMC7783722 DOI: 10.3892/mco.2020.2198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 12/09/2020] [Indexed: 11/06/2022] Open
Abstract
Next generation sequencing (NGS) technology is an increasingly important clinical tool for therapeutic decision-making. However, interpretation of NGS data presents challenges at the point of care, due to limitations in understanding the clinical importance of gene variants and efficiently translating results into actionable information for the clinician. The present study compared two approaches for annotating and reporting actionable genes and gene mutations from tumor samples: The traditional approach of manual curation, annotation and reporting using an experienced molecular tumor bioinformationist; and a cloud-based cognitive technology, with the goal to detect gene mutations of potential significance in Chinese patients with lung cancer. Data from 285 gene-targeted exon sequencing previously conducted on 115 patient tissue samples between 2014 and 2016 and subsequently manually annotated and evaluated by the Guangdong Lung Cancer Institute (GLCI) research team were analyzed by the Watson for Genomics (WfG) cognitive genomics technology. A comparative analysis of the annotation results of the two methods was conducted to identify quantitative and qualitative differences in the mutations generated. The complete congruence rate of annotation results between WfG analysis and the GLCI bioinformatician was 43.48%. In 65 (56.52%) samples, WfG analysis identified and interpreted, on average, 1.54 more mutation sites in each sample than the manual GLCI review. These mutation sites were located on 27 genes, including EP300, ARID1A, STK11 and DNMT3A. Mutations in the EP300 gene were most prevalent, and present in 30.77% samples. The Tumor Mutation Burden (TMB) interpreted by WfG analysis (1.82) was significantly higher than the TMB (0.73) interpreted by GLCI review. Compared with manual curation by a bioinformatician, WfG analysis provided comprehensive insights and additional genetic alterations to inform clinical therapeutic strategies for patients with lung cancer. These findings suggest the valuable role of cognitive computing to increase efficiency in the comprehensive detection and interpretation of genetic alterations which may inform opportunities for targeted cancer therapies.
Collapse
Affiliation(s)
- Yu Chen
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510080, P.R. China.,Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Wenqing Yan
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510080, P.R. China.,Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Zhi Xie
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510080, P.R. China.,Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Weibang Guo
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510080, P.R. China.,Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Danxia Lu
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510080, P.R. China.,Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Zhiyi Lv
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510080, P.R. China.,Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Xuchao Zhang
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510080, P.R. China.,Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
230
|
Bhattacharya S, Barseghyan H, Délot EC, Vilain E. nanotatoR: a tool for enhanced annotation of genomic structural variants. BMC Genomics 2021; 22:10. [PMID: 33407088 PMCID: PMC7789800 DOI: 10.1186/s12864-020-07182-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/22/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Whole genome sequencing is effective at identification of small variants, but because it is based on short reads, assessment of structural variants (SVs) is limited. The advent of Optical Genome Mapping (OGM), which utilizes long fluorescently labeled DNA molecules for de novo genome assembly and SV calling, has allowed for increased sensitivity and specificity in SV detection. However, compared to small variant annotation tools, OGM-based SV annotation software has seen little development, and currently available SV annotation tools do not provide sufficient information for determination of variant pathogenicity. RESULTS We developed an R-based package, nanotatoR, which provides comprehensive annotation as a tool for SV classification. nanotatoR uses both external (DGV; DECIPHER; Bionano Genomics BNDB) and internal (user-defined) databases to estimate SV frequency. Human genome reference GRCh37/38-based BED files are used to annotate SVs with overlapping, upstream, and downstream genes. Overlap percentages and distances for nearest genes are calculated and can be used for filtration. A primary gene list is extracted from public databases based on the patient's phenotype and used to filter genes overlapping SVs, providing the analyst with an easy way to prioritize variants. If available, expression of overlapping or nearby genes of interest is extracted (e.g. from an RNA-Seq dataset, allowing the user to assess the effects of SVs on the transcriptome). Most quality-control filtration parameters are customizable by the user. The output is given in an Excel file format, subdivided into multiple sheets based on SV type and inheritance pattern (INDELs, inversions, translocations, de novo, etc.). nanotatoR passed all quality and run time criteria of Bioconductor, where it was accepted in the April 2019 release. We evaluated nanotatoR's annotation capabilities using publicly available reference datasets: the singleton sample NA12878, mapped with two types of enzyme labeling, and the NA24143 trio. nanotatoR was also able to accurately filter the known pathogenic variants in a cohort of patients with Duchenne Muscular Dystrophy for which we had previously demonstrated the diagnostic ability of OGM. CONCLUSIONS The extensive annotation enables users to rapidly identify potential pathogenic SVs, a critical step toward use of OGM in the clinical setting.
Collapse
Affiliation(s)
- Surajit Bhattacharya
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Hayk Barseghyan
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, 20010, USA.,Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20052, USA.,Bionano Genomics Inc, San Diego, CA, 92121, USA
| | - Emmanuèle C Délot
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, 20010, USA.,Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20052, USA
| | - Eric Vilain
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, 20010, USA. .,Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
231
|
Fontes Marx M, Ataguba JE, de Vries J, Wonkam A. Systematic Review of the Economic Evaluation of Returning Incidental Findings in Genomic Research. Front Public Health 2021; 9:697381. [PMID: 34277554 PMCID: PMC8281014 DOI: 10.3389/fpubh.2021.697381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
Objectives: Discussions regarding who and how incidental findings (IFs) should be returned and the ethics behind returning IFs have increased dramatically over the years. However, information on the cost and benefits of returning IFs to patients remains scanty. Design: This study systematically reviews the economic evaluation of returning IFs in genomic sequencing. We searched for published articles on the cost-effectiveness, cost-benefit, and cost-utility of IFs in Medline, Scopus, PubMed, and Google Scholar. Results: We found six published articles that met the eligibility criteria of this study. Two articles used cost analysis only, one used cost-benefit analysis only, two used both cost analysis and cost-effectiveness, and one used both cost-benefit analysis and cost-utility to describe the cost of returning IFs in genomic sequencing. Conclusion: While individuals value the IF results and are willing to pay for them, the cost of returning IFs depends on the primary health condition of the patient. Although patients were willing to pay, there was no clear evidence that returning IFs might be cost-effective. More rigorous economic evaluation studies of IFs are needed to determine whether or not the cost of returning IFs is beneficial to the patient.
Collapse
Affiliation(s)
- Mayara Fontes Marx
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - John E Ataguba
- Health Economics Unit, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jantina de Vries
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ambroise Wonkam
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute to Infectious Disease and Molecular Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
232
|
Bhatia NS, Lim JY, Bonnard C, Kuan JL, Brett M, Wei H, Cham B, Chin H, Bosso-Lefevre C, Dharuman P, Escande-Beillard N, Devasia AG, Goh CYJ, Kam S, Liew WKM, Liew WK, Lin G, Jain K, Ng AYJ, Subramanian D, Xie M, Tan YM, Tawari NR, Tiang Z, Ting TW, Tohari S, Tong CK, Lezhava A, Ng SB, Law HY, Venkatesh B, Tomar S, Sethi R, Tan G, Shanmugasundaram A, Goh DLM, Lai PS, Lai A, Tan ES, Ng I, Reversades B, Tan EC, Foo R, Jamuar SS. Singapore Undiagnosed Disease Program: Genomic Analysis aids Diagnosis and Clinical Management. Arch Dis Child 2021; 106:31-37. [PMID: 32819910 DOI: 10.1136/archdischild-2020-319180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Use next-generation sequencing (NGS) technology to improve our diagnostic yield in patients with suspected genetic disorders in the Asian setting. DESIGN A diagnostic study conducted between 2014 and 2019 (and ongoing) under the Singapore Undiagnosed Disease Program. Date of last analysis was 1 July 2019. SETTING Inpatient and outpatient genetics service at two large academic centres in Singapore. PATIENTS Inclusion criteria: patients suspected of genetic disorders, based on abnormal antenatal ultrasound, multiple congenital anomalies and developmental delay. EXCLUSION CRITERIA patients with known genetic disorders, either after clinical assessment or investigations (such as karyotype or chromosomal microarray). INTERVENTIONS Use of NGS technology-whole exome sequencing (WES) or whole genome sequencing (WGS). MAIN OUTCOME MEASURES (1) Diagnostic yield by sequencing type, (2) diagnostic yield by phenotypical categories, (3) reduction in time to diagnosis and (4) change in clinical outcomes and management. RESULTS We demonstrate a 37.8% diagnostic yield for WES (n=172) and a 33.3% yield for WGS (n=24). The yield was higher when sequencing was conducted on trios (40.2%), as well as for certain phenotypes (neuromuscular, 54%, and skeletal dysplasia, 50%). In addition to aiding genetic counselling in 100% of the families, a positive result led to a change in treatment in 27% of patients. CONCLUSION Genomic sequencing is an effective method for diagnosing rare disease or previous 'undiagnosed' disease. The clinical utility of WES/WGS is seen in the shortened time to diagnosis and the discovery of novel variants. Additionally, reaching a diagnosis significantly impacts families and leads to alteration in management of these patients.
Collapse
Affiliation(s)
- Neha S Bhatia
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore.,Division of Genetics and Metabolism, Tufts Medical Center and the Floating Hospital for Children, Boston, Massachusetts, USA
| | - Jiin Ying Lim
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore
| | | | - Jyn-Ling Kuan
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore.,SingHealth Duke-NUS Institute of Precision Medicine, Singapore
| | - Maggie Brett
- KK Research Centre, KK Women's and Children's Hospital, Singapore
| | - Heming Wei
- KK Research Centre, KK Women's and Children's Hospital, Singapore
| | - Breana Cham
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore
| | - Huilin Chin
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Celia Bosso-Lefevre
- Institute of Medical Biology, A*STAR, Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | - Sylvia Kam
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore.,SingHealth Duke-NUS Institute of Precision Medicine, Singapore
| | - Wendy Kein-Meng Liew
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore.,SBCC Baby and Child Clinic, Singapore
| | - Woei Kang Liew
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore.,SBCC Baby and Child Clinic, Singapore
| | - Grace Lin
- KK Research Centre, KK Women's and Children's Hospital, Singapore
| | - Kanika Jain
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore.,POLARIS, Genome Institute of Singapore, Singapore
| | | | | | - Min Xie
- POLARIS, Genome Institute of Singapore, Singapore
| | - Yuen-Ming Tan
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore.,DNA Diagnostic and Research Laboratory, KK Women's and Children's Hospital, Singapore
| | | | - Zenia Tiang
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Genome Institute of Singapore, A*STAR, Singapore
| | - Teck Wah Ting
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore.,Paediatrics Academic Clinical Programme, Duke-NUS Medical School, Singapore.,SingHealth Duke-NUS Genomic Medicine Centre, Singapore
| | - Sumanty Tohari
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | | | | | - Sarah B Ng
- POLARIS, Genome Institute of Singapore, Singapore
| | - Hai Yang Law
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore.,DNA Diagnostic and Research Laboratory, KK Women's and Children's Hospital, Singapore.,Paediatrics Academic Clinical Programme, Duke-NUS Medical School, Singapore
| | - Byrappa Venkatesh
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Swati Tomar
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Raman Sethi
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Grace Tan
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Arthi Shanmugasundaram
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Denise Li-Meng Goh
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore.,Genome Institute of Singapore, A*STAR, Singapore
| | - Angeline Lai
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore.,Paediatrics Academic Clinical Programme, Duke-NUS Medical School, Singapore.,SingHealth Duke-NUS Genomic Medicine Centre, Singapore
| | - Ee Shien Tan
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore.,Paediatrics Academic Clinical Programme, Duke-NUS Medical School, Singapore.,SingHealth Duke-NUS Genomic Medicine Centre, Singapore
| | - Ivy Ng
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore.,Paediatrics Academic Clinical Programme, Duke-NUS Medical School, Singapore.,SingHealth Duke-NUS Genomic Medicine Centre, Singapore
| | - Bruno Reversades
- Institute of Medical Biology, A*STAR, Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,POLARIS, Genome Institute of Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Ene Choo Tan
- KK Research Centre, KK Women's and Children's Hospital, Singapore.,Paediatrics Academic Clinical Programme, Duke-NUS Medical School, Singapore
| | - Roger Foo
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,POLARIS, Genome Institute of Singapore, Singapore.,Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Genome Institute of Singapore, A*STAR, Singapore.,National University Heart Centre, National University Health System, Singapore
| | - Saumya Shekhar Jamuar
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore .,SingHealth Duke-NUS Institute of Precision Medicine, Singapore.,Paediatrics Academic Clinical Programme, Duke-NUS Medical School, Singapore.,SingHealth Duke-NUS Genomic Medicine Centre, Singapore
| | | |
Collapse
|
233
|
Ki CS. Recent Advances in the Clinical Application of Next-Generation Sequencing. Pediatr Gastroenterol Hepatol Nutr 2021; 24:1-6. [PMID: 33505888 PMCID: PMC7813577 DOI: 10.5223/pghn.2021.24.1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Next-generation sequencing (NGS) technologies have changed the process of genetic diagnosis from a gene-by-gene approach to syndrome-based diagnostic gene panel sequencing (DPS), diagnostic exome sequencing (DES), and diagnostic genome sequencing (DGS). A priori information on the causative genes that might underlie a genetic condition is a prerequisite for genetic diagnosis before conducting clinical NGS tests. Theoretically, DPS, DES, and DGS do not require any information on specific candidate genes. Therefore, clinical NGS tests sometimes detect disease-related pathogenic variants in genes underlying different conditions from the initial diagnosis. These clinical NGS tests are expensive, but they can be a cost-effective approach for the rapid diagnosis of rare disorders with genetic heterogeneity, such as the glycogen storage disease, familial intrahepatic cholestasis, lysosomal storage disease, and primary immunodeficiency. In addition, DES or DGS may find novel genes that that were previously not linked to human diseases.
Collapse
|
234
|
Dyment DA, O'Donnell-Luria A, Agrawal PB, Coban Akdemir Z, Aleck KA, Antaki D, Al Sharhan H, Au PYB, Aydin H, Beggs AH, Bilguvar K, Boerwinkle E, Brand H, Brownstein CA, Buyske S, Chodirker B, Choi J, Chudley AE, Clericuzio CL, Cox GF, Curry C, de Boer E, de Vries BBA, Dunn K, Dutmer CM, England EM, Fahrner JA, Geckinli BB, Genetti CA, Gezdirici A, Gibson WT, Gleeson JG, Greenberg CR, Hall A, Hamosh A, Hartley T, Jhangiani SN, Karaca E, Kernohan K, Lauzon JL, Lewis MES, Lowry RB, López-Giráldez F, Matise TC, McEvoy-Venneri J, McInnes B, Mhanni A, Garcia Minaur S, Moilanen J, Nguyen A, Nowaczyk MJM, Posey JE, Õunap K, Pehlivan D, Pajusalu S, Penney LS, Poterba T, Prontera P, Doriqui MJR, Sawyer SL, Sobreira N, Stanley V, Torun D, Wargowski D, Witmer PD, Wong I, Xing J, Zaki MS, Zhang Y, Boycott KM, Bamshad MJ, Nickerson DA, Blue EE, Innes AM. Alternative genomic diagnoses for individuals with a clinical diagnosis of Dubowitz syndrome. Am J Med Genet A 2021; 185:119-133. [PMID: 33098347 PMCID: PMC8197629 DOI: 10.1002/ajmg.a.61926] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/09/2020] [Accepted: 09/19/2020] [Indexed: 01/19/2023]
Abstract
Dubowitz syndrome (DubS) is considered a recognizable syndrome characterized by a distinctive facial appearance and deficits in growth and development. There have been over 200 individuals reported with Dubowitz or a "Dubowitz-like" condition, although no single gene has been implicated as responsible for its cause. We have performed exome (ES) or genome sequencing (GS) for 31 individuals clinically diagnosed with DubS. After genome-wide sequencing, rare variant filtering and computational and Mendelian genomic analyses, a presumptive molecular diagnosis was made in 13/27 (48%) families. The molecular diagnoses included biallelic variants in SKIV2L, SLC35C1, BRCA1, NSUN2; de novo variants in ARID1B, ARID1A, CREBBP, POGZ, TAF1, HDAC8, and copy-number variation at1p36.11(ARID1A), 8q22.2(VPS13B), Xp22, and Xq13(HDAC8). Variants of unknown significance in known disease genes, and also in genes of uncertain significance, were observed in 7/27 (26%) additional families. Only one gene, HDAC8, could explain the phenotype in more than one family (N = 2). All but two of the genomic diagnoses were for genes discovered, or for conditions recognized, since the introduction of next-generation sequencing. Overall, the DubS-like clinical phenotype is associated with extensive locus heterogeneity and the molecular diagnoses made are for emerging clinical conditions sharing characteristic features that overlap the DubS phenotype.
Collapse
Affiliation(s)
- David A Dyment
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Anne O'Donnell-Luria
- Broad Institute of MIT and Harvard, Broad Center for Mendelian Genomics, Cambridge, Massachusetts, USA
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Kyrieckos A Aleck
- Department of Genetics and Metabolism, Phoenix Children's Medical Group, Phoenix, Arizona, USA
| | - Danny Antaki
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, California, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Hind Al Sharhan
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Ping-Yee B Au
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Hatip Aydin
- Centre of Genetics Diagnosis, Zeynep Kamil Maternity and Children's Training and Research Hospital, Istanbul, Turkey
| | - Alan H Beggs
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Kaya Bilguvar
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Waco, Texas, USA
| | - Harrison Brand
- Broad Institute of MIT and Harvard, Broad Center for Mendelian Genomics, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Catherine A Brownstein
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Steve Buyske
- Department of Statistics and Biostatistics, Rutgers University, Piscataway, New Jersey, USA
| | - Bernard Chodirker
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Albert E Chudley
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carol L Clericuzio
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Gerald F Cox
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Cynthia Curry
- University of California, San Francisco, California, USA
- Genetic Medicine, University Pediatric Specialists, Fresno, California, USA
| | - Elke de Boer
- Department of Human Genetics, Raboud University Medical Centre, Nijmegen, Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Raboud University Medical Centre, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Raboud University Medical Centre, Nijmegen, Netherlands
| | - Kathryn Dunn
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Cullen M Dutmer
- Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Eleina M England
- Broad Institute of MIT and Harvard, Broad Center for Mendelian Genomics, Cambridge, Massachusetts, USA
| | - Jill A Fahrner
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bilgen B Geckinli
- Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Casie A Genetti
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alper Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - William T Gibson
- Department of Medical Genetics and British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, California, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Cheryl R Greenberg
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - April Hall
- Waisman Center Clinical Genetics, University of Wisconsin, Madison, Wisconsin, USA
| | - Ada Hamosh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Shalini N Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Kristin Kernohan
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Julie L Lauzon
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - M E Suzanne Lewis
- Department of Medical Genetics and British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - R Brian Lowry
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Francesc López-Giráldez
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tara C Matise
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Jennifer McEvoy-Venneri
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, California, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Brenda McInnes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Aziz Mhanni
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sixto Garcia Minaur
- Sección de Genética Clínica, INGEMM (Instituto de Genética Médica y Molecular), Madrid, Spain
| | - Jukka Moilanen
- Department of Clinical Genetics, Oulu University Hospital, Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu, Oulu, Finland
| | - An Nguyen
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, California, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Malgorzata J M Nowaczyk
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Katrin Õunap
- United Laboratories, Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Sander Pajusalu
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- United Laboratories, Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia
| | - Lynette S Penney
- Department of Pediatrics, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Timothy Poterba
- Broad Institute of MIT and Harvard, Broad Center for Mendelian Genomics, Cambridge, Massachusetts, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Paolo Prontera
- Medical Genetics Unit, Hospital Santa Maria della Misericordia and University of Perugia, Perugia, Italy
| | | | - Sarah L Sawyer
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Valentina Stanley
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, University of California, San Diego, California, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Deniz Torun
- Department of Medical Genetics, Gulhane Military Medical Academy, Ankara, Turkey
| | - David Wargowski
- Division of Genetics, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - P Dane Witmer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Isaac Wong
- Broad Institute of MIT and Harvard, Broad Center for Mendelian Genomics, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jinchuan Xing
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Yeting Zhang
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Kym M Boycott
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Deborah A Nickerson
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Elizabeth E Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
235
|
Wei H, Lai A, Tan ES, Koh MJA, Ng I, Ting TW, Thomas T, Cham B, Lim JY, Kam S, Goh CYJ, Lin G, Brett M, Chan D, Jamuar SS, Tan EC. Genetic landscape of congenital disorders in patients from Southeast Asia: results from sequencing using a gene panel for Mendelian phenotypes. Arch Dis Child 2021; 106:38-43. [PMID: 32978145 DOI: 10.1136/archdischild-2020-319177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/24/2020] [Accepted: 08/30/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To test the utility and diagnostic yield of a medical-exome gene panel for identifying pathogenic variants in Mendelian disorders. METHODS Next-generation sequencing was performed with the TruSight One gene panel (targeting 4813 genes) followed by MiSeq sequencing on 216 patients who presented with suspected genetic disorders as assessed by their attending physicians. RESULTS There were 56 pathogenic and 36 likely pathogenic variants across 57 genes identified in 87 patients. Causal mutations were more likely to be truncating and from patients with a prior clinical diagnosis. Another 18 promising variants need further evaluation for more evidence to meet the requirement for potential upgrade to pathogenic. Forty-five of the 92 clinically significant variants were novel. CONCLUSION The 40.3% positive yield compares favourably with similar studies using either this panel or whole exome sequencing, demonstrating that large gene panels could be a good alternative to whole exome sequencing for quick genetic confirmation of Mendelian disorders.
Collapse
Affiliation(s)
- Heming Wei
- KK Research Centre, KK Women's & Children's Hospital, Singapore
| | - Angeline Lai
- Paediatric Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore.,Genetics Service, KK Women's & Children's Hospital, Singapore
| | - Ee Shien Tan
- Paediatric Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore.,Genetics Service, KK Women's & Children's Hospital, Singapore
| | - Mark Jean Aan Koh
- Paediatric Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore.,Dermatology Service, KK Women's & Children's Hospital, Singapore
| | - Ivy Ng
- Paediatric Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore.,Genetics Service, KK Women's and Children's Hospital, Singapore
| | - Teck Wah Ting
- Paediatric Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore.,Genetics Service, KK Women's and Children's Hospital, Singapore
| | - Terrence Thomas
- Paediatric Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore.,Neurology Service, KK Women's & Children's Hospital, Singapore
| | - Breana Cham
- Genetics Service, KK Women's & Children's Hospital, Singapore
| | - Jiin Ying Lim
- Genetics Service, KK Women's & Children's Hospital, Singapore
| | - Sylvia Kam
- Genetics Service, KK Women's & Children's Hospital, Singapore
| | | | - Grace Lin
- KK Research Centre, KK Women's & Children's Hospital, Singapore
| | - Maggie Brett
- KK Research Centre, KK Women's & Children's Hospital, Singapore
| | - Derrick Chan
- Paediatric Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore.,Neurology Service, KK Women's & Children's Hospital, Singapore
| | - Saumya Shekhar Jamuar
- Paediatric Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore.,Genetics Service, KK Women's & Children's Hospital, Singapore
| | - Ene-Choo Tan
- KK Research Centre, KK Women's & Children's Hospital, Singapore .,Paediatric Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
236
|
Lassmann T, Francis RW, Weeks A, Tang D, Jamieson SE, Broley S, Dawkins HJS, Dreyer L, Goldblatt J, Groza T, Kamien B, Kiraly-Borri C, McKenzie F, Murphy L, Pachter N, Pathak G, Poulton C, Samanek A, Skoss R, Slee J, Townshend S, Ward M, Baynam GS, Blackwell JM. A flexible computational pipeline for research analyses of unsolved clinical exome cases. NPJ Genom Med 2020; 5:54. [PMID: 33303739 PMCID: PMC7730424 DOI: 10.1038/s41525-020-00161-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022] Open
Abstract
Exome sequencing has enabled molecular diagnoses for rare disease patients but often with initial diagnostic rates of ~25-30%. Here we develop a robust computational pipeline to rank variants for reassessment of unsolved rare disease patients. A comprehensive web-based patient report is generated in which all deleterious variants can be filtered by gene, variant characteristics, OMIM disease and Phenolyzer scores, and all are annotated with an ACMG classification and links to ClinVar. The pipeline ranked 21/34 previously diagnosed variants as top, with 26 in total ranked ≤7th, 3 ranked ≥13th; 5 failed the pipeline filters. Pathogenic/likely pathogenic variants by ACMG criteria were identified for 22/145 unsolved cases, and a previously undefined candidate disease variant for 27/145. This open access pipeline supports the partnership between clinical and research laboratories to improve the diagnosis of unsolved exomes. It provides a flexible framework for iterative developments to further improve diagnosis.
Collapse
Affiliation(s)
- Timo Lassmann
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.
| | - Richard W Francis
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Alexia Weeks
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Dave Tang
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Sarra E Jamieson
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Stephanie Broley
- Genetic Services of Western Australia, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Hugh J S Dawkins
- Office of Population Health Genomics, Public Health Division, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Lauren Dreyer
- Genetic Services of Western Australia, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Jack Goldblatt
- Genetic Services of Western Australia, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Tudor Groza
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Genetic Services of Western Australia, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Benjamin Kamien
- Genetic Services of Western Australia, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Cathy Kiraly-Borri
- Genetic Services of Western Australia, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Fiona McKenzie
- Genetic Services of Western Australia, Department of Health, Government of Western Australia, Perth, WA, Australia
- Faculty of Health and Medical Sciences, Division of Pediatrics, University of Western Australia, Perth, WA, Australia
| | | | - Nicholas Pachter
- Genetic Services of Western Australia, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Gargi Pathak
- Genetic Services of Western Australia, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Cathryn Poulton
- Genetic Services of Western Australia, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Amanda Samanek
- GaRDN Genetics and Rare Diseases Network, Booragoon, WA, Australia
| | - Rachel Skoss
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Jennie Slee
- Genetic Services of Western Australia, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Sharron Townshend
- Genetic Services of Western Australia, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Michelle Ward
- Genetic Services of Western Australia, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Gareth S Baynam
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Genetic Services of Western Australia, Department of Health, Government of Western Australia, Perth, WA, Australia
- Faculty of Health and Medical Sciences, Division of Pediatrics, University of Western Australia, Perth, WA, Australia
- Western Australian Register of Developmental Anomalies, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Jenefer M Blackwell
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
237
|
Schmidt L, Wain KE, Hajek C, Estrada-Veras JI, Guillen Sacoto MJ, Wentzensen IM, Malhotra A, Clause A, Perry D, Moreno-De-Luca A, Bell M. Expanding the Phenotype of TUBB2A-Related Tubulinopathy: Three Cases of a Novel, Heterozygous TUBB2A Pathogenic Variant p.Gly98Arg. Mol Syndromol 2020; 12:33-40. [PMID: 33776625 DOI: 10.1159/000512160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/08/2020] [Indexed: 01/22/2023] Open
Abstract
Tubulinopathies are a group of conditions caused by variants in 6 tubulin genes that present with a spectrum of brain malformations. One of these conditions is TUBB2A-related tubulinopathy. Currently, there are 9 reported individuals with pathogenic variants within the TUBB2A gene, with common manifestations including, but not limited to, global developmental delay, seizures, cortical dysplasia, and dysmorphic corpus callosum. We report 3 patients identified by exome and genome sequencing to have a novel, pathogenic, missense variant in TUBB2A (p.Gly98Arg). They presented similarly with intellectual disability, hypotonia, and global developmental delay and varied with respect to the type of cortical brain malformation, seizure history, diagnosis of autism spectrum disorder, and other features. This case series expands the natural history of TUBB2A-related tubulinopathy while describing the presentation of a novel, pathogenic, missense variant in 3 patients.
Collapse
Affiliation(s)
- Lindsey Schmidt
- Sanford Health, Augustana-Sanford Genetic Counseling Program, Sioux Falls, South Dakota, USA
| | - Karen E Wain
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, Pennsylvania, USA
| | | | - Juvianee I Estrada-Veras
- Henry M Jackson Foundation for the Advancement of Military Medicine and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | | | | | - Alka Malhotra
- Illumina Clinical Services Laboratory, San Diego, California, USA
| | - Amanda Clause
- Illumina Clinical Services Laboratory, San Diego, California, USA
| | - Denise Perry
- Illumina Clinical Services Laboratory, San Diego, California, USA
| | - Andres Moreno-De-Luca
- Department of Radiology, Geisinger Autism & Developmental Medicine Institute, Genomic Medicine Institute, Lewisburg, Pennsylvania, USA
| | - Megan Bell
- Sanford Health, Sioux Falls, South Dakota, USA
| |
Collapse
|
238
|
Zhang L, Gao J, Liu H, Tian Y, Zhang X, Lei W, Li Y, Guo Y, Yu H, Yuan E, Liang L, Cui S, Zhang X. Pathogenic variants identified by whole-exome sequencing in 43 patients with epilepsy. Hum Genomics 2020; 14:44. [PMID: 33287870 PMCID: PMC7720389 DOI: 10.1186/s40246-020-00294-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 11/25/2020] [Indexed: 12/30/2022] Open
Abstract
Background Epilepsy is a group of neurological disorders characterized by recurrent epileptic seizures. Epilepsy is affected by many factors, approximately 20–30% of cases are caused by acquired conditions, but in the remaining cases, genetic factors play an important role. Early establishment of a specific diagnosis is important to treat and manage this disease. Methods In this study, we have recruited 43 epileptic encephalopathy patients and the molecular genetic analysis of those children was performed by whole-exome sequencing (WES). Results Fourteen patients (32.6%, 14/43) had positive genetic diagnoses, including fifteen mutations in fourteen genes. The overall diagnostic yield was 32.6%. A total of 9 patients were diagnosed as pathogenic mutations, including 4 variants had been reported as pathogenic previously and 6 novel variants that had not been reported previously. Therefore, WES heralds promise as a tool for clinical diagnosis of patients with genetic disease. Conclusion Early establishment of a specific diagnosis, on the one hand, is necessary for providing an accurate prognosis and recurrence risk as well as optimizing management and treatment options. On the other hand, to unveil the genetic architecture of epilepsy, it is of vital importance to investigate the phenotypic and genetic complexity of epilepsy.
Collapse
Affiliation(s)
- Linlin Zhang
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.,Henan Academician Workstation of Genetic Diagnosis and Precision Medicine, Zhengzhou, Henan, People's Republic of China
| | - Jinshuang Gao
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.,Henan Academician Workstation of Genetic Diagnosis and Precision Medicine, Zhengzhou, Henan, People's Republic of China
| | - Hailiang Liu
- Henan Academician Workstation of Genetic Diagnosis and Precision Medicine, Zhengzhou, Henan, People's Republic of China.,CapitalBio Genomics Co., Ltd., Dongguan, 532808, Guangdong, People's Republic of China
| | - Yuan Tian
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.,Henan Academician Workstation of Genetic Diagnosis and Precision Medicine, Zhengzhou, Henan, People's Republic of China
| | - Xiaoli Zhang
- Henan Academician Workstation of Genetic Diagnosis and Precision Medicine, Zhengzhou, Henan, People's Republic of China.,Department of Neurologic Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Wei Lei
- CapitalBio Genomics Co., Ltd., Dongguan, 532808, Guangdong, People's Republic of China
| | - Ying Li
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.,Henan Academician Workstation of Genetic Diagnosis and Precision Medicine, Zhengzhou, Henan, People's Republic of China
| | - Yaqing Guo
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.,Henan Academician Workstation of Genetic Diagnosis and Precision Medicine, Zhengzhou, Henan, People's Republic of China
| | - Haiyang Yu
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.,Henan Academician Workstation of Genetic Diagnosis and Precision Medicine, Zhengzhou, Henan, People's Republic of China
| | - Erfeng Yuan
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.,Henan Academician Workstation of Genetic Diagnosis and Precision Medicine, Zhengzhou, Henan, People's Republic of China
| | - Lisi Liang
- CapitalBio Genomics Co., Ltd., Dongguan, 532808, Guangdong, People's Republic of China
| | - Shihong Cui
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China. .,Henan Academician Workstation of Genetic Diagnosis and Precision Medicine, Zhengzhou, Henan, People's Republic of China. .,Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Front Kangfu Street, Zhengzhou, Henan, 450052, People's Republic of China. .,Department of Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| | - Xiaoan Zhang
- Henan Academician Workstation of Genetic Diagnosis and Precision Medicine, Zhengzhou, Henan, People's Republic of China. .,Department of Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China. .,Department of Imaging and Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, 7 Front Kangfu Street, Zhengzhou, Henan, 450052, People's Republic of China.
| |
Collapse
|
239
|
How geneticists think about Differences/Disorders of Sexual Development (DSD): A conversation. J Pediatr Urol 2020; 16:760-767. [PMID: 32893165 DOI: 10.1016/j.jpurol.2020.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/27/2022]
Abstract
A multidisciplinary DSD clinic offers the opportunity for different specialties to learn from each other, as each provides their own perspective and expertise to the management of these complex patients, leading to collaborative care. For the patient, a multi-disciplinary clinic can improve access to care and decrease stress, as patients see all of the specialists on one day. For urologists seeing patients with DSD within a multi-disciplinary DSD clinic as well as independently, understanding what other specialists provide can help facilitate care and referral. Medical genetics is part of a multi-disciplinary DSD clinic. Given the recent advances in genetic diagnostics, many of the offered tests may be less familiar to the pediatric urologist. Therefore, this conversation reviews the clinical presentations and genetic testing options including chromosomal microarray, genetic testing panel, whole exome sequencing, and whole genome sequencing and how these can be helpful in the diagnosis and management of patients with DSD conditions.
Collapse
|
240
|
van der Velde KJ, van den Hoek S, van Dijk F, Hendriksen D, van Diemen CC, Johansson LF, Abbott KM, Deelen P, Sikkema‐Raddatz B, Swertz MA. A pipeline-friendly software tool for genome diagnostics to prioritize genes by matching patient symptoms to literature. ADVANCED GENETICS (HOBOKEN, N.J.) 2020; 1:e10023. [PMID: 36619248 PMCID: PMC9744518 DOI: 10.1002/ggn2.10023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/12/2020] [Accepted: 03/20/2020] [Indexed: 04/11/2023]
Abstract
Despite an explosive growth of next-generation sequencing data, genome diagnostics only provides a molecular diagnosis to a minority of patients. Software tools that prioritize genes based on patient symptoms using known gene-disease associations may complement variant filtering and interpretation to increase chances of success. However, many of these tools cannot be used in practice because they are embedded within variant prioritization algorithms, or exist as remote services that cannot be relied upon or are unacceptable because of legal/ethical barriers. In addition, many tools are not designed for command-line usage, closed-source, abandoned, or unavailable. We present Variant Interpretation using Biomedical literature Evidence (VIBE), a tool to prioritize disease genes based on Human Phenotype Ontology codes. VIBE is a locally installed executable that ensures operational availability and is built upon DisGeNET-RDF, a comprehensive knowledge platform containing gene-disease associations mostly from literature and variant-disease associations mostly from curated source databases. VIBE's command-line interface and output are designed for easy incorporation into bioinformatic pipelines that annotate and prioritize variants for further clinical interpretation. We evaluate VIBE in a benchmark based on 305 patient cases alongside seven other tools. Our results demonstrate that VIBE offers consistent performance with few cases missed, but we also find high complementarity among all tested tools. VIBE is a powerful, free, open source and locally installable solution for prioritizing genes based on patient symptoms. Project source code, documentation, benchmark and executables are available at https://github.com/molgenis/vibe.
Collapse
Affiliation(s)
- K. Joeri van der Velde
- Genomics Coordination CenterUniversity of Groningen and University Medical Center GroningenGroningenThe Netherlands
- Department of GeneticsUniversity of Groningen and University Medical Center GroningenGroningenThe Netherlands
| | - Sander van den Hoek
- Genomics Coordination CenterUniversity of Groningen and University Medical Center GroningenGroningenThe Netherlands
| | - Freerk van Dijk
- Genomics Coordination CenterUniversity of Groningen and University Medical Center GroningenGroningenThe Netherlands
- Department of GeneticsUniversity of Groningen and University Medical Center GroningenGroningenThe Netherlands
- Prinses Maxima Center for Child OncologyUtrechtThe Netherlands
| | - Dennis Hendriksen
- Genomics Coordination CenterUniversity of Groningen and University Medical Center GroningenGroningenThe Netherlands
| | - Cleo C. van Diemen
- Department of GeneticsUniversity of Groningen and University Medical Center GroningenGroningenThe Netherlands
| | - Lennart F. Johansson
- Genomics Coordination CenterUniversity of Groningen and University Medical Center GroningenGroningenThe Netherlands
- Department of GeneticsUniversity of Groningen and University Medical Center GroningenGroningenThe Netherlands
| | - Kristin M. Abbott
- Department of GeneticsUniversity of Groningen and University Medical Center GroningenGroningenThe Netherlands
| | - Patrick Deelen
- Genomics Coordination CenterUniversity of Groningen and University Medical Center GroningenGroningenThe Netherlands
- Department of GeneticsUniversity of Groningen and University Medical Center GroningenGroningenThe Netherlands
| | - Birgit Sikkema‐Raddatz
- Department of GeneticsUniversity of Groningen and University Medical Center GroningenGroningenThe Netherlands
| | - Morris A. Swertz
- Genomics Coordination CenterUniversity of Groningen and University Medical Center GroningenGroningenThe Netherlands
- Department of GeneticsUniversity of Groningen and University Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
241
|
Martin CL, Wain KE, Oetjens MT, Tolwinski K, Palen E, Hare-Harris A, Habegger L, Maxwell EK, Reid JG, Walsh LK, Myers SM, Ledbetter DH. Identification of Neuropsychiatric Copy Number Variants in a Health Care System Population. JAMA Psychiatry 2020; 77:1276-1285. [PMID: 32697297 PMCID: PMC7376464 DOI: 10.1001/jamapsychiatry.2020.2159] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE Population screening for medically relevant genomic variants that cause diseases such as hereditary cancer and cardiovascular disorders is increasing to facilitate early disease detection or prevention. Neuropsychiatric disorders (NPDs) are common, complex disorders with clear genetic causes; yet, access to genetic diagnosis is limited. We explored whether inclusion of NPD in population-based genomic screening programs is warranted by assessing 3 key factors: prevalence, penetrance, and personal utility. OBJECTIVE To evaluate the suitability of including pathogenic copy number variants (CNVs) associated with NPD in population screening by determining their prevalence and penetrance and exploring the personal utility of disclosing results. DESIGN, SETTING, AND PARTICIPANTS In this cohort study, the frequency of 31 NPD CNVs was determined in patient-participants via exome data. Associated clinical phenotypes were assessed using linked electronic health records. Nine CNVs were selected for disclosure by licensed genetic counselors, and participants' psychosocial reactions were evaluated using a mixed-methods approach. A primarily adult population receiving medical care at Geisinger, a large integrated health care system in the United States with the only population-based genomic screening program approved for medically relevant results disclosure, was included. The cohort was identified from the Geisinger MyCode Community Health Initiative. Exome and linked electronic health record data were available for this cohort, which was recruited from February 2007 to April 2017. Data were collected for the qualitative analysis April 2017 through February 2018. Analysis began February 2018 and ended December 2019. MAIN OUTCOMES AND MEASURES The planned outcomes of this study include (1) prevalence estimate of NPD-associated CNVs in an unselected health care system population; (2) penetrance estimate of NPD diagnoses in CNV-positive individuals; and (3) qualitative themes that describe participants' responses to receiving NPD-associated genomic results. RESULTS Of 90 595 participants with CNV data, a pathogenic CNV was identified in 708 (0.8%; 436 women [61.6%]; mean [SD] age, 50.04 [18.74] years). Seventy percent (n = 494) had at least 1 associated clinical symptom. Of these, 28.8% (204) of CNV-positive individuals had an NPD code in their electronic health record, compared with 13.3% (11 835 of 89 887) of CNV-negative individuals (odds ratio, 2.21; 95% CI, 1.86-2.61; P < .001); 66.4% (470) of CNV-positive individuals had a history of depression and anxiety compared with 54.6% (49 118 of 89 887) of CNV-negative individuals (odds ratio, 1.53; 95% CI, 1.31-1.80; P < .001). 16p13.11 (71 [0.078%]) and 22q11.2 (108 [0.119%]) were the most prevalent deletions and duplications, respectively. Only 5.8% of individuals (41 of 708) had a previously known genetic diagnosis. Results disclosure was completed for 141 individuals. Positive participant responses included poignant reactions to learning a medical reason for lifelong cognitive and psychiatric disabilities. CONCLUSIONS AND RELEVANCE This study informs critical factors central to the development of population-based genomic screening programs and supports the inclusion of NPD in future designs to promote equitable access to clinically useful genomic information.
Collapse
Affiliation(s)
- Christa Lese Martin
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
| | - Karen E. Wain
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
| | - Matthew T. Oetjens
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
| | - Kasia Tolwinski
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania,Biomedical Ethics Unit, McGill University, Montreal, Quebec, Canada
| | - Emily Palen
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
| | | | | | | | | | | | - Scott M. Myers
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
| | - David H. Ledbetter
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
| |
Collapse
|
242
|
Quaio CRDC, Moreira CM, Novo‐Filho GM, Sacramento‐Bobotis PR, Groenner Penna M, Perazzio SF, Dutra AP, Silva RA, Santos MNP, Arruda VYN, Freitas VG, Pereira VC, Pintao MC, Fornari ARDS, Buzolin AL, Oku AY, Burger M, Ramalho RF, Marco Antonio DS, Ferreira EN, Pereira OJE, Cantagalli VD, Trindade ACG, Sousa RRF, Reys Furuzawa C, Verzini F, Matalhana SD, Romano N, Paixão D, Olivati C, Spolador GM, Maciel GAR, Rocha VZ, Miguelez J, Carvalho MHB, Souza AWS, Andrade LEC, Chauffaille MDL, Perazzio ADSB, Catelani ALPM, Mitne‐Neto M, Kim CA, Baratela WADR. Diagnostic power and clinical impact of exome sequencing in a cohort of 500 patients with rare diseases. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:955-964. [DOI: 10.1002/ajmg.c.31860] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Caio Robledo D'Angioli Costa Quaio
- Fleury Medicina e Saúde Grupo Fleury São Paulo SP Brazil
- Instituto da Crianca (Children's Hospital) Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo Sao Paulo SP Brazil
| | | | | | | | | | - Sandro Felix Perazzio
- Fleury Medicina e Saúde Grupo Fleury São Paulo SP Brazil
- Rheumatology Division, Department of Medicine, Escola Paulista de Medicina Universidade Federal de Sao Paulo São Paulo SP Brazil
| | | | - Rafael Alves Silva
- Fleury Medicina e Saúde Grupo Fleury São Paulo SP Brazil
- Escola Paulista de Medicina, Laboratório de Hepatologia Molecular Aplicada (LHeMA) Universidade Federal de São Paulo São Paulo SP Brazil
| | | | | | - Vanessa Galdeno Freitas
- Fleury Medicina e Saúde Grupo Fleury São Paulo SP Brazil
- Instituto de Matemática e Estatística da Universidade de São Paulo e Instituto de Ensino e Pesquisa do Hospital Sírio Libanês São Paulo SP Brazil
| | | | | | | | | | - Andre Yuji Oku
- Fleury Medicina e Saúde Grupo Fleury São Paulo SP Brazil
| | - Matheus Burger
- Fleury Medicina e Saúde Grupo Fleury São Paulo SP Brazil
| | | | | | | | | | | | | | | | | | | | | | - Naiade Romano
- Fleury Medicina e Saúde Grupo Fleury São Paulo SP Brazil
| | - Daniele Paixão
- Fleury Medicina e Saúde Grupo Fleury São Paulo SP Brazil
| | | | | | - Gustavo Arantes Rosa Maciel
- Fleury Medicina e Saúde Grupo Fleury São Paulo SP Brazil
- Discipline of Gynecology Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo São Paulo SP Brazil
| | - Viviane Zorzanelli Rocha
- Fleury Medicina e Saúde Grupo Fleury São Paulo SP Brazil
- Heart Institute (InCor) Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo São Paulo SP Brazil
| | | | - Mario Henrique Burlacchini Carvalho
- Fleury Medicina e Saúde Grupo Fleury São Paulo SP Brazil
- Disciplina de Obstetrícia, Departamento de Obstetrícia e Ginecologia Faculdade de Medicina FMUSP, Universidade de Sao Paulo São Paulo SP Brazil
| | - Alexandre Wagner Silva Souza
- Fleury Medicina e Saúde Grupo Fleury São Paulo SP Brazil
- Rheumatology Division, Department of Medicine, Escola Paulista de Medicina Universidade Federal de Sao Paulo São Paulo SP Brazil
| | - Luis Eduardo Coelho Andrade
- Fleury Medicina e Saúde Grupo Fleury São Paulo SP Brazil
- Rheumatology Division, Department of Medicine, Escola Paulista de Medicina Universidade Federal de Sao Paulo São Paulo SP Brazil
| | | | | | | | | | - Chong Ae Kim
- Instituto da Crianca (Children's Hospital) Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo Sao Paulo SP Brazil
| | | |
Collapse
|
243
|
Al-Hebshi A. Inherited Platelet Function Disorder From Novel Mutations in RAS Guanyl-Releasing Protein-2 Confirmed by Sanger Sequencing. Cureus 2020; 12:e11708. [PMID: 33391941 PMCID: PMC7769792 DOI: 10.7759/cureus.11708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Inherited platelet disorders (IPDs) are genetically heterogeneous rare disorders due to quantitative and/or qualitative abnormalities of the platelet. IPDs are often predisposed to significant medical complications. RAS guanyl-releasing protein-2 (RASGRP2) was recently identified as a gene affected in patients with platelet function defects and a bleeding complication. RASGRP2 codes for the protein CalDAG-GEFI RAS (guanyl-releasing protein-2), a guanine nucleotide exchange factor for small guanosine triphosphate(GTP)ase Rap1. We used Sanger sequencing to identify a novel function-disrupting homozygous mutation in RASGRP2 responsible for bleeding diathesis and platelet dysfunction in a patient.
Collapse
Affiliation(s)
- Abdulqader Al-Hebshi
- Pediatric Hematology Oncology, Prince Mohammed Bin Abdulaziz Hospital, Medina, SAU.,Pediatric Hematology Oncology, Ministry of National Guard Health Affairs, Medina, SAU.,Pediatric Hematology Oncology, King Abdullah International Medical Research Center, Riyadh, SAU.,Pediatric Hematology Oncology, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
| |
Collapse
|
244
|
Hartin SN, Means JC, Alaimo JT, Younger ST. Expediting rare disease diagnosis: a call to bridge the gap between clinical and functional genomics. Mol Med 2020; 26:117. [PMID: 33238891 PMCID: PMC7691058 DOI: 10.1186/s10020-020-00244-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/18/2020] [Indexed: 11/10/2022] Open
Abstract
Approximately 400 million people throughout the world suffer from a rare disease. Although advances in whole exome and whole genome sequencing have greatly facilitated rare disease diagnosis, overall diagnostic rates remain below 50%. Furthermore, in cases where accurate diagnosis is achieved the process requires an average of 4.8 years. Reducing the time required for disease diagnosis is among the most critical needs of patients impacted by a rare disease. In this perspective we describe current challenges associated with rare disease diagnosis and discuss several cutting-edge functional genomic screening technologies that have the potential to rapidly accelerate the process of distinguishing pathogenic variants that lead to disease.
Collapse
Affiliation(s)
- Samantha N Hartin
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.,Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - John C Means
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.,Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Joseph T Alaimo
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.,Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, 64110, USA.,Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Scott T Younger
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, 64108, USA. .,Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA. .,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, 64110, USA. .,Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
245
|
Primary Immunodeficiencies in India: Molecular Diagnosis and the Role of Next-Generation Sequencing. J Clin Immunol 2020; 41:393-413. [PMID: 33225392 DOI: 10.1007/s10875-020-00923-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
Primary immunodeficiency diseases (PIDs) are a group of clinically and genetically heterogeneous disorders showing ethnic and geographic diversities. Next-generation sequencing (NGS) is a comprehensive tool to diagnose PID. Although PID is common in India, data on the genetic spectrum of PIDs are limited due to financial restrictions. The study aims to characterize the clinical and genetic spectrum of PID patients in India and highlight the importance of a cost-effective targeted gene panel sequencing approach for PID in a resource-limited setting. The study includes 229 patients with clinical and laboratory features suggestive of PIDs. Mutation analysis was done by Sanger sequencing and NGS targeting a customized panel of genes. Pathogenic variants were identified in 97 patients involving 42 different genes with BTK and IL12RB1 being the most common mutated genes. Autosomal recessive and X-linked recessive inheritance were seen in 51.6% and 23.7% of patients. Mendelian susceptibility to mycobacterial diseases (MSMD) and IL12RB1 mutations was more common in our population compared to the Western world and the Middle East. Two patients with hypomorphic RAG1 mutations and one female with skewed CYBB mutation were also identified. Another 40 patients had variants classified as variants of uncertain significance (VUS). The study shows that targeted NGS is an effective diagnostic strategy for PIDs in countries with limited diagnostic resources. Molecular diagnosis of PID helps in genetic counseling and to make therapeutic decisions including the need for a stem cell transplantation.
Collapse
|
246
|
Díaz-de Usera A, Lorenzo-Salazar JM, Rubio-Rodríguez LA, Muñoz-Barrera A, Guillen-Guio B, Marcelino-Rodríguez I, García-Olivares V, Mendoza-Alvarez A, Corrales A, Íñigo-Campos A, González-Montelongo R, Flores C. Evaluation of Whole-Exome Enrichment Solutions: Lessons from the High-End of the Short-Read Sequencing Scale. J Clin Med 2020; 9:jcm9113656. [PMID: 33202991 PMCID: PMC7696786 DOI: 10.3390/jcm9113656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Whole-exome sequencing has become a popular technique in research and clinical settings, assisting in disease diagnosis and increasing the understanding of disease pathogenesis. In this study, we aimed to compare common enrichment capture solutions available in the market. Peripheral blood-purified DNA samples were enriched with SureSelectQXT V6 (Agilent) and various Illumina solutions: TruSeq DNA Nano, TruSeq DNA Exome, Nextera DNA Exome, and Illumina DNA Prep with Enrichment, and sequenced on a HiSeq 4000. We found that their percentage of duplicate reads was as much as 2 times higher than previously reported values for the previous HiSeq series. SureSelectQXT and Illumina DNA Prep with Enrichment showed the best average on-target coverage, which improved when off-target regions were included. At high coverage levels and in shared bases, these two solutions and TruSeq DNA Exome provided three of the best performances. With respect to the number of small variants detected, SureSelectQXT presented the lowest number of detected variants in target regions. When off-target regions were considered, its ability equalized to other solutions. Our results show SureSelectQXT and Illumina DNA Prep with Enrichment to be the best enrichment capture solutions.
Collapse
Affiliation(s)
- Ana Díaz-de Usera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain; (A.D.-d.U.); (J.M.L.-S.); (L.A.R.-R.); (A.M.-B.); (V.G.-O.); (A.Í.-C.); (R.G.-M.)
| | - Jose M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain; (A.D.-d.U.); (J.M.L.-S.); (L.A.R.-R.); (A.M.-B.); (V.G.-O.); (A.Í.-C.); (R.G.-M.)
| | - Luis A. Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain; (A.D.-d.U.); (J.M.L.-S.); (L.A.R.-R.); (A.M.-B.); (V.G.-O.); (A.Í.-C.); (R.G.-M.)
| | - Adrián Muñoz-Barrera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain; (A.D.-d.U.); (J.M.L.-S.); (L.A.R.-R.); (A.M.-B.); (V.G.-O.); (A.Í.-C.); (R.G.-M.)
| | - Beatriz Guillen-Guio
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain; (B.G.-G.); (I.M.-R.); (A.M.-A.); (A.C.)
| | - Itahisa Marcelino-Rodríguez
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain; (B.G.-G.); (I.M.-R.); (A.M.-A.); (A.C.)
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Víctor García-Olivares
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain; (A.D.-d.U.); (J.M.L.-S.); (L.A.R.-R.); (A.M.-B.); (V.G.-O.); (A.Í.-C.); (R.G.-M.)
| | - Alejandro Mendoza-Alvarez
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain; (B.G.-G.); (I.M.-R.); (A.M.-A.); (A.C.)
| | - Almudena Corrales
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain; (B.G.-G.); (I.M.-R.); (A.M.-A.); (A.C.)
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio Íñigo-Campos
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain; (A.D.-d.U.); (J.M.L.-S.); (L.A.R.-R.); (A.M.-B.); (V.G.-O.); (A.Í.-C.); (R.G.-M.)
| | - Rafaela González-Montelongo
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain; (A.D.-d.U.); (J.M.L.-S.); (L.A.R.-R.); (A.M.-B.); (V.G.-O.); (A.Í.-C.); (R.G.-M.)
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain; (A.D.-d.U.); (J.M.L.-S.); (L.A.R.-R.); (A.M.-B.); (V.G.-O.); (A.Í.-C.); (R.G.-M.)
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain; (B.G.-G.); (I.M.-R.); (A.M.-A.); (A.C.)
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-922-602938
| |
Collapse
|
247
|
Zhang K, Lin G, Han D, Han Y, Wang J, Shen Y, Li J. An Initial Survey of the Performances of Exome Variant Analysis and Clinical Reporting Among Diagnostic Laboratories in China. Front Genet 2020; 11:582637. [PMID: 33240328 PMCID: PMC7667017 DOI: 10.3389/fgene.2020.582637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/10/2020] [Indexed: 12/05/2022] Open
Abstract
Exome sequencing has become an effective diagnostic method for Mendelian disorders. But the quality of services differs widely across laboratories in China, particularly in variant classification, even with the adoption of the ACMG guidelines. As an effort of quality control and improvement for better clinical utilization of exome sequencing, we assessed the exome data analysis and clinical reporting among Chinese laboratories. Five raw datasets of real clinical samples with associated phenotypes were sent to 53 laboratories. The participants independently performed secondary analysis, variant classification, and reporting. The first round of results was used for identifying problems associated with these aspects. Subsequently, we implemented several corrective actions and a training program was designed based on the identified issues. A second round of five datasets were sent to the same participants. We compared the performances in variant interpretation and reporting. A total of 85.7% (42/49) of participants correctly identified all the variants related with phenotype. Many lines of evidence using the ACMG guidelines were incorrectly utilized, which resulted in a large inter-laboratory discrepancy. After training, the evidence usage problems significantly improved, leading to a more consistent outcome. Participants improved their exome data analysis and clinical reporting capability. Targeted training and a deeper understanding of the ACMG guidelines helped to improve the clinical exome sequencing service in terms of consistency and accuracy in variant classification in China.
Collapse
Affiliation(s)
- Kuo Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Guigao Lin
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongsheng Han
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanxi Han
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiping Shen
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, United States
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
248
|
|
249
|
Cappuccio G, Sayou C, Tanno PL, Tisserant E, Bruel AL, Kennani SE, Sá J, Low KJ, Dias C, Havlovicová M, Hančárová M, Eichler EE, Devillard F, Moutton S, Van-Gils J, Dubourg C, Odent S, Gerard B, Piton A, Yamamoto T, Okamoto N, Firth H, Metcalfe K, Moh A, Chapman KA, Aref-Eshghi E, Kerkhof J, Torella A, Nigro V, Perrin L, Piard J, Le Guyader G, Jouan T, Thauvin-Robinet C, Duffourd Y, George-Abraham JK, Buchanan CA, Williams D, Kini U, Wilson K, Sousa SB, Hennekam RCM, Sadikovic B, Thevenon J, Govin J, Vitobello A, Brunetti-Pierri N. De novo SMARCA2 variants clustered outside the helicase domain cause a new recognizable syndrome with intellectual disability and blepharophimosis distinct from Nicolaides-Baraitser syndrome. Genet Med 2020; 22:1838-1850. [PMID: 32694869 DOI: 10.1038/s41436-020-0898-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Nontruncating variants in SMARCA2, encoding a catalytic subunit of SWI/SNF chromatin remodeling complex, cause Nicolaides-Baraitser syndrome (NCBRS), a condition with intellectual disability and multiple congenital anomalies. Other disorders due to SMARCA2 are unknown. METHODS By next-generation sequencing, we identified candidate variants in SMARCA2 in 20 individuals from 18 families with a syndromic neurodevelopmental disorder not consistent with NCBRS. To stratify variant interpretation, we functionally analyzed SMARCA2 variants in yeasts and performed transcriptomic and genome methylation analyses on blood leukocytes. RESULTS Of 20 individuals, 14 showed a recognizable phenotype with recurrent features including epicanthal folds, blepharophimosis, and downturned nasal tip along with variable degree of intellectual disability (or blepharophimosis intellectual disability syndrome [BIS]). In contrast to most NCBRS variants, all SMARCA2 variants associated with BIS are localized outside the helicase domains. Yeast phenotype assays differentiated NCBRS from non-NCBRS SMARCA2 variants. Transcriptomic and DNA methylation signatures differentiated NCBRS from BIS and those with nonspecific phenotype. In the remaining six individuals with nonspecific dysmorphic features, clinical and molecular data did not permit variant reclassification. CONCLUSION We identified a novel recognizable syndrome named BIS associated with clustered de novo SMARCA2 variants outside the helicase domains, phenotypically and molecularly distinct from NCBRS.
Collapse
Affiliation(s)
- Gerarda Cappuccio
- Department of Translational Medicine, Federico II University, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Camille Sayou
- Inserm U1209, CNRS UMR 5309, Univ. Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Pauline Le Tanno
- Department of Genetics and Reproduction, Centre Hospitalo-Universitaire Grenoble-Alpes, Grenoble, France
| | - Emilie Tisserant
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
| | - Ange-Line Bruel
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
| | - Sara El Kennani
- Inserm U1209, CNRS UMR 5309, Univ. Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Joaquim Sá
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Karen J Low
- University Hospitals Bristol NHS Foundation Trust, University of Bristol, Bristol, UK
| | - Cristina Dias
- Department of Medical and Molecular Genetics, King's College, London, UK
- The Francis Crick Institute, London, UK
- Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Markéta Havlovicová
- Department of Biology and Medical Genetics, Charles University Prague 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Miroslava Hančárová
- Department of Biology and Medical Genetics, Charles University Prague 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Françoise Devillard
- Department of Genetics and Reproduction, Centre Hospitalo-Universitaire Grenoble-Alpes, Grenoble, France
| | - Sébastien Moutton
- CPDPN, Pôle mère enfant, Maison de Santé Protestante Bordeaux Bagatelle, Talence, France
| | - Julien Van-Gils
- Reference Center for Developmental Anomalies, Department of Medical Genetics, Bordeaux University Hospital, Bordeaux, France
| | - Christèle Dubourg
- Service de Génétique Moléculaire et Génomique, BMT-HC « Jean Dausset », Rennes, France
| | - Sylvie Odent
- Service de Génétique clinique, CHU de Rennes, Univ. Rennes, Institut de Génétique et Développement de Rennes (IGDR) UMR 6290, Rennes, France
| | - Bénédicte Gerard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Amélie Piton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
- Tokyo Women's Medical University Institute of Integrated Medical Sciences, Tokyo, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Helen Firth
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Kay Metcalfe
- Manchester Centre for Genomic Medicine, Manchester, UK
| | - Anna Moh
- Department of Genetics and Metabolism, Children's National Medical Center, Washington, DC, USA
| | - Kimberly A Chapman
- Department of Genetics and Metabolism, Children's National Medical Center, Washington, DC, USA
| | - Erfan Aref-Eshghi
- Molecular Genetics Laboratory, Victoria Hospital, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| | - Jennifer Kerkhof
- Molecular Genetics Laboratory, Victoria Hospital, London Health Sciences Centre, London, ON, Canada
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Laurence Perrin
- Department of Genetics, Robert Debré Hospital, AP-HP, Paris, France
| | - Juliette Piard
- Centre de génétique humaine, Université de Franche-Comté, Besançon, France
| | - Gwenaël Le Guyader
- Department of Medical Genetics, Poitiers University Hospital, Poitiers, France
| | - Thibaud Jouan
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
| | - Christel Thauvin-Robinet
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, CHU Dijon, Dijon, France
- UF Innovation en diagnostic génomique des maladies rares, CHU Dijon, Dijon, France
| | - Yannis Duffourd
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
| | - Jaya K George-Abraham
- Dell Children's Medical Group, Austin, TX, USA
- Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | | | | | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kate Wilson
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sérgio B Sousa
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- University Clinic of Genetics, Faculty of Medicine, Universidade de Coimbra, Coimbra, Portugal
| | - Raoul C M Hennekam
- Department of Pediatrics and Translational Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bekim Sadikovic
- Molecular Genetics Laboratory, Victoria Hospital, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| | - Julien Thevenon
- Department of Genetics and Reproduction, Centre Hospitalo-Universitaire Grenoble-Alpes, Grenoble, France
| | - Jérôme Govin
- Inserm U1209, CNRS UMR 5309, Univ. Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France.
| | - Antonio Vitobello
- Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France.
- UF Innovation en diagnostic génomique des maladies rares, CHU Dijon, Dijon, France.
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, Naples, Italy.
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.
| |
Collapse
|
250
|
Vears DF, Elferink M, Kriek M, Borry P, van Gassen KL. Analysis of laboratory reporting practices using a quality assessment of a virtual patient. Genet Med 2020; 23:562-570. [PMID: 33122805 DOI: 10.1038/s41436-020-01015-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Existing research suggests that while some laboratories report variants of uncertain significance, unsolicited findings (UF), and/or secondary findings (SF) when performing exome sequencing, others do not. METHODS To investigate reporting differences, we created virtual patient-parent trio data by merging variants from patients into "normal" exomes. We invited laboratories worldwide to analyze the data along with patient phenotype information (developmental delay, dysmorphic features, and cardiac hypertrophy). Laboratories issued a diagnostic exome report and completed questionnaires to explain their rationale for reporting (or not reporting) each of the eight variants integrated. RESULTS Of the 39 laboratories that completed the questionnaire, 30 reported the HDAC8 variant, which was a partial cause of the patient's primary phenotype, and 26 reported the BICD2 variant, which explained another phenotypic component. Lack of reporting was often due to using a filter or a targeted gene panel that excluded the variant, or because they did not consider the variant to be responsible for the phenotype. There was considerable variation in reporting variants associated with the cardiac phenotype (MYBPC3 and PLN) and reporting UF/SF also varied widely. CONCLUSION This high degree of variability has significant impact on whether causative variants are identified, with important implications for patient care.
Collapse
Affiliation(s)
- Danya F Vears
- Melbourne Law School, University of Melbourne, Carlton, Australia. .,Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Australia. .,Center for Biomedical Ethics and Law, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium. .,Leuven Institute for Human Genetics and Society, Leuven, Belgium.
| | - Martin Elferink
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marjolein Kriek
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Pascal Borry
- Center for Biomedical Ethics and Law, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.,Leuven Institute for Human Genetics and Society, Leuven, Belgium
| | - Koen L van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|