201
|
Lozupone M, Solfrizzi V, D'Urso F, Di Gioia I, Sardone R, Dibello V, Stallone R, Liguori A, Ciritella C, Daniele A, Bellomo A, Seripa D, Panza F. Anti-amyloid-β protein agents for the treatment of Alzheimer's disease: an update on emerging drugs. Expert Opin Emerg Drugs 2020; 25:319-335. [PMID: 32772738 DOI: 10.1080/14728214.2020.1808621] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Currently available Alzheimer's disease (AD) therapeutics are only symptomatic, targeting cholinergic and glutamatergic neurotransmissions. Several putative disease-modifying drugs in late-stage clinical development target amyloid-β (Aβ) peptide and tau protein, the principal neurophatological hallmarks of the disease. AREAS COVERED Phase III randomized clinical trials of anti-Aβ drugs for AD treatment were searched in US and EU clinical trial registries and principal biomedical databases until May 2020. EXPERT OPINION At present, compounds in Phase III clinical development for AD include four anti-Ab monoclonal antibodies (solanezumab, gantenerumab, aducanumab, BAN2401), the combination of cromolyn sodium and ibuprofen (ALZT-OP1), and two small molecules (levetiracetam, GV-971). These drugs are mainly being tested in subjects during early AD phases or at preclinical stage of familial AD or even in asymptomatic subjects at high risk of developing AD. The actual results support the hypothesis that elevated Aβ represents an early stage in the AD continuum and demonstrate the feasibility of enrolling these high-risk participants in secondary prevention trials to slow cognitive decline during the AD preclinical stages. However, a series of clinical failures may question further development of Aβ-targeting drugs and the findings from current ongoing Phase III trials will hopefully give light to this critical issue.
Collapse
Affiliation(s)
- Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro , Bari, Italy
| | - Vincenzo Solfrizzi
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro" , Bari, Italy
| | - Francesca D'Urso
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia , Foggia, Italy
| | - Ilaria Di Gioia
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia , Foggia, Italy
| | - Rodolfo Sardone
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| | - Vittorio Dibello
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy.,Department of Orofacial Pain and Dysfunction, Academic Centre of Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , The Netherlands
| | - Roberta Stallone
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| | - Angelo Liguori
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| | - Chiara Ciritella
- Physical and Rehabilitation Medicine Department, University of Foggia , Foggia, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart , Rome, Italy.,Institute of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS , Rome, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia , Foggia, Italy
| | - Davide Seripa
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo Della Sofferenza , Foggia, Italy.,Hematology and Stem Cell Transplant Unit, Vito Fazzi Hospital, ASL Lecce , Lecce, Italy
| | - Francesco Panza
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| |
Collapse
|
202
|
Guo T, Korman D, La Joie R, Shaw LM, Trojanowski JQ, Jagust WJ, Landau SM. Normalization of CSF pTau measurement by Aβ 40 improves its performance as a biomarker of Alzheimer's disease. Alzheimers Res Ther 2020; 12:97. [PMID: 32799929 PMCID: PMC7429887 DOI: 10.1186/s13195-020-00665-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alzheimer's disease (AD)-related tauopathy can be measured with CSF phosphorylated tau (pTau) and tau PET. We aim to investigate the associations between these measurements and their relative ability to predict subsequent disease progression. METHODS In 219 cognitively unimpaired and 122 impaired Alzheimer's Disease Neuroimaging Initiative participants with concurrent amyloid-β (Aβ) PET (18F-florbetapir or 18F-florbetaben), 18F-flortaucipir (FTP) PET, CSF measurements, structural MRI, and cognition, we examined inter-relationships between these biomarkers and their predictions of subsequent FTP and cognition changes. RESULTS The use of a CSF pTau/Aβ40 ratio eliminated positive associations we observed between CSF pTau alone and CSF Aβ42 in the normal Aβ range likely reflecting individual differences in CSF production rather than pathology. Use of the CSF pTau/Aβ40 ratio also increased expected associations with Aβ PET, FTP PET, hippocampal volume, and cognitive decline compared to pTau alone. In Aβ+ individuals, abnormal CSF pTau/Aβ40 only individuals (26.7%) were 4 times more prevalent (p < 0.001) than abnormal FTP only individuals (6.8%). Furthermore, among individuals on the AD pathway, CSF pTau/Aβ40 mediates the association between Aβ PET and FTP PET accumulation, but FTP PET is more closely linked to subsequent cognitive decline than CSF pTau/Aβ40. CONCLUSIONS Together, these findings suggest that CSF pTau/Aβ40 may be a superior measure of tauopathy compared to CSF pTau alone, and CSF pTau/Aβ40 enables detection of tau accumulation at an earlier stage than FTP among Aβ+ individuals.
Collapse
Affiliation(s)
- Tengfei Guo
- Helen Wills Neuroscience Institute, University of California, 132 Barker Hall, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Deniz Korman
- Helen Wills Neuroscience Institute, University of California, 132 Barker Hall, Berkeley, CA, 94720, USA
| | - Renaud La Joie
- Memory & Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, 132 Barker Hall, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Susan M Landau
- Helen Wills Neuroscience Institute, University of California, 132 Barker Hall, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
203
|
Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C, Costafreda SG, Dias A, Fox N, Gitlin LN, Howard R, Kales HC, Kivimäki M, Larson EB, Ogunniyi A, Orgeta V, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbæk G, Teri L, Mukadam N. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020; 396:413-446. [PMID: 32738937 PMCID: PMC7392084 DOI: 10.1016/s0140-6736(20)30367-6] [Citation(s) in RCA: 5651] [Impact Index Per Article: 1130.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Gill Livingston
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK.
| | - Jonathan Huntley
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - Andrew Sommerlad
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - David Ames
- National Ageing Research Institute and Academic Unit for Psychiatry of Old Age, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, Australia
| | | | - Sube Banerjee
- Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - Carol Brayne
- Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Alistair Burns
- Department of Old Age Psychiatry, University of Manchester, Manchester, UK
| | - Jiska Cohen-Mansfield
- Department of Health Promotion, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Heczeg Institute on Aging, Tel Aviv University, Tel Aviv, Israel; Minerva Center for Interdisciplinary Study of End of Life, Tel Aviv University, Tel Aviv, Israel
| | - Claudia Cooper
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - Sergi G Costafreda
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - Amit Dias
- Department of Preventive and Social Medicine, Goa Medical College, Goa, India
| | - Nick Fox
- Dementia Research Centre, UK Dementia Research Institute, University College London, London, UK; Institute of Neurology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Laura N Gitlin
- Center for Innovative Care in Aging, Johns Hopkins University, Baltimore, MA, USA
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - Helen C Kales
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California, Sacramento, CA, USA
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | | | - Vasiliki Orgeta
- Division of Psychiatry, University College London, London, UK
| | - Karen Ritchie
- Inserm, Unit 1061, Neuropsychiatry: Epidemiological and Clinical Research, La Colombière Hospital, University of Montpellier, Montpellier, France; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Kenneth Rockwood
- Centre for the Health Care of Elderly People, Geriatric Medicine Dalhousie University, Halifax, NS, Canada
| | - Elizabeth L Sampson
- Division of Psychiatry, University College London, London, UK; Barnet, Enfield, and Haringey Mental Health Trust, London, UK
| | - Quincy Samus
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MA, USA
| | - Lon S Schneider
- Department of Psychiatry and the Behavioural Sciences and Department of Neurology, Keck School of Medicine, Leonard Davis School of Gerontology of the University of Southern California, Los Angeles, CA, USA
| | - Geir Selbæk
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Geriatric Department, Oslo University Hospital, Oslo, Norway
| | - Linda Teri
- Department Psychosocial and Community Health, School of Nursing, University of Washington, Seattle, WA, USA
| | - Naaheed Mukadam
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| |
Collapse
|
204
|
Kauppi K, Rönnlund M, Nordin Adolfsson A, Pudas S, Adolfsson R. Effects of polygenic risk for Alzheimer's disease on rate of cognitive decline in normal aging. Transl Psychiatry 2020; 10:250. [PMID: 32709845 PMCID: PMC7381667 DOI: 10.1038/s41398-020-00934-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/24/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Most people's cognitive abilities decline with age, with significant and partly genetically driven, individual differences in rate of change. Although APOE ɛ4 and genetic scores for late-onset Alzheimer's disease (LOAD) have been related to cognitive decline during preclinical stages of dementia, there is limited knowledge concerning genetic factors implied in normal cognitive aging. In the present study, we examined three potential genetic predictors of age-related cognitive decline as follows: (1) the APOE ɛ4 allele, (2) a polygenic score for general cognitive ability (PGS-cog), and (3) a polygenic risk score for late-onset AD (PRS-LOAD). We examined up to six time points of cognitive measurements in the longitudinal population-based Betula study, covering a 25-year follow-up period. Only participants that remained alive and non-demented until the most recent dementia screening (1-3 years after the last test occasion) were included (n = 1087). Individual differences in rate of cognitive change (composite score) were predicted by the PRS-LOAD and APOE ɛ4, but not by PGS-cog. To control for the possibility that the results reflected a preclinical state of Alzheimer's disease in some participants, we re-ran the analyses excluding cognitive data from the last test occasion to model cognitive change up-until a minimum of 6 years before potential onset of clinical Alzheimers. Strikingly, the association of PRS-LOAD, but not APOE ɛ4, with cognitive change remained. The results indicate that PRS-LOAD predicts individual difference in rate of cognitive decline in normal aging, but it remains to be determined to what extent this reflects preclinical Alzheimer's disease brain pathophysiology and subsequent risk to develop the disease.
Collapse
Affiliation(s)
- Karolina Kauppi
- Department of Integrative Medical Biologi, Umeå University, Umeå, Sweden. .,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Michael Rönnlund
- grid.12650.300000 0001 1034 3451Department of Psychology, Umeå University, Umeå, Sweden
| | | | - Sara Pudas
- grid.12650.300000 0001 1034 3451Department of Integrative Medical Biologi, Umeå University, Umeå, Sweden
| | - Rolf Adolfsson
- grid.12650.300000 0001 1034 3451Department of Clinical Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
205
|
Van Harten AC, Wiste HJ, Weigand SD, Mielke MM, Kremers WK, Eichenlaub U, Batrla-Utermann R, Dyer RB, Algeciras-Schimnich A, Knopman DS, Jack CR, Petersen RC. CSF biomarkers in Olmsted County: Evidence of 2 subclasses and associations with demographics. Neurology 2020; 95:e256-e267. [PMID: 32591471 PMCID: PMC7455353 DOI: 10.1212/wnl.0000000000009874] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/19/2019] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE We studied interrelationships between CSF biomarkers and associations with APOE ε4 genotype, demographic variables, vascular variables, and clinical diagnosis in Olmsted County, Minnesota. METHODS We included 774 Mayo Clinic Study of Aging participants (693 cognitively unimpaired [CU]; 71 with mild cognitive impairment [MCI]). CSF β-amyloid 42 (Aβ42), total tau (t-tau), and hyperphosphorylated tau (p-tau) were analyzed using Aβ42 CSF, t-tau CSF, and p-tau (181P) CSF electrochemiluminescence immunoassays. Bivariate mixture models were used to evaluate latent classes. We used linear regression models to evaluate independent associations of APOE ε4, demographic factors, cardiovascular risk, and diagnosis with CSF biomarker levels. Results were weighted back to the Olmsted County population. RESULTS Interrelationships between CSF Aβ42 and p-tau/t-tau were consistent with 2 latent classes in the general population. In subgroup 1 (n = 547 [71%]), we found a strong positive correlation between Aβ42 and p-tau (ρ = 0.81), while the correlation was much smaller in group 2 (ρ = 0.26, n = 227 [29%]). Group 2 was associated with older age, APOE ε4 genotype, a diagnosis of MCI, and elevated amyloid PET. Overall, APOE ε4 genotype and MCI were associated with Aβ42, while age was associated with p-tau/t-tau. There were no associations with sex, education, or vascular risk. CONCLUSION We hypothesize the population without dementia can be subdivided into participants with and without biological Alzheimer disease (AD) based on the combination of CSF Aβ42 and p-tau/t-tau (represented also by the p-tau/t-tau/Aβ42 ratio). In those without biological AD, common factors such as CSF dynamics may cause a positive correlation between CSF Aβ42 and p-tau/t-tau, while AD leads to dissociation of these proteins.
Collapse
Affiliation(s)
- Argonde C Van Harten
- From the Departments of Neurology (A.C.V.H., M.M.M., D.S.K., R.C.P.), Health Sciences Research (H.J.W., S.D.W., M.M.M., W.K.K., R.C.P.), Laboratory Medicine and Pathology (R.B.D.), and Radiology (C.R.J.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center Amsterdam UMC (A.C.V.H.), the Netherlands; and Roche Diagnostics (U.E., R.B.-U., A.A.-S.), Basel, Switzerland.
| | - Heather J Wiste
- From the Departments of Neurology (A.C.V.H., M.M.M., D.S.K., R.C.P.), Health Sciences Research (H.J.W., S.D.W., M.M.M., W.K.K., R.C.P.), Laboratory Medicine and Pathology (R.B.D.), and Radiology (C.R.J.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center Amsterdam UMC (A.C.V.H.), the Netherlands; and Roche Diagnostics (U.E., R.B.-U., A.A.-S.), Basel, Switzerland
| | - Stephen D Weigand
- From the Departments of Neurology (A.C.V.H., M.M.M., D.S.K., R.C.P.), Health Sciences Research (H.J.W., S.D.W., M.M.M., W.K.K., R.C.P.), Laboratory Medicine and Pathology (R.B.D.), and Radiology (C.R.J.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center Amsterdam UMC (A.C.V.H.), the Netherlands; and Roche Diagnostics (U.E., R.B.-U., A.A.-S.), Basel, Switzerland
| | - Michelle M Mielke
- From the Departments of Neurology (A.C.V.H., M.M.M., D.S.K., R.C.P.), Health Sciences Research (H.J.W., S.D.W., M.M.M., W.K.K., R.C.P.), Laboratory Medicine and Pathology (R.B.D.), and Radiology (C.R.J.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center Amsterdam UMC (A.C.V.H.), the Netherlands; and Roche Diagnostics (U.E., R.B.-U., A.A.-S.), Basel, Switzerland
| | - Walter K Kremers
- From the Departments of Neurology (A.C.V.H., M.M.M., D.S.K., R.C.P.), Health Sciences Research (H.J.W., S.D.W., M.M.M., W.K.K., R.C.P.), Laboratory Medicine and Pathology (R.B.D.), and Radiology (C.R.J.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center Amsterdam UMC (A.C.V.H.), the Netherlands; and Roche Diagnostics (U.E., R.B.-U., A.A.-S.), Basel, Switzerland
| | - Udo Eichenlaub
- From the Departments of Neurology (A.C.V.H., M.M.M., D.S.K., R.C.P.), Health Sciences Research (H.J.W., S.D.W., M.M.M., W.K.K., R.C.P.), Laboratory Medicine and Pathology (R.B.D.), and Radiology (C.R.J.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center Amsterdam UMC (A.C.V.H.), the Netherlands; and Roche Diagnostics (U.E., R.B.-U., A.A.-S.), Basel, Switzerland
| | - Richard Batrla-Utermann
- From the Departments of Neurology (A.C.V.H., M.M.M., D.S.K., R.C.P.), Health Sciences Research (H.J.W., S.D.W., M.M.M., W.K.K., R.C.P.), Laboratory Medicine and Pathology (R.B.D.), and Radiology (C.R.J.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center Amsterdam UMC (A.C.V.H.), the Netherlands; and Roche Diagnostics (U.E., R.B.-U., A.A.-S.), Basel, Switzerland
| | - Roy B Dyer
- From the Departments of Neurology (A.C.V.H., M.M.M., D.S.K., R.C.P.), Health Sciences Research (H.J.W., S.D.W., M.M.M., W.K.K., R.C.P.), Laboratory Medicine and Pathology (R.B.D.), and Radiology (C.R.J.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center Amsterdam UMC (A.C.V.H.), the Netherlands; and Roche Diagnostics (U.E., R.B.-U., A.A.-S.), Basel, Switzerland
| | - Alicia Algeciras-Schimnich
- From the Departments of Neurology (A.C.V.H., M.M.M., D.S.K., R.C.P.), Health Sciences Research (H.J.W., S.D.W., M.M.M., W.K.K., R.C.P.), Laboratory Medicine and Pathology (R.B.D.), and Radiology (C.R.J.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center Amsterdam UMC (A.C.V.H.), the Netherlands; and Roche Diagnostics (U.E., R.B.-U., A.A.-S.), Basel, Switzerland
| | - David S Knopman
- From the Departments of Neurology (A.C.V.H., M.M.M., D.S.K., R.C.P.), Health Sciences Research (H.J.W., S.D.W., M.M.M., W.K.K., R.C.P.), Laboratory Medicine and Pathology (R.B.D.), and Radiology (C.R.J.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center Amsterdam UMC (A.C.V.H.), the Netherlands; and Roche Diagnostics (U.E., R.B.-U., A.A.-S.), Basel, Switzerland
| | - Clifford R Jack
- From the Departments of Neurology (A.C.V.H., M.M.M., D.S.K., R.C.P.), Health Sciences Research (H.J.W., S.D.W., M.M.M., W.K.K., R.C.P.), Laboratory Medicine and Pathology (R.B.D.), and Radiology (C.R.J.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center Amsterdam UMC (A.C.V.H.), the Netherlands; and Roche Diagnostics (U.E., R.B.-U., A.A.-S.), Basel, Switzerland
| | - Ronald C Petersen
- From the Departments of Neurology (A.C.V.H., M.M.M., D.S.K., R.C.P.), Health Sciences Research (H.J.W., S.D.W., M.M.M., W.K.K., R.C.P.), Laboratory Medicine and Pathology (R.B.D.), and Radiology (C.R.J.), Mayo Clinic, Rochester, MN; Department of Neurology and Alzheimer Center Amsterdam UMC (A.C.V.H.), the Netherlands; and Roche Diagnostics (U.E., R.B.-U., A.A.-S.), Basel, Switzerland
| |
Collapse
|
206
|
Mullane K, Williams M. Alzheimer’s disease beyond amyloid: Can the repetitive failures of amyloid-targeted therapeutics inform future approaches to dementia drug discovery? Biochem Pharmacol 2020; 177:113945. [DOI: 10.1016/j.bcp.2020.113945] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
|
207
|
Tau PET imaging with 18F-PI-2620 in aging and neurodegenerative diseases. Eur J Nucl Med Mol Imaging 2020; 48:2233-2244. [PMID: 32572562 DOI: 10.1007/s00259-020-04923-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE In vivo measurement of the spatial distribution of neurofibrillary tangle pathology is critical for early diagnosis and disease monitoring of Alzheimer's disease (AD). METHODS Forty-nine participants were scanned with 18F-PI-2620 PET to examine the distribution of this novel PET ligand throughout the course of AD: 36 older healthy controls (HC) (age range 61 to 86), 11 beta-amyloid+ (Aβ+) participants with cognitive impairment (CI; clinical diagnosis of either mild cognitive impairment or AD dementia, age range 57 to 86), and 2 participants with semantic variant primary progressive aphasia (svPPA, age 66 and 78). Group differences in brain regions relevant in AD (medial temporal lobe, posterior cingulate cortex, and lateral parietal cortex) were examined using standardized uptake value ratios (SUVRs) normalized to the inferior gray matter of the cerebellum. RESULTS SUVRs in target regions were relatively stable 60 to 90 min post-injection, with the exception of very high binders who continued to show increases over time. Robust elevations in 18F-PI-2620 were observed between HC and Aβ+ CI across all AD regions. Within the HC group, older age was associated with subtle elevations in target regions. Mildly elevated focal uptake was observed in the anterior temporal pole in one svPPA patient. CONCLUSION Preliminary results suggest strong differences in the medial temporal lobe and cortical regions known to be impacted in AD using 18F-PI-2620 in patients along the AD trajectory. This work confirms that 18F-PI-2620 holds promise as a tool to visualize tau aggregations in AD.
Collapse
|
208
|
Ebenau JL, Timmers T, Wesselman LMP, Verberk IMW, Verfaillie SCJ, Slot RER, van Harten AC, Teunissen CE, Barkhof F, van den Bosch KA, van Leeuwenstijn M, Tomassen J, Braber AD, Visser PJ, Prins ND, Sikkes SAM, Scheltens P, van Berckel BNM, van der Flier WM. ATN classification and clinical progression in subjective cognitive decline: The SCIENCe project. Neurology 2020; 95:e46-e58. [PMID: 32522798 PMCID: PMC7371376 DOI: 10.1212/wnl.0000000000009724] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Objective To investigate the relationship between the ATN classification system (amyloid, tau, neurodegeneration) and risk of dementia and cognitive decline in individuals with subjective cognitive decline (SCD). Methods We classified 693 participants with SCD (60 ± 9 years, 41% women, Mini-Mental State Examination score 28 ± 2) from the Amsterdam Dementia Cohort and Subjective Cognitive Impairment Cohort (SCIENCe) project according to the ATN model, as determined by amyloid PET or CSF β-amyloid (A), CSF p-tau (T), and MRI-based medial temporal lobe atrophy (N). All underwent extensive neuropsychological assessment. For 342 participants, follow-up was available (3 ± 2 years). As a control population, we included 124 participants without SCD. Results Fifty-six (n = 385) participants had normal Alzheimer disease (AD) biomarkers (A–T–N–), 27% (n = 186) had non-AD pathologic change (A–T–N+, A–T+N–, A–T+N+), 18% (n = 122) fell within the Alzheimer continuum (A+T–N–, A+T–N+, A+T+N–, A+T+N+). ATN profiles were unevenly distributed, with A–T+N+, A+T–N+, and A+T+N+ containing very few participants. Cox regression showed that compared to A–T–N–, participants in A+ profiles had a higher risk of dementia with a dose–response pattern for number of biomarkers affected. Linear mixed models showed participants in A+ profiles showed a steeper decline on tests addressing memory, attention, language, and executive functions. In the control group, there was no association between ATN and cognition. Conclusions Among individuals presenting with SCD at a memory clinic, those with a biomarker profile A–T+N+, A+T–N–, A+T+N–, and A+T+N+ were at increased risk of dementia, and showed steeper cognitive decline compared to A–T–N– individuals. These results suggest a future where biomarker results could be used for individualized risk profiling in cognitively normal individuals presenting at a memory clinic.
Collapse
Affiliation(s)
- Jarith L Ebenau
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden.
| | - Tessa Timmers
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Linda M P Wesselman
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Inge M W Verberk
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Sander C J Verfaillie
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Rosalinde E R Slot
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Argonde C van Harten
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Charlotte E Teunissen
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Frederik Barkhof
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Karlijn A van den Bosch
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Mardou van Leeuwenstijn
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Jori Tomassen
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Anouk den Braber
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Pieter Jelle Visser
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Niels D Prins
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Sietske A M Sikkes
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Philip Scheltens
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Bart N M van Berckel
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Wiesje M van der Flier
- From the Alzheimer Center, Department of Neurology (J.L.E., T.T., L.M.P.W., I.M.W.V., R.E.R.S., A.C.v.H., K.A.v.d.B., M.v.L., J.T., A.d.B., P.J.V., N.D.P., S.A.M.S., P.S., B.N.M.v.B., W.M.v.d.F.), and Department of Radiology & Nuclear Medicine (S.C.J.V., F.B., B.N.v.B.), Amsterdam Neuroscience, Neurochemistry Laboratory, Department of Clinical Chemistry (I.M.W.V., C.E.T.), and Department of Epidemiology & Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering (F.B.), London, UK; Department of Biological Psychology (A.d.B.), Neuroscience Amsterdam, VU University Amsterdam; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; and Department of Neurobiology, Care Sciences and Society (P.J.V.), Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| |
Collapse
|
209
|
Upregulation of AMPK Ameliorates Alzheimer's Disease-Like Tau Pathology and Memory Impairment. Mol Neurobiol 2020; 57:3349-3361. [PMID: 32519244 DOI: 10.1007/s12035-020-01955-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022]
Abstract
The studies have shown that 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is involved in Alzheimer's disease (AD) pathology, but the effects of AMPK on AD-like Tau abnormal phosphorylation and its underlying mechanism remains unclear. Herein, we found that the mRNA expression and activity of AMPK are significantly decreased in the brains of the aging C57 mice and 3 × Tg AD mice when compared with their respective control. Moreover, when downregulation of AMPK with AAV-siAMPK-eGFP in the hippocampus CA3 of 3-month-old C57 mice, the mice display AD-like Tau hyperphosphorylation, fear memory impairment, and glycogen synthase kinase-3β (GSK3β) activity increased. On the other hand, there are also AD-like Tau hyperphosphorylation, impairment of fear memory, and AMPK activity decreased in streptozotocin (STZ) mice. Interestingly, AMPK overexpression could efficiently rescue AD-like Tau phosphorylation and brain impairment in STZ mice. Moreover, the activity of GSK3β and the level of Tau phosphorylation (Ser396 and Thr231 sites) were significantly decreased in HEK293 Tau cells transfected by AMPK plasmid or treated with agonists salicylate (SS), but GSK3β agonists Wortmannin (Wort) could ablate AMPK-mediated Tau dephosphorylation. Taken together, the study indicated that AMPK reduces Tau phosphorylation and improves brain function and inhibits GSK3β in AD-like model. These findings proved that AMPK might be a new target for AD in the future.
Collapse
|
210
|
Hossain I, Mohammadian M, Takala RSK, Tenovuo O, Azurmendi Gil L, Frantzén J, van Gils M, Hutchinson PJ, Katila AJ, Maanpää HR, Menon DK, Newcombe VF, Tallus J, Hrusovsky K, Wilson DH, Gill J, Blennow K, Sanchez JC, Zetterberg H, Posti JP. Admission Levels of Total Tau and β-Amyloid Isoforms 1-40 and 1-42 in Predicting the Outcome of Mild Traumatic Brain Injury. Front Neurol 2020; 11:325. [PMID: 32477238 PMCID: PMC7237639 DOI: 10.3389/fneur.2020.00325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/03/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The purpose of this study was to investigate if admission levels of total tau (T-tau) and β-amyloid isoforms 1-40 (Aβ40) and 1-42 (Aβ42) could predict clinical outcome in patients with mild traumatic brain injury (mTBI). Methods: A total of 105 patients with mTBI [Glasgow Coma Scale (GCS) ≥ 13] recruited in Turku University Hospital, Turku, Finland were included in this study. Blood samples were drawn within 24 h of admission for analysis of plasma T-tau, Aβ40, and Aβ42. Patients were divided into computed tomography (CT)-positive and CT-negative groups. The outcome was assessed 6–12 months after the injury using the Extended Glasgow Outcome Scale (GOSE). Outcomes were defined as complete (GOSE 8) or incomplete (GOSE < 8) recovery. The Rivermead Post Concussion Symptoms Questionnaire (RPCSQ) was also used to assess mTBI-related symptoms. Predictive values of the biomarkers were analyzed independently, in panels and together with clinical parameters. Results: The admission levels of plasma T-tau, Aβ40, and Aβ42 were not significantly different between patients with complete and incomplete recovery. The levels of T-tau, Aβ40, and Aβ42 could poorly predict complete recovery, with areas under the receiver operating characteristic curve 0.56, 0.52, and 0.54, respectively. For the whole cohort, there was a significant negative correlation between the levels of T-tau and ordinal GOSE score (Spearman ρ = −0.231, p = 0.018). In a multivariate logistic regression model including age, GCS, duration of posttraumatic amnesia, Injury Severity Score (ISS), time from injury to sampling, and CT findings, none of the biomarkers could predict complete recovery independently or together with the other two biomarkers. Plasma levels of T-tau, Aβ40, and Aβ42 did not significantly differ between the outcome groups either within the CT-positive or CT-negative subgroups. Levels of Aβ40 and Aβ42 did not significantly correlate with outcome, but in the CT-positive subgroup, the levels of T-tau significantly correlated with ordinal GOSE score (Spearman ρ = −0.288, p = 0.035). The levels of T-tau, Aβ40, and Aβ42 were not correlated with the RPCSQ scores. Conclusions: The early levels of T-tau are correlated with the outcome in patients with mTBI, but none of the biomarkers either alone or in any combinations could predict complete recovery in patients with mTBI.
Collapse
Affiliation(s)
- Iftakher Hossain
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland.,Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland.,Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Mehrbod Mohammadian
- Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Riikka S K Takala
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital, Turku, Finland.,Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland
| | - Olli Tenovuo
- Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Leire Azurmendi Gil
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Janek Frantzén
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Mark van Gils
- VTT Technical Research Centre of Finland Ltd., Tampere, Finland
| | - Peter J Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Ari J Katila
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital, Turku, Finland.,Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland
| | - Henna-Riikka Maanpää
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland.,Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Virginia F Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jussi Tallus
- Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland.,Department of Radiology, Turku University Hospital, Turku, Finland
| | | | | | - Jessica Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jean-Charles Sanchez
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom.,UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Jussi P Posti
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland.,Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| |
Collapse
|
211
|
Sprung J, Warner DO, Knopman DS, Petersen RC, Mielke MM, Jack CR, Lowe VJ, Martin DP, Hanson AC, Schroeder DR, Przybelski SA, Schulte PJ, Weingarten TN, Vemuri P. Exposure to surgery with general anaesthesia during adult life is not associated with increased brain amyloid deposition in older adults. Br J Anaesth 2020; 124:594-602. [PMID: 32171548 PMCID: PMC7222219 DOI: 10.1016/j.bja.2020.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/10/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Exposure to surgery with general anaesthesia (surgery/GA) is associated with cortical atrophy, but the aetiology remains unknown. Amyloid-β (Aβ) deposition is one of the hallmark pathological characteristics of Alzheimer's disease (AD). We examined brain Aβ burden in study participants exposed to surgery/GA. METHODS We performed a cross-sectional analysis of residents of Olmsted County, MN, USA, in the Mayo Clinic Study of Aging who were aged 70-97 yr and underwent measurement of (i) brain Aβ with Pittsburgh compound B positron emission tomography (PiB PET), (ii) brain glucose metabolism with 18-fluorodeoxyglucose (FDG) PET, and (iii) temporal cortical thickness with MRI. Separate analyses were performed with exposure to surgery/GA, defined as occurring after age 40 yr, and with exposure to surgery/GA, defined as occurring within 20 yr before neuroimaging. Imaging measurements were compared between participants who were exposed to surgery/GA vs not exposed. RESULTS Of the 2563 participants, 585 had PET scans. Regardless of the definition used to quantify exposure, no significant associations were detected between exposure and either global PiB PET or FDG PET. In contrast, exposure to surgery/GA was associated with an increased likelihood of abnormal cortical thinning: odds ratio (OR)=1.98 (95% confidence interval [CI]: 1.19-3.31); P=0.010 in those exposed after age 40 yr, and OR=1.64 (95% CI: 1.05-2.55); P=0.029 in those exposed in the prior 20 yr. CONCLUSIONS Exposure to surgery/GA is not associated with increases in cortical amyloid deposition. This finding suggests that the modest cortical thinning associated with surgery/GA is not related to AD pathology, but rather is caused by other processes.
Collapse
Affiliation(s)
- Juraj Sprung
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
| | - David O Warner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Michelle M Mielke
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Health Sciences Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - David P Martin
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andrew C Hanson
- Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Darrell R Schroeder
- Health Sciences Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Scott A Przybelski
- Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Phillip J Schulte
- Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Toby N Weingarten
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
212
|
Vassilaki M, Aakre JA, Kremers WK, Lesnick TG, Mielke MM, Geda YE, Machulda MM, Knopman DS, Butler L, Traber M, Vemuri P, Lowe VJ, Jack CR, Roberts RO, Petersen RC. Brain amyloid, cortical thickness, and changes in activities of daily living. Ann Clin Transl Neurol 2020; 7:474-485. [PMID: 32314554 PMCID: PMC7187716 DOI: 10.1002/acn3.51010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/22/2020] [Accepted: 02/25/2020] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE To examine the association of baseline elevated brain amyloid and neurodegeneration with changes in activities of daily living in participants without dementia (ND; i.e., cognitively unimpaired and participants with mild cognitive impairment) at baseline in the population-based Mayo Clinic Study of Aging. METHODS We included 1747 ND participants with 11 C-PiB PET and MR imaging in the study, with data on activities of daily living (as assessed by the Functional Activities Questionnaire (FAQ) and the Clinical Dementia Rating scale Sum of Boxes for functional domains (CDR-SOB (functional)), with a median (range) of 4.3 (0.0-12.7) years of follow-up. Abnormal (elevated; A+) 11 C-PiB-PET retention ratio was defined as standardized uptake value ratio ≥ 1.48, and abnormal (reduced) AD signature cortical thickness as ≤ 2.68 mm (neurodegeneration; N+). Associations were examined with mixed effects models, adjusting for age, sex, education, apolipoprotein E ε4 allele carrier status, and global cognitive z-score. RESULTS Mean age (SD) was 71.4 years (10.1), 46.7% were females, 195 (11.2%) had A+N-, 442 (25.3%) had A-N+, and 339 (19.4%) had A+N+ biomarkers. The A+N+ group had the largest annualized change in the FAQ score from baseline (difference in annual change A+N+ vs. A-N-; ß (SE): 0.80 (0.07)); associations were substantially attenuated when a time-varying global cognitive composite was included in the model (A+N+ vs. A-N-; ß (SE): 0.31 (0.05)). CDR-SOB (functional) findings partly agreed with FAQ score findings. INTERPRETATION The longitudinal increase in functional limitations is greater for individuals with abnormal neuroimaging biomarkers, especially for those with both elevated brain amyloid and neurodegeneration.
Collapse
Affiliation(s)
- Maria Vassilaki
- Department of Health Sciences ResearchMayo ClinicRochesterMinnesota
| | | | | | | | - Michelle M. Mielke
- Department of Health Sciences ResearchMayo ClinicRochesterMinnesota
- Department of NeurologyMayo ClinicRochesterMinnesota
| | - Yonas E. Geda
- Center for Bioelectronics and BiosensorsBiodesign Institute, Arizona State UniversityTempeArizona
- Mayo Clinic Study of AgingRochesterMinnesota
| | - Mary M. Machulda
- Department of Psychiatry and PsychologyMayo ClinicRochesterMinnesota
| | | | - Lesley Butler
- Personalized Health Care‐Data Science and Product Development Medical AffairsF. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Martin Traber
- Personalized Health Care‐Data Science and Product Development Medical AffairsF. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | | | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMinnesota
| | | | - Rosebud O. Roberts
- Department of Health Sciences ResearchMayo ClinicRochesterMinnesota
- Department of NeurologyMayo ClinicRochesterMinnesota
| | - Ronald C. Petersen
- Department of Health Sciences ResearchMayo ClinicRochesterMinnesota
- Department of NeurologyMayo ClinicRochesterMinnesota
| |
Collapse
|
213
|
Gyertyán I. How can preclinical cognitive research further neuropsychiatric drug discovery? Chances and challenges. Expert Opin Drug Discov 2020; 15:659-670. [DOI: 10.1080/17460441.2020.1739645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- István Gyertyán
- Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
214
|
Quevenco FC, van Bergen JM, Treyer V, Studer ST, Kagerer SM, Meyer R, Gietl AF, Kaufmann PA, Nitsch RM, Hock C, Unschuld PG. Functional Brain Network Connectivity Patterns Associated With Normal Cognition at Old-Age, Local β-amyloid, Tau, and APOE4. Front Aging Neurosci 2020; 12:46. [PMID: 32210782 PMCID: PMC7075450 DOI: 10.3389/fnagi.2020.00046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/10/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Integrity of functional brain networks is closely associated with maintained cognitive performance at old age. Consistently, both carrier status of Apolipoprotein E ε4 allele (APOE4), and age-related aggregation of Alzheimer’s disease (AD) pathology result in altered brain network connectivity. The posterior cingulate and precuneus (PCP) is a node of particular interest due to its role in crucial memory processes. Moreover, the PCP is subject to the early aggregation of AD pathology. The current study aimed at characterizing brain network properties associated with unimpaired cognition in old aged adults. To determine the effects of age-related brain change and genetic risk for AD, pathological proteins β-amyloid and tau were measured by Positron-emission tomography (PET), PCP connectivity as a proxy of cognitive network integrity, and genetic risk by APOE4 carrier status. Methods: Fifty-seven cognitively unimpaired old-aged adults (MMSE = 29.20 ± 1.11; 73 ± 8.32 years) were administered 11C Pittsburgh Compound B and 18F Flutemetamol PET for assessing β-amyloid, and 18F AV-1451 PET for tau. Individual functional connectivity seed maps of the PCP were obtained by resting-state multiband BOLD functional MRI at 3-Tesla for increased temporal resolution. Voxelwise correlations between functional connectivity, β-amyloid- and tau-PET were explored by Biological Parametric Mapping (BPM). Results: Local β-amyloid was associated with increased connectivity in frontal and parietal regions of the brain. Tau was linked to increased connectivity in more spatially distributed clusters in frontal, parietal, occipital, temporal, and cerebellar regions. A positive interaction was observable for APOE4 carrier status and functional connectivity with brain regions characterized by increased local β-amyloid and tau tracer retention. Conclusions: Our data suggest an association between spatially differing connectivity systems and local β-amyloid, and tau aggregates in cognitively normal, old-aged adults, which is moderated by APOE4. Additional longitudinal studies may determine protective connectivity patterns associated with healthy aging trajectories of AD-pathology aggregation.
Collapse
Affiliation(s)
- Frances C Quevenco
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Jiri M van Bergen
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Valerie Treyer
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Department of Nuclear Medicine, University of Zurich, Zurich, Switzerland
| | - Sandro T Studer
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Sonja M Kagerer
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Neurimmune, Schlieren, Switzerland
| | - Rafael Meyer
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Anton F Gietl
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, University of Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Neurimmune, Schlieren, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Neurimmune, Schlieren, Switzerland
| | - Paul G Unschuld
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Department of Psychogeriatric Medicine, Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| |
Collapse
|
215
|
Fossel M. A unified model of dementias and age-related neurodegeneration. Alzheimers Dement 2020; 16:365-383. [PMID: 31943780 DOI: 10.1002/alz.12012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/09/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
|
216
|
Shaw LM, Korecka M, Figurski M, Toledo J, Irwin D, Kang JH, Trojanowski JQ. Detection of Alzheimer Disease Pathology in Patients Using Biochemical Biomarkers: Prospects and Challenges for Use in Clinical Practice. J Appl Lab Med 2020; 5:183-193. [PMID: 31848218 PMCID: PMC7246169 DOI: 10.1373/jalm.2019.029587] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Thirty-four years ago, amyloid-β 1-42 peptide was identified in amyloid plaques from brain tissue obtained from patients with Alzheimer disease (AD) and Down syndrome. This finding led to development of immunoassays for this marker of amyloid plaque burden in cerebrospinal fluid (CSF) approximately 10 years later. Subsequently, research immunoassays were developed for total τ protein and τ phosphorylated at the threonine 181 position. Subsequent studies documented the clinical utility of these biomarkers of amyloid plaque burden or τ tangle pathology in cohorts of living patients. CONTENT We describe the following: (a) clinical utility of AD biomarkers; (b) measurement challenges, including development of mass spectrometry-based reference methods and automated immunoassays; (c) development of "appropriate use criteria" (AUC) guidelines for safe/appropriate use of CSF testing for diagnosis of AD developed by neurologists, a neuroethicist, and laboratorians; (d) a framework, sponsored by the National Institute of Aging-Alzheimer's Association (NIA-AA), that defines AD on the basis of CSF and imaging methods for detecting amyloid plaque burden, τ tangle pathology, and neurodegeneration. This framework's purpose was investigative but has important implications for future clinical practice; (e) recognition of copathologies in AD patients and challenges for developing methods to detect these in living patients. SUMMARY The field can expect availability of validated research tools for detection of AD pathology that support clinical treatment trials of disease-modifying agents and, ultimately, use in clinical practice. Validated methods are becoming available for CSF testing; emergence of validated methods for AD biomarkers in plasma can be expected in the next few years.
Collapse
Affiliation(s)
- Leslie M Shaw
- Department of Pathology and Laboratory Medicine, University
of Pennsylvania, Philadelphia, PA 19104
| | - Magdalena Korecka
- Department of Pathology and Laboratory Medicine, University
of Pennsylvania, Philadelphia, PA 19104
| | - Michal Figurski
- Department of Pathology and Laboratory Medicine, University
of Pennsylvania, Philadelphia, PA 19104
| | - Jon Toledo
- Department of Neurology, Houston Methodist Hospital,
Houston, TX
| | - David Irwin
- Department of Neurology, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA 19104
| | - Ju Hee Kang
- Department of Pharmacology and Clinical Pharmacology,
College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, University
of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
217
|
Alzheimer's disease: A clinical perspective and future nonhuman primate research opportunities. Proc Natl Acad Sci U S A 2019; 116:26224-26229. [PMID: 31871211 DOI: 10.1073/pnas.1912954116] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is the sixth leading cause of death and the most common cause of dementia worldwide. Over the last few decades, significant advancements have been made in our understanding of AD by investigating the molecular mechanisms underlying amyloid-β and tau pathology. Despite this progress, no disease-modifying treatments exist for AD, an issue that will exacerbated by the rising costs and prevalence of the disorder. Moreover, effective therapies to address the devastating cognitive and behavioral symptoms are also urgently needed. This perspective focuses on the value of nonhuman primate (NHP) models in bridging the molecular, circuit, and behavioral levels of analysis to better understand the complex genetic and environmental/lifestyle factors that contribute to AD pathogenesis. These investigations could provide an opportunity for translating our understanding of the pathogenesis and physiological mechanisms underlying AD and related disorders into new diagnostic approaches and disease-modifying therapies to prevent disease or restore brain function for symptomatic individuals.
Collapse
|
218
|
Weigand AJ, Bangen KJ, Thomas KR, Delano-Wood L, Gilbert PE, Brickman AM, Bondi MW. Is tau in the absence of amyloid on the Alzheimer's continuum?: A study of discordant PET positivity. Brain Commun 2019; 2:fcz046. [PMID: 32051933 PMCID: PMC7001143 DOI: 10.1093/braincomms/fcz046] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
The amyloid cascade model of Alzheimer’s disease posits the primacy of amyloid beta deposition preceding tau-mediated neurofibrillary tangle formation. The amyloid-tau-neurodegeneration biomarker-only diagnostic framework similarly requires the presence of amyloid beta for a diagnosis on the Alzheimer’s continuum. However, medial temporal lobe tau pathology in the absence of amyloid beta is frequently observed at autopsy in cognitively normal individuals, a phenomenon that may reflect a consequence of aging and has been labelled ‘primary age-related tauopathy’. Alternatively, others argue that this tauopathy reflects an early stage of the developmental continuum leading to Alzheimer’s disease. We used positron emission tomography imaging to investigate amyloid beta and tau positivity and associations with cognition to better inform the conceptualization of biomarker changes in Alzheimer’s pathogenesis. Five hundred twenty-three individuals from the Alzheimer’s Disease Neuroimaging Initiative who had undergone flortaucipir positron emission tomography imaging were selected to derive positron emission tomography positivity thresholds using conditional inference decision tree regression. A subsample of 301 individuals without dementia (i.e. those with normal cognition or mild cognitive impairment) had also undergone florbetapir positron emission tomography imaging within 12 months and were categorized into one of the four groups based on cortical amyloid and Braak stage I/II tau positivity: A−/T−, A+/T−, A−/T+, or A+/T+. Tau positivity in the absence of amyloid beta positivity (i.e. A−/T+) comprised the largest group, representing 45% of the sample. In contrast, only 6% of the sample was identified as A+/T−, and the remainder of the sample fell into A−/T− (22%) or A+/T+ (27%) categories. A−/T− and A+/T− groups had the best cognitive performances across memory, language and executive function; the A−/T+ group showed small-to-moderate relative decreases in cognition; and the A+/T+ group had the worst cognitive performances. Furthermore, there were negative associations between Braak stage I/II tau values and all cognitive domains only in the A−/T+ and A+/T+ groups, with strongest associations for the A+/T+ group. Among our sample of older adults across the Alzheimer’s pathological spectrum, 7-fold fewer individuals have positron emission tomography evidence of amyloid beta pathology in the absence of tau pathology than the converse, challenging prevailing models of amyloid beta’s primacy in Alzheimer’s pathogenesis. Given that cognitive performance in the A−/T+ group was poorer than in individuals without either pathology, our results suggest that medial temporal lobe tau without cortical amyloid beta may reflect an early stage on the Alzheimer’s pathological continuum.
Collapse
Affiliation(s)
- Alexandra J Weigand
- San Diego State University/University of California San Diego Joint Doctoral Program, San Diego, CA 92182, USA
| | - Katherine J Bangen
- VA San Diego Healthcare System, San Diego, CA 92161, USA.,Department of Psychiatry, University of California, San Diego, CA 92161, USA
| | - Kelsey R Thomas
- VA San Diego Healthcare System, San Diego, CA 92161, USA.,Department of Psychiatry, University of California, San Diego, CA 92161, USA
| | - Lisa Delano-Wood
- VA San Diego Healthcare System, San Diego, CA 92161, USA.,Department of Psychiatry, University of California, San Diego, CA 92161, USA
| | - Paul E Gilbert
- Department of Psychology, San Diego State University, San Diego, CA 92182, USA
| | - Adam M Brickman
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Mark W Bondi
- VA San Diego Healthcare System, San Diego, CA 92161, USA.,Department of Psychiatry, University of California, San Diego, CA 92161, USA
| | | |
Collapse
|
219
|
The A/T/N model applied through imaging biomarkers in a memory clinic. Eur J Nucl Med Mol Imaging 2019; 47:247-255. [PMID: 31792573 DOI: 10.1007/s00259-019-04536-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE The A/T/N model is a research framework proposed to investigate Alzheimer's disease (AD) pathological bases (i.e., amyloidosis A, neurofibrillary tangles T, and neurodegeneration N). The application of this system on clinical populations is still limited. The aim of the study is to evaluate the topography of T distribution by 18F-flortaucipir PET in relation to A and N and to describe the A/T/N status through imaging biomarkers in memory clinic patients. METHODS Eighty-one patients with subjective and objective cognitive impairment were classified as A+/A- and N+/N- through amyloid PET and structural MRI. Tau deposition was compared across A/N subgroups at voxel level. T status was defined through a global cut point based on A/N subgroups and subjects were categorized following the A/T/N model. RESULTS A+N+ and A+N- subgroups showed higher tau burden compared to A-N- group, with A+N- showing significant deposition limited to the medial and lateral temporal regions. Global cut point discriminated A+N+ and A+N- from A-N- subjects. On A/T/N classification, 23% of patients showed a negative biomarker profile, 58% fell within the Alzheimer's continuum, and 19% of the sample was characterized by non-AD pathologic change. CONCLUSION Medial and lateral temporal regions represent a site of significant tau accumulation in A+ subjects and possibly a useful marker of early clinical changes. This is the first study in which the A/T/N model is applied using 18F-flortaucipir PET in a memory clinic population. The majority of patients showed a profile consistent with the Alzheimer's continuum, while a minor percentage showed a profile suggestive of possible other neurodegenerative diseases. These results support the applicability of the A/T/N model in clinical practice.
Collapse
|
220
|
Affiliation(s)
- Sharon Naparstek
- Department of Psychiatry and Behavioral Sciences and Wu Tsai Neurosciences Institute, Stanford University, Stanford, Calif.; Sierra-Pacific Mental Illness Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, Calif
| | - Omer Linkovski
- Department of Psychiatry and Behavioral Sciences and Wu Tsai Neurosciences Institute, Stanford University, Stanford, Calif.; Sierra-Pacific Mental Illness Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, Calif
| | - Ruth O'Hara
- Department of Psychiatry and Behavioral Sciences and Wu Tsai Neurosciences Institute, Stanford University, Stanford, Calif.; Sierra-Pacific Mental Illness Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, Calif
| |
Collapse
|
221
|
McRae-McKee K, Udeh-Momoh CT, Price G, Bajaj S, de Jager CA, Scott D, Hadjichrysanthou C, McNaughton E, Bracoud L, Ahmadi-Abhari S, de Wolf F, Anderson RM, Middleton LT. Perspective: Clinical relevance of the dichotomous classification of Alzheimer's disease biomarkers: Should there be a "gray zone"? Alzheimers Dement 2019; 15:1348-1356. [PMID: 31564609 DOI: 10.1016/j.jalz.2019.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/21/2019] [Accepted: 07/14/2019] [Indexed: 11/23/2022]
Abstract
The 2018 National Institute on Aging and the Alzheimer's Association (NIA-AA) research framework recently redefined Alzheimer's disease (AD) as a biological construct, based on in vivo biomarkers reflecting key neuropathologic features. Combinations of normal/abnormal levels of three biomarker categories, based on single thresholds, form the AD signature profile that defines the biological disease state as a continuum, independent of clinical symptomatology. While single thresholds may be useful in defining the biological signature profile, we provide evidence that their use in studies with cognitive outcomes merits further consideration. Using data from the Alzheimer's Disease Neuroimaging Initiative with a focus on cortical amyloid binding, we discuss the limitations of applying the biological definition of disease status as a tool to define the increased likelihood of the onset of the Alzheimer's clinical syndrome and the effects that this may have on trial study design. We also suggest potential research objectives going forward and what the related data requirements would be.
Collapse
Affiliation(s)
- Kevin McRae-McKee
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Chinedu T Udeh-Momoh
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Geraint Price
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Sumali Bajaj
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Celeste A de Jager
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Christoforos Hadjichrysanthou
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Emily McNaughton
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Sara Ahmadi-Abhari
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Frank de Wolf
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Roy M Anderson
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Lefkos T Middleton
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, United Kingdom; Imperial College Healthcare NHS Trust, London, United Kingdom.
| |
Collapse
|
222
|
Xicota L, Ichou F, Lejeune FX, Colsch B, Tenenhaus A, Leroy I, Fontaine G, Lhomme M, Bertin H, Habert MO, Epelbaum S, Dubois B, Mochel F, Potier MC. Multi-omics signature of brain amyloid deposition in asymptomatic individuals at-risk for Alzheimer's disease: The INSIGHT-preAD study. EBioMedicine 2019; 47:518-528. [PMID: 31492558 PMCID: PMC6796577 DOI: 10.1016/j.ebiom.2019.08.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND One of the biggest challenge in Alzheimer's disease (AD) is to identify pathways and markers of disease prediction easily accessible, for prevention and treatment. Here we analysed blood samples from the INveStIGation of AlzHeimer's predicTors (INSIGHT-preAD) cohort of elderly asymptomatic individuals with and without brain amyloid load. METHODS We performed blood RNAseq, and plasma metabolomics and lipidomics using liquid chromatography-mass spectrometry on 48 individuals amyloid positive and 48 amyloid negative (SUVr cut-off of 0·7918). The three data sets were analysed separately using differential gene expression based on negative binomial distribution, non-parametric (Wilcoxon) and parametric (correlation-adjusted Student't) tests. Data integration was conducted using sparse partial least squares-discriminant and principal component analyses. Bootstrap-selected top-ten features from the three data sets were tested for their discriminant power using Receiver Operating Characteristic curve. Longitudinal metabolomic analysis was carried out on a subset of 22 subjects. FINDINGS Univariate analyses identified three medium chain fatty acids, 4-nitrophenol and a set of 64 transcripts enriched for inflammation and fatty acid metabolism differentially quantified in amyloid positive and negative subjects. Importantly, the amounts of the three medium chain fatty acids were correlated over time in a subset of 22 subjects (p < 0·05). Multi-omics integrative analyses showed that metabolites efficiently discriminated between subjects according to their amyloid status while lipids did not and transcripts showed trends. Finally, the ten top metabolites and transcripts represented the most discriminant omics features with 99·4% chance prediction for amyloid positivity. INTERPRETATION This study suggests a potential blood omics signature for prediction of amyloid positivity in asymptomatic at-risk subjects, allowing for a less invasive, more accessible, and less expensive risk assessment of AD as compared to PET studies or lumbar puncture. FUND: Institut Hospitalo-Universitaire and Institut du Cerveau et de la Moelle Epiniere (IHU-A-ICM), French Ministry of Research, Fondation Alzheimer, Pfizer, and Avid.
Collapse
Affiliation(s)
- Laura Xicota
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France
| | - Farid Ichou
- ICANalytcis Platforms, Institute of Cardiometabolism and Nutrition ICAN, Paris, France
| | - François-Xavier Lejeune
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France
| | - Benoit Colsch
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Université Paris-Saclay, MetaboHUB, Gif-sur-Yvette, France
| | - Arthur Tenenhaus
- Laboratoire des Signaux et Systèmes, CentraleSupélec, Université Paris-Saclay, Gif sur Yvette, France
| | - Inka Leroy
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France
| | - Gaëlle Fontaine
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France
| | - Marie Lhomme
- ICANalytcis Platforms, Institute of Cardiometabolism and Nutrition ICAN, Paris, France
| | - Hugo Bertin
- Centre Acquisition et Traitement des Images, Paris, France
| | - Marie-Odile Habert
- Laboratoire d'Imagerie Biomédicale, Nuclear Medicine Department, Sorbonne Université, Hôpital de la Salpêtrière, Paris, France
| | - Stéphane Epelbaum
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France; Centre des Maladies Cognitives et Comportementales, Sorbonne Université, Hôpital de la Salpêtrière, Paris, France; Inria, Aramis-Project Team, Paris, France
| | - Bruno Dubois
- Centre des Maladies Cognitives et Comportementales, Sorbonne Université, Hôpital de la Salpêtrière, Paris, France
| | - Fanny Mochel
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France.
| | - Marie-Claude Potier
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France.
| |
Collapse
|