201
|
|
202
|
Bhattacharya R, Bick AG. Clonal Hematopoiesis of Indeterminate Potential: an Expanding Genetic Cause of Cardiovascular Disease. Curr Atheroscler Rep 2021; 23:66. [PMID: 34468876 PMCID: PMC8543762 DOI: 10.1007/s11883-021-00966-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Clonal hematopoiesis of indeterminate potential (CHIP) is a novel cardiovascular risk factor that develops as aging hematopoietic stem cells (HSCs) acquire somatic mutations which confer a clonal survival advantage in their progeny. These cells confer increased leukemogenic risk but confer a greater absolute risk of cardiovascular disease-which appears to be mediated through altered inflammatory pathways. Here we review the evidence the risk of cardiovascular disease conferred by CHIP. We also review the evidence regarding risk factors associated with CHIP. RECENT FINDINGS The most recent evidence suggests that CHIP is associated with increased cardiovascular risk beyond atherosclerosis, which has been established in multiple studies, but also in heart failure and aortic valve stenosis. Additionally, the list of conditions associated with CHIP continues to grow including germline genetics, smoking, cancer therapies, radiation exposure, premature menopause, and unhealthy diet. CHIP is a cardiovascular risk factor of increasingly recognized importance, and new data continues to emerge about the risks it confers, which will need more prospective validation. Although risk factors for CHIP are being identified, relatively little is known about the mechanisms by which CHIP develops, which requires further study.
Collapse
Affiliation(s)
- Romit Bhattacharya
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Ave S, Nashville, TN, USA.
| |
Collapse
|
203
|
Wintrich J, Berger AK, Bewarder Y, Emrich I, Slawik J, Böhm M. [Update on diagnostics and treatment of heart failure]. Herz 2021; 47:340-353. [PMID: 34463784 PMCID: PMC8405859 DOI: 10.1007/s00059-021-05062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/03/2021] [Accepted: 07/23/2021] [Indexed: 11/28/2022]
Abstract
Inzidenz und Prävalenz der Herzinsuffizienz steigen weltweit. Trotz zahlreicher wissenschaftlicher und klinischer Innovationen ist sie weiterhin mit einer hohen Morbidität und Mortalität behaftet, sodass eine leitliniengerechte Diagnostik und Therapie von entscheidender Bedeutung sind. Die kardiale Dekompensation zählt zu den häufigsten Aufnahmegründen in deutschen Krankenhäusern. Somit stellt die Behandlung herzinsuffizienter Patienten eine erhebliche Herausforderung für das deutsche Gesundheitssystem dar. Dieser Artikel fasst die neuesten wissenschaftlichen Erkenntnisse zur akuten und chronischen Herzinsuffizienz der Jahre 2018 bis 2020 zusammen.
Collapse
Affiliation(s)
- Jan Wintrich
- Klinik für Innere Medizin III - Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Kirrbergerstraße, 666421, Homburg/Saar, Deutschland.
| | - Ann-Kathrin Berger
- Klinik für Innere Medizin III - Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Kirrbergerstraße, 666421, Homburg/Saar, Deutschland
| | - Yvonne Bewarder
- Klinik für Innere Medizin III - Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Kirrbergerstraße, 666421, Homburg/Saar, Deutschland
| | - Insa Emrich
- Klinik für Innere Medizin III - Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Kirrbergerstraße, 666421, Homburg/Saar, Deutschland
| | - Jonathan Slawik
- Klinik für Innere Medizin III - Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Kirrbergerstraße, 666421, Homburg/Saar, Deutschland
| | - Michael Böhm
- Klinik für Innere Medizin III - Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Kirrbergerstraße, 666421, Homburg/Saar, Deutschland
| |
Collapse
|
204
|
Mozzini C, Pagani M. Clonal Hematopoiesis and Cardiovascular Diseases: The Connection. Curr Probl Cardiol 2021; 47:100962. [PMID: 34391764 DOI: 10.1016/j.cpcardiol.2021.100962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 01/22/2023]
Abstract
Atherothrombosis is the leading cause of death worldwide, but the precise mechanisms are not yet fully understood. Traditional cardiovascular risk factors have been known for many years, but are not enough to predict individual risk despite consolidated and emerging risk scoring systems. Clonal Haematopoiesis of Indeterminate Potential (CHIP) refers to the clonal expansion of a population of haematopoietic cells in response to the acquisition of a somatic mutation, without any clinical or biological sign of haematological malignancy. The prevalence of this condition increases with age, reaching 10 to20% of the general population aged >70 years. Recent studies have shown a link between CHIP and cardiovascular diseases. CHIP carriers have higher risk of cardiovascular diseases with also a more severe prognosis. Inflammation and immunity play a critical role in enhancing the cardiovascular consequences of CHIP. In this review we discuss the association between CHIP and cardiovascular diseases focusing on inflammation and other pathways shared with atherosclerosis progression. It is hopeful that in the future patients recognized as CHIP carriers may be classified as high-risk cardiovascular patients and new treatment targets will be required for them.
Collapse
Affiliation(s)
- Chiara Mozzini
- Department of Medicine, Section of Internal Medicine, Carlo Poma Hospital, Mantova Italy.
| | - Mauro Pagani
- Department of Medicine, Section of Internal Medicine, Carlo Poma Hospital, Mantova Italy
| |
Collapse
|
205
|
Fuster JJ. Clonal Hematopoiesis and Incident Heart Failure Risk: The Clone Wars Reach the Myocardium. J Am Coll Cardiol 2021; 78:53-55. [PMID: 34210414 DOI: 10.1016/j.jacc.2021.04.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 11/18/2022]
Affiliation(s)
- José J Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
206
|
Lin SH, Wang Y, Hartley SW, Karyadi DM, Lee OW, Zhu B, Zhou W, Brown DW, Beilstein-Wedel E, Hazra R, Kacanek D, Chadwick EG, Marsit CJ, Poirier MC, Brummel SS, Chanock SJ, Engels EA, Machiela MJ. In-utero exposure to zidovudine-containing antiretroviral therapy and clonal hematopoiesis in HIV-exposed uninfected newborns. AIDS 2021; 35:1525-1535. [PMID: 33756513 PMCID: PMC8286286 DOI: 10.1097/qad.0000000000002894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Zidovudine (ZDV) has been extensively used in pregnant women to prevent vertical transmission of HIV but few studies have evaluated potential mutagenic effects of ZDV during fetal development. DESIGN Our study investigated clonal hematopoiesis in HIV-exposed uninfected (HEU) newborns, 94 of whom were ZDV-exposed and 91 antiretroviral therapy (ART)-unexposed and matched for potential confounding factors. METHODS Utilizing high depth sequencing and genotyping arrays, we comprehensively examined blood samples collected during the first week after birth for potential clonal hematopoiesis associated with fetal ZDV exposure, including clonal single nucleotide variants (SNVs), small insertions and deletions (indels), and large structural copy number or copy neutral alterations. RESULTS We observed no statistically significant difference in the number of SNVs and indels per person in ZDV-exposed children (adjusted ratio [95% confidence interval, CI] for expected number of mutations = 0.79 [0.50--1.22], P = 0.3), and no difference in the number of large structural alterations. Mutations in common clonal hematopoiesis driver genes were not found in the study population. Mutational signature analyses on SNVs detected no novel signatures unique to the ZDV-exposed children and the mutational profiles were similar between the two groups. CONCLUSION Our results suggest that clonal hematopoiesis at levels detectable in our study is not strongly influenced by in-utero ZDV exposure; however, additional follow-up studies are needed to further evaluate the safety and potential long-term impacts of in-utero ZDV exposure in HEU children as well as better investigate genomic aberrations occurring late in pregnancy.
Collapse
Affiliation(s)
- Shu-Hong Lin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville
| | - Youjin Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville
| | - Stephen W Hartley
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville
| | - Danielle M Karyadi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville
| | - Olivia W Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Derek W Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville
| | - Erin Beilstein-Wedel
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Rohan Hazra
- Maternal and Pediatric Infectious Disease Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Deborah Kacanek
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Ellen G Chadwick
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Carmen J Marsit
- Departments of Environmental Health and Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Miriam C Poirier
- Carcinogen-DNA Interactions Section, Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sean S Brummel
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville
| | - Eric A Engels
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville
| |
Collapse
|
207
|
Asada S, Kitamura T. Clonal hematopoiesis and associated diseases: A review of recent findings. Cancer Sci 2021; 112:3962-3971. [PMID: 34328684 PMCID: PMC8486184 DOI: 10.1111/cas.15094] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Recent genome‐wide studies have revealed that aging or chronic inflammation can cause clonal expansion of cells in normal tissues. Clonal hematopoiesis has been the most intensively studied form of clonal expansion in the last decade. Clonal hematopoiesis of indeterminate potential (CHIP) is an age‐related phenomenon observed in elderly individuals with no history of hematological malignancy. The most frequently mutated genes in CHIP are DNMT3A, TET2, and ASXL1, which are associated with initiation of leukemia. Importantly, CHIP has been the focus of a number of studies because it is an independent risk factor for myeloid malignancy, cardiovascular disease (CVD), and all‐cause mortality. Animal models recapitulating human CHIP revealed that CHIP‐associated mutations alter the number and function of hematopoietic stem and progenitor cells (HSPCs) and promote leukemic transformation. Moreover, chronic inflammation caused by infection or aging confers a fitness advantage to the CHIP‐associated mutant HSPCs. Myeloid cells, such as macrophages with a CHIP‐associated mutation, accelerate chronic inflammation and are associated with increased levels of inflammatory cytokines. This positive feedback loop between CHIP and chronic inflammation promotes development of atherosclerosis and chronic heart failure and thereby increases the risk for CVD. Notably, HSPCs with a CHIP‐associated mutation may alter not only innate but also acquired immune cells. This suggests that CHIP is involved in the development of solid cancers or immune disorders, such as aplastic anemia. In this review, we provide an overview of recent findings on CHIP. We also discuss potential interventions for treating CHIP and preventing myeloid transformation and CVD progression.
Collapse
Affiliation(s)
- Shuhei Asada
- The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan.,Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
208
|
Abstract
Cancer and cardiovascular diseases, including heart failure (HF), are the main causes of death in Western countries. Several anticancer drugs and radiotherapy have adverse effects on the cardiovascular system, promoting left ventricular dysfunction and ultimately HF. Nonetheless, the relationship between cancer and HF is likely not unidirectional. Indeed, cancer and HF share common risk factors, and both have a bidirectional relationship with systemic inflammation, metabolic disturbances, and neurohormonal and immune activation. Few studies have assessed the impact of untreated cancer on the heart. The presence of an active cancer has been associated with elevated cardiac biomarkers, an initial impairment of left ventricular structure and function, autonomic dysfunction, and reduced exercise tolerance. In turn, these conditions might increase the risk of cardiac damage from chemotherapy and radiotherapy. HF drugs such as beta-blockers or inhibitors of the renin–angiotensin–aldosterone system might exert a protective effect on the heart even before the start of cancer therapies. In this review, we recapitulate the evidence of cardiac involvement in cancer patients naïve from chemotherapy and radiotherapy and no history of cardiac disease. We also focus on the perspectives for an early diagnosis and treatment to prevent the progression to cardiac dysfunction and clinical HF, and the potential benefits of cardioactive drugs on cancer progression.
Collapse
|
209
|
Clinical insights into the origins of thrombosis in myeloproliferative neoplasms. Blood 2021; 137:1145-1153. [PMID: 33237986 DOI: 10.1182/blood.2020008043] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are hematopoietic stem cell disorders that are defined by activating mutations in signal transduction pathways and are characterized clinically by the overproduction of platelets, red blood cells, and neutrophils, significant burden of disease-specific symptoms, and high rates of vascular events. The focus of this review is to critically reevaluate the clinical burden of thrombosis in MPNs, to review the clinical associations among clonal hematopoiesis, JAK2V617F burden, inflammation, and thrombosis, and to provide insights into novel primary and secondary thrombosis-prevention strategies.
Collapse
|
210
|
Maani N, Panabaker K, McCuaig JM, Buckley K, Semotiuk K, Farncombe KM, Ainsworth P, Panchal S, Sadikovic B, Armel SR, Lin H, Kim RH. Incidental findings from cancer next generation sequencing panels. NPJ Genom Med 2021; 6:63. [PMID: 34282142 PMCID: PMC8289933 DOI: 10.1038/s41525-021-00224-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/09/2021] [Indexed: 11/09/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have facilitated multi-gene panel (MGP) testing to detect germline DNA variants in hereditary cancer patients. This sensitive technique can uncover unexpected, non-germline incidental findings indicative of mosaicism, clonal hematopoiesis (CH), or hematologic malignancies. A retrospective chart review was conducted to identify cases of incidental findings from NGS-MGP testing. Inclusion criteria included: 1) multiple pathogenic variants in the same patient; 2) pathogenic variants at a low allele fraction; and/or 3) the presence of pathogenic variants not consistent with family history. Secondary tissue analysis, complete blood count (CBC) and medical record review were conducted to further delineate the etiology of the pathogenic variants. Of 6060 NGS-MGP tests, 24 cases fulfilling our inclusion criteria were identified. Pathogenic variants were detected in TP53, ATM, CHEK2, BRCA1 and APC. 18/24 (75.0%) patients were classified as CH, 3/24 (12.5%) as mosaic, 2/24 (8.3%) related to a hematologic malignancy, and 1/24 (4.2%) as true germline. We describe a case-specific workflow to identify and interpret the nature of incidental findings on NGS-MGP. This workflow will provide oncology and genetic clinics a practical guide for the management and counselling of patients with unexpected NGS-MGP findings.
Collapse
Affiliation(s)
- Nika Maani
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Karen Panabaker
- Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre, London, ON, Canada
| | - Jeanna M McCuaig
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Familial Cancer Clinic, Princess Margaret Hospital Cancer Centre, Toronto, ON, Canada
| | | | - Kara Semotiuk
- Zane Cohen Centre for Digestive Diseases, Familial Gastrointestinal Cancer Registry, Mount Sinai Hospital, Toronto, ON, Canada
| | - Kirsten M Farncombe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Peter Ainsworth
- Molecular Genetics Laboratory, Division of Molecular Diagnostics, London Health Sciences Centre, London, ON, Canada
| | - Seema Panchal
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Familial Breast Cancer Clinic, Mount Sinai Hospital, Toronto, ON, Canada
| | - Bekim Sadikovic
- Molecular Genetics Laboratory, Division of Molecular Diagnostics, London Health Sciences Centre, London, ON, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Susan Randall Armel
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Familial Cancer Clinic, Princess Margaret Hospital Cancer Centre, Toronto, ON, Canada
| | - Hanxin Lin
- Molecular Genetics Laboratory, Division of Molecular Diagnostics, London Health Sciences Centre, London, ON, Canada. .,Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.
| | - Raymond H Kim
- Familial Cancer Clinic, Princess Margaret Hospital Cancer Centre, Toronto, ON, Canada. .,Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
211
|
Clonal hematopoiesis of indeterminate potential (CHIP) and cardiovascular diseases-an updated systematic review. J Genet Eng Biotechnol 2021; 19:105. [PMID: 34279740 PMCID: PMC8287286 DOI: 10.1186/s43141-021-00205-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022]
Abstract
Background Cardiovascular diseases (CVDs) are the leading cause of mortality in India. Residual risk exists in patients receiving optimal guideline-directed medical therapy. Possession of certain somatic mutations, at a variant allele frequency of ≥ 2% in peripheral blood, driving clonal expansion in the absence of cytopenias and dysplastic hematopoiesis is defined as clonal hematopoiesis of indeterminate potential (CHIP). Recently, it was found that carriers of CHIP had a higher risk to have coronary artery disease (CAD) and early-onset myocardial infarction. Association of CHIP with heart failure and valvular heart diseases is increasingly being considered. The common link that connects CHIP mutations and CVDs is inflammation leading to increased expression of cytokines and chemokines. We intended to do a systematic review about the association of CHIP mutations and CVD along with identifying specific CHIP mutations involved in increasing the risk of having CVDs. The main body of the abstract We performed an extensive literature search in PubMed and Google Scholar databases. Out of 302 articles, we narrowed it down to 10 studies based on our pre-specified criteria. The methodology adopted for the identification of CHIP mutations in the selected studies included – whole-exome sequencing (n = 3), whole-genome analysis (n = 1), transcriptome profiling analysis (n = 1), whole-genome analysis (n = 1), and single-cell RNA-sequencing (n = 1). We found that the available literature suggested an association between CHIP and CVD. The most commonly described CHIP mutations in patients with CVD are DNMT3A, TET2, ASXL1, TP53, JAK2, and SF3B. We further analyzed the commonly mutated CHIP genes using bioinformatics tools. Protein function and interaction analysis were performed using the g: Profiler and GeneMANIA online tools. The results revealed significant bio grid interactions for molecular functions, biological processes, and biological pathways. Interaction analysis showed significant physical and co-expression interactions. Short conclusion We conclude that there exists a significant association between CHIP mutations and CVD with DNMT3A, TET2, ASXL1, TP53, JAK2, and SF3B as the commonly implicated genes. The recognition of the link between CHIP and cardiovascular events will expand our understanding of residual risk and will open up new avenues of investigation and therapeutic modalities in the management of patients with CVD. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00205-3.
Collapse
|
212
|
Osman A, Patel JL. Diagnostic Challenge and Clinical Dilemma: The Long Reach of Clonal Hematopoiesis. Clin Chem 2021; 67:1062-1070. [PMID: 34263288 DOI: 10.1093/clinchem/hvab105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/11/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND Widespread application of massively parallel sequencing has resulted in recognition of clonal hematopoiesis in various clinical settings and on a relatively frequent basis. Somatic mutations occur in individuals with normal blood counts, and increase in frequency with age. The genes affected are the same genes that are commonly mutated in overt myeloid malignancies such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). This phenomenon is referred to as clonal hematopoiesis of indeterminate potential (CHIP). CONTENT In this review, we explore the diagnostic and clinical implications of clonal hematopoiesis. In addition to CHIP, clonal hematopoiesis may be seen in patients with cytopenia who do not otherwise meet criteria for hematologic malignancy, a condition referred to as clonal cytopenia of undetermined significance (CCUS). Distinguishing CHIP and CCUS from overt myeloid neoplasm is a challenge to diagnosticians due to the overlapping mutational landscape observed in these conditions. We describe helpful laboratory and clinical features in making this distinction. CHIP confers a risk of progression to overt hematologic malignancy similar to other premalignant states. CHIP is also associated with a proinflammatory state with multisystem implications and increased mortality risk due to cardiovascular events. The current approach to follow up and management of patients with clonal hematopoiesis is described. SUMMARY Nuanced understanding of clonal hematopoiesis is essential for diagnosis and clinical management of patients with hematologic conditions. Further data are needed to more accurately predict the natural history and guide management of these patients with respect to both malignant progression as well as nonhematologic sequelae.
Collapse
Affiliation(s)
- Afaf Osman
- Division of Hematology and Hematologic Malignancies, University of Utah, and Huntsman Cancer Institute, Salt Lake City, UT
| | - Jay L Patel
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT
| |
Collapse
|
213
|
Sano S, Wang Y, Ogawa H, Horitani K, Sano M, Polizio AH, Kour A, Yura Y, Doviak H, Walsh K. TP53-mediated therapy-related clonal hematopoiesis contributes to doxorubicin-induced cardiomyopathy by augmenting a neutrophil-mediated cytotoxic response. JCI Insight 2021; 6:e146076. [PMID: 34236050 PMCID: PMC8410064 DOI: 10.1172/jci.insight.146076] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/13/2021] [Indexed: 12/27/2022] Open
Abstract
Therapy-related clonal hematopoiesis (t-CH) is often observed in cancer survivors. This form of clonal hematopoiesis typically involves somatic mutations in driver genes that encode components of the DNA damage response and confer hematopoietic stem and progenitor cells (HSPCs) with resistance to the genotoxic stress of the cancer therapy. Here, we established a model of TP53-mediated t-CH through the transfer of Trp53 mutant HSPCs to mice, followed by treatment with a course of the chemotherapeutic agent doxorubicin. These studies revealed that neutrophil infiltration in the heart significantly contributes to doxorubicin-induced cardiac toxicity and that this condition is amplified in the model of Trp53-mediated t-CH. These data suggest that t-CH could contribute to the elevated heart failure risk that occurs in cancer survivors who have been treated with genotoxic agents.
Collapse
Affiliation(s)
- Soichi Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Cardiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ying Wang
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Hayato Ogawa
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Keita Horitani
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Miho Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ariel H Polizio
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Anupreet Kour
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Yoshimitsu Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Heather Doviak
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
214
|
Yu B, Roberts MB, Raffield LM, Zekavat SM, Nguyen NQH, Biggs ML, Brown MR, Griffin G, Desai P, Correa A, Morrison AC, Shah AM, Niroula A, Uddin MM, Honigberg MC, Ebert BL, Psaty BM, Whitsel EA, Manson JE, Kooperberg C, Bick AG, Ballantyne CM, Reiner AP, Natarajan P, Eaton CB. Supplemental Association of Clonal Hematopoiesis With Incident Heart Failure. J Am Coll Cardiol 2021; 78:42-52. [PMID: 34210413 PMCID: PMC8313294 DOI: 10.1016/j.jacc.2021.04.085] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/05/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Age-related clonal hematopoiesis of indeterminate potential (CHIP), defined as clonally expanded leukemogenic sequence variations (particularly in DNMT3A, TET2, ASXL1, and JAK2) in asymptomatic individuals, is associated with cardiovascular events, including recurrent heart failure (HF). OBJECTIVES This study sought to evaluate whether CHIP is associated with incident HF. METHODS CHIP status was obtained from whole exome or genome sequencing of blood DNA in participants without prevalent HF or hematological malignancy from 5 cohorts. Cox proportional hazards models were performed within each cohort, adjusting for demographic and clinical risk factors, followed by fixed-effect meta-analyses. Large CHIP clones (defined as variant allele frequency >10%), HF with or without baseline coronary heart disease, and left ventricular ejection fraction were evaluated in secondary analyses. RESULTS Of 56,597 individuals (59% women, mean age 58 years at baseline), 3,406 (6%) had CHIP, and 4,694 developed HF (8.3%) over up to 20 years of follow-up. CHIP was prospectively associated with a 25% increased risk of HF in meta-analysis (hazard ratio: 1.25; 95% confidence interval: 1.13-1.38) with consistent associations across cohorts. ASXL1, TET2, and JAK2 sequence variations were each associated with an increased risk of HF, whereas DNMT3A sequence variations were not associated with HF. Secondary analyses suggested large CHIP was associated with a greater risk of HF (hazard ratio: 1.29; 95% confidence interval: 1.15-1.44), and the associations for CHIP on HF with and without prior coronary heart disease were homogenous. ASXL1 sequence variations were associated with reduced left ventricular ejection fraction. CONCLUSIONS CHIP, particularly sequence variations in ASXL1, TET2, and JAK2, represents a new risk factor for HF.
Collapse
Affiliation(s)
- Bing Yu
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Mary B Roberts
- Center for Primary Care and Prevention, Brown University, Pawtucket, Rhode Island, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Seyedeh Maryam Zekavat
- Yale School of Medicine, New Haven, Connecticut, USA; Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Ngoc Quynh H Nguyen
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Mary L Biggs
- Department of Biostatistics, University of Washington, Seattle, Washington, USA; Department of Epidemiology, Gillings School of Global Public Health and Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael R Brown
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Gabriel Griffin
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Pinkal Desai
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Adolfo Correa
- Department of Pediatric and Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Alanna C Morrison
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Amil M Shah
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Abhishek Niroula
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Md Mesbah Uddin
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Michael C Honigberg
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Benjamin L Ebert
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, Washington, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health and Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - JoAnn E Manson
- Harvard Medical School, Boston, Massachusetts, USA; Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Christie M Ballantyne
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Alex P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Pradeep Natarajan
- Harvard Medical School, Boston, Massachusetts, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Disease Initiative of the Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.
| | - Charles B Eaton
- Department of Epidemiology, Brown University, Providence, Rhode Island, USA; Care New England, Center for Primary Care and Prevention, Pawtucket, Rhode Island, USA; Department of Family Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
215
|
Hoffmann J, Luxán G, Abplanalp WT, Glaser SF, Rasper T, Fischer A, Muhly-Reinholz M, Potente M, Assmus B, John D, Zeiher AM, Dimmeler S. Post-myocardial infarction heart failure dysregulates the bone vascular niche. Nat Commun 2021; 12:3964. [PMID: 34172720 PMCID: PMC8233308 DOI: 10.1038/s41467-021-24045-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/20/2021] [Indexed: 11/22/2022] Open
Abstract
The regulation of bone vasculature by chronic diseases, such as heart failure is unknown. Here, we describe the effects of myocardial infarction and post-infarction heart failure on the bone vascular cell composition. We demonstrate an age-independent loss of type H endothelium in heart failure after myocardial infarction in both mice and humans. Using single-cell RNA sequencing, we delineate the transcriptional heterogeneity of human bone marrow endothelium, showing increased expression of inflammatory genes, including IL1B and MYC, in ischemic heart failure. Endothelial-specific overexpression of MYC was sufficient to induce type H bone endothelial cells, whereas inhibition of NLRP3-dependent IL-1β production partially prevented the post-myocardial infarction loss of type H vasculature in mice. These results provide a rationale for using anti-inflammatory therapies to prevent or reverse the deterioration of bone vascular function in ischemic heart disease.
Collapse
Affiliation(s)
- Jedrzej Hoffmann
- Department of Cardiology, Center of Internal Medicine, Goethe University Frankfurt, Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Frankfurt am Main, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Guillermo Luxán
- German Center for Cardiovascular Research DZHK, Frankfurt am Main, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Wesley Tyler Abplanalp
- German Center for Cardiovascular Research DZHK, Frankfurt am Main, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Simone-Franziska Glaser
- German Center for Cardiovascular Research DZHK, Frankfurt am Main, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Tina Rasper
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Ariane Fischer
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Marion Muhly-Reinholz
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Michael Potente
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Birgit Assmus
- Department of Cardiology, Center of Internal Medicine, Goethe University Frankfurt, Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Frankfurt am Main, Germany
| | - David John
- German Center for Cardiovascular Research DZHK, Frankfurt am Main, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Andreas Michael Zeiher
- Department of Cardiology, Center of Internal Medicine, Goethe University Frankfurt, Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Frankfurt am Main, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefanie Dimmeler
- German Center for Cardiovascular Research DZHK, Frankfurt am Main, Germany.
- Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany.
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
216
|
Wang Y, Sano S, Ogawa H, Horitani K, Evans MA, Yura Y, Miura-Yura E, Doviak H, Walsh K. Murine models of clonal hematopoiesis to assess mechanisms of cardiovascular disease. Cardiovasc Res 2021; 118:1413-1432. [PMID: 34164655 DOI: 10.1093/cvr/cvab215] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Clonal hematopoiesis (CH) is a phenomenon whereby somatic mutations confer a fitness advantage to hematopoietic stem and progenitor cells (HSPC) and thus facilitate their aberrant clonal expansion. These mutations are carried into progeny leukocytes leading to a situation whereby a substantial fraction of an individual's blood cells originate from the HSPC mutant clone. Although this condition rarely progresses to a hematological malignancy, circulating blood cells bearing the mutation have the potential to affect other organ systems as they infiltrate into tissues under both homeostatic and disease conditions. Epidemiological and clinical studies have revealed that CH is highly prevalent in the elderly and is associated with an increased risk of cardiovascular disease and mortality. Recent experimental studies in murine models have assessed the most commonly mutated "driver" genes associated with CH, and have provided evidence for mechanistic connections between CH and cardiovascular disease. A deeper understanding of the mechanisms by which specific CH mutations promote disease pathogenesis is of importance, as it could pave the way for individualized therapeutic strategies targeting the pathogenic CH gene mutations in the future. Here, we review the epidemiology of CH and the mechanistic work from studies using murine disease models, with a particular focus on the strengths and limitations of these experimental systems. We intend for this review to help investigators select the most appropriate models to study CH in the setting of cardiovascular disease.
Collapse
Affiliation(s)
- Ying Wang
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Soichi Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Cardiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hayato Ogawa
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Keita Horitani
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Megan A Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Yoshimitsu Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Emiri Miura-Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Heather Doviak
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
217
|
de Boer RA, Aboumsallem JP, Bracun V, Leedy D, Cheng R, Patel S, Rayan D, Zaharova S, Rymer J, Kwan JM, Levenson J, Ronco C, Thavendiranathan P, Brown SA. A new classification of cardio-oncology syndromes. CARDIO-ONCOLOGY 2021; 7:24. [PMID: 34154667 PMCID: PMC8218489 DOI: 10.1186/s40959-021-00110-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/30/2021] [Indexed: 12/21/2022]
Abstract
Increasing evidence suggests a multifaceted relationship exists between cancer and cardiovascular disease (CVD). Here, we introduce a 5-tier classification system to categorize cardio-oncology syndromes (COS) that represent the aspects of the relationship between cancer and CVD. COS Type I is characterized by mechanisms whereby the abrupt onset or progression of cancer can lead to cardiovascular dysfunction. COS Type II includes the mechanisms by which cancer therapies can result in acute or chronic CVD. COS Type III is characterized by the pro-oncogenic environment created by the release of cardiokines and high oxidative stress in patients with cardiovascular dysfunction. COS Type IV is comprised of CVD therapies and diagnostic procedures which have been associated with promoting or unmasking cancer. COS Type V is characterized by factors causing systemic and genetic predisposition to both CVD and cancer. The development of this framework may allow for an increased facilitation of cancer care while optimizing cardiovascular health through focused treatment targeting the COS type.
Collapse
Affiliation(s)
- Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Joseph Pierre Aboumsallem
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Valentina Bracun
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Douglas Leedy
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Richard Cheng
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Sahishnu Patel
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David Rayan
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Svetlana Zaharova
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | | | - Jennifer M Kwan
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Joshua Levenson
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Claudio Ronco
- Department of Medicine, University of Padova, Padova, Italy.,International Renal Research Institute of Vicenza, Vicenza, Italy.,Department of Nephrology, San Bortolo Hospital, Vicenza, Italy
| | | | - Sherry-Ann Brown
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
218
|
CHIP & HIPs: Clonal Hematopoiesis is Common in Hip Arthroplasty Patients and Associates with Autoimmune Disease. Blood 2021; 138:1727-1732. [PMID: 34139005 DOI: 10.1182/blood.2020010163] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
Clonal hematopoiesis (CH) is an age-related condition predisposing to blood cancer and cardiovascular disease (CVD). Murine models demonstrate CH-mediated altered immune function and proinflammation. Low-grade inflammation has been implicated in the pathogenesis of osteoarthritis (OA), the main indication for total hip arthroplasty (THA). THA-derived hip bones serve as a major source of 'healthy' hematopoietic cells in experimental hematology. We prospectively investigated frequency and clinical associations of CH in 200 patients without known hematologic disease undergoing THA. Prevalence of CH was 50%, including 77 patients with CH of indeterminate potential (CHIP, defined as somatic variants with allele frequencies [VAF] ≥2%), and 23 patients harboring CH with lower mutation burden (VAF 1-2%). Most commonly mutated genes were DNMT3A (29.5%), TET2 (15.0%) and ASXL1 (3.5%). CHIP significantly associated with lower hemoglobin, higher mean corpuscular volume, prior/present malignant disease, and CVD. Strikingly, we observed a previously unreported association of CHIP with autoimmune diseases (AID; multivariate adjusted odds ratio, 6.6; 95% confidence interval [1.7, 30]; p=0.0081). These findings underscore the association between CH and inflammatory diseases. Our results have considerable relevance for management of patients with OA and AID or mild anemia, and question use of hip bone-derived cells as 'healthy' experimental controls.
Collapse
|
219
|
Trowbridge JJ, Starczynowski DT. Innate immune pathways and inflammation in hematopoietic aging, clonal hematopoiesis, and MDS. J Exp Med 2021; 218:212382. [PMID: 34129017 PMCID: PMC8210621 DOI: 10.1084/jem.20201544] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
With a growing aged population, there is an imminent need to develop new therapeutic strategies to ameliorate disorders of hematopoietic aging, including clonal hematopoiesis and myelodysplastic syndrome (MDS). Cell-intrinsic dysregulation of innate immune- and inflammatory-related pathways as well as systemic inflammation have been implicated in hematopoietic defects associated with aging, clonal hematopoiesis, and MDS. Here, we review and discuss the role of dysregulated innate immune and inflammatory signaling that contribute to the competitive advantage and clonal dominance of preleukemic and MDS-derived hematopoietic cells. We also propose how emerging concepts will further reveal critical biology and novel therapeutic opportunities.
Collapse
Affiliation(s)
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.,Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
220
|
Hamdani N, Costantino S, Mügge A, Lebeche D, Tschöpe C, Thum T, Paneni F. Leveraging clinical epigenetics in heart failure with preserved ejection fraction: a call for individualized therapies. Eur Heart J 2021; 42:1940-1958. [PMID: 36282124 DOI: 10.1093/eurheartj/ehab197] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Described as the 'single largest unmet need in cardiovascular medicine', heart failure with preserved ejection fraction (HFpEF) remains an untreatable disease currently representing 65% of new heart failure diagnoses. HFpEF is more frequent among women and associates with a poor prognosis and unsustainable healthcare costs. Moreover, the variability in HFpEF phenotypes amplifies complexity and difficulties in the approach. In this perspective, unveiling novel molecular targets is imperative. Epigenetic modifications-defined as changes of DNA, histones, and non-coding RNAs (ncRNAs)-represent a molecular framework through which the environment modulates gene expression. Epigenetic signals acquired over the lifetime lead to chromatin remodelling and affect transcriptional programmes underlying oxidative stress, inflammation, dysmetabolism, and maladaptive left ventricular remodelling, all conditions predisposing to HFpEF. The strong involvement of epigenetic signalling in this setting makes the epigenetic information relevant for diagnostic and therapeutic purposes in patients with HFpEF. The recent advances in high-throughput sequencing, computational epigenetics, and machine learning have enabled the identification of reliable epigenetic biomarkers in cardiovascular patients. Contrary to genetic tools, epigenetic biomarkers mirror the contribution of environmental cues and lifestyle changes and their reversible nature offers a promising opportunity to monitor disease states. The growing understanding of chromatin and ncRNAs biology has led to the development of several Food and Drug Administration approved 'epidrugs' (chromatin modifiers, mimics, anti-miRs) able to prevent transcriptional alterations underpinning left ventricular remodelling and HFpEF. In the present review, we discuss the importance of clinical epigenetics as a new tool to be employed for a personalized management of HFpEF.
Collapse
Affiliation(s)
- Nazha Hamdani
- Institute of Physiology, Ruhr University, Bochum, Germany.,Molecular and Experimental Cardiology, Ruhr University, Bochum, Germany.,Department of Cardiology, St-Josef Hospital, Ruhr University, Bochum, Germany.,Clinical Pharmacology, Ruhr University, Bochum, Germany
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren CH-8952, Switzerland
| | - Andreas Mügge
- Molecular and Experimental Cardiology, Ruhr University, Bochum, Germany.,Department of Cardiology, St-Josef Hospital, Ruhr University, Bochum, Germany
| | - Djamel Lebeche
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY 10029, USA.,Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Medicine, Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carsten Tschöpe
- Berlin Institute of Health Center for Regenerative Therapies and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany.,Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover 30625, Germany
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren CH-8952, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zürich, Switzerland
| |
Collapse
|
221
|
Burns SS, Kapur R. Clonal Hematopoiesis of Indeterminate Potential as a Novel Risk Factor for Donor-Derived Leukemia. Stem Cell Reports 2021; 15:279-291. [PMID: 32783925 PMCID: PMC7419737 DOI: 10.1016/j.stemcr.2020.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a critical treatment modality for many hematological and non-hematological diseases that is being extended to treat older individuals. However, recent studies show that clonal hematopoiesis of indeterminate potential (CHIP), a common, asymptomatic condition characterized by the expansion of age-acquired somatic mutations in blood cell lineages, may be a risk factor for the development of donor-derived leukemia (DDL), unexplained cytopenias, and chronic graft-versus-host disease. CHIP may contribute to the pathogenesis of these significant transplant complications via various cell-autonomous and non-cell-autonomous mechanisms, and the clinical presentation of DDL may be broader than anticipated. A more comprehensive understanding of the contributions of CHIP to DDL may have important implications for the screening of donors and will improve the safety of HSCT. The objective of this review is to discuss studies linking DDL and CHIP and to explore potential mechanisms by which CHIP may contribute to DDL.
Collapse
Affiliation(s)
- Sarah S Burns
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Reuben Kapur
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Molecular Biology and Biochemistry, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
222
|
Abstract
Abstract
Collapse
Affiliation(s)
- Megan A Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, 415 Lane Road, Charlottesville, VA 22908, USA
| | - Soichi Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, 415 Lane Road, Charlottesville, VA 22908, USA
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, 415 Lane Road, Charlottesville, VA 22908, USA
| |
Collapse
|
223
|
Assmus B, Cremer S, Kirschbaum K, Culmann D, Kiefer K, Dorsheimer L, Rasper T, Abou-El-Ardat K, Herrmann E, Berkowitsch A, Hoffmann J, Seeger F, Mas-Peiro S, Rieger MA, Dimmeler S, Zeiher AM. Clonal haematopoiesis in chronic ischaemic heart failure: prognostic role of clone size for DNMT3A- and TET2-driver gene mutations. Eur Heart J 2021; 42:257-265. [PMID: 33241418 DOI: 10.1093/eurheartj/ehaa845] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/05/2020] [Accepted: 10/09/2020] [Indexed: 11/14/2022] Open
Abstract
AIMS Somatic mutations of the epigenetic regulators DNMT3A and TET2 causing clonal expansion of haematopoietic cells (clonal haematopoiesis; CH) were shown to be associated with poor prognosis in chronic ischaemic heart failure (CHF). The aim of our analysis was to define a threshold of variant allele frequency (VAF) for the prognostic significance of CH in CHF. METHODS AND RESULTS We analysed bone marrow and peripheral blood-derived cells from 419 patients with CHF by error-corrected amplicon sequencing. Cut-off VAFs were optimized by maximizing sensitivity plus specificity from a time-dependent receiver operating characteristic (ROC) curve analysis from censored data. 56.2% of patients were carriers of a DNMT3A- (N = 173) or a TET2- (N = 113) mutation with a VAF >0.5%, with 59 patients harbouring mutations in both genes. Survival ROC analyses revealed an optimized cut-off value of 0.73% for TET2- and 1.15% for DNMT3A-CH-driver mutations. Five-year-mortality was 18% in patients without any detected DNMT3A- or TET2 mutation (VAF < 0.5%), 29% with only one DNMT3A- or TET2-CH-driver mutations above the respective cut-off level and 42% in patients harbouring both DNMT3A- and TET2-CH-driver mutations above the respective cut-off levels. In carriers of a DNMT3A mutation with VAF ≥ 1.15%, 5-year mortality was 31%, compared with 18% mortality in those with VAF < 1.15% (P = 0.048). Likewise, in patients with TET2 mutations, 5-year mortality was 32% with VAF ≥ 0.73%, compared with 19% mortality with VAF < 0.73% (P = 0.029). CONCLUSION The present study defines novel threshold levels for clone size caused by acquired somatic mutations in the CH-driver genes DNMT3A and TET2 that are associated with worse outcome in patients with CHF.
Collapse
Affiliation(s)
- Birgit Assmus
- Department of Medicine, Cardiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany
| | - Sebastian Cremer
- Department of Medicine, Cardiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany
| | - Klara Kirschbaum
- Department of Medicine, Cardiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - David Culmann
- Department of Medicine, Cardiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany
| | - Katharina Kiefer
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany
| | - Lena Dorsheimer
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany
| | - Tina Rasper
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
| | - Khalil Abou-El-Ardat
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eva Herrmann
- German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany.,Institute of Biostatistics and Mathematical Modeling, Goethe University, Frankfurt, Germany
| | - Alexander Berkowitsch
- Department of Medicine, Cardiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Jedrzej Hoffmann
- Department of Medicine, Cardiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany
| | - Florian Seeger
- Department of Medicine, Cardiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Silvia Mas-Peiro
- Department of Medicine, Cardiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany
| | - Michael A Rieger
- German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Georg-Speyer-Haus, Frankfurt, Germany
| | - Stefanie Dimmeler
- German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany.,Institute for Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
| | - Andreas M Zeiher
- Department of Medicine, Cardiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany
| |
Collapse
|
224
|
Affiliation(s)
- Satu Mustjoki
- From the Translational Immunology Research Program and the Department of Clinical Chemistry and Hematology, University of Helsinki, the Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, and the iCAN Digital Precision Cancer Medicine Flagship - all in Helsinki (S.M.); and the Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD (N.S.Y.)
| | - Neal S Young
- From the Translational Immunology Research Program and the Department of Clinical Chemistry and Hematology, University of Helsinki, the Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, and the iCAN Digital Precision Cancer Medicine Flagship - all in Helsinki (S.M.); and the Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD (N.S.Y.)
| |
Collapse
|
225
|
Abstract
Cardiac injury remains a major cause of morbidity and mortality worldwide. Despite significant advances, a full understanding of why the heart fails to fully recover function after acute injury, and why progressive heart failure frequently ensues, remains elusive. No therapeutics, short of heart transplantation, have emerged to reliably halt or reverse the inexorable progression of heart failure in the majority of patients once it has become clinically evident. To date, most pharmacological interventions have focused on modifying hemodynamics (reducing afterload, controlling blood pressure and blood volume) or on modifying cardiac myocyte function. However, important contributions of the immune system to normal cardiac function and the response to injury have recently emerged as exciting areas of investigation. Therapeutic interventions aimed at harnessing the power of immune cells hold promise for new treatment avenues for cardiac disease. Here, we review the immune response to heart injury, its contribution to cardiac fibrosis, and the potential of immune modifying therapies to affect cardiac repair.
Collapse
Affiliation(s)
- Joel G Rurik
- Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Haig Aghajanian
- Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| |
Collapse
|
226
|
Park E, Evans MA, Doviak H, Horitani K, Ogawa H, Yura Y, Wang Y, Sano S, Walsh K. Bone Marrow Transplantation Procedures in Mice to Study Clonal Hematopoiesis. J Vis Exp 2021:10.3791/61875. [PMID: 34125083 PMCID: PMC8439117 DOI: 10.3791/61875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Clonal hematopoiesis is a prevalent age-associated condition that results from the accumulation of somatic mutations in hematopoietic stem and progenitor cells (HSPCs). Mutations in driver genes, that confer cellular fitness, can lead to the development of expanding HSPC clones that increasingly give rise to progeny leukocytes harboring the somatic mutation. Because clonal hematopoiesis has been associated with heart disease, stroke, and mortality, the development of experimental systems that model these processes is key to understanding the mechanisms that underly this new risk factor. Bone marrow transplantation procedures involving myeloablative conditioning in mice, such as total-body irradiation (TBI), are commonly employed to study the role of immune cells in cardiovascular diseases. However, simultaneous damage to the bone marrow niche and other sites of interest, such as the heart and brain, is unavoidable with these procedures. Thus, our lab has developed two alternative methods to minimize or avoid possible side effects caused by TBI: 1) bone marrow transplantation with irradiation shielding and 2) adoptive BMT to non-conditioned mice. In shielded organs, the local environment is preserved allowing for the analysis of clonal hematopoiesis while the function of resident immune cells is unperturbed. In contrast, the adoptive BMT to non-conditioned mice has the additional advantage that both the local environments of the organs and the hematopoietic niche are preserved. Here, we compare three different hematopoietic cell reconstitution approaches and discuss their strengths and limitations for studies of clonal hematopoiesis in cardiovascular disease.
Collapse
Affiliation(s)
- Eunbee Park
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine
| | - Megan A Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Heather Doviak
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Keita Horitani
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Hayato Ogawa
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Yoshimitsu Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Ying Wang
- Department of Cardiology, Xinqiao Hospital, Army Medical University
| | - Soichi Sano
- Department of Cardiology, Osaka City University Graduate School of Medicine; Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Kenneth Walsh
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine; Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine;
| |
Collapse
|
227
|
Crea F. Risk stratification and treatment of acute and chronic coronary syndromes: focus on angina without obstructive coronary arteries, refractory angina, lipids, and clonal haematopoiesis. Eur Heart J 2021; 42:211-214. [PMID: 33477166 DOI: 10.1093/eurheartj/ehaa1094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
228
|
Abplanalp WT, Mas-Peiro S, Cremer S, John D, Dimmeler S, Zeiher AM. Association of Clonal Hematopoiesis of Indeterminate Potential With Inflammatory Gene Expression in Patients With Severe Degenerative Aortic Valve Stenosis or Chronic Postischemic Heart Failure. JAMA Cardiol 2021; 5:1170-1175. [PMID: 32639511 DOI: 10.1001/jamacardio.2020.2468] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Importance Cytokine release syndrome is a complication of coronavirus disease 2019. Clinically, advanced age and cardiovascular comorbidities are the most important risk factors. Objective To determine whether clonal hematopoiesis of indeterminate potential (CHIP), an age-associated condition with excess cardiovascular risk defined as the presence of an expanded, mutated somatic blood cell clone in persons without other hematological abnormalities, may be associated with an inflammatory gene expression sensitizing monocytes to aggravated immune responses. Design, Setting, and Participants This hypothesis-generating diagnostic study examined a cohort of patients with severe degenerative aortic valve stenosis or chronic postinfarction heart failure, as well as age-matched healthy control participants. Single-cell RNA sequencing and analyses of circulating peripheral monocytes was done between 2017 and 2019 to assess the transcriptome of circulating monocytes. Exposures Severe degenerative aortic valve stenosis or chronic postinfarction heart failure. Main Outcomes and Measures CHIP-driver sequence variations in monocytes with a proinflammatory signature of genes involved in cytokine release syndrome. Results The study included 8 patients with severe degenerative aortic valve stenosis, 6 with chronic postinfarction heart failure, and 3 healthy control participants. Their mean age was 75.7 (range, 54-89) years, and 6 were women. Mean CHIP-driver gene variant allele frequency was 4.2% (range, 2.5%-6.9%) for DNMT3A and 14.3% (range, 2.6%-37.4%) for TET2. Participants with DNMT3A or TET2 CHIP-driver sequence variations displayed increased expression of interleukin 1β (no CHIP-driver sequence variations, 1.6217 normalized Unique Molecular Identifiers [nUMI]; DNMT3A, 5.3956 nUMI; P < .001; TET2, 10.8216 nUMI; P < .001), the interleukin 6 receptor (no CHIP-driver sequence variations, 0.5386 nUMI; DNMT3A, 0.9162 nUMI; P < .001;TET2, 0.5738 nUMI; P < .001), as well as the NLRP3 inflammasome complex (no CHIP-driver sequence variations, 0.4797 nUMI; DNMT3A, 0.9961 nUMI; P < .001; TET2, 1.2189 nUMI; P < .001), plus upregulation of CD163 (no CHIP-driver sequence variations, 0.5239 nUMI; DNMT3A, 1.4722 nUMI; P < .001; TET2, 1.0684 nUMI; P < .001), a cellular receptor capable of mediating infection, macrophage activation syndrome, and other genes involved in cytokine response syndrome. Gene ontology term analyses of regulated genes revealed that the most significantly upregulated genes encode for leukocyte-activation and interleukin-signaling pathways in monocytes of individuals with DNMT3A (myeloid leukocyte activation: log[Q value], -50.1986; log P value, -54.5177; regulation of cytokine production: log[Q value], -21.0264; log P value, -24.1993; signaling by interleukins: log[Q value], -18.0710: log P value, -21.1597) or TET2 CHIP-driver sequence variations (immune response: log[Q value], -36.3673; log P value, -40.6864; regulation of cytokine production: log[Q value], -13.1733; log P value, -16.3463; signaling by interleukins: log[Q value], -12.6547: log P value, -15.7977). Conclusions and Relevance Monocytes of individuals who carry CHIP-driver sequence variations and have cardiovascular disease appear to be primed for excessive inflammatory responses. Further studies are warranted to address potential adverse outcomes of coronavirus disease 2019 in patients with CHIP-driver sequence variations.
Collapse
Affiliation(s)
- Wesley Tyler Abplanalp
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany.,Partner Site Frankfurt Rhine-Main, German Center for Cardiovascular Research, Berlin, Germany
| | - Silvia Mas-Peiro
- Department of Medicine, Cardiology, Goethe University Hospital, Frankfurt, Germany.,Partner Site Frankfurt Rhine-Main, German Center for Cardiovascular Research, Berlin, Germany
| | - Sebastian Cremer
- Department of Medicine, Cardiology, Goethe University Hospital, Frankfurt, Germany.,Partner Site Frankfurt Rhine-Main, German Center for Cardiovascular Research, Berlin, Germany
| | - David John
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany.,Partner Site Frankfurt Rhine-Main, German Center for Cardiovascular Research, Berlin, Germany.,Cardiopulmonary Institute, Frankfurt, Germany
| | - Andreas M Zeiher
- Department of Medicine, Cardiology, Goethe University Hospital, Frankfurt, Germany.,Partner Site Frankfurt Rhine-Main, German Center for Cardiovascular Research, Berlin, Germany.,Cardiopulmonary Institute, Frankfurt, Germany.,Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, Frankfurt, Germany
| |
Collapse
|
229
|
Mas-Peiro S, Hoffmann J, Fichtlscherer S, Dorsheimer L, Rieger MA, Dimmeler S, Vasa-Nicotera M, Zeiher AM. Clonal haematopoiesis in patients with degenerative aortic valve stenosis undergoing transcatheter aortic valve implantation. Eur Heart J 2021; 41:933-939. [PMID: 31504400 PMCID: PMC7033916 DOI: 10.1093/eurheartj/ehz591] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/16/2019] [Accepted: 08/08/2019] [Indexed: 01/18/2023] Open
Abstract
Aims Clonal haematopoiesis of indeterminate potential (CHIP), defined as the presence of an expanded somatic blood cell clone without other haematological abnormalities, was recently shown to increase with age and is associated with coronary artery disease and calcification. The most commonly mutated CHIP genes, DNMT3A and TET2, were shown to regulate inflammatory potential of circulating leucocytes. The incidence of degenerative calcified aortic valve (AV) stenosis increases with age and correlates with chronic inflammation. We assessed the incidence of CHIP and its association with inflammatory blood cell phenotypes in patients with AV stenosis undergoing transfemoral aortic valve implantation (TAVI). Methods and results Targeted amplicon sequencing for DNMT3A and TET2 was performed in 279 patients with severe AV stenosis undergoing TAVI. Somatic DNMT3A- or TET2-CHIP-driver mutations with a VAF ≥ 2% were detected in 93 out of 279 patients (33.3%), with an age-dependent increase in the incidence from 25% (55–69 years) to 52.9% (90–100 years). Patients with DNMT3A- or TET2-CHIP-driver mutations did not differ from patients without such mutations in clinical parameters, concomitant atherosclerotic disease, blood cell counts, inflammatory markers, or procedural characteristics. However, patients with DNMT3A- or TET2-CHIP-driver mutations had a profoundly increased medium-term all-cause mortality following successful TAVI. Differential myeloid and T-cell distributions revealed pro-inflammatory T-cell polarization in DNMT3A-mutation carriers and increased pro-inflammatory non-classical monocytes in TET2-mutation carriers. Conclusion This is the first study to show that acquired somatic mutations in the most commonly mutated CHIP-driver genes occur frequently in patients with severe degenerative AV stenosis, are associated with increased pro-inflammatory leucocyte subsets, and confer a profound increase in mortality following successful TAVI.
Collapse
Affiliation(s)
- Silvia Mas-Peiro
- Department of Medicine, Cardiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Centre for Cardiovascular Research, Berlin, Partner Site Frankfurt Rhine-Main, Germany
| | - Jedrzej Hoffmann
- Department of Medicine, Cardiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Centre for Cardiovascular Research, Berlin, Partner Site Frankfurt Rhine-Main, Germany
| | - Stephan Fichtlscherer
- Department of Medicine, Cardiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Centre for Cardiovascular Research, Berlin, Partner Site Frankfurt Rhine-Main, Germany
| | - Lena Dorsheimer
- Department of Medicine, Haematology/Oncology, Goethe University Hospital, Frankfurt, Germany
| | - Michael A Rieger
- Department of Medicine, Haematology/Oncology, Goethe University Hospital, Frankfurt, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany.,German Cancer Consortium and German Cancer Research Centre, Heidelberg, Germany
| | - Stefanie Dimmeler
- German Centre for Cardiovascular Research, Berlin, Partner Site Frankfurt Rhine-Main, Germany.,Institute for Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
| | - Mariuca Vasa-Nicotera
- Department of Medicine, Cardiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Centre for Cardiovascular Research, Berlin, Partner Site Frankfurt Rhine-Main, Germany
| | - Andreas M Zeiher
- Department of Medicine, Cardiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Centre for Cardiovascular Research, Berlin, Partner Site Frankfurt Rhine-Main, Germany
| |
Collapse
|
230
|
Sano S, Wang Y, Walsh K. Somatic mosaicism: implications for the cardiovascular system. Eur Heart J 2021; 41:2904-2907. [PMID: 31876923 DOI: 10.1093/eurheartj/ehz907] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/08/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022] Open
Affiliation(s)
- Soichi Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, 415 Lane Road, Box 801394, Suite 1010, Charlottesville, VA 22908, USA
| | - Ying Wang
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, 415 Lane Road, Box 801394, Suite 1010, Charlottesville, VA 22908, USA
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, 415 Lane Road, Box 801394, Suite 1010, Charlottesville, VA 22908, USA
| |
Collapse
|
231
|
Bayes-Genis A, Liu PP, Lanfear DE, de Boer RA, González A, Thum T, Emdin M, Januzzi JL. Omics phenotyping in heart failure: the next frontier. Eur Heart J 2021; 41:3477-3484. [PMID: 32337540 DOI: 10.1093/eurheartj/ehaa270] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/23/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
This state-of-the-art review aims to provide an up-to-date look at breakthrough omic technologies that are helping to unravel heart failure (HF) disease mechanisms and heterogeneity. Genomics, transcriptomics, proteomics, and metabolomics in HF are reviewed in depth. In addition, there is a thorough, expert discussion regarding the value of omics in identifying novel disease pathways, advancing understanding of disease mechanisms, differentiating HF phenotypes, yielding biomarkers for diagnosis or prognosis, or identifying new therapeutic targets in HF. The combination of multiple omics technologies may create a more comprehensive picture of the factors and physiology involved in HF than achieved by either one alone and provides a rich resource for predictive phenotype modelling. However, the successful translation of omics tools as solutions to clinical HF requires that the observations are robust and reproducible and can be validated across multiple independent populations to ensure confidence in clinical decision-making.
Collapse
Affiliation(s)
- Antoni Bayes-Genis
- Heart Institute (iCor), University Hospital Germans Trias i Pujol, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Universitat Autònoma Barcelona
| | - Peter P Liu
- University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - David E Lanfear
- Henry Ford Heart and Vascular Institute, Center for Individualized and Genomic Medicine Research, Henry Ford Hospital, Detroit, MI, USA
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Arantxa González
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana G. Monasterio, Pisa, Italy
| | - James L Januzzi
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
232
|
EnvIRONmental Aspects in Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:ijms22105202. [PMID: 34068996 PMCID: PMC8156755 DOI: 10.3390/ijms22105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
Systemic iron overload is multifactorial in patients suffering from myelodysplastic syndrome (MDS). Disease-immanent ineffective erythropoiesis together with chronic red blood cell transfusion represent the main underlying reasons. However, like the genetic heterogeneity of MDS, iron homeostasis is also diverse in different MDS subtypes and can no longer be generalized. While a certain amount of iron and reactive oxygen species (ROS) are indispensable for proper hematological output, both are harmful if present in excess. Consequently, iron overload has been increasingly recognized as an important player in MDS, which is worth paying attention to. This review focuses on iron- and ROS-mediated effects in the bone marrow niche, their implications for hematopoiesis and their yet unclear involvement in clonal evolution. Moreover, we provide recent insights into hepcidin regulation in MDS and its interaction between erythropoiesis and inflammation. Based on Tet methylcytosine dioxygenase 2 (TET2), representing one of the most frequently mutated genes in MDS, leading to disturbances in both iron homeostasis and hematopoiesis, we highlight that different genetic alteration may have different implications and that a comprehensive workup is needed for a complete understanding and development of future therapies.
Collapse
|
233
|
Li J, Wang C, Liu J, Yu Y, Liu Y, Peng Q, Liu H, Guan X. A feedback loop: Interactions between Inflammatory Signals and Clonal Hematopoiesis in Cardiovascular Disease. Mol Biol Rep 2021; 48:3785-3798. [PMID: 33987748 PMCID: PMC8117808 DOI: 10.1007/s11033-021-06370-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/23/2021] [Indexed: 12/16/2022]
Abstract
Age and inflammation are powerful drivers of cardiovascular disease. With the growing recognition that traditional cardiovascular risk factors are not fully accurate predictors of cardiovascular disease, recent studies have revealed the prevalence of positive selection of somatic cell mutations in hematopoietic stem cells in the elderly population, which can cause clonal hematopoiesis. Interestingly, clonal hematopoiesis is not only associated with cancer and death, but also closely related to the risk of increased cardiovascular disease due to mutations in TET2, DNMT3A, ASXL1, and JAK2. However, the mechanism of the interaction of clonal hematopoiesis and cardiovascular disease is only partially understood. In mice, somatic mutations have led to significantly increased expression of inflammatory genes in innate immune cells, which may explain the relationship between mutations and cardiovascular disease. Here, we further discuss the association between inflammatory signaling, clonal hematopoiesis, and cardiovascular disease,and using two hypotheses to propose a feedback loop between inflammatory signaling and clonal hematopoiesis for getting insight into the pathogenesis of cardiovascular diseases in depth. Therapies targeting mutant clones or increased inflammatory mediators may be useful for ameliorating the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Jiashan Li
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Chao Wang
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jiaru Liu
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ying Yu
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yuee Liu
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Qi Peng
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Huihui Liu
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xiuru Guan
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
234
|
High-sensitivity C-reactive protein is associated with clonal hematopoiesis of indeterminate potential. Blood Adv 2021; 4:2430-2438. [PMID: 32492156 DOI: 10.1182/bloodadvances.2019000770] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is predictive of hematological cancers and cardiovascular diseases, but the etiology of CHIP initiation and clonal expansion is unknown. Several lines of evidence suggest that proinflammatory cytokines may favor mutated hematopoietic stem cell expansion. To investigate the potential link between inflammation and CHIP, we performed targeted deep sequencing of 11 genes previously implicated in CHIP in 1887 subjects aged >70 years from the Montreal Heart Institute Biobank, of which 1359 had prior coronary artery disease (CAD), and 528 controls did not. We assessed association of CHIP with log transformed high-sensitivity C-reactive protein (hs-CRP), a validated biomarker of inflammation. CHIP was identified in 427 of the 1887 subjects (22.6%). CHIP mutations were more frequently identified in DNMT3A (11.6%) and TET2 (6.1%), with a higher proportion of TET2 mutations occurring in controls than in patients with CAD (9.0% vs 4.9%, P < .001). CHIP carriers had 21% higher hs-CRP levels compared with their noncarrier counterparts (eβ = 1.21, 95% confidence interval [CI]: 1.08 to 1.36; P = .001). A similar effect was observed in the subgroup of patients with known CAD (eβ = 1.22, 95% CI: 1.06 to 1.41; P = .005). These findings confirm the association between inflammation and CHIP. This association may open investigational avenues aimed at documenting mechanisms linking inflammation to clonal progression and ultimately supports prevention interventions to attenuate CHIP's impact on cardiovascular disease and cancer.
Collapse
|
235
|
Lim JY, Duttke SH, Baker TS, Lee J, Gambino KJ, Venturini NJ, Ho JSY, Zheng S, Fstkchyan YS, Pillai V, Fajgenbaum DC, Marazzi I, Benner C, Byun M. DNMT3A haploinsufficiency causes dichotomous DNA methylation defects at enhancers in mature human immune cells. J Exp Med 2021; 218:212086. [PMID: 33970190 PMCID: PMC8111463 DOI: 10.1084/jem.20202733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/04/2021] [Accepted: 04/02/2021] [Indexed: 01/04/2023] Open
Abstract
DNMT3A encodes an enzyme that carries out de novo DNA methylation, which is essential for the acquisition of cellular identity and specialized functions during cellular differentiation. DNMT3A is the most frequently mutated gene in age-related clonal hematopoiesis. As such, mature immune cells harboring DNMT3A mutations can be readily detected in elderly persons. Most DNMT3A mutations associated with clonal hematopoiesis are heterozygous and predicted to cause loss of function, indicating that haploinsufficiency is the predominant pathogenic mechanism. Yet, the impact of DNMT3A haploinsufficiency on the function of mature immune cells is poorly understood. Here, we demonstrate that DNMT3A haploinsufficiency impairs the gain of DNA methylation at decommissioned enhancers, while simultaneously and unexpectedly impairing DNA demethylation of newly activated enhancers in mature human myeloid cells. The DNA methylation defects alter the activity of affected enhancers, leading to abnormal gene expression and impaired immune response. These findings provide insights into the mechanism of immune dysfunction associated with clonal hematopoiesis and acquired DNMT3A mutations.
Collapse
Affiliation(s)
- Jung-Yeon Lim
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sascha H Duttke
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Turner S Baker
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jihye Lee
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kristyne J Gambino
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nicholas J Venturini
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jessica Sook Yuin Ho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Simin Zheng
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yesai S Fstkchyan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vinodh Pillai
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Minji Byun
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
236
|
Assessment of medullary and extramedullary myelopoiesis in cardiovascular diseases. Pharmacol Res 2021; 169:105663. [PMID: 33979688 DOI: 10.1016/j.phrs.2021.105663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022]
Abstract
Recruitment of innate immune cells and their accumulation in the arterial wall and infarcted myocardium has been recognized as a central feature of atherosclerosis and cardiac ischemic injury, respectively. In both, steady state and under pathological conditions, majority of these cells have a finite life span and are continuously replenished from haematopoietic stem/progenitor cell pool residing in the bone marrow and extramedullary sites. While having a crucial role in the cardiovascular disease development, proliferation and differentiation of innate immune cells within haematopoietic compartments is greatly affected by the ongoing cardiovascular pathology. In the current review, we summarize key cells, processes and tissue compartments that are involved in myelopoiesis under the steady state, during atherosclerosis development and in myocardial infarction.
Collapse
|
237
|
Rieger MA. A heartbreaking relationship: Clonal hematopoiesis and heart failure. Trends Cardiovasc Med 2021; 32:204-205. [PMID: 33964403 DOI: 10.1016/j.tcm.2021.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany; German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany; Frankfurt Cancer Institute, Frankfurt, Germany; Excellence Cluster Cardio-Pulmonary Institute, Frankfurt, Germany
| |
Collapse
|
238
|
Leedy DJ, Reding KW, Vasbinder AL, Anderson GL, Barac A, Wactawski-Wende J, Shadyab AH, Eaton CB, Levy WC, Qi L, Cheng RK. The association between heart failure and incident cancer in women: an analysis of the Women's Health Initiative. Eur J Heart Fail 2021; 23:1712-1721. [PMID: 33932263 DOI: 10.1002/ejhf.2207] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/11/2022] Open
Abstract
AIMS There is conflicting evidence whether heart failure (HF) is a risk factor for incident cancer. Despite population-based cohorts demonstrating this association, an analysis of the Physician's Health Study found no association in a cohort of mostly healthy males. We investigated the association of HF with incident cancer among a large cohort of post-menopausal women. METHODS AND RESULTS A prospective cohort study of 146 817 post-menopausal women age 50 to 79 years enrolled in the Women's Health Initiative from 1993-1998, and followed through 2015. The primary exposure was adjudicated incident HF diagnosis, including preserved and reduced ejection fraction in a sub-cohort. The primary outcome was adjudicated incident total and site-specific cancers. Hazard ratios were calculated using multivariable-adjusted Cox proportional hazard regression models. Over a median follow-up of 8.4 years, 3272 and 17 474 women developed HF and cancer, respectively. HF developed in 235 women prior to cancer. HF was associated with subsequent incident cancer [hazard ratio (HR) 1.28, 95% confidence interval (CI) 1.11-1.48]. Associations were observed for obesity-related cancers (HR 1.24, 95% CI 1.02-1.51), as well as lung and colorectal cancers (HR 1.58, 95% CI 1.09-2.30 and HR 1.52, 95% CI 1.02-2.27, respectively). HF with preserved ejection fraction (HR 1.34, 95% CI 1.06-1.67), but not HF reduced ejection fraction (HR 0.99, 95% CI 0.74-1.34), was associated with total cancer. CONCLUSION Heart failure was associated with an increase in cancer diagnoses in post-menopausal women. This association was strongest for lung cancer. Further research is needed to appreciate the underlying mechanisms responsible for this association.
Collapse
Affiliation(s)
- Douglas J Leedy
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Kerryn W Reding
- Department of Biobehavioral Nursing and Health Informatics, University of Washington School of Nursing, Seattle, WA, USA.,Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Alexi L Vasbinder
- Department of Biobehavioral Nursing and Health Informatics, University of Washington School of Nursing, Seattle, WA, USA
| | - Garnet L Anderson
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Ana Barac
- MedStar Heart and Vascular Institute, Medstar Washington Hospital Center, Georgetown University, Washington, DC, USA
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, University of Buffalo, Buffalo, NY, USA
| | - Aladdin H Shadyab
- Department of Family Medicine and Public Health, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Charles B Eaton
- Department of Family Medicine and Epidemiology, Alpert Medical School of Brown University, Providence, RI, USA
| | - Wayne C Levy
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - LiHong Qi
- Department of Public Health Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Richard K Cheng
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
239
|
Hu D, Xiao L, Li S, Hu S, Sun Y, Wang Y, Wang DW. Prediction of HF-Related Mortality Risk Using Genetic Risk Score Alone and in Combination With Traditional Risk Factors. Front Cardiovasc Med 2021; 8:634966. [PMID: 33981732 PMCID: PMC8107241 DOI: 10.3389/fcvm.2021.634966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Common variants may contribute to the variation of prognosis of heart failure (HF) among individual patients, but no systematical analysis was conducted using transcriptomic and whole exome sequencing (WES) data. We aimed to construct a genetic risk score (GRS) and estimate its potential as a predictive tool for HF-related mortality risk alone and in combination with traditional risk factors (TRFs). Methods and Results: We reanalyzed the transcriptomic data of 177 failing hearts and 136 healthy donors. Differentially expressed genes (fold change >1.5 or <0.68 and adjusted P < 0.05) were selected for prognosis analysis using our whole exome sequencing and follow-up data with 998 HF patients. Statistically significant variants in these genes were prepared for GRS construction. Traditional risk variables were in combination with GRS for the construct of the composite risk score. Kaplan-Meier curves and receiver operating characteristic (ROC) analysis were used to assess the effect of GRS and the composite risk score on the prognosis of HF and discriminant power, respectively. We found 157 upregulated and 173 downregulated genes. In these genes, 31 variants that were associated with the prognosis of HF were finally identified to develop GRS. Compared with individuals with low risk score, patients with medium- and high-risk score showed 2.78 (95%CI = 1.82-4.24, P = 2 × 10-6) and 6.54 (95%CI = 4.42-9.71, P = 6 × 10-21) -fold mortality risk, respectively. The composite risk score combining GRS and TRF predicted mortality risk with an HR = 5.41 (95% CI = 2.72-10.64, P = 1 × 10-6) for medium vs. low risk and HR = 22.72 (95% CI = 11.9-43.48, P = 5 × 10-21) for high vs. low risk. The discriminant power of GRS is excellent with a C statistic of 0.739, which is comparable to that of TRF (C statistic = 0.791). The combination of GRS and TRF could significantly increase the predictive ability (C statistic = 0.853). Conclusions: The 31-SNP GRS could well distinguish those HF patients with poor prognosis from those with better prognosis and provide clinician with reference for the intensive therapy, especially when combined with TRF. Clinical Trial Registration: https://www.clinicaltrials.gov/, identifier: NCT03461107.
Collapse
Affiliation(s)
- Dong Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Lei Xiao
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Shiyang Li
- Division of Cardiology, Panzhihua Central Hospital, Panzhihua, China
| | - Senlin Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
240
|
Chavkin NW, Min KD, Walsh K. Importance of clonal hematopoiesis in heart failure. Trends Cardiovasc Med 2021; 32:198-203. [PMID: 33892102 PMCID: PMC8526615 DOI: 10.1016/j.tcm.2021.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 01/28/2023]
Abstract
Heart failure is prevalent in the elderly population. Inflammatory processes can contribute to the progression of heart failure by altering the balance of tissue healing and pathological remodeling during the injury response. New findings show that aging can alter immune cell phenotypes through the process of clonal hematopoiesis. This condition results from acquired somatic DNA mutations in specific driver genes that give rise to clonal expansions of mutant hematopoietic cells with overactive inflammatory properties. Recent clinical and experimental studies have shown that clonal hematopoiesis is prevalent in heart failure patients and associated with poor prognosis. In this review, we summarize current evidence that associates clonal hematopoiesis with the progression of heart failure. We further describe the mechanistic links between clonal hematopoiesis and the pro-inflammatory responses that can contribute to pathological outcomes in the heart. Finally, we provide perspectives on future research directions in the area of clonal hematopoiesis and heart failure.
Collapse
Affiliation(s)
- Nicholas W Chavkin
- Berne Cardiovascular Research Center USA; Department of Cardiology USA; Hematovascular Biology Center, University of Virginia, School of Medicine, Charlottesville, VA, 22908 USA
| | - Kyung-Duk Min
- Berne Cardiovascular Research Center USA; Department of Cardiology USA; Hematovascular Biology Center, University of Virginia, School of Medicine, Charlottesville, VA, 22908 USA
| | - Kenneth Walsh
- Berne Cardiovascular Research Center USA; Department of Cardiology USA; Hematovascular Biology Center, University of Virginia, School of Medicine, Charlottesville, VA, 22908 USA.
| |
Collapse
|
241
|
Mooney L, Goodyear CS, Chandra T, Kirschner K, Copland M, Petrie MC, Lang NN. Clonal haematopoiesis of indeterminate potential: intersections between inflammation, vascular disease and heart failure. Clin Sci (Lond) 2021; 135:991-1007. [PMID: 33861346 PMCID: PMC8055963 DOI: 10.1042/cs20200306] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022]
Abstract
Ageing is a major risk factor for the development of cardiovascular disease (CVD) and cancer. Whilst the cumulative effect of exposure to conventional cardiovascular risk factors is important, recent evidence highlights clonal haematopoiesis of indeterminant potential (CHIP) as a further key risk factor. CHIP reflects the accumulation of somatic, potentially pro-leukaemic gene mutations within haematopoietic stem cells over time. The most common mutations associated with CHIP and CVD occur in genes that also play central roles in the regulation of inflammation. While CHIP carriers have a low risk of haematological malignant transformation (<1% per year), their relative risk of mortality is increased by 40% and this reflects an excess of cardiovascular events. Evidence linking CHIP, inflammation and atherosclerotic disease has recently become better defined. However, there is a paucity of information about the role of CHIP in the development and progression of heart failure, particularly heart failure with preserved ejection fraction (HFpEF). While systemic inflammation plays a role in the pathophysiology of both heart failure with reduced and preserved ejection fraction (EF), it may be of greater relevance in the pathophysiology of HFpEF, which is also strongly associated with ageing. This review describes CHIP and its pathogenetic links with ageing, inflammation and CVD, while providing insight into its putative role in HFpEF.
Collapse
Affiliation(s)
- Leanne Mooney
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, U.K
| | - Carl S. Goodyear
- Institute of Immunity, Infection and Inflammation, University of Glasgow, Glasgow, U.K
| | - Tamir Chandra
- The Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, U.K
| | - Kristina Kirschner
- Paul O’Gorman Leukaemia Research Centre, Institute for Cancer Science, University of Glasgow, Glasgow, U.K
| | - Mhairi Copland
- Paul O’Gorman Leukaemia Research Centre, Institute for Cancer Science, University of Glasgow, Glasgow, U.K
| | - Mark C. Petrie
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, U.K
| | - Ninian N. Lang
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, U.K
| |
Collapse
|
242
|
|
243
|
Benlabiod C, Dagher T, Marty C, Villeval JL. Lessons from mouse models of MPN. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 366:125-185. [PMID: 35153003 DOI: 10.1016/bs.ircmb.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the past decades, a variety of MPN mouse models have been developed to express in HSC the main mutations identified in patients: JAK2V617F, CALRdel52 or ins5 and MPLW515L. These models mimic quite faithfully human PV or ET with their natural evolutions into MF and their hemostasis complications, demonstrating the driver function of these mutations in MPN. Here, we review these models and show how they have improved our general understanding of MPN regarding (1) the mechanisms of fibrosis, thrombosis/hemorrhages and disease initiation, (2) the roles of additional mutations and signaling pathways in disease progression and (3) the preclinical development of novel therapies. We also address controversial results between these models and remind how these models may differ from human MPN onset and also how basically mice are not humans, encouraging caution when one draw lessons from mice to humans. Furthermore, the contribution of germline genetic predisposition, HSC and niche aging, metabolic, oxidative, replicative or genotoxic stress, inflammation, immune escape and additional mutations need to be considered in further investigations to encompass the full complexity of human MPN in mice.
Collapse
Affiliation(s)
- Camelia Benlabiod
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France
| | - Tracy Dagher
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France
| | - Caroline Marty
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France.
| | - Jean-Luc Villeval
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France.
| |
Collapse
|
244
|
Pascual-Figal DA, Bayes-Genis A, Díez-Díez M, Hernández-Vicente Á, Vázquez-Andrés D, de la Barrera J, Vazquez E, Quintas A, Zuriaga MA, Asensio-López MC, Dopazo A, Sánchez-Cabo F, Fuster JJ. Clonal Hematopoiesis and Risk of Progression of Heart Failure With Reduced Left Ventricular Ejection Fraction. J Am Coll Cardiol 2021; 77:1747-1759. [PMID: 33832602 DOI: 10.1016/j.jacc.2021.02.028] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/12/2021] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Clonal hematopoiesis driven by somatic mutations in hematopoietic cells, frequently called clonal hematopoiesis of indeterminate potential (CHIP), has been associated with adverse cardiovascular outcomes in population-based studies and in patients with ischemic heart failure (HF) and reduced left ventricular ejection fraction (LVEF). Yet, the impact of CHIP on HF progression, including nonischemic etiology, is unknown. OBJECTIVES The purpose of this study was to assess the clinical impact of clonal hematopoiesis on HF progression irrespective of its etiology. METHODS The study cohort comprised 62 patients with HF and LVEF <45% (age 74 ± 7 years, 74% men, 52% nonischemic, and LVEF 30 ± 8%). Deep sequencing was used to detect CHIP mutations with a variant allelic fraction >2% in 54 genes. Patients were followed for at least 3.5 years for various adverse events including death, HF-related death, and HF hospitalization. RESULTS CHIP mutations were detected in 24 (38.7%) patients, without significant differences in all-cause mortality (p = 0.151). After adjusting for risk factors, patients with mutations in either DNA methyltransferase 3 alpha (DNMT3A) or Tet methylcytosine dioxygenase 2 (TET2) exhibited accelerated HF progression in terms of death (hazard ratio [HR]: 2.79; 95% confidence interval [CI]: 1.31 to 5.92; p = 0.008), death or HF hospitalization (HR: 3.84; 95% CI: 1.84 to 8.04; p < 0.001) and HF-related death or HF hospitalization (HR: 4.41; 95% CI: 2.15 to 9.03; p < 0.001). In single gene-specific analyses, somatic mutations in DNMT3A or TET2 retained prognostic significance with regard to HF-related death or HF hospitalization (HR: 4.50; 95% CI: 2.07 to 9.74; p < 0.001, for DNMT3A mutations; HR: 3.18; 95% CI: 1.52 to 6.66; p = 0.002, for TET2 mutations). This association remained significant irrespective of ischemic/nonischemic etiology. CONCLUSIONS Somatic mutations that drive clonal hematopoiesis are common among HF patients with reduced LVEF and are associated with accelerated HF progression regardless of etiology.
Collapse
Affiliation(s)
- Domingo A Pascual-Figal
- Cardiology Department, Hospital Virgen de la Arrixaca, IMIB-Arrixaca and University of Murcia, Murcia, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, (CIBERCV), Madrid, Spain.
| | - Antoni Bayes-Genis
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, (CIBERCV), Madrid, Spain; Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Miriam Díez-Díez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Álvaro Hernández-Vicente
- Cardiology Department, Hospital Virgen de la Arrixaca, IMIB-Arrixaca and University of Murcia, Murcia, Spain
| | - David Vázquez-Andrés
- Cardiology Department, Hospital Virgen de la Arrixaca, IMIB-Arrixaca and University of Murcia, Murcia, Spain
| | | | - Enrique Vazquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ana Quintas
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María A Zuriaga
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Mari C Asensio-López
- Cardiology Department, Hospital Virgen de la Arrixaca, IMIB-Arrixaca and University of Murcia, Murcia, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - José J Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
245
|
Rauh MJ. Impact of Clonal Hematopoiesis in Ischemic and Nonischemic Heart Failure. J Am Coll Cardiol 2021; 77:1760-1762. [PMID: 33832603 DOI: 10.1016/j.jacc.2021.02.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 01/08/2023]
Affiliation(s)
- Michael J Rauh
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
246
|
Kiefer KC, Cremer S, Pardali E, Assmus B, Abou-El-Ardat K, Kirschbaum K, Dorsheimer L, Rasper T, Berkowitsch A, Serve H, Dimmeler S, Zeiher AM, Rieger MA. Full spectrum of clonal haematopoiesis-driver mutations in chronic heart failure and their associations with mortality. ESC Heart Fail 2021; 8:1873-1884. [PMID: 33779075 PMCID: PMC8120376 DOI: 10.1002/ehf2.13297] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/07/2020] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Aims Somatic mutations in haematopoietic stem cells can lead to the clonal expansion of mutated blood cells, known as clonal haematopoiesis (CH). Mutations in the most prevalent driver genes DNMT3A and TET2 with a variant allele frequency (VAF) ≥ 2% have been associated with atherosclerosis and chronic heart failure of ischemic origin (CHF). However, the effects of mutations in other driver genes for CH with low VAF (<2%) on CHF are still unknown. Methods and results Therefore, we analysed mononuclear bone marrow and blood cells from 399 CHF patients by deep error‐corrected targeted sequencing of 56 genes and associated mutations with the long‐term mortality in these patients (3.95 years median follow‐up). We detected 1113 mutations with a VAF ≥ 0.5% in 347 of 399 patients, and only 13% had no detectable CH. Despite a high prevalence of mutations in the most frequently mutated genes DNMT3A (165 patients) and TET2 (107 patients), mutations in CBL, CEBPA, EZH2, GNB1, PHF6, SMC1A, and SRSF2 were associated with increased death compared with the average death rate of all patients. To avoid confounding effects, we excluded patients with DNMT3A‐related, TET2‐related, and other clonal haematopoiesis of indeterminate potential (CHIP)‐related mutations with a VAF ≥ 2% for further analyses. Kaplan–Meier survival analyses revealed a significantly higher mortality in patients with mutations in either of the seven genes (53 patients), combined as the CH‐risk gene set for CHF. Baseline patient characteristics showed no significant differences in any parameter including patient age, confounding diseases, severity of CHF, or blood cell parameters except for a reduced number of platelets in patients with mutations in the risk gene set in comparison with patients without. However, carrying a mutation in any of the risk genes remained significant after multivariate cox regression analysis (hazard ratio, 3.1; 95% confidence interval, 1.8–5.4; P < 0.001), whereas platelet numbers did not. Conclusions Somatic mutations with low VAF in a distinct set of genes, namely, in CBL, CEBPA, EZH2, GNB1, PHF6, SMC1A, and SRSF2, are significantly associated with mortality in CHF, independently of the most prevalent CHIP‐mutations in DNMT3A and TET2. Mutations in these genes are prevalent in young CHF patients and comprise an independent risk factor for the outcome of CHF, potentially providing a novel tool for risk assessment in CHF.
Collapse
Affiliation(s)
- Katharina C Kiefer
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany
| | - Sebastian Cremer
- Department of Medicine, Cardiology, Goethe University Hospital, Frankfurt, Germany.,Institute for Cardiovascular Regeneration, Goethe University, Frankfurt, Germany.,German Center for Cardiovascular Research, Berlin (partner site Frankfurt Rhine-Main), Frankurt, Germany
| | - Evangelia Pardali
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany
| | - Birgit Assmus
- Department of Medicine, Cardiology, Giessen University Hospital, Giessen, Germany
| | - Khalil Abou-El-Ardat
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany.,German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Klara Kirschbaum
- Department of Medicine, Cardiology, Goethe University Hospital, Frankfurt, Germany
| | - Lena Dorsheimer
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany
| | - Tina Rasper
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
| | | | - Hubert Serve
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany.,German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt, Germany.,German Center for Cardiovascular Research, Berlin (partner site Frankfurt Rhine-Main), Frankurt, Germany
| | - Andreas M Zeiher
- Department of Medicine, Cardiology, Goethe University Hospital, Frankfurt, Germany.,German Center for Cardiovascular Research, Berlin (partner site Frankfurt Rhine-Main), Frankurt, Germany
| | - Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany.,German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| |
Collapse
|
247
|
Fawaz S, Mansier O, Pucheu Y, Marti S, Leroy H, Gaufroy A, Broitman J, James C, Couffinhal T. Clonal haematopoiesis and cardiovascular diseases: A growing relationship. Arch Cardiovasc Dis 2021; 114:316-324. [PMID: 33714721 DOI: 10.1016/j.acvd.2021.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases, particularly atherothrombosis, are the leading cause of death worldwide, but their mechanisms are not yet fully understood. Traditional cardiovascular risk factors have been known for many years, but are not enough to predict individual risk. Clonal haematopoiesis of indeterminate potential (CHIP) has been described recently; it corresponds to the clonal expansion of a population of haematopoietic cells in response to the acquisition of a somatic mutation, without any clinical or biological sign of haematological malignancy. The prevalence of this condition increases with age, reaching 10-20% of the general population aged>70 years. Recent observational studies have shown a link between CHIP and cardiovascular diseases in humans, revealing that CHIP carriers have a higher risk of myocardial infarction, heart failure and severe aortic valve stenosis. The prognosis of these conditions also seems to be altered by the presence of CHIP. Experimental studies have identified that the immune system and inflammation - particularly interleukin-1β-secreting macrophages - play a critical role in enhancing the cardiovascular consequences of CHIP, through their action on the atherosclerotic plaque and myocardial tissues. We aimed to write an extensive review of what is currently known about CHIP and its cardiovascular consequences, the pathophysiological mechanisms leading to the increased cardiovascular risk and, finally, the expected influence on our daily practice and how we care for patients with CHIP.
Collapse
Affiliation(s)
- Sami Fawaz
- Centre d'exploration, de prévention et de traitement de l'athérosclérose (CEPTA), CHU Bordeaux, 33000 Bordeaux, France
| | - Olivier Mansier
- Laboratoire d'hématologie, CHU de Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, Inserm, UMR1034, Biology of cardiovascular diseases, 33600 Pessac, France
| | - Yann Pucheu
- Centre d'exploration, de prévention et de traitement de l'athérosclérose (CEPTA), CHU Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, Inserm, UMR1034, Biology of cardiovascular diseases, 33600 Pessac, France
| | - Séverine Marti
- Laboratoire d'hématologie, CHU de Bordeaux, 33000 Bordeaux, France
| | - Harmony Leroy
- Laboratoire d'hématologie, CHU de Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, Inserm, UMR1034, Biology of cardiovascular diseases, 33600 Pessac, France
| | - Astrid Gaufroy
- Centre d'exploration, de prévention et de traitement de l'athérosclérose (CEPTA), CHU Bordeaux, 33000 Bordeaux, France
| | - Jean Broitman
- Centre d'exploration, de prévention et de traitement de l'athérosclérose (CEPTA), CHU Bordeaux, 33000 Bordeaux, France
| | - Chloe James
- Laboratoire d'hématologie, CHU de Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, Inserm, UMR1034, Biology of cardiovascular diseases, 33600 Pessac, France
| | - Thierry Couffinhal
- Centre d'exploration, de prévention et de traitement de l'athérosclérose (CEPTA), CHU Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, Inserm, UMR1034, Biology of cardiovascular diseases, 33600 Pessac, France.
| |
Collapse
|
248
|
Abstract
Clonal hematopoiesis, defined as the presence of expanded somatic blood cell clones, is associated with about a doubling in the risk of coronary heart disease in humans. Heyde and colleagues now provide evidence that clonal hematopoiesis results largely from increased stem cell proliferation, which is, in turn, stimulated by atherosclerosis.
Collapse
Affiliation(s)
- Aldons J Lusis
- Departments of Medicine, Microbiology and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
249
|
Nawas MT, Schetelig J, Damm F, Levine RL, Perales MA, Giralt SA, VanDenBrink MR, Arcila ME, Zehir A, Papaemmanuil E, Klussmeier A, Schmidt AH, Maiwald S, Bolton KL, Tamari R. The clinical implications of clonal hematopoiesis in hematopoietic cell transplantation. Blood Rev 2021; 46:100744. [PMID: 32896435 PMCID: PMC8278242 DOI: 10.1016/j.blre.2020.100744] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/22/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022]
Abstract
Clonal hematopoiesis (CH) describes somatic mutations in hematopoietic stem and progenitor cells resulting in clonal expansion in individuals with no overt hematologic disease. Since CH increases in an age-related manner, understanding its role in hematopoietic cell transplantation (HCT) has become increasingly relevant to an aging transplant population. Multiple factors distinguish post-transplant hematopoiesis from unperturbed, steady-state hematopoiesis, including the influence of immunosuppressants, cytotoxic reagents, and marked proliferative stress, all of which may enhance or diminish the opportunity for clonal expansion. We reviewed the available clinical evidence on the consequences of CH at time of transplant in patients undergoing autologous HCT, and the impact of donor and recipient CH on allogeneic HCT outcomes. In the absence of evidence-based guidelines, we share our suggestions for managing donors and recipients found to have CH. Large-scale studies are needed to guide an evidence-based, uniform approach for the management of CH in the setting of HCT.
Collapse
Affiliation(s)
- Mariam T Nawas
- Department of Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, USA.
| | - Johannes Schetelig
- DKMS, Dresden, Tübingen, Germany; Department of Internal Medicine, University Hospital Carl Gustav Carus, TU Dresden, Germany.
| | - Frederik Damm
- Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany.
| | - Ross L Levine
- Department of Medicine, Adult Leukemia Service, Memorial Sloan Kettering Cancer Center, USA.
| | - Miguel-Angel Perales
- Department of Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, USA; Department of Medicine, Weill Cornell Medical College, USA.
| | - Sergio A Giralt
- Department of Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, USA; Department of Medicine, Weill Cornell Medical College, USA.
| | - Marcel R VanDenBrink
- Department of Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, USA; Department of Medicine, Weill Cornell Medical College, USA.
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, USA.
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, USA.
| | - Elli Papaemmanuil
- Department of Epidemiology-Biostatistics, Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, USA.
| | | | | | | | - Kelly L Bolton
- Department of Medicine, Adult Leukemia Service, Memorial Sloan Kettering Cancer Center, USA.
| | - Roni Tamari
- Department of Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, USA; Department of Medicine, Weill Cornell Medical College, USA.
| |
Collapse
|
250
|
Prasad R, Yen TJ, Bellacosa A. Active DNA demethylation-The epigenetic gatekeeper of development, immunity, and cancer. ADVANCED GENETICS (HOBOKEN, N.J.) 2021; 2:e10033. [PMID: 36618446 PMCID: PMC9744510 DOI: 10.1002/ggn2.10033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 01/11/2023]
Abstract
DNA methylation is a critical process in the regulation of gene expression with dramatic effects in development and continually expanding roles in oncogenesis. 5-Methylcytosine was once considered to be an inherited and stably repressive epigenetic mark, which can be only removed by passive dilution during multiple rounds of DNA replication. However, in the past two decades, physiologically controlled DNA demethylation and deamination processes have been identified, thereby revealing the function of cytosine methylation as a highly regulated and complex state-not simply a static, inherited signature or binary on-off switch. Alongside these fundamental discoveries, clinical studies over the past decade have revealed the dramatic consequences of aberrant DNA demethylation. In this review we discuss DNA demethylation and deamination in the context of 5-methylcytosine as critical processes for physiological and physiopathological transitions within three states-development, immune maturation, and oncogenic transformation; and we describe the expanding role of DNA demethylating drugs as therapeutic agents in cancer.
Collapse
Affiliation(s)
- Rahul Prasad
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| | - Timothy J. Yen
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| | - Alfonso Bellacosa
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|