201
|
Sherman ZM, Howard MP, Lindquist BA, Jadrich RB, Truskett TM. Inverse methods for design of soft materials. J Chem Phys 2020; 152:140902. [DOI: 10.1063/1.5145177] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Zachary M. Sherman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Michael P. Howard
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Beth A. Lindquist
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Ryan B. Jadrich
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Thomas M. Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
202
|
Schedl AE, Howell I, Watkins JJ, Schmidt HW. Gradient Photonic Materials Based on One-Dimensional Polymer Photonic Crystals. Macromol Rapid Commun 2020; 41:e2000069. [PMID: 32167639 DOI: 10.1002/marc.202000069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 11/07/2022]
Abstract
In nature, animals such as chameleons are well-known for the complex color patterns of their skin and the ability to adapt and change the color by manipulating sophisticated photonic crystal systems. Artificial gradient photonic materials are inspired by these color patterns. A concept for the preparation of such materials and their function as tunable mechanochromic materials is presented in this work. The system consists of a 1D polymer photonic crystal on a centimeter scale on top of an elastic poly(dimethylsiloxane) substrate with a gradient in stiffness. In the unstrained state, this system reveals a uniform red reflectance over the entire sample. Upon deformation, a gradient in local strain of the substrate is formed and transferred to the photonic crystal. Depending on the magnitude of this local strain, the thickness of the photonic crystal decreases continuously, resulting in a position-dependent blue shift of the reflectance peak and hence the color in a rainbow-like fashion. Using more sophisticated hard-soft-hard-soft-hard gradient elastomers enables the realization of stripe-like reflectance patterns. Thus, this approach allows for the tunable formation of reflectance gradients and complex reflectance patterns. Envisioned applications are in the field of mechanochromic sensors, telemedicine, smart materials, and metamaterials.
Collapse
Affiliation(s)
- Andreas E Schedl
- Department of Macromolecular Chemistry I and Bavarian Polymer Institute, University of Bayreuth, Bayreuth, 95440, Germany
| | - Irene Howell
- Center for Hierarchical Manufacturing, Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA, 01003, USA
| | - James J Watkins
- Center for Hierarchical Manufacturing, Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA, 01003, USA
| | - Hans-Werner Schmidt
- Department of Macromolecular Chemistry I and Bavarian Polymer Institute, University of Bayreuth, Bayreuth, 95440, Germany
| |
Collapse
|
203
|
Kou D, Ma W, Zhang S, Li R, Zhang Y. BTEX Vapor Detection with a Flexible MOF and Functional Polymer by Means of a Composite Photonic Crystal. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11955-11964. [PMID: 32026680 DOI: 10.1021/acsami.9b22033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Owing to superior sorption properties, structural variability, and versatility, metal-organic frameworks (MOFs) are used as sensing materials with both high selectivity and sensitivity. Herein, integrating a MOF with a polymer, a multilayered photonic crystal (PC) sensor, which is composed of NH2-MIL-88B nanocrystals and poly(styrene-acrylic acid) nanoparticles, is fabricated. Synthetically, by taking advantage of the sensitive breathing effect of the MOF and excellent stimuli-response of the copolymer, the sensor outputs significant optical signals that can be visually recognized and captured with the assistance of the spectrum with the detection limits of 3.70, 0.87, 0.42, and 0.22 g/m3 when exposed to benzene, toluene, ethylbenzene, and xylene (BTEX), respectively. Thanks to the porous construction and ultrathin feature, the PC sensor reaches a sensing balance within 3 s in BTEX streams and restores its initial state immediately after the rapid volatilization of the vapors. The function of the MOF material is confirmed by comparing the sensing properties of MOF/polymer PC with those of the SiO2/polymer one. In addition, as the designed MOF/polymer-based PC sensor shows different spectrum characteristics compared with those of other reported MOF-based ones, finite element simulation technology is adopted to help explain the relationship between optical property and material structure feature of the multilayered PC structure.
Collapse
Affiliation(s)
- Donghui Kou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, P. R. China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, P. R. China
| | - Rui Li
- School of Physics, Dalian University of Technology, Dalian, Liaoning 116023, P. R. China
| | - Yi Zhang
- School of Physics, Dalian University of Technology, Dalian, Liaoning 116023, P. R. China
| |
Collapse
|
204
|
Tang W, Chen C. Hydrogel-Based Colloidal Photonic Crystal Devices for Glucose Sensing. Polymers (Basel) 2020; 12:E625. [PMID: 32182870 PMCID: PMC7182902 DOI: 10.3390/polym12030625] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetes, a common epidemic disease, is increasingly hazardous to human health. Monitoring body glucose concentrations for the prevention and therapy of diabetes has become very important. Hydrogel-based responsive photonic crystal (PC) materials are noninvasive options for glucose detection. This article reviews glucose-sensing materials/devices composed of hydrogels and colloidal photonic crystals (CPCs), including the construction of 2D/3D CPCs and 2D/3D hydrogel-based CPCs (HCPCs). The development and mechanisms of glucose-responsive hydrogels and the achieved technologies of HCPC glucose sensors were also concluded. This review concludes by showing a perspective for the future design of CPC glucose biosensors with functional hydrogels.
Collapse
Affiliation(s)
- Wenwei Tang
- Modern Service Department, College of International Vocational Education, Shanghai Polytechnic University, Shanghai 201209, China;
| | - Cheng Chen
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China
- Research Center of Resource Recycling Science and Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| |
Collapse
|
205
|
Bian F, Sun L, Cai L, Wang Y, Wang Y, Zhao Y. Colloidal Crystals from Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903931. [PMID: 31515951 DOI: 10.1002/smll.201903931] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Colloidal crystals are of great interest to researchers because of their excellent optical properties and broad applications in barcodes, sensors, displays, drug delivery, and other fields. Therefore, the preparation of high quality colloidal crystals in large quantities with high speed is worth investigating. After decades of development, microfluidics have been developed that provide new choices for many fields, especially for the generation of functional materials in microscale. Through the design of microfluidic chips, colloidal crystals can be prepared controllably with the advantages of fast speed and low cost. In this Review, research progress on colloidal crystals from microfluidics is discussed. After summarizing the classifications, the generation of colloidal crystals from microfluidics is discussed, including basic colloidal particles preparation, and their assembly inside or outside of microfluidic devices. Then, applications of the achieved colloidal crystals from microfluidics are illustrated. Finally, the future development and prospects of microfluidic-based colloidal crystals are summarized.
Collapse
Affiliation(s)
- Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuetong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
206
|
|
207
|
Zhang Y, Wang Y, Wen Y, Zhong Q, Zhao Y. Self-Healable Magnetic Structural Color Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7486-7493. [PMID: 31961647 DOI: 10.1021/acsami.9b22579] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biologically inspired structural color hydrogels with magnetic- and photothermal-controlled self-healable abilities were fabricated by integrating magnetic-responsive photonic crystals into gelatin hydrogels. The self-healable ability of the hydrogel systems was derived from the magnetic response and light-absorbing abilities of the magnetic nanoparticles. When the hydrogels deteriorate or get damaged, magnetic nanoparticles could absorb heat under near-infrared irradiation and external magnetic fields, which stimulates phase transformation in the hydrogels to fill or heal the hydrogels. In addition, the hydrogel systems were demonstrated with high biocompatibility and plasticity. These features of magnetic self-healable structural color hydrogels make them have broad application prospects in the fields of biological engineering and cell engineering.
Collapse
Affiliation(s)
- Yalan Zhang
- Department of Pharmaceutical Engineering, School of Engineering , China Pharmaceutical University , Nanjing 211198 , China
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital , Clinical College of Xuzhou Medical University , Nanjing 210008 , China
- Department of Clinical Laboratory , The Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing 210008 , China
| | - Yu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Yuanyuan Wen
- Department of Pharmaceutical Engineering, School of Engineering , China Pharmaceutical University , Nanjing 211198 , China
| | - Qifeng Zhong
- Department of Pharmaceutical Engineering, School of Engineering , China Pharmaceutical University , Nanjing 211198 , China
| | - Yuanjin Zhao
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital , Clinical College of Xuzhou Medical University , Nanjing 210008 , China
- Department of Clinical Laboratory , The Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing 210008 , China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| |
Collapse
|
208
|
Luo W, Cui Q, Fang K, Chen K, Ma H, Guan J. Responsive Hydrogel-based Photonic Nanochains for Microenvironment Sensing and Imaging in Real Time and High Resolution. NANO LETTERS 2020; 20:803-811. [PMID: 29323918 DOI: 10.1021/acs.nanolett.7b04218] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Microenvironment sensing and imaging are of importance in microscale zones like microreactors, microfluidic systems, and biological cells. But they are so far implemented only based on chemical colors from dyes or quantum dots, which suffered either from photobleaching, quenching, or photoblinking behaviors, or from limited color gamut. In contrast, structural colors from hydrogel-based photonic crystals (PCs) may be stable and tunable in the whole visible spectrum by diffraction peak shift, facilitating the visual detection with high accuracy. However, the current hydrogel-based PCs are all inappropriate for microscale detection due to the bulk size. Here we demonstrate the smallest hydrogel-based PCs, responsive hydrogel-based photonic nanochains with high-resolution and real-time response, by developing a general hydrogen bond-guided template polymerization method. A variety of mechanically separated stimuli-responsive hydrogel-based photonic nanochains have been obtained in a large scale including those responding to pH, solvent, and temperature. Each of them has a submicrometer diameter and is composed of individual one-dimensional periodic structure of magnetic particles locked by a tens-of-nanometer-thick peapod-like responsive hydrogel shell. Taking the pH-responsive hydrogel-based photonic nanochains, for example, pH-induced hydrogel volume change notably alters the nanochain length, resulting in a significant variation of the structural color. The submicrometer size endows the nanochains with improved resolution and response time by 2-3 orders of magnitude than the previous counterparts. Our results for the first time validate the feasibility of using structural colors for microenvironment sensing and imaging and may further promote the applications of responsive PCs, such as in displays and printing.
Collapse
Affiliation(s)
- Wei Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , Wuhan 430070 , China
- Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Qian Cui
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , Wuhan 430070 , China
| | - Kai Fang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , Wuhan 430070 , China
| | - Ke Chen
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , Wuhan 430070 , China
| | - Huiru Ma
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , Wuhan 430070 , China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , Wuhan 430070 , China
| |
Collapse
|
209
|
Zhang D, Cai L, Bian F, Kong T, Zhao Y. Label-Free Quantifications of Multiplexed Mycotoxins by G-Quadruplex Based on Photonic Barcodes. Anal Chem 2020; 92:2891-2895. [PMID: 32013396 DOI: 10.1021/acs.analchem.9b05213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multiplexed quantification of mycotoxins is of great significance in food safety. Here, novel photonic crystal (PhC) barcodes with G-quadruplex aptamer encapsulated for label-free multiplex mycotoxins quantification are developed. The probes are immobilized on PhC barcodes to form a molecular beacon (MB), which contains the sequences of mycotoxin aptamers and a G-quadruplex. In the presence of the target, the hairpin structure of MB would open and the region of the G-quadruplex is exposed, which subsequently combines with Thioflavin T (ThT) to produce fluorescence. The relative fluorescence intensity increased as the mycotoxins concentration increased in a linear range from 1.0 pg/mL to 100 ng/mL. Moreover, the multiplexed mycotoxins quantification could be achieved by tuning the structural color of the PhC barcodes. We demonstrate that this method with high accuracy and specificity for multiplexed detection of mycotoxins, with the sensitivity of the detection as low as 0.70 pg/mL. Our results show that G-quadruplex-encapsulated PhC barcodes offer a novel simple and label-free pathway toward the multiplex screen assay of mycotoxins for food safety.
Collapse
Affiliation(s)
- Dagan Zhang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine , Shenzhen University , Shenzhen 518060 , China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Tiantian Kong
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine , Shenzhen University , Shenzhen 518060 , China
| | - Yuanjin Zhao
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine , Shenzhen University , Shenzhen 518060 , China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| |
Collapse
|
210
|
Baek K, Kim Y, Mohd-Noor S, Hyun JK. Mie Resonant Structural Colors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5300-5318. [PMID: 31899614 DOI: 10.1021/acsami.9b16683] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Structural colors refer to colors produced by the interference of light scattered by judiciously arranged nano- or microscopic structures. In this Forum Article, we discuss the use of Mie resonant scattering in structural colors with dielectric and metal-dielectric hybrid structures to achieve notable figures of merit in pixel size and gamut range. Compared with plasmonic structures, resonant dielectric and hybrid structures are subjected to less loss while providing strong field confinement and large scattering cross sections, making them appealing for realizing vibrant colors at ultrahigh resolutions. We outline the basic principles behind Mie resonances in analytically solvable structures and highlight the relation between these resonances and color with demonstrations in dielectric metasurfaces. Mie resonant colors occurring in nonplanar designs including disordered systems are also explored. We review recent advances in dynamic and reversibly tunable Mie resonant colors and conclude by providing an outlook for future research directions.
Collapse
Affiliation(s)
- Kyungnae Baek
- Department of Chemistry and Nanoscience , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Youngji Kim
- Department of Chemistry and Nanoscience , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Syazwani Mohd-Noor
- Department of Chemistry and Nanoscience , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Jerome K Hyun
- Department of Chemistry and Nanoscience , Ewha Womans University , Seoul 03760 , Republic of Korea
| |
Collapse
|
211
|
Shi J, Liu S, Zhang L, Yang B, Shu L, Yang Y, Ren M, Wang Y, Chen J, Chen W, Chai Y, Tao X. Smart Textile-Integrated Microelectronic Systems for Wearable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901958. [PMID: 31273850 DOI: 10.1002/adma.201901958] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/02/2019] [Indexed: 05/21/2023]
Abstract
The programmable nature of smart textiles makes them an indispensable part of an emerging new technology field. Smart textile-integrated microelectronic systems (STIMES), which combine microelectronics and technology such as artificial intelligence and augmented or virtual reality, have been intensively explored. A vast range of research activities have been reported. Many promising applications in healthcare, the internet of things (IoT), smart city management, robotics, etc., have been demonstrated around the world. A timely overview and comprehensive review of progress of this field in the last five years are provided. Several main aspects are covered: functional materials, major fabrication processes of smart textile components, functional devices, system architectures and heterogeneous integration, wearable applications in human and nonhuman-related areas, and the safety and security of STIMES. The major types of textile-integrated nonconventional functional devices are discussed in detail: sensors, actuators, displays, antennas, energy harvesters and their hybrids, batteries and supercapacitors, circuit boards, and memory devices.
Collapse
Affiliation(s)
- Jidong Shi
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Su Liu
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Lisha Zhang
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Bao Yang
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Lin Shu
- School of Electronic and Information Engineering, Southern China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Ying Yang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ming Ren
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yang Wang
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiewei Chen
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Wei Chen
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Yang Chai
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xiaoming Tao
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| |
Collapse
|
212
|
Wang H, Liu Y, Chen Z, Sun L, Zhao Y. Anisotropic structural color particles from colloidal phase separation. SCIENCE ADVANCES 2020; 6:eaay1438. [PMID: 31950082 PMCID: PMC6954063 DOI: 10.1126/sciadv.aay1438] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/11/2019] [Indexed: 05/11/2023]
Abstract
Structural color materials have been studied for decades because of their fascinating properties. Effects in this area are the trend to develop functional structural color materials with new components, structures, or morphologies for different applications. In this study, we found that the coassembled graphene oxide (GO) and colloid nanoparticles in droplets could form component phase separations, and thus, previously unknown anisotropic structural color particles (SCPs) with hemispherical colloidal crystal cluster and oblate GO component could be achieved. The anisotropic SCPs, as well as their inverse opal hydrogel derivatives, were endowed with brilliant structural colors and controllable capabilities of fixation, location, orientation, and even responsiveness due to their specific structure, morphology, and components. We have also demonstrated that the anisotropic hydrogel SCPs with these features were ideal candidates for dynamic cell monitoring and sensing. These properties indicate that the anisotropic SCPs and their derivatives have huge potential values in biomedical areas.
Collapse
Affiliation(s)
- Huan Wang
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuxiao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
213
|
Zhang L, Li M, Lyu Q, Zhu J. Bioinspired structural color nanocomposites with healable capability. Polym Chem 2020. [DOI: 10.1039/d0py01096k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This minireview summarizes the recent development of healable structural color nanocomposites from the perspective of the construction strategies.
Collapse
Affiliation(s)
- Lianbin Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST)
- and State Key Laboratory of Materials Processing and Die & Mold Technology
- Huazhong University of Science and Technology (HUST)
- Wuhan 430074
- China
| | - Miaomiao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST)
- and State Key Laboratory of Materials Processing and Die & Mold Technology
- Huazhong University of Science and Technology (HUST)
- Wuhan 430074
- China
| | - Quanqian Lyu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST)
- and State Key Laboratory of Materials Processing and Die & Mold Technology
- Huazhong University of Science and Technology (HUST)
- Wuhan 430074
- China
| | - Jintao Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST)
- and State Key Laboratory of Materials Processing and Die & Mold Technology
- Huazhong University of Science and Technology (HUST)
- Wuhan 430074
- China
| |
Collapse
|
214
|
Wang Y, Zhao Q, Du X. Inkless multi-color writing and copying of laser-programmable photonic crystals. MATERIALS HORIZONS 2020; 7:1341-1347. [DOI: 10.1039/d0mh00150c] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Shape-memory-polymer-based photonic crystals can be precisely programmed by a NIR laser at the nanoscale, resulting in multi-color writing and copying capabilities.
Collapse
Affiliation(s)
- Yunlong Wang
- Institute of Biomedical & Health Engineering
- Shenzhen Institutes of Advanced Technology (SIAT)
- Chinese Academy of Sciences (CAS)
- Shenzhen
- China
| | - Qilong Zhao
- Institute of Biomedical & Health Engineering
- Shenzhen Institutes of Advanced Technology (SIAT)
- Chinese Academy of Sciences (CAS)
- Shenzhen
- China
| | - Xuemin Du
- Institute of Biomedical & Health Engineering
- Shenzhen Institutes of Advanced Technology (SIAT)
- Chinese Academy of Sciences (CAS)
- Shenzhen
- China
| |
Collapse
|
215
|
Compression-Responsive Photonic Crystals Based on Fluorine-Containing Polymers. Polymers (Basel) 2019; 11:polym11122114. [PMID: 31888273 PMCID: PMC6960798 DOI: 10.3390/polym11122114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 12/19/2022] Open
Abstract
Fluoropolymers represent a unique class of functional polymers due to their various interesting and important properties such as thermal stability, resistance toward chemicals, repellent behaviors, and their low refractive indices in comparison to other polymeric materials. Based on the latter optical property, fluoropolymers are particularly of interest for the preparation of photonic crystals for optical sensing application. Within the present study, photonic crystals were prepared based on core-interlayer-shell particles focusing on fluoropolymers. For particle assembly, the melt-shear organization technique was applied. The high order and refractive index contrast of the individual components of the colloidal crystal structure lead to remarkable reflection colors according to Bragg’s law of diffraction. Due to the special architecture of the particles, consisting of a soft core, a comparably hard interlayer, and again a soft shell, the resulting opal films were capable of changing their shape and domain sizes upon applied pressure, which was accompanied with a (reversible) change of the observed reflection colors as well. By the incorporation of adjustable amounts of UV cross-linking agents into the opal film and subsequent treatment with different UV irradiation times, stable and pressure-sensitive opal films were obtained. It is shown that the present strategy led to (i) pressure-sensitive opal films featuring reversibly switchable reflection colors and (ii) that opal films can be prepared, for which the written pattern—resulting from the compressed particles—could be fixed upon subsequent irradiation with UV light. The herein described novel fluoropolymer-containing photonic crystals, with their pressure-tunable reflection color, are promising candidates in the field of sensing devices and as potential candidates for anti-counterfeiting materials.
Collapse
|
216
|
Heshmat M, Li PCH. Construction of an Array of Photonic Crystal Films for Visual Differentiation of Water/Ethanol Mixtures. ACS OMEGA 2019; 4:19991-19999. [PMID: 31788633 PMCID: PMC6882101 DOI: 10.1021/acsomega.9b02947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/30/2019] [Indexed: 05/11/2023]
Abstract
A photonic crystal film (PCF) which consists of a porous layered structure with a highly ordered periodic arrangement of nanopores has been used to differentiate between various mixtures of water and ethanol (EtOH). The refractive index difference between the wall (silica) of the empty nanopore and air which occupies it results in the structural color of the PCF. This color disappears when the nanopores are infiltrated by a liquid with a similar refractive index to silica (or silicon dioxide). The disappearance of the structural color provides a means to construct a colorimetric sensor to differentiate between various water/EtOH mixtures based on their wettability of the nanopores in the PCF. In this study, an array of silica-based PCFs was synthesized on a silicon substrate with a precise control of nanopore properties using the co-assembly/sedimentation method. Using this method, we benefitted from having different PCFs on a single substrate. Chemical coatings, neck angles, and film thicknesses on each PCF were the three factors used to adjust the wettability of the pores. Nanopore wetting by water/EtOH mixtures was studied in a systematic manner based on the three factors, and the findings were used to develop a sensor for visual differentiation of various water/EtOH mixtures. The final developed sensor consisting of an array of six PCFs was able to differentiate between seven different water/EtOH mixtures: W10, W20, W30, W40, W50, W60, and W70, in which W10 means 10% of water in EtOH.
Collapse
|
217
|
Eye-recognizable and repeatable biochemical flexible sensors using low angle-dependent photonic colloidal crystal hydrogel microbeads. Sci Rep 2019; 9:17059. [PMID: 31745154 PMCID: PMC6863886 DOI: 10.1038/s41598-019-53499-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/01/2019] [Indexed: 11/30/2022] Open
Abstract
This paper presents eye-recognizable and repeatable biochemical flexible sensors using low angle-dependent stimuli-responsive photonic colloidal crystal hydrogel (PCCG) microbeads. Thanks to the stimuli-responsive PCCG microbeads exhibiting structural color, users can obtain sensing information without depending on the viewing angle and the mechanical deformation of the flexible sensor. Temperature-responsive PCCG microbeads and ethanol-responsive PCCG microbeads were fabricated from a pre-gel solution of N-isopropylacrylamide (NIPAM) and N-methylolacrylamide (NMAM) by using a centrifuge-based droplet shooting device (CDSD). As a proof-of-concept of thin and flexible biochemical sensors, temperature- and ethanol-sensing devices were demonstrated. By comparing the structural color of the stimuli-responsive PCCG microbeads and the color chart of the device, sensing information, including skin temperature of the human body and ethanol concentration in alcoholic beverages, was obtained successively. We expect that our device design using low angle-dependent stimuli-responsive PCCG microbeads would contribute to the development of user-friendly biochemical sensor devices for monitoring environmental and healthcare targets.
Collapse
|
218
|
Li Y, Wang X, Hu M, Zhou L, Chai L, Fan Q, Shao J. Patterned SiO 2/Polyurethane Acrylate Inverse Opal Photonic Crystals with High Color Saturation and Tough Mechanical Strength. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14282-14290. [PMID: 31609122 DOI: 10.1021/acs.langmuir.9b02485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Patterned structural color photonic crystals (PCs) based on periodic photonic nanostructures have attracted great interest in developing high-performance sensors and other smart optical materials as well as tunable structurally colored fashion textiles. However, previously reported patterned PCs with both high color saturation and tough mechanical strength were difficult to achieve, which restricts their practical applications. Herein, arbitrarily patterned silica/polyurethane acrylate (SiO2/PUA) inverse opal photonic crystals (IOPCs) with high color saturation and tough mechanical strength were innovatively designed and fabricated by writing with photopolymerizable PUA "ink" on a self-assembled hollow SiO2 PC template. The high color saturation of the prepared SiO2/PUA IOPCs originated from the high refractive index contrast between the encapsulated air-filled core and the SiO2/PUA composite skeleton. The cross-linked flexible PUA matrix tightly warped the self-assembled hollow SiO2 nanospheres together, endowing the obtained SiO2/PUA IOPCs a structural color pattern with tough mechanical strength. The structural colors of SiO2/PUA IOPCs could be finely tuned by regulating their basic parameters, and a redshift in the resultant structural color was observed due to an increase in the lattice constant when increasing the core size and/or shell thickness of the hollow SiO2 nanospheres.
Collapse
Affiliation(s)
- Yichen Li
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Xiaohui Wang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Mingan Hu
- Haining Green-Guard Textile Sci-Tech Co. Ltd. , Jiaxing 314408 , China
| | - Lan Zhou
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Liqin Chai
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Qinguo Fan
- Department of Bioengineering , University of Massachusetts Dartmouth , North Dartmouth , Massachusetts 02747 , United States
| | - Jianzhong Shao
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| |
Collapse
|
219
|
Yan D, Qiu L, Shea KJ, Meng Z, Xue M. Dyeing and Functionalization of Wearable Silk Fibroin/Cellulose Composite by Nanocolloidal Array. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39163-39170. [PMID: 31441633 DOI: 10.1021/acsami.9b11576] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A wearable silk fibroin/cellulose composite is reported. It is structurally dyed and functionalized by embedding three-dimensional (3D) or two-dimensional poly(methyl methacrylate) and polystyrene nanocolloidal arrays to form opal and inverse opal silk methylcellulose photonic crystal films (SMPCF). The brilliant color of SMPCF is utilized for naked-eye detection of humidity and a trace amount (0.02%) of H2O content in organic solvents. Volatile organic compounds gases of 5 types were detected. By alternately exposed to organic solvents of methanol, acetonitrile, acetone, ethanol, isopropanol, n-butanol, carbon tetrachloride, and toluene, 3D inverse opal SMPCF displayed an excellent sensing performance with instantaneously color changes from green to red. The organic solvent sensitive SMPCF are wearable by integrated into a rubber glove. This composite has the potential to be used in wearable real-time sensing materials.
Collapse
Affiliation(s)
- Dan Yan
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 102488 , China
| | - Lili Qiu
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 102488 , China
| | - Kenneth J Shea
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States
| | - Zihui Meng
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 102488 , China
| | - Min Xue
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 102488 , China
| |
Collapse
|
220
|
Liu F, Zhang S, Jin X, Wang W, Tang B. Thermal-Responsive Photonic Crystal with Function of Color Switch Based on Thermochromic System. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39125-39131. [PMID: 31544458 DOI: 10.1021/acsami.9b16411] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Responsive photonic crystals have attracted considerable attention. The responsiveness is usually achieved through the variation of reflection wavelengths based on Bragg diffraction. However, distinguishing external stimuli from intrinsic angle dependence is a challenge. Herein, a novel thermal-responsive photonic crystal was constructed based on the synergistic effect of the low-angle dependence of SnO2 inverse opals and a thermochromic phase change system. The organic thermochromic phase change system was obtained by mixing the fluoran dye (heat-sensitive red TF-R2), bisphenol A, and aliphatic alcohols in a certain proportion. By filling the thermochromic phase change system into SnO2 inverse opals, the thermal-responsive photonic crystal was fabricated. Through simple external thermal stimulation, the mutual transformation of low-angle-dependent structural color and pigmentary color is realized and inverse opal patterns can be displayed and hidden. The proposed system, while preventing the interference of the observation angle to the thermal stimulation, shows potential application prospect in the fields of anti-counterfeiting and information encryption fields.
Collapse
Affiliation(s)
- Fangfang Liu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Xin Jin
- Eco-chemical Engineering Cooperative Innovation Center of Shandong , Qingdao University of Science and Technology , Qingdao 266042 , China
| | - Wentao Wang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
- Eco-chemical Engineering Cooperative Innovation Center of Shandong , Qingdao University of Science and Technology , Qingdao 266042 , China
| |
Collapse
|
221
|
Visual test for the presence of the illegal additive ethyl anthranilate by using a photonic crystal test strip. Mikrochim Acta 2019; 186:685. [PMID: 31591665 DOI: 10.1007/s00604-019-3800-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/07/2019] [Indexed: 10/25/2022]
Abstract
A test strip has been developed for the rapid detection of the illegal additive ethyl anthranilate (EA) in wine. The detection scheme is based on a combination of photonic crystal based detection and molecular imprinting based recognition. The resulting molecularly imprinted photonic crystal (MIPC) undergoes a gradual color change from green to yellow to red upon binding of EA. A semi-quantitative colorimetric card can be used to estimate the content of EA, either visually or by making use of an optical fiber spectrometer. A linear relationship was found between the Bragg diffraction peak shift and the concentration of EA in the range from 0.1 mM to 10 mM. The detection limit is 10 μM. The test has been successfully used to screening for the presence of EA in grape wine. The test strip is selective, and can be re-used after re-activation. Graphical abstract Schematic representation of the fabrication and application of the molecularly imprinted photonic crystal (MIPC) based test trip. The resulting MIPC undergoes a gradual color change from green to yellow to red upon binding of the illegal wine additive ethyl anthranilate (EA).
Collapse
|
222
|
Zhu Y, Wang J, Zhu X, Wang J, Zhou L, Li J, Mei T, Qian J, Wei L, Wang X. Carbon dot-based inverse opal hydrogels with photoluminescence: dual-mode sensing of solvents and metal ions. Analyst 2019; 144:5802-5809. [PMID: 31465037 DOI: 10.1039/c9an01287g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A dual-mode sensing platform, involving fluorescence and reflectance modes, has been demonstrated for highly sensitive and selective detection of solvents and metal ions based on carbon dot-based inverse opal hydrogels (CD-IOHs). In this work, CD-IOHs have been first synthesized via the typical templating technique. Two kinds of CDs, including solvent and Cu(ii) ion sensitive CDs, have been incorporated into the matrix of IOHs during the co-polymerization of acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA). The CD-IOHs not only appear green under daylight but also exhibit stable photoluminescence (PL) under UV light owing to the stop-band effect of photonic crystals and the quantum effect of CDs, respectively. By using these two optical phenomena, for solvent sensing, the CD-IOHs change their colors from green, yellow, and red to a semitransparent state and show good linear sensing with the ethanol content varying from 0 to 45% in reflectance mode, while their PL intensities exhibit a nonlinear detection trend: first an increase and then a decrease with the ethanol content in fluorescence mode. Remarkably, as for metal ion sensing, the CD-IOHs have high selectivity for Cu(ii) ions via the specific PL quenching effect of Cu(ii) ion sensitive CDs. Furthermore, the CD-IOHs show good linear detection in both modes and a wide linear detection range from 0.1 μM to 7 mM. Thus, high selectivity, colorimetric detection, a broad linear detection range, and dual-mode sensing can be realized using the CD-IOHs.
Collapse
Affiliation(s)
- Yuhua Zhu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Jianying Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Xiang Zhu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Jun Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Lijie Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Jinhua Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Tao Mei
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Jingwen Qian
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Lai Wei
- Wuhan Drug Solubilization and Delivery Technology Research Center, School of Environment and Biochemical Engineering, Wuhan Vocational College of Software and Engineering, Wuhan 430205, P. R. China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| |
Collapse
|
223
|
Liu X, Wang K, Chang Z, Zhang Y, Xu J, Zhao YS, Bu X. Engineering Donor–Acceptor Heterostructure Metal–Organic Framework Crystals for Photonic Logic Computation. Angew Chem Int Ed Engl 2019; 58:13890-13896. [DOI: 10.1002/anie.201906278] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Xiao‐Ting Liu
- School of Materials Science and EngineeringNational Institute for Advanced MaterialsTKL of Metal and Molecule-Based Material ChemistryNankai University Tianjin 300350 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
| | - Kang Wang
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ze Chang
- School of Materials Science and EngineeringNational Institute for Advanced MaterialsTKL of Metal and Molecule-Based Material ChemistryNankai University Tianjin 300350 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
| | - Ying‐Hui Zhang
- School of Materials Science and EngineeringNational Institute for Advanced MaterialsTKL of Metal and Molecule-Based Material ChemistryNankai University Tianjin 300350 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
| | - Jialiang Xu
- School of Materials Science and EngineeringNational Institute for Advanced MaterialsTKL of Metal and Molecule-Based Material ChemistryNankai University Tianjin 300350 P. R. China
| | - Yong Sheng Zhao
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xian‐He Bu
- School of Materials Science and EngineeringNational Institute for Advanced MaterialsTKL of Metal and Molecule-Based Material ChemistryNankai University Tianjin 300350 P. R. China
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
| |
Collapse
|
224
|
Xue Y, Wang F, Luo H, Zhu J. Preparation of Noniridescent Structurally Colored PS@TiO 2 and Air@C@TiO 2 Core-Shell Nanoparticles with Enhanced Color Stability. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34355-34363. [PMID: 31432662 DOI: 10.1021/acsami.9b12060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Natural amorphous photonic crystals benefit from reflectance at selective wavelengths in some specific existing natural systems. Noniridescence from natural organisms has also attracted great interest for various examples in bionic colors, pigments, and paintings. Here, Air@C@TiO2 sphere was obtained by the first calcination of PS@TiO2 core-shell nanoparticles in nitrogen to ensure the integrity of the shell structure followed by low-temperature calcination to obtain the appropriate color saturation. We demonstrate that, compared with the prepared colored PS@TiO2/carbon black (CB) pigments, angle-independent hollow Air@C@TiO2 nanoparticles have enhanced color stability under the action of in situ synthesized carbon black (CB). Our results suggest that it is easy to change the color of these Air@C@TiO2 spheres by adjusting the sphere structure sizes, which have the potential to show visual signaling.
Collapse
Affiliation(s)
| | | | - Hongjie Luo
- School of Materials Science and Engineering , Shanghai University , Shanghai 200444 , P. R. China
| | | |
Collapse
|
225
|
Li Z, Wang M, Zhang X, Wang D, Xu W, Yin Y. Magnetic Assembly of Nanocubes for Orientation-Dependent Photonic Responses. NANO LETTERS 2019; 19:6673-6680. [PMID: 31454480 DOI: 10.1021/acs.nanolett.9b02984] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Close packing is the most favorable manner in colloidal self-assembly, producing superstructures with a limited variety of spatial configurations. This challenge can be overcome by incorporating anisotropic interactions into the assembly process. Using magnetite nanocubes as the building blocks, we show that they can be magnetically assembled into one-dimensional nanochains in an edge-to-edge rather than close-packed face-to-face manner. The cubic shape of the building blocks plays a key role: it decouples the easy magnetization from any of the three geometric axes favoring close packing. Therefore, under magnetic fields, the induced competition between the long-range Zeeman coupling and the short-range dipole-dipole coupling determines the assembly of nanocubes along the [110] directions. The photonic properties of the edge-to-edge configuration are dependent on both chain orientation and viewing angle. Unlike nanosphere assemblies where the strongest diffraction occurs parallel to the chain (or field) direction, the nanocubes allow one to define their long-range periodicity in the plane of a thin film while diffracting light out of the plane, making it particularly useful for applications that desire the achievement of structural colors of sufficient intensity in a film with a minimum thickness. For example, their unique photonic property can be taken advantage of to design "magic" patterns whose rotation is perceived to be opposite to the actual rotational direction of the film. It is difficult to reproduce such unusual optical effects by other means; thereby, many new ways for designing novel security devices are provided. This work reveals the enormous potential of the magnetic assembly strategy, when combined with the use of well-defined nonspherical building blocks, for controlling the spatial configurations of colloidal assemblies and exploiting their novel physical properties for intriguing applications.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry , University of California Riverside , Riverside , California 92521 , United States
| | - Mingsheng Wang
- Department of Chemistry , University of California Riverside , Riverside , California 92521 , United States
| | - Xiaoliang Zhang
- Department of Chemistry , University of California Riverside , Riverside , California 92521 , United States
| | - Dawei Wang
- Department of Chemistry , University of California Riverside , Riverside , California 92521 , United States
| | - Wenjing Xu
- Department of Chemistry , University of California Riverside , Riverside , California 92521 , United States
| | - Yadong Yin
- Department of Chemistry , University of California Riverside , Riverside , California 92521 , United States
| |
Collapse
|
226
|
Zeng M, King D, Huang D, Do C, Wang L, Chen M, Lei S, Lin P, Chen Y, Cheng Z. Iridescence in nematics: Photonic liquid crystals of nanoplates in absence of long-range periodicity. Proc Natl Acad Sci U S A 2019; 116:18322-18327. [PMID: 31444300 PMCID: PMC6744873 DOI: 10.1073/pnas.1906511116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Photonic materials with positionally ordered structure can interact strongly with light to produce brilliant structural colors. Here, we found that the nonperiodic nematic liquid crystals of nanoplates can also display structural color with only significant orientational order. Owing to the loose stacking of the nematic nanodiscs, such colloidal dispersion is able to reflect a broad-spectrum wavelength, of which the reflection color can be further enhanced by adding carbon nanoparticles to reduce background scattering. Upon the addition of electrolytes, such vivid colors of nematic dispersion can be fine-tuned via electrostatic forces. Furthermore, we took advantage of the fluidity of the nematic structure to create a variety of colorful arts. It was expected that the concept of implanting nematic features in photonic structure of lyotropic nanoparticles may open opportunities for developing advanced photonic materials for display, sensing, and art applications.
Collapse
Affiliation(s)
- Minxiang Zeng
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Daniel King
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Dali Huang
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Ling Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
- School of Materials Science and Engineering, Tianjin University, 300350 Tianjin, China
| | - Mingfeng Chen
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, 510006 Guangzhou, China
| | - Shijun Lei
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Pengcheng Lin
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, 510006 Guangzhou, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, 510006 Guangzhou, China
| | - Zhengdong Cheng
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843;
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843
| |
Collapse
|
227
|
Paternò GM, Moscardi L, Donini S, Ariodanti D, Kriegel I, Zani M, Parisini E, Scotognella F, Lanzani G. Hybrid One-Dimensional Plasmonic-Photonic Crystals for Optical Detection of Bacterial Contaminants. J Phys Chem Lett 2019; 10:4980-4986. [PMID: 31407906 DOI: 10.1021/acs.jpclett.9b01612] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photonic crystal-based biosensors hold great promise as low-cost devices for real-time monitoring of a variety of biotargets, for example, bacterial contaminants in food. Here, we report the proof-of-concept for a new colorimetric sensor of bacterial contamination, which is based on a novel hybrid plasmonic-photonic device. Our system consists of a layer of silver, a plasmonic metal exhibiting a well-known bioactivity, on top of a one-dimensional photonic crystal. We attribute the bioresponsivity to the formation of polarization charges at the Ag/bacterium interface within a sort of "bio-doping" mechanism. Interestingly, this triggers a blue shift in the photonic response. As an example, we assessed the validity of our approach by detecting one of the most hazardous contaminants, Escherichia coli. This work demonstrates that our device can be a low-cost and portable platform for the detection of common bacterial contaminants.
Collapse
Affiliation(s)
- Giuseppe Maria Paternò
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano, Italy
| | - Liliana Moscardi
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Stefano Donini
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano, Italy
| | - Davide Ariodanti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Ilka Kriegel
- Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), via Morego, 30, 16163 Genova, Italy
| | - Maurizio Zani
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Emilio Parisini
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano, Italy
| | - Francesco Scotognella
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
228
|
Niu W, Zhang L, Wang Y, Wang Z, Zhao K, Wu S, Zhang S, Tok AIY. Multicolored Photonic Crystal Carbon Fiber Yarns and Fabrics with Mechanical Robustness for Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32261-32268. [PMID: 31394900 DOI: 10.1021/acsami.9b09459] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multicolored photonic crystal carbon fiber (CF) yarns and fabrics with mechanical robustness in a full spectrum are reported. By facilely controlling the thickness of the periodic layer, a series of photonic CF yarns and fabrics with vivid structural colors ranging from purple, green, yellow, orange, to red are obtained. Interestingly, the prepared multicolored CF yarns show anisotropic optical reflection properties because of their unique axisymmetric geometry, while the plain-woven fabrics exhibit vivid colors even under ambient scattering light. Most importantly, they can withstand cyclical mechanical rubbing, laundering, and accelerated light aging, indicating great potential for practical uses. Finally, considering such impressive characteristics as well as reflection in the visible and near-infrared regions, the above photonic crystal microstructure is further used as a new material for the application of outdoor reflective cooling of the textile surface, demonstrating a superior temperature reduction up to ∼12 °C with respect to the control sample.
Collapse
Affiliation(s)
- Wenbin Niu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Road , Dalian 116024 , China
| | - Lele Zhang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Road , Dalian 116024 , China
| | - Yunpeng Wang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Road , Dalian 116024 , China
| | - Zhiwei Wang
- School of Materials Science and Engineering , Nanyang Technological University , 639798 Singapore
| | - Kai Zhao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Road , Dalian 116024 , China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Road , Dalian 116024 , China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Road , Dalian 116024 , China
| | - Alfred Iing Yoong Tok
- School of Materials Science and Engineering , Nanyang Technological University , 639798 Singapore
| |
Collapse
|
229
|
Wang Y, Cui H, Zhao Q, Du X. Chameleon-Inspired Structural-Color Actuators. MATTER 2019; 1:626-638. [DOI: 10.1016/j.matt.2019.05.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
|
230
|
Dalmis R, Birlik I, Ak Azem NF, Çelik E. Modification of the sedimentation method for PMMA photonic crystal coatings. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
231
|
Zhang D, Bian F, Cai L, Wang T, Kong T, Zhao Y. Bioinspired photonic barcodes for multiplexed target cycling and hybridization chain reaction. Biosens Bioelectron 2019; 143:111629. [PMID: 31470170 DOI: 10.1016/j.bios.2019.111629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
Abstract
Multiplexed detection of microRNA (miRNA) is of great value in clinical diagnosis. Here, a new type of polydopamine (PDA) encapsulated photonic crystal (PhC) barcodes are employed for target-triggering cycle amplification and hybridization chain reaction (HCR) to achieve multiplex miRNA quantification. The PDA-decorated PhC barcodes not only exhibit distinctive structural color for different encoding miRNAs, they also can immobilize biomolecules, allowing subsequent reaction with amino-modified hairpin probes (H1). When the PDA-decorated PhC barcodes are used in assays, target miRNAs can be circularly used to initiate HCR for cycle amplification. Therefore, by tuning the structural colors of the PDA-integrated PhC, the multiplexed miRNA quantification could be realized. We demonstrate that our strategy for multiplexed detection of miRNA is reasonably accurate, reliable and repeatable, with a detection limit as low as 8.0 fM. Our results show that PDA encapsulated PhC barcodes as a novel platform offer a pathway toward the multiplex analysis of low-abundance biomarkers for biomedical assays.
Collapse
Affiliation(s)
- Dagan Zhang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Tianfu Wang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Tiantian Kong
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Yuanjin Zhao
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
232
|
Sherman ZM, Pallone JL, Erb RM, Swan JW. Enhanced diffusion and magnetophoresis of paramagnetic colloidal particles in rotating magnetic fields. SOFT MATTER 2019; 15:6677-6689. [PMID: 31397836 DOI: 10.1039/c9sm00890j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dispersions of paramagnetic colloids can be manipulated with external magnetic fields to assemble structures via dipolar assembly and control transport via magnetophoresis. For fields held steady in time, the dispersion structure and dynamic properties are coupled. This coupling can be problematic when designing processes involving field-induced forces, as particle aggregation competes against and hinders particle transport. Time-varying fields drive dispersions out-of-equilibrium, allowing the structure and dynamics to be tuned independently. Rotating the magnetic field direction using two biaxial fields is a particularly effective mode of time-variation and has been used experimentally to enhance particle transport. Fundamental transport properties, like the diffusivity and magnetophoretic mobility, dictate dispersions' out-of-equilibrium responses to such time-varying fields, and are therefore crucial to understand to effectively design processes utilizing rotating fields. However, a systematic study of these dynamic quantities in rotating fields has not been performed. Here, we investigate the transport properties of dispersions of paramagnetic colloids in rotating magnetic fields using dynamic simulations. We find that self-diffusion of particles is enhanced in rotating fields compared to steady fields, and that the self-diffusivity in the plane of rotation reaches a maximum value at intermediate rotation frequencies that is larger than the Stokes-Einstein diffusivity of an isolated particle. We also show that, while the magnetophoretic velocity of particles through the bulk in a field gradient decreases with increasing rotation frequency, the enhanced in-plane diffusion allows for faster magnetophoretic transport through porous materials in rotating fields. We examine the effect of porous confinement on the transport properties in rotating fields and find enhanced diffusion at all pore sizes. The confined and bulk values of the transport properties are leveraged in simple models of magnetophoresis through tortuous porous media.
Collapse
Affiliation(s)
- Zachary M Sherman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
233
|
Recent Advances in Colloidal Photonic Crystal-Based Anti-Counterfeiting Materials. CRYSTALS 2019. [DOI: 10.3390/cryst9080417] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Colloidal photonic crystal (PC)-based anti-counterfeiting materials have been widely studied due to their inimitable structural colors and tunable photonic band gaps (PBGs) as well as their convenient identification methods. In this review, we summarize recent developments of colloidal PCs in the field of anti-counterfeiting from aspects of security strategies, design, and fabrication principles, and identification means. Firstly, an overview of the strategies for constructing PC anti-counterfeiting materials composed of variable color PC patterns, invisible PC prints, and several other PC anti-counterfeiting materials is presented. Then, the synthesis methods, working principles, security level, and specific identification means of these three types of PC materials are discussed in detail. Finally, the summary of strengths and challenges, as well as development prospects in the attractive research field, are presented.
Collapse
|
234
|
Kragt AJ, Zuurbier NCM, Broer DJ, Schenning AP. Temperature-Responsive, Multicolor-Changing Photonic Polymers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28172-28179. [PMID: 31290319 PMCID: PMC6689893 DOI: 10.1021/acsami.9b08827] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/10/2019] [Indexed: 05/14/2023]
Abstract
A new principle is developed to fabricate temperature-responsive, multicolor photonic coatings that are capable of switching color. The coating is composed of a non-cross-linked liquid crystal siloxane-based elastomer that is interpenetrated through an acrylate-based liquid crystal network. Discrete temperature changes induce phase separation and mixing between the siloxane and the acrylate polymers and change the reflective colors correspondingly. The temperature-responsive color change of the coatings can be programmed by the processing conditions and coating formulation, which allows for the fabrication of photopatterned multicolor images. The photonic ink can be coated on flexible poly(ethylene terephthalate) films using roll-to-roll flexographic printing, making these temperature-responsive, multicolor-changing polymers appealing for applications such as responsive color decors, optical sensors, and anticounterfeit labels.
Collapse
Affiliation(s)
- Augustinus
J. J. Kragt
- Stimuli-responsive
Functional Materials and Devices, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- SCNU-TUE
Joint Laboratory of Device Integrated Responsive Materials (DIRM),
Guangzhou Higher Education Mega Center, South China Normal University, 510006 Guangzhou, China
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Nadia C. M. Zuurbier
- Stimuli-responsive
Functional Materials and Devices, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Dirk J. Broer
- Stimuli-responsive
Functional Materials and Devices, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- SCNU-TUE
Joint Laboratory of Device Integrated Responsive Materials (DIRM),
Guangzhou Higher Education Mega Center, South China Normal University, 510006 Guangzhou, China
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Albert P.H.J. Schenning
- Stimuli-responsive
Functional Materials and Devices, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- SCNU-TUE
Joint Laboratory of Device Integrated Responsive Materials (DIRM),
Guangzhou Higher Education Mega Center, South China Normal University, 510006 Guangzhou, China
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
235
|
Moutsiopoulou A, Broyles D, Dikici E, Daunert S, Deo SK. Molecular Aptamer Beacons and Their Applications in Sensing, Imaging, and Diagnostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902248. [PMID: 31313884 PMCID: PMC6715520 DOI: 10.1002/smll.201902248] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/31/2019] [Indexed: 05/07/2023]
Abstract
The ability to monitor types, concentrations, and activities of different biomolecules is essential to obtain information about the molecular processes within cells. Successful monitoring requires a sensitive and selective tool that can respond to these molecular changes. Molecular aptamer beacon (MAB) is a molecular imaging and detection tool that enables visualization of small or large molecules by combining the selectivity and sensitivity of molecular beacon and aptamer technologies. MAB design leverages structure switching and specific recognition to yield an optical on/off switch in the presence of the target. Various donor-quencher pairs such as fluorescent dyes, quantum dots, carbon-based materials, and metallic nanoparticles have been employed in the design of MABs. In this work, the diverse biomedical applications of MAB technology are focused on. Different conjugation strategies for the energy donor-acceptor pairs are addressed, and the overall sensitivities of each detection system are discussed. The future potential of this technology in the fields of biomedical research and diagnostics is also highlighted.
Collapse
Affiliation(s)
- Angeliki Moutsiopoulou
- Leonard M. Miller School of Medicine, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, 33136, USA
- Dr. J. T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, USA
- Department of Chemistry Coral Gables, University of Miami, FL, 33146, USA
| | - David Broyles
- Leonard M. Miller School of Medicine, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, 33136, USA
- Dr. J. T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, USA
| | - Emre Dikici
- Leonard M. Miller School of Medicine, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, 33136, USA
- Dr. J. T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, USA
| | - Sylvia Daunert
- Leonard M. Miller School of Medicine, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, 33136, USA
- Dr. J. T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, USA
- University of Miami Clinical and Translational Science Institute, Miami, FL, 33136, USA
| | - Sapna K Deo
- Leonard M. Miller School of Medicine, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, 33136, USA
- Dr. J. T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, USA
| |
Collapse
|
236
|
Seo HB, Yu YG, Chae CG, Kim MJ, Lee JS. Synthesis of ultrahigh molecular weight bottlebrush block copolymers of ω-end-norbornyl polystyrene and polymethacrylate macromonomers. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
237
|
Zhang Y, Wang Y, Wang H, Yu Y, Zhong Q, Zhao Y. Super-Elastic Magnetic Structural Color Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902198. [PMID: 31293062 DOI: 10.1002/smll.201902198] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Structural color hydrogels are promising candidates as scaffold materials for tissue engineering and for matrix cell culture and manipulation, while their super-elastic features are still lacking due to the irreconcilable interfere of the precursor and the self-assembly unit. This hinders many of their practical biomedical applications where elasticity is required. Herein, hydrophilic and size-controllable Fe3 O4 @poly(4-styrenesulfonic acid-co-maleic acid) (PSSMA)@SiO2 magnetic response photonic crystals are fabricated as the assembly units of the structural color hydrogels by orderly packing of core-shell colloidal nanocrystal clusters via a two-step facile synthesis approach. These units are capable of responding instantaneously to an external magnetic field with resistance to interference of ions, thus, by integrating super-elastic hydrogels, super-elastic magnetic structural color hydrogels can be achieved. The structural color arises from the dynamic ordering of the magnetic nanoparticles through the contactless control of external magnetic field, allowing regional polymerization of hydrogels via changing orientation and strength of external magnetic field. These regionally polymerized super-elastic magnetic structural color hydrogels can work as anti-counterfeiting labels with super-elastic identification, which may be widely used in the future.
Collapse
Affiliation(s)
- Yalan Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Huan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Ying Yu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Qifeng Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
238
|
Bai L, Lim Y, Zhou J, Liang L, Duan H. Bioinspired Production of Noniridescent Structural Colors by Adhesive Melanin-like Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9878-9884. [PMID: 31276617 DOI: 10.1021/acs.langmuir.9b00917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Structural color printing of colloidal photonic films with tunable structures or optical properties is of great importance owing to their practical applications. In this article, we present a general method for the fabrication of colloidal particle films with tailored packing geometries by self-assembly of adhesive melanin-like polydopamine (PDA)-coated particles. The adhesion of particles is controlled by varying the thickness of the PDA coating, making it possible for dip coating of colloidal crystals, partly ordered or amorphous colloidal arrays (ACAs) with a tunable degree of order. We further studied the structural color printing of adhesive particles by infiltration-assisted or standard inkjet printing methods. Compared with bare particles, PDA-coated particles not only allow for control over color brightness/angle dependence of the photonic films but also significantly enhance the color quality of ACAs, both of which are useful for display, anticounterfeiting, or sensing applications. Owing to the inherent strong adhesiveness of PDA to virtually all types of surfaces, this PDA-based methodology can be potentially extended to a diverse range of colloidal particles toward the development of photonic devices.
Collapse
Affiliation(s)
- Ling Bai
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , 637457 , Singapore
| | - Yun Lim
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , 637457 , Singapore
| | - Jiajing Zhou
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , 637457 , Singapore
| | - Li Liang
- State Key Laboratory of Food Science and Technology and School of Food Science and Technology , Jiangnan University , Wuxi 214122 , Jiangsu , China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , 637457 , Singapore
| |
Collapse
|
239
|
Chi J, Shao C, Zhang Y, Ni D, Kong T, Zhao Y. Magnetically responsive colloidal crystals with angle-independent gradient structural colors in microfluidic droplet arrays. NANOSCALE 2019; 11:12898-12904. [PMID: 31250872 DOI: 10.1039/c9nr04011k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Magnetically responsive colloidal crystal films with gradient structural colors have a significant value in optical applications via controllable external stimuli. Herein, we propose a practical method for fabricating colloidal crystal hydrogel films with continuous gradient structural colors by using superparamagnetic colloidal nanoparticles. The colloidal nanoparticles could self-assemble into chain-like non-close-packed arrays to present structural colors under the stimuli of external magnetic fields. And structural colors with gradient changes could be achieved when subjected to a spatial magnetic field with a remarkable variation in field strength and direction. By integrating with a microfluidic droplet array template with spherical symmetry morphology, we have demonstrated convenient fabrication of free-standing colloidal crystal films with angle-independent gradient structural colors, which could be utilized for the fabrication of optical devices.
Collapse
Affiliation(s)
- Junjie Chi
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China. and State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Changmin Shao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yalan Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dong Ni
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
240
|
Liu X, Wang K, Chang Z, Zhang Y, Xu J, Zhao YS, Bu X. Engineering Donor–Acceptor Heterostructure Metal–Organic Framework Crystals for Photonic Logic Computation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906278] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xiao‐Ting Liu
- School of Materials Science and EngineeringNational Institute for Advanced MaterialsTKL of Metal and Molecule-Based Material ChemistryNankai University Tianjin 300350 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
| | - Kang Wang
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ze Chang
- School of Materials Science and EngineeringNational Institute for Advanced MaterialsTKL of Metal and Molecule-Based Material ChemistryNankai University Tianjin 300350 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
| | - Ying‐Hui Zhang
- School of Materials Science and EngineeringNational Institute for Advanced MaterialsTKL of Metal and Molecule-Based Material ChemistryNankai University Tianjin 300350 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
| | - Jialiang Xu
- School of Materials Science and EngineeringNational Institute for Advanced MaterialsTKL of Metal and Molecule-Based Material ChemistryNankai University Tianjin 300350 P. R. China
| | - Yong Sheng Zhao
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xian‐He Bu
- School of Materials Science and EngineeringNational Institute for Advanced MaterialsTKL of Metal and Molecule-Based Material ChemistryNankai University Tianjin 300350 P. R. China
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
| |
Collapse
|
241
|
|
242
|
Yang D, Liao G, Huang S. Hand Painting of Noniridescent Structural Multicolor through the Self-Assembly of YOHCO 3 Colloids and Its Application for Anti-Counterfeiting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8428-8435. [PMID: 31199656 DOI: 10.1021/acs.langmuir.9b01571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
YOHCO3 colloidal particles with tunable size, composition, and optical properties were prepared, and they were used for the fabrication of amorphous photonic crystals? (APCs) patterns through direct hand painting. YOHCO3 colloids were synthesized by a seeding growth method, in which the colloid size could be controlled by altering the seed amounts and the composition and optical properties can be altered via the doping of Eu3+. APCs? films with bright, permanent, and tunable structural colors were prepared by the self-assembly of YOHCO3 colloids of different sizes. Multicolor patterns can be obtained quickly and efficiently by hand painting with the dispersion of YOHCO3 colloids as ink. An APCs? pattern assembled from YOHCO3:Eu colloids is also fabricated, and the pattern shows blue structural color under natural light and bright red colors under illumination of UV light. The facile synthesis procedure, simple assembly process, and unique optical properties of the APCs make it valuable for practical applications such as structural color-based printing and anticounterfeiting.
Collapse
Affiliation(s)
- Dongpeng Yang
- School of Materials and Energy , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Guolong Liao
- Zhejiang Key Laboratory of Carbon Materials , Wenzhou University , Wenzhou 325027 , P. R. China
| | - Shaoming Huang
- School of Materials and Energy , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| |
Collapse
|
243
|
Changizrezaei S, Denniston C. Stability of binary colloidal crystals immersed in a cholesteric liquid crystal. Phys Rev E 2019; 99:052701. [PMID: 31212533 DOI: 10.1103/physreve.99.052701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Indexed: 11/07/2022]
Abstract
In this paper, we model a number of both closed-packed and non-closed-packed crystals inside a cholesteric liquid crystal (LC) with different pitch values and nematic LC through the Landau-de Gennes free-energy method. We used binary boundary conditions (normal and planar anchoring) applied on the surface of colloids as we are interested in investigating the stability of binary crystals. The results indicate that body-centered-cubic (BCC) crystals have a lower-energy lattice defect structure than the diamond crystal, and the most energetically favorable BCC lattice can be formed in a cholesteric liquid crystal with a pitch value commensurate with the lattice spacing. Furthermore, it is shown that a pair of binary colloids can be self-assemble into a stable face-centered-cubic lattice structure inside a nematic LC, as it has the lowest energy comparing to diamond and BCC crystals.
Collapse
Affiliation(s)
| | - Colin Denniston
- Department of Applied Mathematics, The University of Western Ontario, London, Ontario N6A 5B8, Canada and Department of Physics and Astronomy, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| |
Collapse
|
244
|
Du XW, Hou DS, Li X, Sun DP, Lan JF, Zhu JL, Ye WJ. Symmetric Continuously Tunable Photonic Band Gaps in Blue-Phase Liquid Crystals Switched by an Alternating Current Field. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22015-22020. [PMID: 31132240 DOI: 10.1021/acsami.9b04577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Symmetric continuously tunable three-dimensional (3D) liquid photonic crystals have been investigated using self-organized blue-phase liquid crystal films. The photonic band gap in the overall visible spectrum can be tuned continuously, reversibly, and rapidly as the applied electric field changes. After driven by the applied field, four-time enhancement of the reflectivity results in more vivid reflection colors. A lasing emission of tuning working wavelength has been demonstrated by using the dye-doped blue-phase liquid crystal film. With the advantages of fast response speed, no alignment layer, large-scale electrically shift of the photonic band gap, and macro optical isotropy, this self-assembled soft material has many potential applications in high-performance reflective full-color display, 3D tunable lasers, and nonlinear optics.
Collapse
Affiliation(s)
- Xiao-Wei Du
- Department of Applied Physics , Hebei University of Technology , Tianjin 300401 , China
| | - De-Shan Hou
- Department of Applied Physics , Hebei University of Technology , Tianjin 300401 , China
| | - Xuan Li
- Department of Applied Physics , Hebei University of Technology , Tianjin 300401 , China
| | - Dong-Peng Sun
- Department of Applied Physics , Hebei University of Technology , Tianjin 300401 , China
| | - Jiong-Fang Lan
- Department of Applied Physics , Hebei University of Technology , Tianjin 300401 , China
| | - Ji-Liang Zhu
- Department of Applied Physics , Hebei University of Technology , Tianjin 300401 , China
| | - Wen-Jiang Ye
- Department of Applied Physics , Hebei University of Technology , Tianjin 300401 , China
| |
Collapse
|
245
|
Liu C, Zhang W, Zhao Y, Lin C, Zhou K, Li Y, Li G. Urea-Functionalized Poly(ionic liquid) Photonic Spheres for Visual Identification of Explosives with a Smartphone. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21078-21085. [PMID: 31071256 DOI: 10.1021/acsami.9b04568] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Current effort merging rational design of colorimetric sensor array with portable and easy-to-use hand-held readers delivers an effective and convenient method for on-site detection and discrimination of explosives. However, on the one hand, there are rare relevant reports; on the other hand, some limitations regarding direct sensing, color retention, and array extendibility still remain. Herein, urea-functionalized poly(ionic liquid) photonic spheres were employed to construct a brand-new colorimetric sensor array for directly identifying five nitroaromatic explosives with a smartphone. It is found that the strong hydrogen bonding between the urea motifs and the nitro groups offers the spheres high affinity for binding the targets, whereas the existence of other abundant intermolecular interactions in poly(ionic liquid) units renders one single sphere eligible for prominent cross-responses to a broad range of analytes. Besides, in our case, opal-like photonic crystal structures other than chemical dyes are used to fabricate a new style of colorimetric array. Such structural colors can be vivid and unchanged over a long period even in hazard environments. Importantly, through simply altering the preparation conditions of our PIL spheres, a pool of sensing elements could be added to the developed array for discrimination of extended target systems such as more explosives and even their mixtures in real-world context.
Collapse
Affiliation(s)
- Chengcheng Liu
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Wanlin Zhang
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Yang Zhao
- Institute of Forensic Science , Ministry of Public Security , Beijing 100038 , P. R. China
| | - Changxu Lin
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology , Xiamen University , Xiamen 361005 , P. R. China
| | - Kang Zhou
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Yanmei Li
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Guangtao Li
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| |
Collapse
|
246
|
Fu F, Chen Z, Wang H, Liu C, Liu Y, Zhao Y. Graphene hybrid colloidal crystal arrays with photo-controllable structural colors. NANOSCALE 2019; 11:10846-10851. [PMID: 31135009 DOI: 10.1039/c9nr03250a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An intelligent structural color hydrogel with photo-controllable capability was developed by adding graphene oxide (GO) into colloidal particle solutions. The high charge characteristic of GO could significantly enhance the electrostatic repulsion effect between adjacent particles and promote the ordered assembly of the colloidal particles. The resultant colloidal crystal arrays (CCAs) with a small amount of GO additive were imparted with vivid angle-dependent structural colors due to the enhanced photon absorption of the hybrid materials, whereas their structural colors became dull and angle-independent with a high GO concentration, which contributes to the isotropic short-range ordered CAA nanostructures. It was demonstrated that the GO hybrid structural color hydrogels with temperature-sensitive polymer components featured photo-responsive properties, which provided remotely controllable dynamic structural colors for different patterns. These features of the GO hybrid structural color hydrogels make them promising for the applications of anti-counterfeiting barcode and other related fields.
Collapse
Affiliation(s)
- Fanfan Fu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | | | | | | | | | | |
Collapse
|
247
|
Ono Y. Formation of Hydrophilic and Hydrophobic Surfaces on Plastics by a Facile Method Using a Silica Opal. CHEM LETT 2019. [DOI: 10.1246/cl.190122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yosuke Ono
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimo-imaizumi, Ebina, Kanagawa 243-0435, Japan
| |
Collapse
|
248
|
Li H, Li C, Sun W, Wang Y, Hua W, Liu J, Zhang S, Chen Z, Wang S, Wu Z, Zhu Q, Tang R, Yu J, He L, Ozin GA, Zhang X. Single-Stimulus-Induced Modulation of Multiple Optical Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900388. [PMID: 30997714 DOI: 10.1002/adma.201900388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Stimuli-responsive smart optical materials hold great promise for applications in active optics, display, sensing, energy conversion, military camouflage, and artificial intelligence. However, their applications are greatly restricted by the difficulty of tuning different optical properties within the same material, especially by a single stimulus. Here, magnetic modulations of multiple optical properties are demonstrated in a crystalline colloidal array (CCA) of magnetic nanorods. Small-angle X-ray scattering studies reveal that these nanorods form an unusual monoclinic crystal in concentrated suspensions. The CCA exhibits optical anisotropy in the form of a photonic bandgap and birefringence, thus enabling magnetic tuning of the structural color and transmittance at a rate of 50 Hz. As a proof-of-concept, it is further demonstrated that the fabrication of a multifunctional device for display, anticounterfeiting, and smart-window applications based on this multiple magneto-optical effect. The study not only provides a new model system for understanding colloidal assembly, but also opens up opportunities for new applications of smart optical materials for various purposes.
Collapse
Affiliation(s)
- Hai Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China
| | - Wei Sun
- Materials Chemistry and Nanochemistry Research Group, Solar Fuels Cluster, Departments of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Yuzhu Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Wenqiang Hua
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Jingjing Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China
| | - Shumin Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China
| | - Zhijie Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China
| | - Shenghua Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China
| | - Zhiyi Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China
| | - Qishan Zhu
- Jiangsu Key Laboratory of Thin Films, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou, 215006, P. R. China
| | - Rujun Tang
- Jiangsu Key Laboratory of Thin Films, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou, 215006, P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China
| | - Geoffrey A Ozin
- Materials Chemistry and Nanochemistry Research Group, Solar Fuels Cluster, Departments of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University-Western University Centre for Synchrotron Radiation Research, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
249
|
Zhao Y, Guo T, Yang J, Li Y, Yuan X, Zhao Y, Ren L. Alcohols responsive photonic crystals prepared by self-assembly of dendronized block copolymers. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
250
|
Shi Y, Chen H, Zhang W, Day GS, Lang J, Zhou H. Photoinduced Nonlinear Contraction Behavior in Metal–Organic Frameworks. Chemistry 2019; 25:8543-8549. [DOI: 10.1002/chem.201900347] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Yi‐Xiang Shi
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University No.199 Ren'Ai Road, Suzhou 215123 Jiangsu P. R. China
| | - Huan‐Huan Chen
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University No.199 Ren'Ai Road, Suzhou 215123 Jiangsu P. R. China
| | - Wen‐Hua Zhang
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University No.199 Ren'Ai Road, Suzhou 215123 Jiangsu P. R. China
| | - Gregory S. Day
- Department of ChemistryTexas A&M University College Station Texas 77843 USA
| | - Jian‐Ping Lang
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University No.199 Ren'Ai Road, Suzhou 215123 Jiangsu P. R. China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Hong‐Cai Zhou
- Department of ChemistryTexas A&M University College Station Texas 77843 USA
| |
Collapse
|