201
|
Díaz Tovar JS, Kassab G, Inada NM, Bagnato VS, Kurachi C. Photobleaching Kinetics and Effect of Solvent in the Photophysical Properties of Indocyanine Green for Photodynamic Therapy. Chemphyschem 2023; 24:e202300381. [PMID: 37431987 DOI: 10.1002/cphc.202300381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Indocyanine green is an attractive molecule for photodynamic therapy due to its near infrared absorption, resulting in a higher tissue penetration. However, its quantum yields of the triplet and singlet state have been reported to be low and then, reactive oxygen species are unlikely to be formed. Aiming to understand the ICG role in photodynamic response, its photobleaching behavior in solution has been studied under distinct conditions of CW laser irradiation at 780 and 808 nm, oxygen saturations and solvents. Sensitizer bleaching and photoproduct formation were measured by absorption spectroscopy and analyzed using the PDT bleaching macroscopic model to extract physical parameters. ICG photobleaching occurs even at lower oxygen concentrations, indicating that the molecule presents more than one way of degradation. Photoproducts were produced even in solution of less than 4 % oxygen saturation for both solvents and excitation wavelengths. Also, the amplitude of absorption related to J-dimers was increased during irradiation, but only in 50 % PBS solution. The formation of photoproducts was enhanced in the presence of J-type dimers under low oxygen concentration, and the quantum yields of triplet and singlet states were one order of magnitude and two times higher, respectively, when compared to ICG in distilled H2 O.
Collapse
Affiliation(s)
- Johan Sebastián Díaz Tovar
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador São-carlense, n° 400 Parque Arnold Schimidt - CEP, 13566-590, São Carlos, SP, Brazil
| | - Giulia Kassab
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador São-carlense, n° 400 Parque Arnold Schimidt - CEP, 13566-590, São Carlos, SP, Brazil
| | - Natalia Mayumi Inada
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador São-carlense, n° 400 Parque Arnold Schimidt - CEP, 13566-590, São Carlos, SP, Brazil
| | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador São-carlense, n° 400 Parque Arnold Schimidt - CEP, 13566-590, São Carlos, SP, Brazil
| | - Cristina Kurachi
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador São-carlense, n° 400 Parque Arnold Schimidt - CEP, 13566-590, São Carlos, SP, Brazil
| |
Collapse
|
202
|
Wang S, Zhang C, Fang F, Fan Y, Yang J, Zhang J. Beyond traditional light: NIR-II light-activated photosensitizers for cancer therapy. J Mater Chem B 2023; 11:8315-8326. [PMID: 37523205 DOI: 10.1039/d3tb00668a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
With increasing demand for the accurate and safe treatment of cancer, non-invasive photodynamic therapy (PDT) has received widespread attention. However, most conventional photosensitizers are typically excited by short-wavelength visible light (400-700 nm), thus substantially hindering the penetration of light and the therapeutic effectiveness of the PDT procedure. Fortunately, near-infrared (NIR) light (>700 nm), in particular, light in the second near-infrared region (NIR-II, 1000-1700 nm) has a higher upper radiation limit, greater tissue tolerance, and deeper tissue penetration compared with traditional short-wavelength light excitation, and shows considerable potential in the clinical treatment of cancer. Therefore, it is of paramount importance and clinical value to develop photosensitizers that are excited by NIR-II light. In this review, for the first time we focus completely on recent progress made with various NIR-II photosensitizers for cancer treatment via PDT, and we briefly present the ongoing challenges and prospects of currently developed NIR-II photosensitizers for clinical practice in the near future. We believe that the above topics will inspire broad interest in researchers from interdisciplinary fields that include chemistry, materials science, pharmaceuticals, and clinical medicine, and provide insightful perspectives for exploiting new NIR-II photosensitizers for biomedical applications.
Collapse
Affiliation(s)
- Sa Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Chuang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Yueyun Fan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Jiani Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
203
|
Meng SS, Xu M, Guan H, Chen C, Cai P, Dong B, Tan WS, Gu YH, Tang WQ, Xie LG, Yuan S, Han Y, Kong X, Gu ZY. Anisotropic flexibility and rigidification in a TPE-based Zr-MOFs with scu topology. Nat Commun 2023; 14:5347. [PMID: 37660056 PMCID: PMC10475113 DOI: 10.1038/s41467-023-41055-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023] Open
Abstract
Tetraphenylethylene (TPE)-based ligands are appealing for constructing metal-organic frameworks (MOFs) with new functions and responsiveness. Here, we report a non-interpenetrated TPE-based scu Zr-MOF with anisotropic flexibility, that is, Zr-TCPE (H4TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene), remaining two anisotropic pockets. The framework flexibility is further anisotropically rigidified by installing linkers individually at specific pockets. By individually installing dicarboxylic acid L1 or L2 at pocket A or B, the framework flexibility along the b-axis or c-axis is rigidified, and the intermolecular or intramolecular motions of organic ligands are restricted, respectively. Synergistically, with dual linker installation, the flexibility is completely rigidified with the restriction of ligand motion, resulting in MOFs with enhanced stability and improved separation ability. Furthermore, in situ observation of the flipping of the phenyl ring and its rigidification process is made by 2H solid-state NMR. The anisotropic rigidification of flexibility in scu Zr-MOFs guides the directional control of ligand motion for designing stimuli-responsive emitting or efficient separation materials.
Collapse
Affiliation(s)
- Sha-Sha Meng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Hanxi Guan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, 324100, China
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Bo Dong
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wen-Shu Tan
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yu-Hao Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wen-Qi Tang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Lan-Gui Xie
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Electron Microscopy Center, South China University of Technology, Guangzhou, 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
204
|
Li M, Tang J, Lin C, Shen A, Ma X, Wu J, Gao X, Wang P. A Smart Responsive Fluorescence-MR Nanoprobe for Monitoring Tumor Response to Immunotherapy. Adv Healthc Mater 2023; 12:e2300602. [PMID: 37184883 DOI: 10.1002/adhm.202300602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/18/2023] [Indexed: 05/16/2023]
Abstract
Accurately evaluating tumor responses to immunotherapy is clinically relevant. However, non-invasive, real-time visualization techniques to evaluate tumor immunotherapy are still lacking. Herein, a smart responsive fluorescence-MR dual-modal nanoprobe, QM(GP)-MZF(CP), is reported that can be targeted for cleavage by the cytotoxic T cell activation marker granzyme B and the apoptosis-related marker cysteine-aspartic acid-specific protease 3 (Caspase-3). The probe uses quinoline-malononitrile (QM), an aggregation-induced emission luminogen, and Mn-Zn ferrite magnetic nanoparticles (MZF-MNPs), a T2-weighted imaging (T2WI) contrast agent, as imaging molecules that are linked with the substrate peptides specific to granzyme B and Caspase-3. Therefore, both granzyme B and Caspase-3 can target and cleave the substrate peptides in QM(GP)-MZF(CP). Via aggregation-induced fluorescence imaging of QM and the aggregation-induced T2WI-enhanced imaging effect of MZF-MNPs, the status of T cells after tumor immunotherapy and the subsequent triggering of tumor cell apoptosis can be determined to identify tumor responsiveness to immunotherapy and thereby evaluate the effectiveness of this therapy in the early stages of treatment.
Collapse
Affiliation(s)
- Minghua Li
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Junjun Tang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Chao Lin
- Institute for Translational Medicine, Shanghai East Hospital, Institute for biomedical Engineering and Nanoscience, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Aijun Shen
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Xiaolong Ma
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Jiaqi Wu
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Xiaolong Gao
- Department of Radiology, Luodian Hospital, Shanghai University, Shanghai, 201908, P. R. China
- Department of Radiology, Baoshan District, Luodian Hospital, Shanghai, 201908, P. R. China
| | - Peijun Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| |
Collapse
|
205
|
Zhang T, Yang X, Ou X, Lee MMS, Zhang J, Xu C, Yu X, Gong P, Lam JWY, Zhang P, Tang BZ. Tailoring the Amphiphilic Structure of Zwitterionic AIE Photosensitizers to Boost Antitumor Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303186. [PMID: 37312246 DOI: 10.1002/adma.202303186] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/11/2023] [Indexed: 06/15/2023]
Abstract
Although photodynamic therapy (PDT) for thorough cancer treatment is hindered by the limited generation of reactive oxygen species (ROS) with short lifetime from photosensitizers, PDT-induced antitumor immune response remedies the defects. Previous studies show that inducing immunogenic cell deaths is an attractive approach to activate antitumor immunity, which confers a robust adjuvanticity to dying cancer cells. In this work, amphiphilic luminogens with aggregation-induced emission characteristics (AIEgens) are rationally designed and synthesized. By modulating the hydrophobic π-bridge and zwitterionic functional groups, these AIEgens exhibit tunable organelle specificity to lysosome, endoplasmic reticulum, and plasma membrane and enhance ROS generation ability. Notably, the membrane-targeting AIEgen namely TPS-2 induces cell death and membrane rupture via PDT to facilitate the release of antigens and activation of immune cells. Furthermore, the size-controlled TPS-2 nanoaggregates are found to serve as an adjuvant, promoting antigen accumulation and delivery to sufficiently boost the in vivo antitumor immunity by only one dose injection in a prophylactic tumor vaccination model. This work thus provides new insights into optimizing AIE photosensitizers via a hydrophobicity-hydrophilicity balance strategy for evoking an antitumor immunity and directly suppressing the distanced tumor. A single small-molecular system for PDT-stimulated antitumor immunity is envisioned.
Collapse
Affiliation(s)
- Tianfu Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Xing Yang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xinwen Ou
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Michelle M S Lee
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jianyu Zhang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Changhuo Xu
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Xinghua Yu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jacky W Y Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
206
|
Sun Y, Tan Y, Yan D, Gui Y, Luo W, Zhu D, Wang D, Tang BZ. Recent advances of AIE-active materials for orthotopic tumor phototheranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1906. [PMID: 37264521 DOI: 10.1002/wnan.1906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 06/03/2023]
Abstract
Cancer ranks as a leading threat to human life and health. Compared to conventional cancer treatments, phototheranostics shares the advantages of integrated diagnosis and therapy, outstanding therapeutic performance and good controllability. Amid diverse phototheranostic agents, small organic luminogens with aggregation-induced emission (AIEgen) tendency show predominant advantages in terms of superior photostability, large Stokes shifts, and boosted theranostic capacity as aggregates. In the past two decades, AIE-active materials have demonstrated formidable applications in disease theranostics, especially for tumors. This review mainly highlights the recent advances of orthotopic tumor phototheranostics mediated by AIEgens with a classification of different organs. Additionally, a brief discussion of current bottlenecks and future directions is outlined. We believe this review can deepen the understanding and spur more innovations on tumor theranostics by employing AIEgens. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Yan Sun
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Yonghong Tan
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, China
| | - Dingyuan Yan
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Yixiong Gui
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Wenshuai Luo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, China
| | - Dongxia Zhu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Dong Wang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Molecular Aggregate Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
207
|
Gong Q, Li Y, Nie X, Liu F. Theoretical Insights into Aggregation-Induced Emission with the Ionic π Fluorophore: The Importance of Choosing the Dimer QM Model in the ONIOM Study. J Phys Chem A 2023; 127:7148-7155. [PMID: 37595363 DOI: 10.1021/acs.jpca.3c02952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
In understanding the mechanism of aggregation-induced emission (AIE), the multilevel ONIOM framework has been demonstrated as one of the efficient tools that can capture the essential mechanistic information by choosing a single fluorophore as the quantum mechanics (QM) model and putting all surrounding molecules in the low-level region. Recently, the ionic styryl-pyridine salt (namely, SPH) has been reported as a new class of AIEgen with a high fluorescence yield. In the SPH crystal, a pair of ionic SPH molecules are closely stacked with each other in an antiparallel, head-to-tail pattern, thus the choice of QM models (an individual or dimeric structure) becomes critical in the ONIOM study. Herein we report the AIE mechanism of the ionic SPH at the QM ((TD)-CAM-B3LYP) and ONIOM(QM:MM) levels. As usual, the fluorescence quenching of SPH in tetrahydrofuran (THF) solution is attributed to a nonradiative relaxation via the central C═C bond rotation, with a rather low barrier of 2.7 kcal/mol. In crystals, either with a monomer or dimer model, the fluorescence quenching channel is found to be restricted due to the obvious C═C rotation barriers. Compared with the monomer model, the dimer model, by treating the orbital interaction of the two SPH molecules at the QM level, provides significantly increased barriers and a red-shifted emission wavelength that better matches the experimental value. In addition, the calculated exciton coupling in the fluorescence emission state can be discovered only by a dimer model. The findings here emphasize not only the importance of choosing a proper model in the ONIOM study of AIE but also expanding our understanding of novel AIE systems.
Collapse
Affiliation(s)
- Qianqian Gong
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Yazhen Li
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Xiaoke Nie
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Fengyi Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| |
Collapse
|
208
|
Yin W, Li J, Ma Y, Xing L, Chen Z, Liu B, Huo Y, Zhao Z, Ji S. Molecular engineering to enhance the reactive oxygen species generation of AIEgens and exploration of their versatile applications. J Mater Chem B 2023; 11:8182-8193. [PMID: 37545413 DOI: 10.1039/d3tb01367g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Fluorescent dyes with aggregation-induced emission (AIE) characteristics have shown potential applications in the fields of biological imaging, photodynamic therapy and photothermal therapy, in which photosensitizers (PSs) play a crucial role. However, how to design high-quality PSs with high reactive oxygen species (ROS) generation efficiency remains unclear. In this contribution, an effective molecular design strategy to improve the ROS generation efficiency of AIE PSs was proposed. A series of tetraphenylethylene derivatives containing the pyridine ring or pyridinium with different substituents were designed and synthesized. All the molecules were weakly emissive when molecularly dissolved in solution but displayed intense emission upon aggregation, demonstrating a phenomenon of AIE characteristic. Pyridinium molecules could be used as visualization agents to specifically stain the mitochondria in living cells, while most of the molecules failed to generate ROS upon white light irradiation. In contrast, TPE-Pys-BP containing benzophenone produced ˙OH and 1O2 efficiently in the presence of light due to its large spin-orbit coupling constant to promote efficient intersystem crossing. Such a property allowed TPE-Pys-BP to serve as a PS to kill cancer cells using photodynamic therapy. TPE-Pys-BP also exhibited mechanochromic luminescence (ML), and its emission could be reversibly switched between two distinct colors through repeated grinding and fuming processes. A security paper was fabricated using the ML properties of TPE-Pys-BP.
Collapse
Affiliation(s)
- Weidong Yin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Jianqing Li
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Yucheng Ma
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Longjiang Xing
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Zeduan Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Bo Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| |
Collapse
|
209
|
Kang X, Zhang Y, Song J, Wang L, Li W, Qi J, Tang BZ. A photo-triggered self-accelerated nanoplatform for multifunctional image-guided combination cancer immunotherapy. Nat Commun 2023; 14:5216. [PMID: 37626073 PMCID: PMC10457322 DOI: 10.1038/s41467-023-40996-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Precise and efficient image-guided immunotherapy holds great promise for cancer treatment. Here, we report a self-accelerated nanoplatform combining an aggregation-induced emission luminogen (AIEgen) and a hypoxia-responsive prodrug for multifunctional image-guided combination immunotherapy. The near-infrared AIEgen with methoxy substitution simultaneously possesses boosted fluorescence and photoacoustic (PA) brightness for the strong light absorption ability, as well as amplified type I and type II photodynamic therapy (PDT) properties via enhanced intersystem crossing process. By formulating the high-performance AIEgen with a hypoxia-responsive paclitaxel (PTX) prodrug into nanoparticles, and further camouflaging with macrophage cell membrane, a tumor-targeting theranostic agent is built. The integration of fluorescence and PA imaging helps to delineate tumor site sensitively, providing accurate guidance for tumor treatment. The light-induced PDT effect could consume the local oxygen and lead to severer hypoxia, accelerating the release of PTX drug. As a result, the combination of PDT and PTX chemotherapy induces immunogenic cancer cell death, which could not only elicit strong antitumor immunity to suppress the primary tumor, but also inhibit the growth of distant tumor in 4T1 tumor-bearing female mice. Here, we report a strategy to develop theranostic agents via rational molecular design for boosting antitumor immunotherapy.
Collapse
Affiliation(s)
- Xiaoying Kang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jianwen Song
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lu Wang
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China.
| |
Collapse
|
210
|
Liu L, Li C, Gong J, Zhang Y, Ji W, Feng L, Jiang G, Wang J, Tang BZ. A Highly Water-Soluble Aggregation-Induced Emission Luminogen with Anion-π + Interactions for Targeted NIR Imaging of Cancer Cells and Type I Photodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202307776. [PMID: 37358791 DOI: 10.1002/anie.202307776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
The low oxygen dependence of type I photosensitizers (PSs) has made them a popular choice for treating solid tumors. However, the drawbacks of poor water solubility, short emission wavelength, poor stability, and inability to distinguish cancer cells from normal cells limit the application of most type I PSs in clinical therapy. Thereby, developing novel type I PSs for overcoming these problems is an urgent but challenging task. Herein, by utilizing the distinctive structural characteristics of anion-π+ interactions, a highly water-soluble type I PS (DPBC-Br) with aggregation-induced emission (AIE) characteristic and near-infrared (NIR) emission is fabricated for the first time. DPBC-Br displays remarkable water solubility (7.3 mM) and outstanding photobleaching resistance, enabling efficient and precise differentiation between tumor cells and normal cells in a wash-free and long-term tracking manner via NIR-I imaging. Additionally, the superior type I reactive oxygen species (ROS) produced by DPBC-Br provide both specific killing of cancer cells in vitro and inhibition of tumor growth in vivo, with negligible systemic toxicity. This study rationally constructs a highly water-soluble type I PS, which has higher reliability and controllability compared with conventional nanoparticle formulating procedures, offering great potential for clinical cancer treatment.
Collapse
Affiliation(s)
- Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jianye Gong
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Ying Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Weiwei Ji
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Lina Feng
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
211
|
Wang H, Li Q, Alam P, Bai H, Bhalla V, Bryce MR, Cao M, Chen C, Chen S, Chen X, Chen Y, Chen Z, Dang D, Ding D, Ding S, Duo Y, Gao M, He W, He X, Hong X, Hong Y, Hu JJ, Hu R, Huang X, James TD, Jiang X, Konishi GI, Kwok RTK, Lam JWY, Li C, Li H, Li K, Li N, Li WJ, Li Y, Liang XJ, Liang Y, Liu B, Liu G, Liu X, Lou X, Lou XY, Luo L, McGonigal PR, Mao ZW, Niu G, Owyong TC, Pucci A, Qian J, Qin A, Qiu Z, Rogach AL, Situ B, Tanaka K, Tang Y, Wang B, Wang D, Wang J, Wang W, Wang WX, Wang WJ, Wang X, Wang YF, Wu S, Wu Y, Xiong Y, Xu R, Yan C, Yan S, Yang HB, Yang LL, Yang M, Yang YW, Yoon J, Zang SQ, Zhang J, Zhang P, Zhang T, Zhang X, Zhang X, Zhao N, Zhao Z, Zheng J, Zheng L, Zheng Z, Zhu MQ, Zhu WH, Zou H, Tang BZ. Aggregation-Induced Emission (AIE), Life and Health. ACS NANO 2023; 17:14347-14405. [PMID: 37486125 PMCID: PMC10416578 DOI: 10.1021/acsnano.3c03925] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health.
Collapse
Affiliation(s)
- Haoran Wang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Qiyao Li
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Parvej Alam
- Clinical
Translational Research Center of Aggregation-Induced Emission, School
of Medicine, The Second Affiliated Hospital, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Haotian Bai
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
| | - Vandana Bhalla
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Mingyue Cao
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Chao Chen
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Sijie Chen
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong SAR 999077, China
| | - Xirui Chen
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Yuncong Chen
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Department of Cardiothoracic Surgery, Nanjing Drum Tower
Hospital, Medical School, Nanjing University, Nanjing 210023, China
| | - Zhijun Chen
- Engineering
Research Center of Advanced Wooden Materials and Key Laboratory of
Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dongfeng Dang
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Dan Ding
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siyang Ding
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital (The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Meng Gao
- National
Engineering Research Center for Tissue Restoration and Reconstruction,
Key Laboratory of Biomedical Engineering of Guangdong Province, Key
Laboratory of Biomedical Materials and Engineering of the Ministry
of Education, Innovation Center for Tissue Restoration and Reconstruction,
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei He
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Xuewen He
- The
Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
| | - Xuechuan Hong
- State
Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital
of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuning Hong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jing-Jing Hu
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Rong Hu
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Xiaolin Huang
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xingyu Jiang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Gen-ichi Konishi
- Department
of Chemical Science and Engineering, Tokyo
Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Chunbin Li
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Haidong Li
- State
Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Kai Li
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Nan Li
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei-Jian Li
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Ying Li
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xing-Jie Liang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Yongye Liang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Bin Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Guozhen Liu
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Xingang Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiaoding Lou
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Xin-Yue Lou
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Liang Luo
- National
Engineering Research Center for Nanomedicine, College of Life Science
and Technology, Huazhong University of Science
and Technology, Wuhan 430074, China
| | - Paul R. McGonigal
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Zong-Wan Mao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guangle Niu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Tze Cin Owyong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Andrea Pucci
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, Pisa 56124, Italy
| | - Jun Qian
- State
Key Laboratory of Modern Optical Instrumentations, Centre for Optical
and Electromagnetic Research, College of Optical Science and Engineering,
International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Anjun Qin
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zijie Qiu
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, City
University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Bo Situ
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kazuo Tanaka
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8510, Japan
| | - Youhong Tang
- Institute
for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Bingnan Wang
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Dong Wang
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianguo Wang
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Wei Wang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Wen-Xiong Wang
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Wen-Jin Wang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Central
Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-
Shenzhen), & Longgang District People’s Hospital of Shenzhen, Guangdong 518172, China
| | - Xinyuan Wang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Yi-Feng Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Shuizhu Wu
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, College
of Materials Science and Engineering, South
China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Yifan Wu
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yonghua Xiong
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Ruohan Xu
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Chenxu Yan
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Saisai Yan
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hai-Bo Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Lin-Lin Yang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Mingwang Yang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ying-Wei Yang
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Korea
| | - Shuang-Quan Zang
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Jiangjiang Zhang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
- Key
Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry
and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Pengfei Zhang
- Guangdong
Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of
Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, University Town of Shenzhen, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Tianfu Zhang
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Xin Zhang
- Department
of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Westlake
Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Xin Zhang
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Na Zhao
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Zheng Zhao
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Jie Zheng
- Department
of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Lei Zheng
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Zheng
- School of
Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Ming-Qiang Zhu
- Wuhan
National
Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei-Hong Zhu
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hang Zou
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
212
|
He T, Zhang Y, Zhang H, Zhao J, Shi H, Yang H, Yang P. Aggregation-Induced Structural Symmetry Breaking Promotes Charge Separation for Efficient Photocatalytic Hydrogen Production. CHEMSUSCHEM 2023; 16:e202300500. [PMID: 37078981 DOI: 10.1002/cssc.202300500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Recently, organic semiconductors have received much attention in the field of photocatalysis due to their tunable physicochemical properties. However, organic semiconductor photocatalysts typically suffer from severe charge recombination due to high exciton binding energy. Herein, we found that aggregation of pyrene results in a red-shift of the light absorption from UV to visible light region. Importantly, the aggregation can induce dipole polarization by spontaneous structural symmetry breaking, thus significantly accelerating the separation and transfer of charge carriers. As a result, the pyrene aggregates display enhanced hydrogen photosynthesis activity. Furthermore, the noncovalent interactions allow rational design of physicochemical and electronic properties of pyrene aggregates, further strengthening the charge separation and photocatalytic activity of aggregates. The quantum yield of pyrene aggregates for hydrogen production highly reaches 20.77 % at 400 nm. Moreover, we have also observed pyrene analogues (1-hydroxypyrene, 1-nitropyrene and perylene) after aggregation all display large dipole moments induced by structural symmetry breaking and therefore accelerate the separation of charge carriers, confirming its general principle. This work highlights the achievement of using aggregation-induced structural symmetry breaking to enable the separation and transfer of charge carriers.
Collapse
Affiliation(s)
- Tian He
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Ya Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Hongxia Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Jianghong Zhao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
- Institute of Molecular Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Pengju Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| |
Collapse
|
213
|
Lei SG, Zhou Y, Wang LS, Yu ZC, Chen T, Wu YD, Gao M, Wu AX. One Stone, Three Birds: One-Pot Synthesis of Pyrido[3,2- a]phenoxazin-5-one Derivatives from o-Aminophenols with Triple Roles, Paraformaldehyde, and Enaminones via the Povarov Reaction. J Org Chem 2023; 88:11150-11160. [PMID: 37462913 DOI: 10.1021/acs.joc.3c01118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
A novel multicomponent cascade cyclization reaction in one pot for the preparation of pyrido[3,2-a]phenoxazin-5-ones from simple o-aminophenols, paraformaldehyde, and enaminones has been established. It is noteworthy that o-aminophenol plays multiple roles serving as both a bis-nucleophile and an iminoquinone precursor, which can in situ generate aminophenoxazinones to undergo the Povarov reaction for the first time to yield pyrido[3,2-a]phenoxazin-5-ones with a high efficiency. Moreover, the photoluminescence of pyrido[3,2-a]phenoxazin-5-ones has polarity sensitivity and features aggregation-induced emission (AIE) characteristics, which is promising for bioimaging and theranostic applications.
Collapse
Affiliation(s)
- Shuang-Gui Lei
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Li-Sheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Zhi-Cheng Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Ting Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
214
|
Lin R, Liu J, Xu W, Liu Z, He X, Zheng C, Kang M, Li X, Zhang Z, Feng HT, Lam JWY, Wang D, Chen M, Tang BZ. Type I Photosensitization with Strong Hydroxyl Radical Generation in NIR Dye Boosted by Vigorous Intramolecular Motions for Synergistic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303212. [PMID: 37232045 DOI: 10.1002/adma.202303212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Development of type I photosensitizers (PSs) with strong hydroxyl radical (· OH) formation is particularly important in the anaerobic tumor treatment. On the other hand, it is challenging to obtain an efficient solid-state intramolecular motion to promote the development of molecular machine and molecular motor. However, the relationship between them is never revealed. In this work, a pyrazine-based near-infrared type I PS with remarkable donor-acceptor effect is developed. Notably, the intramolecular motions are almost maximized by the combination of intramolecular and intermolecular engineering to simultaneously introduce the unlimited bond stretching vibration and boost the group rotation. The photothermal conversion caused by the intramolecular motions is realized with efficiency as high as 86.8%. The D-A conformation of PS can also induce a very small singlet-triplet splitting of 0.07 eV, which is crucial to promote the intersystem crossing for the triplet sensitization. Interestingly, its photosensitization is closely related to the intramolecular motions, and a vigorous motion may give rise to a strong · OH generation. In view of its excellent photosensitization and photothermal behavior, the biocompatible PS exhibits a superior imaging-guided cancer synergistic therapy. This work stimulates the development of advanced PS for the biomedical application and solid-state intramolecular motions.
Collapse
Affiliation(s)
- Runfeng Lin
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Weilin Xu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zicheng Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Xiang He
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Canze Zheng
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Miaomiao Kang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xue Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhijun Zhang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hai-Tao Feng
- AIE Research Center, Shaanxi Key Laboratory of Photochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ming Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, 518172, China
| |
Collapse
|
215
|
Deng D, Chang Y, Liu W, Ren M, Xia N, Hao Y. Advancements in Biosensors Based on the Assembles of Small Organic Molecules and Peptides. BIOSENSORS 2023; 13:773. [PMID: 37622859 PMCID: PMC10452798 DOI: 10.3390/bios13080773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Over the past few decades, molecular self-assembly has witnessed tremendous progress in a variety of biosensing and biomedical applications. In particular, self-assembled nanostructures of small organic molecules and peptides with intriguing characteristics (e.g., structure tailoring, facile processability, and excellent biocompatibility) have shown outstanding potential in the development of various biosensors. In this review, we introduced the unique properties of self-assembled nanostructures with small organic molecules and peptides for biosensing applications. We first discussed the applications of such nanostructures in electrochemical biosensors as electrode supports for enzymes and cells and as signal labels with a large number of electroactive units for signal amplification. Secondly, the utilization of fluorescent nanomaterials by self-assembled dyes or peptides was introduced. Thereinto, typical examples based on target-responsive aggregation-induced emission and decomposition-induced fluorescent enhancement were discussed. Finally, the applications of self-assembled nanomaterials in the colorimetric assays were summarized. We also briefly addressed the challenges and future prospects of biosensors based on self-assembled nanostructures.
Collapse
Affiliation(s)
- Dehua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenjing Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingwei Ren
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yuanqiang Hao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
216
|
Chen W, Qiu M, Tu R, Mu X, Fu F, Li MJ. Aggregation-Induced Near-Infrared Emission and Electrochemiluminescence of an Iridium(III) Complex for Ampicillin Sodium Sensing. Inorg Chem 2023. [PMID: 37441738 DOI: 10.1021/acs.inorgchem.3c01687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
A new iridium(III) complex was synthesized and characterized. Its photophysical properties and aggregation-induced emission and electrochemiluminescence in the near-infrared range were studied. The large conjugated cyclometallic ligand 1,2-phenylbenzoquinoline (pbq) was selected to form the Ir-C bond with the metal iridium(III) center and provide near-infrared emission of the complex. The auxiliary ligand 4,4'-diamino-2,2'-bipyridine (dabpy) can form hydrogen bonds, which was beneficial for the generation of aggregation-induced emission. The complex was aggregated into small spherical nanoparticles in 80% water and fascinating nanorings in 90% water. The sensing of ampicillin sodium (AMP) antibiotic by the iridium(III) complex were also investigated by photoluminescent and electrochemiluminescent methods. The complex showed a good selectivity toward AMP antibiotic compared to sodium phenylacetate and other eight antibiotics. The detection limits for AMP antibiotic was 0.76 μg/mL. This work provided a new strategy for the design of iridium(III) complex-based aggregation-induced emission and electrochemiluminescence probes for the sensing application.
Collapse
Affiliation(s)
- Weibin Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Meiling Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Rui Tu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiangjun Mu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Fengfu Fu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Mei-Jin Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
217
|
Shi J, Wang Y, He W, Ye Z, Liu M, Zhao Z, Lam JWY, Zhang P, Kwok RTK, Tang BZ. Precise Molecular Engineering of Type I Photosensitizer with Aggregation-Induced Emission for Image-Guided Photodynamic Eradication of Biofilm. Molecules 2023; 28:5368. [PMID: 37513241 PMCID: PMC10385678 DOI: 10.3390/molecules28145368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Biofilm-associated infections exert more severe and harmful attacks on human health since they can accelerate the generation and development of the antibiotic resistance of the embedded bacteria. Anti-biofilm materials and techniques that can eliminate biofilms effectively are in urgent demand. Therefore, we designed a type I photosensitizer (TTTDM) with an aggregation-induced emission (AIE) property and used F-127 to encapsulate the TTTDM into nanoparticles (F-127 AIE NPs). The NPs exhibit highly efficient ROS generation by enhancing intramolecular D-A interaction and confining molecular non-radiative transitions. Furthermore, the NPs can sufficiently penetrate the biofilm matrix and then detect and eliminate mature bacterial biofilms upon white light irradiation. This strategy holds great promise for the rapid detection and eradication of bacterial biofilms.
Collapse
Affiliation(s)
- Jinghong Shi
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yucheng Wang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Wei He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, South Area Hi-Tech Park, Nanshan, Shenzhen 518057, China
| | - Ziyue Ye
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Mengli Liu
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen 518172, China
- HKUST-Shenzhen Research Institute, South Area Hi-Tech Park, Nanshan, Shenzhen 518057, China
| | - Jacky Wing Yip Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Pengfei Zhang
- Shenzhen Key Laboratory for Molecular Imaging, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ryan Tsz Kin Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, South Area Hi-Tech Park, Nanshan, Shenzhen 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen 518172, China
- HKUST-Shenzhen Research Institute, South Area Hi-Tech Park, Nanshan, Shenzhen 518057, China
| |
Collapse
|
218
|
Lv S, Wang C, Xue K, Wang J, Xiao M, Sun Z, Han L, Shi L, Zhu C. Activated alkyne-enabled turn-on click bioconjugation with cascade signal amplification for ultrafast and high-throughput antibiotic screening. Proc Natl Acad Sci U S A 2023; 120:e2302367120. [PMID: 37364107 PMCID: PMC10318996 DOI: 10.1073/pnas.2302367120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Antimicrobial susceptibility testing plays a pivotal role in the discovery of new antibiotics. However, the development of simple, sensitive, and rapid assessment approaches remains challenging. Herein, we report an activated alkyne-based cascade signal amplification strategy for ultrafast and high-throughput antibiotic screening. First of all, a novel water-soluble aggregation-induced emission (AIE) luminogen is synthesized, which contains an activated alkyne group to enable fluorescence turn-on and metal-free click bioconjugation under physiological conditions. Taking advantage of the in-house established method for bacterial lysis, a number of clickable biological substances (i.e., bacterial solutes and debris) are released from the bacterial bodies, which remarkably increases the quantity of analytes. By means of the activated alkyne-mediated turn-on click bioconjugation, the system fluorescence signal is significantly amplified due to the increased labeling sites as well as the AIE effect. Such a cascade signal amplification strategy efficiently improves the detection sensitivity and thus enables ultrafast antimicrobial susceptibility assessment. By integration with a microplate reader, this approach is further applied to high-throughput antibiotic screening.
Collapse
Affiliation(s)
- Shuyi Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Chao Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Jiaxin Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Zhencheng Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong266109, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| |
Collapse
|
219
|
Wang J, Sheng Z, Guo J, Wang HY, Sun X, Liu Y. Near-Infrared Fluorescence Probes for Monitoring and Diagnosing Nephron-Urological Diseases. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
220
|
Xie H, Zhang C, Li T, Hu L, Zhang J, Guo H, Liu Z, Peng D, Li Z, Wu W, Gao J, Bi Z, Wang J, Zhang P, Kwok RTK, Lam JWY, Guo Z, Xi L, Li K, Tang BZ. Fast Delivery of Multifunctional NIR-II Theranostic Nanoaggregates Enabled by the Photoinduced Thermoacoustic Process. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301104. [PMID: 37088786 PMCID: PMC10323613 DOI: 10.1002/advs.202301104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Multifunctional nanoaggregates are widely used in cancer phototheranostics. However, it is challenging to construct their multifunctionality with a single component, and deliver them rapidly and efficiently without complex modifications. Herein, a NIR-absorbing small molecule named TBT-2(TP-DPA) is designed and certify its theranostic potentials. Then, their nanoaggregates, which are simply encapsulated by DSPE-PEG, demonstrate a photothermal efficiency of 51% while keeping a high photoluminescence quantum yield in the NIR region. Moreover, the nanoaggregates can be excited and delivered by an 808 nm pulse laser to solid tumors within only 40 min. The delivery efficiency and theranostic efficacy are better than that of the traditional enhanced permeability and retention (EPR) effect (generally longer than 24 hours). This platform is first termed as the photoinduced thermoacoustic (PTA) process, and confirm its application requires both NIR-responsive materials and pulse laser irradiation. This study not only inspires the design of multifunctional nanoaggregates, but also offers a feasible approach to their fast delivery. The platform reported here provides a promising prospect to boost the development of multifunctional theranostic drugs and maximize the efficacy of used medicines for their clinical applications.
Collapse
Affiliation(s)
- Huilin Xie
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology (HKUST)Clear Water BayKowloonHong Kong999077China
| | - Chen Zhang
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology (HKUST)Clear Water BayKowloonHong Kong999077China
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)ShenzhenGuangdong518055China
| | - Tingting Li
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)ShenzhenGuangdong518055China
| | - Lianrui Hu
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology (HKUST)Clear Water BayKowloonHong Kong999077China
| | - Jianquan Zhang
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology (HKUST)Clear Water BayKowloonHong Kong999077China
| | - Heng Guo
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)ShenzhenGuangdong518055China
| | - Zhao Liu
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)ShenzhenGuangdong518055China
| | - Dinglu Peng
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)ShenzhenGuangdong518055China
| | - Zeshun Li
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)ShenzhenGuangdong518055China
| | - Weijun Wu
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)ShenzhenGuangdong518055China
| | - Ji Gao
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)ShenzhenGuangdong518055China
| | - Zhenyu Bi
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)ShenzhenGuangdong518055China
| | - Jinghan Wang
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)ShenzhenGuangdong518055China
| | - Pengfei Zhang
- Guangdong Key Laboratory of NanomedicineShenzhen Engineering Laboratory of Nanomedicine and NanoformulationsCAS‐HK Joint Lab for BiomaterialsResearch Laboratory for Biomedical Optics and Molecular ImagingShenzhen Key Laboratory for Molecular ImagingCAS Key Lab for Health InformaticsShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Ryan T. K. Kwok
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology (HKUST)Clear Water BayKowloonHong Kong999077China
| | - Jacky W. Y. Lam
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology (HKUST)Clear Water BayKowloonHong Kong999077China
| | - Zhihong Guo
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology (HKUST)Clear Water BayKowloonHong Kong999077China
| | - Lei Xi
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)ShenzhenGuangdong518055China
| | - Kai Li
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)ShenzhenGuangdong518055China
| | - Ben Zhong Tang
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology (HKUST)Clear Water BayKowloonHong Kong999077China
- School of Science and EngineeringShenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhenGuangdong518172China
- Center for Aggregation‐Induced EmissionSouth China University of Technology (SCUT)GuangzhouGuangdong510640China
| |
Collapse
|
221
|
Stoerkler T, Ulrich G, Laurent AD, Jacquemin D, Massue J. Interplay between Dual-State and Aggregation-Induced Emission with ESIPT Scaffolds Containing Triphenylamine Substituents: Experimental and Theoretical Studies. J Org Chem 2023. [PMID: 37366003 DOI: 10.1021/acs.joc.3c00806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
We detail the synthesis of a series of fluorophores containing triphenylamine derivatives along with their photophysical, electrochemical, and electronic structure properties. These compounds include molecular structures derived from imino-phenol (anil) and hydroxybenzoxazole scaffolds originating from similar salicylaldehyde derivatives and display excited-state intramolecular proton transfer. We show that depending on the nature of the π-conjugated scaffold, different photophysical processes are observed: aggregation-induced emission or dual-state emission, with a modulation of the fluorescence color and redox properties. The photophysical properties are further rationalized with the help of ab initio calculations.
Collapse
Affiliation(s)
- Timothée Stoerkler
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Adèle D Laurent
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Julien Massue
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| |
Collapse
|
222
|
Zhang J, Tu Y, Shen H, Lam JWY, Sun J, Zhang H, Tang BZ. Regulating the proximity effect of heterocycle-containing AIEgens. Nat Commun 2023; 14:3772. [PMID: 37355670 PMCID: PMC10290688 DOI: 10.1038/s41467-023-39479-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023] Open
Abstract
Proximity effect, which refers to the low-lying (n,π*) and (π,π*) states with close energy levels, usually plays a negative role in the luminescent behaviors of heterocyclic luminogens. However, no systematic study attempts to reveal and manipulate proximity effect on luminescent properties. Here, we report a series of methylquinoxaline derivatives with different electron-donating groups, which show different photophysical properties and aggregation-induced emission behaviors. Experimental results and theoretical calculation reveal the gradually changed energy levels and different coupling effects of the closely related (n,π*) and (π,π*) states, which intrinsically regulate proximity effect and aggregation-induced emission behaviors of these luminogens. With the intrinsic nature of heterocycle-containing compounds, they are utilized for sensors and information encryption with dynamic responses to acid/base stimuli. This work reveals both positive and negative impacts of proximity effect in heterocyclic aggregation-induced emission systems and provides a perspective to develop functional and responsive luminogens with aggregation-induced emission properties.
Collapse
Affiliation(s)
- Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Yujie Tu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, 510530, China.
| |
Collapse
|
223
|
Joy F, Devasia J, Nair Y, Nizam A. Excitation dependent emissive multi stimuli responsive ESIPT organic luminogen for monitoring sea food freshness. Food Chem 2023; 427:136643. [PMID: 37385062 DOI: 10.1016/j.foodchem.2023.136643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Excited state intramolecular proton transfer (ESIPT) organic luminophores with excitation wavelength-dependent color tunability have drawn significant attention due to their exceptional photoluminescent properties in solution and solid state. A novel salicylaldehyde-based Schiff's base molecule, (E)-N'-(3,5-dibromo-2-hydroxybenzylidene)benzohydrazide (BHN) exhibited stimuli (excitation wavelength and pH) induced changes in fluorescence properties which was utilised for applications like trace level water sensing in organic solvents (THF, acetone and DMF), detection and quantification of biogenic amines and anticounterfeiting. In the solution state, BHN rendered a ratiometric detection and quantification of ammonia, diethylamine and trimethylamine, which is further supported by DFT studies. The photoluminescent response of BHN towards various biogenic amines was later utilised to monitor shrimp freshness. The investigation carried out highlights the potential versatility of ESIPT hydrazones, which renders multi stimuli responsive behaviour that can be utilised for water sensing, anticounterfeiting and the detection and quantification of biogenic amines.
Collapse
Affiliation(s)
- Francis Joy
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka 560029, India
| | - Jyothis Devasia
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka 560029, India
| | - Yamuna Nair
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka 560029, India
| | - Aatika Nizam
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka 560029, India.
| |
Collapse
|
224
|
Li Z, Zhao C, Lin X, Ouyang G, Liu M. Stepwise Solution-Interfacial Nanoarchitectonics for Assembled Film with Full-Color and White-Light Circularly Polarized Luminescence. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37329570 DOI: 10.1021/acsami.3c05803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The fabrication of chiral thin films with tunable circularly polarized luminescence (CPL) colors is important in developing chiroptical materials but remains challenging due to the lack of assembly-initiated chiral film formation methodology. Here, by adopting a combined solution aggregation and interfacial assembly strategy, we report the fabrication of chiral film materials with full-color and white-light CPL. A biquinoline glutamic acid ester (abbreviated as BQGE) shows a typical aggregation-induced emission property with blue CPL after solution aggregation. Subsequent interfacial assembly of these solution aggregates on a solid substrate leads to the formation of a CPL active film consisting of nanobelt structures. Since the BQGE molecule has a coordination site, the CPL emission of an individual BQGE film can be extended from blue to green emission upon coordination with a zinc ion, accompanied by morphology transition from nanobelts to nanofibers. Further extension to red-color CPL is successfully achieved by coassembly with an achiral acceptor dye. Interestingly, the proper combination of coordination ratio and acceptor loading ratio provides bright white-light CPL emission from the BQGE/Zn2+/PDA triad composite film. This work provides a new approach to fabricating chiroptical film materials with controlled microscopic morphology and tunable CPL properties.
Collapse
Affiliation(s)
- Zujian Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing 100190, China
| | - Chenyang Zhao
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing 100190, China
| | - Xuerong Lin
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing 100190, China
| | - Guanghui Ouyang
- CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing 100190, China
| | - Minghua Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing 100190, China
| |
Collapse
|
225
|
Shonde TB, Chaaban M, Liu H, Olasupo OJ, Ben-Akacha A, Gonzalez FG, Julevich K, Lin X, Winfred JSRV, Stand LM, Zhuravleva M, Ma B. Molecular Sensitization Enabled High Performance Organic Metal Halide Hybrid Scintillator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301612. [PMID: 36988220 DOI: 10.1002/adma.202301612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Indexed: 06/09/2023]
Abstract
Scintillators, one of the essential components in medical imaging and security checking devices, rely heavily on rare-earth-containing inorganic materials. Here, a new type of organic-inorganic hybrid scintillators containing earth abundant elements that can be prepared via low-temperature processes is reported. With room temperature co-crystallization of an aggregation-induced emission (AIE) organic halide, 4-(4-(diphenylamino) phenyl)-1-(propyl)-pyrindin-1ium bromide (TPA-PBr), and a metal halide, zinc bromide (ZnBr2 ), a zero-dimensional (0D) organic metal halide hybrid (TPA-P)2 ZnBr4 with a yellowish-green emission peaked at 550 nm has been developed. In this hybrid material, dramatically enhanced X-ray scintillation of TPA-P+ is achieved via the sensitization by ZnBr4 2- . The absolute light yield (14,700 ± 800 Photons/MeV) of (TPA-P)2 ZnBr4 is found to be higher than that of anthracene (≈13,500 Photons/MeV), a well-known organic scintillator, while its X-ray absorption is comparable to those of inorganic scintillators. With TPA-P+ as an emitting center, short photoluminescence and radioluminescence decay lifetimes of 3.56 and 9.96 ns have been achieved. Taking the advantages of high X-ray absorption of metal halides and efficient radioluminescence with short decay lifetimes of organic cations, the material design paves a new pathway to address the issues of low X-ray absorption of organic scintillators and long decay lifetimes of inorganic scintillators simultaneously.
Collapse
Affiliation(s)
- Tunde Blessed Shonde
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Maya Chaaban
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - He Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | | | - Azza Ben-Akacha
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Fabiola G Gonzalez
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Kerri Julevich
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Xinsong Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | | | - Luis M Stand
- Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, 37996, USA
- Scintillation Materials Research Center, University of Tennessee, Knoxville, TN, 37996, USA
| | - Mariya Zhuravleva
- Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Biwu Ma
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
- Materials Science and Engineering Program, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
226
|
Ganguly T, Pal P, Maity D, Baitalik S. Synthesis, characterization and emission switching behaviors of styrylphenyl-conjugated Ru(II)-terpyridine complexes via aggregation and trans–cis photoisomerization. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
227
|
Xu C, Shen H, Liu TM, Kwok RT, Lam JW, Tang BZ. Restriction of molecular motion to a higher level: Towards bright AIE dots for biomedical applications. iScience 2023; 26:106568. [PMID: 37128609 PMCID: PMC10148129 DOI: 10.1016/j.isci.2023.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
In the late 19th century, scientists began to study the photophysical differences between chromophores in the solution and aggregate states, which breed the recognition of the prototypical processes of aggregation-caused quenching and aggregation-induced emission (AIE). In particular, the conceptual discovery of the AIE phenomenon has spawned the innovation of luminogenic materials with high emission in the aggregate state based on their unique working principle termed the restriction of intramolecular motion. As AIE luminogens have been practically fabricated into AIE dots for bioimaging, further improvement of their brightness is needed although this is technically challenging. In this review, we surveyed the recent advances in strategic molecular engineering of highly emissive AIE dots, including nanoscale crystallization and matrix-assisted rigidification. We hope that this timely summary can deepen the understanding about the root cause of the high emission of AIE dots and provide inspiration to the rational design of functional aggregates.
Collapse
Affiliation(s)
- Changhuo Xu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tzu-Ming Liu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao, China
| | - Ryan T.K. Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W.Y. Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
228
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
229
|
Roger M, Bretonnière Y, Trolez Y, Vacher A, Arbouch I, Cornil J, Félix G, De Winter J, Richeter S, Clément S, Gerbier P. Synthesis and Characterization of Tetraphenylethene AIEgen-Based Push-Pull Chromophores for Photothermal Applications: Could the Cycloaddition-Retroelectrocyclization Click Reaction Make Any Molecule Photothermally Active? Int J Mol Sci 2023; 24:ijms24108715. [PMID: 37240061 DOI: 10.3390/ijms24108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Three new tetraphenylethene (TPE) push-pull chromophores exhibiting strong intramolecular charge transfer (ICT) are described. They were obtained via [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) click reactions on an electron-rich alkyne-tetrafunctionalized TPE (TPE-alkyne) using both 1,1,2,2-tetracyanoethene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) as electron-deficient alkenes. Only the starting TPE-alkyne displayed significant AIE behavior, whereas for TPE-TCNE, a faint effect was observed, and for TPE-TCNQ and TPE-F4-TCNQ, no fluorescence was observed in any conditions. The main ICT bands that dominate the UV-Visible absorption spectra underwent a pronounced red-shift beyond the near-infrared (NIR) region for TPE-F4-TCNQ. Based on TD-DFT calculations, it was shown that the ICT character shown by the compounds exclusively originated from the clicked moieties independently of the nature of the central molecular platform. Photothermal (PT) studies conducted on both TPE-TCNQ and TPE-F4-TCNQ in the solid state revealed excellent properties, especially for TPE-F4-TCNQ. These results indicated that CA-RE reaction of TCNQ or F4-TCNQ with donor-substituted are promising candidates for PT applications.
Collapse
Affiliation(s)
- Maxime Roger
- ICGM, CNRS UMR 5253, ENSCM, University of Montpellier, 34293 Montpellier, France
| | - Yann Bretonnière
- ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, University of Lyon, 69364 Lyon, France
| | - Yann Trolez
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, University of Rennes, 35065 Rennes, France
| | - Antoine Vacher
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, University of Rennes, 35065 Rennes, France
| | - Imane Arbouch
- Laboratory for Chemistry of Novel Materials, University of Mons-UMONS, 7000 Mons, Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons-UMONS, 7000 Mons, Belgium
| | - Gautier Félix
- ICGM, CNRS UMR 5253, ENSCM, University of Montpellier, 34293 Montpellier, France
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOs), University of Mons-UMONS, 7000 Mons, Belgium
| | - Sébastien Richeter
- ICGM, CNRS UMR 5253, ENSCM, University of Montpellier, 34293 Montpellier, France
| | - Sébastien Clément
- ICGM, CNRS UMR 5253, ENSCM, University of Montpellier, 34293 Montpellier, France
| | - Philippe Gerbier
- ICGM, CNRS UMR 5253, ENSCM, University of Montpellier, 34293 Montpellier, France
| |
Collapse
|
230
|
Bartolini M, Micheletti C, Picchi A, Coppola C, Sinicropi A, Di Donato M, Foggi P, Mordini A, Reginato G, Pucci A, Zani L, Calamante M. Orange/Red Benzo[1,2- b:4,5- b']dithiophene 1,1,5,5-Tetraoxide-Based Emitters for Luminescent Solar Concentrators: Effect of Structures on Fluorescence Properties and Device Performances. ACS APPLIED ENERGY MATERIALS 2023; 6:4862-4880. [PMID: 37181248 PMCID: PMC10170478 DOI: 10.1021/acsaem.3c00362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
Luminescent solar concentrators (LSCs) are a class of optical devices able to harvest, downshift, and concentrate sunlight, thanks to the presence of emitting materials embedded in a polymer matrix. Use of LSCs in combination with silicon-based photovoltaic (PV) devices has been proposed as a viable strategy to enhance their ability to harvest diffuse light and facilitate their integration in the built environment. LSC performances can be improved by employing organic fluorophores with strong light absorption in the center of the solar spectrum and intense, red-shifted emission. In this work, we present the design, synthesis, characterization, and application in LSCs of a series of orange/red organic emitters featuring a benzo[1,2-b:4,5-b']dithiophene 1,1,5,5-tetraoxide central core as an acceptor (A) unit. The latter was connected to different donor (D) and acceptor (A') moieties by means of Pd-catalyzed direct arylation reactions, yielding compounds with either symmetric (D-A-D) or non-symmetric (D-A-A') structures. We found that upon light absorption, the compounds attained excited states with a strong intramolecular charge-transfer character, whose evolution was greatly influenced by the nature of the substituents. In general, symmetric structures showed better photophysical properties for the application in LSCs than their non-symmetric counterparts, and using a donor group of moderate strength such as triphenylamine was found preferable. The best LSC built with these compounds presented photonic (external quantum efficiency of 8.4 ± 0.1%) and PV (device efficiency of 0.94 ± 0.06%) performances close to the state-of-the-art, coupled with a sufficient stability in accelerated aging tests.
Collapse
Affiliation(s)
- Matteo Bartolini
- Institute
of Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Cosimo Micheletti
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via G. Moruzzi
13, 56124 Pisa, Italy
| | - Alberto Picchi
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via G. Moruzzi
13, 56124 Pisa, Italy
| | - Carmen Coppola
- Department
of Biotechnology, Chemistry and Pharmacy, RES Lab, University of Siena, Via A. Moro 2, 53100 Siena, Italy
- CSGI,
Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Adalgisa Sinicropi
- Institute
of Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- Department
of Biotechnology, Chemistry and Pharmacy, RES Lab, University of Siena, Via A. Moro 2, 53100 Siena, Italy
- CSGI,
Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Mariangela Di Donato
- Institute
of Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- LENS,
European Laboratory for Non-Linear Spectroscopy, Via N. Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Paolo Foggi
- LENS,
European Laboratory for Non-Linear Spectroscopy, Via N. Carrara 1, 50019 Sesto Fiorentino, Italy
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- National
Institute of Optics (CNR-INO), Via N. Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Alessandro Mordini
- Institute
of Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- Department
of Chemistry “U. Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Gianna Reginato
- Institute
of Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Andrea Pucci
- Institute
of Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via G. Moruzzi
13, 56124 Pisa, Italy
| | - Lorenzo Zani
- Institute
of Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Massimo Calamante
- Institute
of Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- Department
of Chemistry “U. Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
231
|
Zhou Y, Lei SG, Wang LS, Ma JT, Yu ZC, Wu YD, Wu AX. I 2-Promoted gem-Diarylethene Involved Aza-Diels-Alder Reaction and Wagner-Meerwein Rearrangement: Construction of 2,3,4-Trisubstituted Pyrimido[1,2- b]indazole Skeletons. Org Lett 2023; 25:3386-3390. [PMID: 37154544 DOI: 10.1021/acs.orglett.3c00886] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A [3 + 1 + 2] cyclization-rearrangement reaction scheme was developed to synthesize pyrimido[1,2-b]indazoles from aryl methyl ketones, 3-aminoindazoles, and gem-diarylethenes. This metal-free process proceeds via a sequential aza-Diels-Alder reaction and Wagner-Meerwein rearrangement, and a possible reaction mechanism was demonstrated based on control experiments. This method exhibits good substrate compatibility and allows simple reaction conditions. Moreover, the products display significant aggregation-induced emission characteristics after simple modifications.
Collapse
Affiliation(s)
- You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Shuang-Gui Lei
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Li-Sheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Zhi-Cheng Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
232
|
Liu XY, Du SC, Jiang FL, Jiang P, Liu Y. Regulation mechanism of human insulin fibrillation by L-lysine carbon dots: low concentration accelerates but high concentration inhibits the fibrillation process. Phys Chem Chem Phys 2023; 25:13542-13549. [PMID: 37133393 DOI: 10.1039/d3cp01083j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The fibrillation process of human insulin (HI) is closely related to the therapy for type II diabetes (T2D). Due to changes in the spatial structure of HI, the fibrillation process of HI takes place in the body, which leads to a significant decrease in normal insulin levels. L-Lysine CDs with a size of around 5 nm were synthesized and used to adjust and control the fibrillation process of HI. ThT fluorescence analysis and transmission electron microscopy (TEM) characterization of the CDs showed the role of HI fibrillation from the perspective of the kinetics of HI fibrillation and regulation. Isothermal titration calorimetry (ITC) was used to explore the regulatory mechanism of CDs at all stages of HI fibrillation from the perspective of thermodynamics. Contrary to common sense, when the concentration of CDs is less than 1/50 of the HI, CDs will promote the growth of fibres, while a high concentration of CDs will inhibit the growth of fibres. The experimental results of ITC clearly prove that different concentrations of CDs will correspond to different pathways of the combination between CDs and HI. CDs have a strong ability to combine with HI during the lag time, and the degree of combination has become the main factor influencing the fibrillation process.
Collapse
Affiliation(s)
- Xing-Yu Liu
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China.
| | - Shuai-Chen Du
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China.
| | - Feng-Lei Jiang
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China.
| | - Peng Jiang
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China.
- Hubei Jiangxia Laboratory, Wuhan 430023, P. R. China
| | - Yi Liu
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China.
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
233
|
Abu-Rayyan A, Ahmad I, Bahtiti NH, Muhmood T, Bondock S, Abohashrh M, Faheem H, Tehreem N, Yasmeen A, Waseem S, Arif T, Al-Bagawi AH, Abdou MM. Recent Progress in the Development of Organic Chemosensors for Formaldehyde Detection. ACS OMEGA 2023; 8:14859-14872. [PMID: 37151539 PMCID: PMC10157691 DOI: 10.1021/acsomega.2c07724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
Formaldehyde has become a prominent topic of interest because of its simple molecular structure, release from various compounds in the near vicinity of humans, and associated hazards. Thus, several researchers designed sophisticated instrumentations for formaldehyde detection that exhibit real-time sensing properties and are cost-effective and portable with high detection limits. On these grounds, this review is centered on an analysis of optical chemosensors for formaldehyde that specifically fall under the broad spectrum of organic probes. In this case, this review discusses different organic functionalities, including amines, imines, aromatic pillar arenes, β-ketoesters, and β-diketones, taking part in various reaction mechanisms ranging from aza-Cope rearrangement and Schiff base and Hanztch reactions to aldimine condensation. In addition, this review distinguishes reaction mechanisms according to photophysical phenomena, that is, aggregation-induced emission, photoinduced electron transfer, and intramolecular charge transfer. Furthermore, it addresses the instrumentation involved in gas-based and liquid formaldehyde detection. Finally, it discusses the gaps in existing technologies followed by a succinct set of recommendations for future research.
Collapse
Affiliation(s)
- Ahmed Abu-Rayyan
- Faculty
of Arts & Science, Applied Science Private
University, Amman 11931, Jordan
| | - Imtiaz Ahmad
- Department
of Chemistry, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
- Imtiaz Ahmad ()
| | - Nawal H. Bahtiti
- Faculty
of Arts & Science, Applied Science Private
University, Amman 11931, Jordan
| | - Tahir Muhmood
- College
of Science, Nanjing Forestry University, Nanjing 210037, China
- Tahir Muhmood ()
| | - Samir Bondock
- Chemistry
Department, Faculty of Science, King Khalid
University, 9004 Abha, Kingdom of Saudi Arabia
- Chemistry
Department, Faculty of Science, Mansoura
University, 35516 Mansoura, Egypt
| | - Mohammed Abohashrh
- Department
of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Kingdom
of Saudi Arabia
| | - Habiba Faheem
- Department
of Chemistry, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
| | - Nimra Tehreem
- Department
of Chemistry, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
| | - Aliya Yasmeen
- Department
of Chemistry, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
| | - Shiza Waseem
- Department
of Chemistry, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
| | - Tayabba Arif
- Department
of Chemistry, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
| | - Amal H. Al-Bagawi
- Department
of Chemistry, College of Science, University
of Ha’il, Ha’il
City, Hail 2440, Kingdom of Saudi Arabia
| | - Moaz M. Abdou
- Egyptian
Petroleum Research Institute, Nasr City, 11727 Cairo, Egypt
- Moaz
M. Abdou ()
| |
Collapse
|
234
|
Bai J, Qin F, He P, Wu S, Zhu Y, Yuan G, Wang X, Yu X, Ren L. Carbon dots-based luminescent materials with aggregation-induced emission and solvent crystallization-induced emission behaviors. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
235
|
Gao H, Qi X, Zhang J, Wang N, Xin J, Jiao D, Liu K, Qi J, Guan Y, Ding D. Smart One-for-All Agent with Adaptive Functions for Improving Photoacoustic /Fluorescence Imaging-Guided Photodynamic Immunotherapy. SMALL METHODS 2023; 7:e2201582. [PMID: 36807567 DOI: 10.1002/smtd.202201582] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Indexed: 05/17/2023]
Abstract
Multifunctional phototheranostics that integrate several diagnostic and therapeutic strategies into one platform hold great promise for precision medicine. However, it is really difficult for one molecule to possess multimodality optical imaging and therapy properties that all functions are in the optimized mode because the absorbed photoenergy is fixed. Herein, a smart one-for-all nanoagent that the photophysical energy transformation processes can be facilely tuned by external light stimuli is developed for precise multifunctional image-guided therapy. A dithienylethene-based molecule is designed and synthesized because it has two light-switchable forms. In the ring-closed form, most of the absorbed energy dissipates via nonradiative thermal deactivation for photoacoustic (PA) imaging. In the ring-open form, the molecule possesses obvious aggregation-induced emission features with excellent fluorescence and photodynamic therapy properties. In vivo experiments demonstrate that preoperative PA and fluorescence imaging help to delineate tumors in a high-contrast manner, and intraoperative fluorescence imaging is able to sensitively detect tiny residual tumors. Furthermore, the nanoagent can induce immunogenic cell death to elicit antitumor immunity and significantly suppress solid tumors. This work develops a smart one-for-all agent that the photophysical energy transformation and related phototheranostic properties can be optimized by light-driven structure switch, which is promising for multifunctional biomedical applications.
Collapse
Affiliation(s)
- Heqi Gao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xinwen Qi
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingtian Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Nan Wang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingrui Xin
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Di Jiao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Kaining Liu
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ji Qi
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yong Guan
- Department of Urology, Tianjin Children's Hospital /Tianjin University Children's Hospital, Tianjin, 300134, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
236
|
Duo Y, Yang Y, Xu T, Zhou R, Wang R, Luo G, Zhong Tang B. Aggregation-induced emission: An illuminator in the brain. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
237
|
Kim J, Kang MS, Jun SW, Jo HJ, Han DW, Kim CS. A systematic study on the use of multifunctional nanodiamonds for neuritogenesis and super-resolution imaging. Biomater Res 2023; 27:37. [PMID: 37106432 PMCID: PMC10134586 DOI: 10.1186/s40824-023-00384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Regeneration of defective neurons in central nervous system is a highlighted issue for neurodegenerative disease treatment. Various tissue engineering approaches have focused on neuritogenesis to achieve the regeneration of damaged neuronal cells because damaged neurons often fail to achieve spontaneous restoration of neonatal neurites. Meanwhile, owing to the demand for a better diagnosis, studies of super-resolution imaging techniques in fluorescence microscopy have triggered the technological development to surpass the classical resolution dictated by the optical diffraction limit for precise observations of neuronal behaviors. Herein, the multifunctional nanodiamonds (NDs) as neuritogenesis promoters and super-resolution imaging probes were studied. METHODS To investigate the neuritogenesis-inducing capability of NDs, ND-containing growing medium and differentiation medium were added to the HT-22 hippocampal neuronal cells and incubated for 10 d. In vitro and ex vivo images were visualized through custom-built two-photon microscopy using NDs as imaging probes and the direct stochastic optical reconstruction microscopy (dSTORM) process was performed for the super-resolution reconstruction owing to the photoblinking properties of NDs. Moreover, ex vivo imaging of the mouse brain was performed 24 h after the intravenous injection of NDs. RESULTS NDs were endocytosed by the cells and promoted spontaneous neuritogenesis without any differentiation factors, where NDs exhibited no significant toxicity with their outstanding biocompatibility. The images of ND-endocytosed cells were reconstructed into super-resolution images through dSTORM, thereby addressing the problem of image distortion due to nano-sized particles, including size expansion and the challenge in distinguishing the nearby located particles. Furthermore, the ex vivo images of NDs in mouse brain confirmed that NDs could penetrate the blood-brain barrier (BBB) and retain their photoblinking property for dSTORM application. CONCLUSIONS It was demonstrated that the NDs are capable of dSTORM super-resolution imaging, neuritogenic facilitation, and BBB penetration, suggesting their remarkable potential in biological applications.
Collapse
Affiliation(s)
- Jaeheung Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Seung Won Jun
- Agency for Defense Development, Ground Technology Research Institute, Daejeon, 34186, Republic of Korea
| | - Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea.
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea.
- Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
238
|
Zhang Z, Deng Z, Zhu L, Zeng J, Cai XM, Qiu Z, Zhao Z, Tang BZ. Aggregation-induced emission biomaterials for anti-pathogen medical applications: detecting, imaging and killing. Regen Biomater 2023; 10:rbad044. [PMID: 37265605 PMCID: PMC10229374 DOI: 10.1093/rb/rbad044] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 06/03/2023] Open
Abstract
Microbial pathogens, including bacteria, fungi and viruses, greatly threaten the global public health. For pathogen infections, early diagnosis and precise treatment are essential to cut the mortality rate. The emergence of aggregation-induced emission (AIE) biomaterials provides an effective and promising tool for the theranostics of pathogen infections. In this review, the recent advances about AIE biomaterials for anti-pathogen theranostics are summarized. With the excellent sensitivity and photostability, AIE biomaterials have been widely applied for precise diagnosis of pathogens. Besides, different types of anti-pathogen methods based on AIE biomaterials will be presented in detail, including chemotherapy and phototherapy. Finally, the existing deficiencies and future development of AIE biomaterials for anti-pathogen applications will be discussed.
Collapse
Affiliation(s)
- Zicong Zhang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Ziwei Deng
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lixun Zhu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Jialin Zeng
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Xu Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Rescources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zijie Qiu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zheng Zhao
- Correspondence address. E-mail: (Z.Z.); (B.Z.T.)
| | | |
Collapse
|
239
|
Zheng Z, Yang T, Li D, Cao H, Gong J, Liu H, Zhou C, Liu L, Wei P, Gu X, Lu P, Qian J, Tang BZ. Molecular and Aggregate Synergistic Engineering of Aggregation-Induced Emission Luminogens to Manipulate Optical/Electronic Properties for Efficient and Diversified Functions. ACS NANO 2023; 17:8782-8795. [PMID: 37074290 DOI: 10.1021/acsnano.3c02134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The optical/electronic properties of organic luminescent materials can be regulated by molecular structure modification, which not only requires sophisticated and time-consuming synthesis but also is unable to accurately afford the optical properties of materials in the aggregate state. Herein, a facile strategy of molecular and aggregate synergistic engineering is proposed to manipulate the optical/electronic properties of a luminogen, ACIK, in the solid state for efficient and diversified functions. ACIK is facilely synthesized and exhibits three polymorphic states (ACIK-Y, ACIK-R, and ACIK-N) with a large emission difference of 102 nm from yellow to near-infrared (NIR). Their structure-property relationships were investigated by crystallographic analyses and computational studies. ACIK-Y, with the most twisted structure, exhibits an intriguing color-tuned fluorescence between yellow and NIR in the solid state in response to multiple stimuli. Shuttle-like ACIK-R microcrystals exhibit an optical waveguide property with a low optical loss coefficient of 19 dB mm-1. ACIK dots display bright NIR-I emission, large Stokes shift, and strong NIR-II two-photon absorption. ACIK dots show specific lipid droplets-targeting capability and can be successfully applied for two-photon fluorescence imaging of mouse brain vasculature with deep penetration and high spatial resolution. This study will inspire more insights in developing advanced optical/electronic materials based on a single chromophore for practical applications.
Collapse
Affiliation(s)
- Zheng Zheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tianyu Yang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Dongyu Li
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
- School of Optical and Electronic Information-Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Cao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Junyi Gong
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Haixiang Liu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Chengcheng Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Lijie Liu
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, China
| | - Peifa Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230093, China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ping Lu
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
240
|
Wang R, Zou L, Yi Z, Zhang Z, Zhao M, Shi S. PLGA nanoparticles loaded with curcumin produced luminescence for cell bioimaging. Int J Pharm 2023; 639:122944. [PMID: 37044226 DOI: 10.1016/j.ijpharm.2023.122944] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/13/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
To revise the emission of curcumin (Cur) from "off" to "on", poly (D, L-lactide-co-glycolide) acid (PLGA) nanoparticles loaded with Cur were embedded in a polyvinyl alcohol (PVA) emulsifier (named Cur@PLGA-NPs). First, the emission intensities of different nanoformulations, including liposomes, bovine serum albumin (BSA) nanoparticles, and PLGA nanoparticles, were examined to discover the most effective carriers for Cur luminescence. As a result, Cur@PLGA-NPs exhibited the highest fluorescence intensity due to aggregation-induced emission (AIE), with quantum yields of 23.78% in aqueous solution and 21.52% in the solid state. According to X-ray diffraction (XRD) data, Cur@PLGA-NPs existed in the amorphous state, with a size of 217.2 ± 5.2 nm, an encapsulation efficiency (EE) of 69.98%, and a drug loading efficiency (LE) of 1.37%. The intramolecular interactions, which included hydrophobic interactions, electrostatic interactions, π-π interactions and solvatochromic effects, stabilized the chromophore cluster of Cur@PLGA-NPs in terms of nanoparticle formulation. Compared with free Cur, Cur@PLGA-NPs sensitized CT26 cells more efficiently with an IC50 value of 16.9 μmol/L and an apoptotic rate of 17.20% at 10 μmol/L Cur. Because of the robust fluorescence emission based on AIE, Cur@PLGA-NPs were utilized as a nano-AIE probe for cell bioimaging, and many red fluorescent signals were observed in CT26 cells after treatment. These results suggest that Cur@PLGA-NPs provide a novel amorphous AIE formulation with imaging and bioactive capabilities.
Collapse
Affiliation(s)
- Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lan Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhiwen Yi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
241
|
Feng W, Huang Y, Zhao Y, Tian W, Yan H. Water-Soluble Cationic Eu 3+-Metallopolymer with High Quantum Yield and Sensitivity for Intracellular Temperature Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17211-17221. [PMID: 36859768 DOI: 10.1021/acsami.3c00478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lanthanide-based (Ln3+) luminescent materials are ideal candidates for use in fluorescence intracellular temperature sensing. However, it remains a great challenge to obtain a Ln3+-ratiometric fluorescence thermometer with high sensitivity and quantum yield in an aqueous environment. Herein, a cationic Eu3+-metallopolymer was synthesized via the coordination of Eu(TTA)3·2H2O with an AIE active amphipathic polymer backbone that contains APTMA ((3-acrylamidopropyl) trimethylammonium) and NIPAM (N-isopropylacrylamide) units, which can self-assemble into nanoparticles in water solution with APTMA and NIPAM as the hydrophilic shell. This polymer exhibited highly efficient dual-emissive white-light emission (Φ = 34.3%). Particularly, when the temperature rises, the NIPAM units will transform from hydrophilic to hydrophobic in the spherical core of the nanoparticle, while the VTPE units are moved from inside the nanoparticle to the shell, activating its nonradiative transition channel and thereby decreasing its energy transfer to Eu3+ centers, endowing the Eu3+-metallopolymer with an extremely high temperature sensing sensitivity within the physiological temperature range. Finally, the real-time monitoring of the intracellular temperature variation is further conducted.
Collapse
Affiliation(s)
- Weixu Feng
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Yujuan Huang
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
| | - Yan Zhao
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
| | - Wei Tian
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
| | - Hongxia Yan
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
| |
Collapse
|
242
|
Trung NT, Nhien PQ, Kim Cuc TT, Wu CH, Buu Hue BT, Wu JI, Li YK, Lin HC. Controllable Aggregation-Induced Emission and Förster Resonance Energy Transfer Behaviors of Bistable [ c2] Daisy Chain Rotaxanes for White-Light Emission and Temperature-Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15353-15366. [PMID: 36926804 DOI: 10.1021/acsami.2c21671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bistable [c2] daisy chain rotaxanes with respective extended and contracted forms of [c2]A and [c2]B containing a blue-emissive anthracene (AN) donor and orange-emissive indandione-carbazole (IC) acceptor were successfully synthesized via click reaction. Tunable-emission bistable [c2] daisy chain rotaxanes with fluorescence changes from blue to orange, including bright-white-light emissions, could be modulated by the aggregation-induced emission (AIE) characteristics and Förster resonance energy transfer (FRET) processes through altering water fractions and shuttling processes (i.e., acid/base controls). Accordingly, as a result of excellent fine-tuning AIE (at 60% water content of H2O/THF) and FRET (with a compatible energy transfer of EFRET = 33.2%) behaviors after the shuttling process (by adding base), the brightest white-light emission at CIE (0.31, 0.37) with a quantum yield of Φ = 15.64% was obtained in contracted [c2]B with good control of molecular shuttling to possess higher photoluminescence (PL) quantum yields and better energy transfer efficiencies (i.e., the manipulation of reduced PET and enhanced FRET processes) due to their intramolecular aggregations of blue AN donors and orange IC acceptors with a proper water content of 60% H2O. Furthermore, dynamic light-scattering (DLS) and time-resolved photoluminescence (TRPL) measurements, along with theoretical calculations, were utilized to investigate and confirm AIE and FRET phenomena of bistable [c2] daisy chain rotaxanes. Especially, both bistable [c2] daisy chain rotaxanes [c2]A and [c2]B and noninterlocked monomer M could be exploited for the applications of ratiometric fluorescence temperature sensing due to the temperature effects on the AIE and FRET features. Based on these desirable bistable [c2] daisy chain rotaxane structures, this work provides a potential strategy for the future applications of tunable multicolor emission and ratiometric fluorescence temperature-sensing materials.
Collapse
Affiliation(s)
- Nguyen Thanh Trung
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Pham Quoc Nhien
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, Viet Nam
| | - Tu Thi Kim Cuc
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chia-Hua Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Bui Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, Viet Nam
| | - Judy I Wu
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Yaw-Kuen Li
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Hong-Cheu Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
243
|
Luo D, Yuan ZJ, Ping LJ, Zhu XW, Zheng J, Zhou CW, Zhou XC, Zhou XP, Li D. Tailor-Made Pd n L 2n Metal-Organic Cages through Covalent Post-Synthetic Modification. Angew Chem Int Ed Engl 2023; 62:e202216977. [PMID: 36753392 DOI: 10.1002/anie.202216977] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/09/2023]
Abstract
Post-synthetic modification (PSM) is an effective approach for the tailored functionalization of metal-organic architectures, but its generalizability remains challenging. Herein we report a general covalent PSM strategy to functionalize Pdn L2n metal-organic cages (MOCs, n=2, 12) through an efficient Diels-Alder cycloaddition between peripheral anthracene substituents and various functional motifs bearing a maleimide group. As expected, the solubility of functionalized Pd12 L24 in common solvents can be greatly improved. Interestingly, concentration-dependent circular dichroism and aggregation-induced emission are achieved with chiral binaphthol (BINOL)- and tetraphenylethylene-modified Pd12 L24 , respectively. Furthermore, Pd12 L24 can be introduced with two different functional groups (e.g., chiral BINOL and achiral pyrene) through a step-by-step PSM route to obtain chirality-induced circularly polarized luminescence. Moreover, similar results are readily observed with a smaller Pd2 L4 system.
Collapse
Affiliation(s)
- Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Zi-Jun Yuan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Lin-Jie Ping
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xiao-Wei Zhu
- School of Chemistry and Environment, Guangdong Engineering Technology Developing Center of High-Performance CCL, Jiaying University, Meizhou, Guangdong, 514015, P. R. China
| | - Ji Zheng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Chuang-Wei Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xian-Chao Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
244
|
Zhang Y, Fan M, Xu Z, Jiang Y, Ding H, Li Z, Shu K, Zhao M, Feng G, Yong KT, Dong B, Zhu W, Xu G. Machine-learning screening of luminogens with aggregation-induced emission characteristics for fluorescence imaging. J Nanobiotechnology 2023; 21:107. [PMID: 36964565 PMCID: PMC10039567 DOI: 10.1186/s12951-023-01864-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023] Open
Abstract
Due to the excellent biocompatible physicochemical performance, luminogens with aggregation-induced emission (AIEgens) characteristics have played a significant role in biomedical fluorescence imaging recently. However, screening AIEgens for special applications takes a lot of time and efforts by using conventional chemical synthesis route. Fortunately, artificial intelligence techniques that could predict the properties of AIEgen molecules would be helpful and valuable for novel AIEgens design and synthesis. In this work, we applied machine learning (ML) techniques to screen AIEgens with expected excitation and emission wavelength for biomedical deep fluorescence imaging. First, a database of various AIEgens collected from the literature was established. Then, by extracting key features using molecular descriptors and training various state-of-the-art ML models, a multi-modal molecular descriptors strategy has been proposed to extract the structure-property relationships of AIEgens and predict molecular absorption and emission wavelength peaks. Compared to the first principles calculations, the proposed strategy provided greater accuracy at a lower computational cost. Finally, three newly predicted AIEgens with desired absorption and emission wavelength peaks were synthesized successfully and applied for cellular fluorescence imaging and deep penetration imaging. All the results were consistent successfully with our expectations, which demonstrated the above ML has a great potential for screening AIEgens with suitable wavelengths, which could boost the design and development of novel organic fluorescent materials.
Collapse
Affiliation(s)
- Yibin Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Miaozhuang Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Huijun Ding
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Zhengzheng Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Kaixin Shu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Mingyan Zhao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Gang Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Biqin Dong
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wei Zhu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
245
|
Quan JJ, Wang Q, Li Z, Jiang YB. Aggregated coordination polymers of Ag + with a cysteine derivative ligand containing an AIEgen. Chem Commun (Camb) 2023; 59:4320-4323. [PMID: 36947398 DOI: 10.1039/d3cc00474k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
We investigated coordination polymers of Ag+ with a cysteine-based thiol ligand designed to contain a tetraphenylethylene AIEgen (L- and D-1). The coordination polymers, forming in a variety of protic and aprotic organic solvents, such as THF, CH3CN and CH3OH, were shown to undergo aggregation in H2O/THF binary solvents at water volume fractions above 50%, where emission was substantially enhanced while the CD profile was reversed, yet the dependence of the CD signal on ee remained S-shaped for the polymers in the aprotic organic solvents THF and CH3CN, in contrast to that in protic solvents CH3OH and C2H5OH.
Collapse
Affiliation(s)
- Jing-Jing Quan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Qian Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Zhao Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
246
|
Chen K, He D, Liu Q, Fan Y, Wang Z, Zhang W, Tang BZ. Aggregates of Ionic-Bonds Coupled Polymer and Their Photosensitization Enhancement Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208052. [PMID: 36942697 DOI: 10.1002/smll.202208052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The formation of nanoaggregates makes a great difference to the improvement of photodynamic therapy (PDT) performance to some extent, but constructing stable aggregates with a clear structure is simultaneously a big challenge for us. Herein, just by electrostatic interaction, cationic 2PAHs and anionic FBA351, regarded as donor (D) and acceptor (A), respectively, are utilized to prepare stable aggregate of ionic-bonds coupled polymer (ICP) with repeated "D-A" structure, which is fully characterized by nuclear magnetic resonance (NMR), time-of-flight mass spectrometry, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Remarkably, aggregate ICP with multiple "D-A" structures showed enhanced photosensitization efficiency over its precursor 2PAHs and FBA351, which is in accord with the image-guided photodynamic anticancer therapy. Such results not only offer a simple way to obtain stable aggregate but also give us a guideline to design efficient photosensitizers.
Collapse
Affiliation(s)
- Kongqi Chen
- School of Materials Science and Engineering, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Dong He
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi RD, Suzhou, 215006, China
| | - Qiong Liu
- School of Materials Science and Engineering, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yuanzhong Fan
- School of Materials Science and Engineering, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Zhiming Wang
- School of Materials Science and Engineering, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Weijie Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi RD, Suzhou, 215006, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
247
|
Dalmau D, Urriolabeitia EP. Luminescence and Palladium: The Odd Couple. Molecules 2023; 28:molecules28062663. [PMID: 36985639 PMCID: PMC10054068 DOI: 10.3390/molecules28062663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The synthesis, photophysical properties, and applications of highly fluorescent and phosphorescent palladium complexes are reviewed, covering the period 2018–2022. Despite the fact that the Pd atom appears closely related with an efficient quenching of the fluorescence of different molecules, different synthetic strategies have been recently optimized to achieve the preservation and even the amplification of the luminescent properties of several fluorophores after Pd incorporation. Beyond classical methodologies such as orthopalladation or the use of highly emissive ligands as porphyrins and related systems (for instance, biladiene), new concepts such as AIE (Aggregation Induced Emission) in metallacages or in coordination-driven supramolecular compounds (CDS) by restriction of intramolecular motions (RIM), or complexes showing TADF (Thermally Activated Delayed Fluorescence), are here described and analysed. Without pretending to be comprehensive, selected examples of applications in areas such as the fabrication of lighting devices, biological markers, photodynamic therapy, or oxygen sensing are also here reported.
Collapse
|
248
|
Xie H, Bi Z, Yin J, Li Z, Hu L, Zhang C, Zhang J, Lam JWY, Zhang P, Kwok RTK, Li K, Tang BZ. Design of One-for-All Near-Infrared Aggregation-Induced Emission Nanoaggregates for Boosting Theranostic Efficacy. ACS NANO 2023; 17:4591-4600. [PMID: 36857475 DOI: 10.1021/acsnano.2c10661] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fluorescence-guided phototherapy, including photodynamic and photothermal therapy, is considered an emerging noninvasive strategy for cancer treatments. Organic molecules are promising theranostic agents because of their facile construction, simple modification, and good biocompatibility. Organic systems that integrated multifunctionalities in a single component and achieved high efficiency in both imaging and therapies are rarely reported as the inherently competitive energy relaxation pathways are hard to modulate, and fluorescence quenching occurs upon molecular aggregation. Herein, a versatile theranostic platform with near-infrared emission, high fluorescence quantum yield, robust reactive oxygen species production, and excellent photothermal conversion efficiency was developed based on an aggregation-induced emission luminogen, namely, TPA-TBT. In vivo studies revealed that the TPA-TBT nanoaggregates exhibit outstanding photodynamic and photothermal therapy efficacy to ablate tumors inoculated in a mouse model. This work offers a design strategy to develop one-for-all cancer theranostic agents by modulating and utilizing the relaxation energy of excitons in full.
Collapse
Affiliation(s)
- Huilin Xie
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Zhenyu Bi
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Junli Yin
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Zeshun Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Lianrui Hu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Chen Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Jianquan Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Kai Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, Guangdong 510640, China
| |
Collapse
|
249
|
Chen J, Mao L, Jiang Y, Liu H, Wang X, Meng L, Du Q, Han J, He L, Huang H, Wang Y, Xiong C, Wei Y, Nie Z. Revealing the In Situ Behavior of Aggregation-Induced Emission Nanoparticles and Their Biometabolic Effects via Mass Spectrometry Imaging. ACS NANO 2023; 17:4463-4473. [PMID: 36802559 DOI: 10.1021/acsnano.2c10058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Simultaneous imaging of exogenous nanomaterials and endogenous metabolites in situ remains challenging and is beneficial for a systemic understanding of the biological behavior of nanomaterials at the molecular level. Here, combined with label-free mass spectrometry imaging, visualization and quantification of the aggregation-induced emission nanoparticles (NPs) in tissue were realized as well as related endogenous spatial metabolic changes simultaneously. Our approach enables us to identify the heterogeneous deposition and clearance behavior of nanoparticles in organs. The accumulation of nanoparticles in normal tissues results in distinct endogenous metabolic changes such as oxidative stress as indicated by glutathione depletion. The low passive delivery efficiency of nanoparticles to tumor foci suggested that the enrichment of NPs in tumors did not benefit from the abundant tumor vessels. Moreover, spatial-selective metabolic changes upon NPs mediated photodynamic therapy was identified, which enables understanding of the NPs induced apoptosis in the process of cancer therapy. This strategy allows us to simultaneously detect exogenous nanomaterials and endogenous metabolites in situ, hence to decipher spatial selective metabolic changes in drug delivery and cancer therapy processes.
Collapse
Affiliation(s)
- Junyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Liucheng Mao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuming Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lingwei Meng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qiuyao Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Liuying He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hongye Huang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yawei Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical Engineering, Jiujiang University, Jiujiang, Jiangxi 332005, China
| |
Collapse
|
250
|
Xu J, Wang J, Bakr OM, Hadjichristidis N. Controlling the Fluorescence Performance of AIE Polymers by Controlling the Polymer Microstructure. Angew Chem Int Ed Engl 2023; 62:e202217418. [PMID: 36652122 DOI: 10.1002/anie.202217418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 01/18/2023] [Indexed: 01/19/2023]
Abstract
Aggregation-induced emission (AIE) polymers with expected emission wavelength/color and fluorescence efficiency are valuable in applications. However, most AIE polymers exhibit irregular emission wavelength/color changes compared to the original AIE monomers. Here, we report the synthesis of AIE polymers with unchanged emission wavelength by ring-opening (co)polymerizations of 4-(triphenylethenyl)phenoxymethyloxirane (TPEO) and other epoxides or phthalic anhydride. The chemical structures/physical properties of all (co)polymers were characterized by NMR, SEC, MALDI-TOF, and DSC. The co-polyether microstructures were revealed by calculating the reactivity ratios and visualized by Monte Carlo simulation. The photoluminescence quantum yields of all the (co)polymers were determined in the solid state. We systematically correlated the fluorescence performance with molecular weights, crystallinity, monomer compositions, glass transition temperatures, side lengths, and flexibility/rigidity.
Collapse
Affiliation(s)
- Jiaxi Xu
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, Thuwal, 23955, Saudi Arabia
| | - Jiayi Wang
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Osman M Bakr
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, Thuwal, 23955, Saudi Arabia
| |
Collapse
|