201
|
Yogendra S, Wilson DWN, Hahn AW, Weyhermüller T, Van Stappen C, Holland P, DeBeer S. Sulfur-Ligated [2Fe-2C] Clusters as Synthetic Model Systems for Nitrogenase. Inorg Chem 2023; 62:2663-2671. [PMID: 36715662 PMCID: PMC9930126 DOI: 10.1021/acs.inorgchem.2c03693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 01/31/2023]
Abstract
Metal clusters featuring carbon and sulfur donors have coordination environments comparable to the active site of nitrogenase enzymes. Here, we report a series of di-iron clusters supported by the dianionic yldiide ligands, in which the Fe sites are bridged by two μ2-C atoms and four pendant S donors.The [L2Fe2] (L = {[Ph2P(S)]2C}2-) cluster is isolable in two oxidation levels, all-ferrous Fe2II and mixed-valence FeIIFeIII. The mixed-valence cluster displays two peaks in the Mössbauer spectra, indicating slow electron transfer between the two sites. The addition of the Lewis base 4-dimethylaminopyridine to the Fe2II cluster results in coordination with only one of the two Fe sites, even in the presence of an excess base. Conversely, the cluster reacts with 8 equiv of isocyanide tBuNC to give a monometallic complex featuring a new C-C bond between the ligand backbone and the isocyanide. The electronic structure descriptions of these complexes are further supported by X-ray absorption and resonant X-ray emission spectroscopies.
Collapse
Affiliation(s)
- Sivathmeehan Yogendra
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Daniel W. N. Wilson
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Anselm W. Hahn
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Thomas Weyhermüller
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Casey Van Stappen
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Patrick Holland
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
202
|
Dong W, Yuan J, Tan J, Tang X, Liu W, Zheng A, Chen W. Enhance Hydrogen Isotopes Separation by Alkali Earth Metal Dopant in Metal-Organic Framework. J Phys Chem Lett 2023; 14:1198-1207. [PMID: 36715699 DOI: 10.1021/acs.jpclett.2c03657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Kinetic quantum sieving (KQS) based on pore size and chemical affinity quantum sieving (CAQS) based on adsorption site are two routes of porous materials to separate hydrogen isotope mixtures. Alkali earth metals (Be, Mg, and Ca) were doped into UiO-67 to explore whether these metal sites can promote H2/D2 separation. Based on the zero-point energy and adsorption enthalpy calculated by density functional theory calculations, the Be dopant shows better H2/D2 separation performance than other alkali earth metal dopants and unsaturated metal sites in metal-organic frameworks based on CAQS. Orbital interaction strongly relates to the chemical affinity and further influences the D2/H2 selectivity. Moreover, the predicted D2/H2 selectivity of Be-doped sites (49.4) at 77 K is even larger than the best experimental result (26). Finally, the different dynamic behaviors of H2 and D2 on Be-doped UiO-67 indicate its strong H2/D2 separation performance via KQS.
Collapse
Affiliation(s)
- Wenjun Dong
- School of Materials Science and Engineering, Zhengzhou University, 450001Zhengzhou, Henan, P. R. China
| | - Jiamin Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071Wuhan, P. R. China
- University of Chinese Academy of Sciences, 101408Beijing, P. R. China
| | - Jingyi Tan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071Wuhan, P. R. China
- University of Chinese Academy of Sciences, 101408Beijing, P. R. China
| | - Xiaomin Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071Wuhan, P. R. China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, 450001Zhengzhou, Henan, P. R. China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071Wuhan, P. R. China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071Wuhan, P. R. China
| |
Collapse
|
203
|
Hu SX, Zhang P, Cao LZ, Zou WL, Zhang P. XPu(CO) n (X = B, Al, Ga; n = 2 to 4): π Back-Bonding in Heterodinuclear Plutonium Boron Group Compounds with an End-On Carbonyl Ligand. J Phys Chem A 2023; 127:1233-1243. [PMID: 36710620 DOI: 10.1021/acs.jpca.2c08132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The bonding situation and the oxidation state of plutonium in heterodinuclear plutonium boron group carbonyl compounds XPu(CO)n (X = B, Al, Ga; n = 2 to 4) were investigated by systematically searching their ground-state geometrical structures and by analyzing their electronic structures. We found that the series of XPu(CO)n compounds show various interesting structures with an increment in n as well as a changeover from X = B to Ga. The first ethylene dione (OCCO) compounds of plutonium are found in AlPu(CO)n (n = 2, 3). A direct Ga-Pu single bond is first predicted in the series of GaPu(CO)n, where the bonding pattern represents a class of the Pu → CO π back-bonding system. There is a trend where the Pu-Ga bonding decreases and the Pu-C(O) covalency increases as the Ga oxidation state increases from Ga(0) to Ga(I). Our finding extends the metal → CO covalence back-bonding concept to plutonium systems and also enriches plutonium-containing bonding chemistry.
Collapse
Affiliation(s)
- Shu-Xian Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Peng Zhang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Ling-Zhi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Wen-Li Zou
- Institute of Modern Physics, Northwest University, Xi'an 710127, China
| | - Ping Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| |
Collapse
|
204
|
Sinha Roy R, Ghosh A, Banerjee S, Ghosh S, Das AK. New kind of electride sandwich complexes based on the cyclooctatetraene ligand M 12(η 8-C 8H 8) 2M 22 (M 1 = Na, K and M 2 = Ca, Mg): a theoretical study. Phys Chem Chem Phys 2023; 25:4710-4723. [PMID: 36661858 DOI: 10.1039/d2cp04127h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In the present study, the electronic structures of a series of binuclear sandwich complexes based on the cyclooctatetraene ligand M12(η8-C8H8)2M22 (M1 = Na, K and M2 = Ca, Mg) are studied theoretically. Each cyclooctatetraene ligand binds with the metal in the η8 binding mode. The M2-M2 bond length agrees well with the reported bimetallic covalent Ca2 and Mg2 bond lengths. The Wiberg bond index (WBI) also indicates the presence of covalent M2-M2 bonds, which gives additional stability to the complex. A non-nuclear attractor (NNA) is found in-between the M2-M2 bond and the negative Laplacian of the electron density is found at the NNA. Noncovalent interaction (NCI) plot shows that electron density is localized at the M2-M2 bond. Based on the performed analysis, we have concluded that the designed sandwich complexes are electrides. We herein report, for the first time, the electride sandwich complexes of the cyclooctatetraene ligand. Due to the presence of a diffuse electron system, the electride complexes exhibit higher values of the static second hyperpolarizability within the range of 2.6 × 105 to 1.4 × 106 a.u. Among the studied complexes, M12(η8-C8H8)2Ca2 exhibit a higher value of static second hyperpolarizability.
Collapse
Affiliation(s)
- Ria Sinha Roy
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Avik Ghosh
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Soumadip Banerjee
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Suniti Ghosh
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Abhijit K Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
205
|
Wyatt BC, Thakur A, Nykiel K, Hood ZD, Adhikari SP, Pulley KK, Highland WJ, Strachan A, Anasori B. Design of Atomic Ordering in Mo 2Nb 2C 3T x MXenes for Hydrogen Evolution Electrocatalysis. NANO LETTERS 2023; 23:931-938. [PMID: 36700844 DOI: 10.1021/acs.nanolett.2c04287] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The need for novel materials for energy storage and generation calls for chemical control at the atomic scale in nanomaterials. Ordered double-transition-metal MXenes expanded the chemical diversity of the family of atomically layered 2D materials since their discovery in 2015. However, atomistic tunability of ordered MXenes to achieve ideal composition-property relationships has not been yet possible. In this study, we demonstrate the synthesis of Mo2+αNb2-αAlC3 MAX phases (0 ≤ α ≤ 0.3) and confirm the preferential ordering behavior of Mo and Nb in the outer and inner M layers, respectively, using density functional theory, Rietveld refinement, and electron microscopy methods. We also synthesize their 2D derivative Mo2+αNb2-αC3Tx MXenes and exemplify the effect of preferential ordering on their hydrogen evolution reaction electrocatalytic behavior. This study seeks to inspire further exploration of the ordered double-transition-metal MXene family and contribute composition-behavior tools toward application-driven design of 2D materials.
Collapse
Affiliation(s)
- Brian C Wyatt
- Department of Mechanical & Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering & Technology, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Anupma Thakur
- Department of Mechanical & Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering & Technology, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Kat Nykiel
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zachary D Hood
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Shiba P Adhikari
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Krista K Pulley
- Department of Mechanical & Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering & Technology, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Wyatt J Highland
- Department of Mechanical & Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering & Technology, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Alejandro Strachan
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Babak Anasori
- Department of Mechanical & Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering & Technology, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
206
|
Investigation on Gold-Ligand Interaction for Complexes from Gold Leaching: A DFT Study. Molecules 2023; 28:molecules28031508. [PMID: 36771174 PMCID: PMC9919113 DOI: 10.3390/molecules28031508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Gold leaching is an important process to extract gold from ore. Conventional alkaline cyanide process and alternative nontoxic lixiviants including thiosulfate, thiourea, thiocyanate, and halogen have been widely investigated. However, density functional theory (DFT) study on the gold complexes Au(CN)2-, Au(S2O3)23-, Au[SC(NH2)2]2+, Au(SCN)2-, and AuCl2- required for discovering and designing new highly efficient and environmentally friendly gold leaching reagents is lacking, which is expected to support constructive information for the discovery and designation of new high-efficiency and environmentally friendly gold leaching reagents. In this study, the structure information, electron-transferring properties, orbital interaction, and chemical bond composition for complexes Au(CN)2-, Au(S2O3)23-, Au[SC(NH2)2]2+, Au(SCN)2-, and AuCl2- depending on charge decomposition analysis (CDA), natural bond orbital (NBO), natural resonance theory (NRT), electron localization function (ELF), and energy decomposition analysis (EDA) were performed based on DFT calculation. The results indicate that there is not only σ-donation from ligand to Au+, but also electron backdonation from Au+ to ligands, which strengthens the coordinate bond between them. Compared with Cl-, ligands CN-, S2O32-, SC(NH2)2, and SCN- have very large covalent contribution to the coordinate bond with Au+, which explains the special stability of Au-CN and Au-S bonds. The degree of covalency and bond energy in Au-ligand bonding decreases from Au(CN)2-, Au(S2O3)23-, Au[SC(NH2)2]2+, Au(SCN)2-, to AuCl2-, which interprets the stability of the five complexes: Au(CN)2- > Au(S2O3)23- > Au[SC(NH2)2]2+ > Au(SCN)2- > AuCl2-.
Collapse
|
207
|
Zechovský J, Kertész E, Erben M, Jambor R, Růžička A, Benkö Z, Dostál L. Oxidations of N-coordinated Arsinidene and Stibinidene by Substituted Quinones: A Remarkable Follow-Up Reactivity. Chempluschem 2023; 88:e202300018. [PMID: 36756773 DOI: 10.1002/cplu.202300018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
The reactivity of pnictinidenes [2-(DippN=CH)-6-(DippNHCH2 )C6 H3 ]E (where E=As (1) or Sb (2)) toward substituted ortho- and para-quinones is reported. The central pnictogen atom is easily oxidized by ortho-quinones closing five-membered EO2 C2 ring. The oxidized antimony derivatives are stable species, while in the case of arsenic compounds the hydrogen of the pendant amino NHCH2 group cleaves one newly formed As-O bonds leading to the closure of a new azaarsole ring. Furthermore, a heating of these arsenic heterocycles resulted in a C-H bond activation at the NCH2 group involved in this heterocycle followed by a reductive elimination of corresponding catechols and arsinidene [2,6-(DippN=CH)C6 H3 ]As. Using of para-quinones, resulted in the oxidation of the central atom with a concomitant hydrogen migration from NHCH2 group even in the case of the antimony derivatives. The reductive elimination of hydroquinones is in this case feasible for all compounds. Studied compounds were characterized by multi-nuclear NMR, IR and Raman spectroscopy and single-crystal X-ray diffraction analysis. The theoretical study focusing the key compounds and reactions is also included.
Collapse
Affiliation(s)
- Jan Zechovský
- Department of General and Inorganic Chemistry FCHT, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic
| | - Erik Kertész
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111, Budapest, Hungary
| | - Milan Erben
- Department of General and Inorganic Chemistry FCHT, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry FCHT, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic
| | - Aleš Růžička
- Department of General and Inorganic Chemistry FCHT, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic
| | - Zoltán Benkö
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111, Budapest, Hungary
| | - Libor Dostál
- Department of General and Inorganic Chemistry FCHT, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic
| |
Collapse
|
208
|
Xin X, Douair I, Zhao Y, Wang S, Maron L, Zhu C. Dinitrogen cleavage and hydrogenation to ammonia with a uranium complex. Natl Sci Rev 2023; 10:nwac144. [PMID: 36950222 PMCID: PMC10026940 DOI: 10.1093/nsr/nwac144] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/14/2022] Open
Abstract
The Haber-Bosch process produces ammonia (NH3) from dinitrogen (N2) and dihydrogen (H2), but requires high temperature and pressure. Before iron-based catalysts were exploited in the current industrial Haber-Bosch process, uranium-based materials served as effective catalysts for production of NH3 from N2. Although some molecular uranium complexes are known to be capable of combining with N2, further hydrogenation with H2 forming NH3 has not been reported to date. Here, we describe the first example of N2 cleavage and hydrogenation with H2 to NH3 with a molecular uranium complex. The N2 cleavage product contains three uranium centers that are bridged by three imido μ 2-NH ligands and one nitrido μ 3-N ligand. Labeling experiments with 15N demonstrate that the nitrido ligand in the product originates from N2. Reaction of the N2-cleaved complex with H2 or H+ forms NH3 under mild conditions. A synthetic cycle has been established by the reaction of the N2-cleaved complex with trimethylsilyl chloride. The isolation of this trinuclear imido-nitrido product implies that a multi-metallic uranium assembly plays an important role in the activation of N2.
Collapse
Affiliation(s)
- Xiaoqing Xin
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Iskander Douair
- LPCNO, CNRS and INSA, Université Paul Sabatier, Toulouse 31077, France
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | | | | |
Collapse
|
209
|
Xu Z, Cui H, Zhang G. Pd-Decorated WTe 2 Monolayer as a Favorable Sensing Material toward SF 6 Decomposed Species: A DFT Study. ACS OMEGA 2023; 8:4244-4250. [PMID: 36743050 PMCID: PMC9893256 DOI: 10.1021/acsomega.2c07456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
Based on density functional theory, this work first investigates the Pd-decorating property on the pristine WTe2 monolayer and then simulates the adsorption performance of a Pd-decorated WTe2 (Pd-WTe2) monolayer on SO2 and SOF2 molecules, in order to explore its sensing potential for SF6 decomposed species. It is found that the Pd atom can be stably anchored on the top of the W atom of the WTe2 monolayer with a binding energy of -2.43 eV. The Pd-WTe2 monolayer performs chemisorption on SO2 and SOF2, with adsorption energies of -1.36 and -1.17 eV, respectively. The analyses of the band structure and density of states reveal the deformed electronic property of the WTe2 monolayer by Pd-decoration, as well as that of the Pd-WTe2 monolayer by gas adsorption. The bandgap of the Pd-Wte2 monolayer is increased by 1.6% in the SO2 system and is decreased by -3.9% in the SOF2 system, accounting for the sensing response of 42.0 and -56.7% for the detection of two gases. Moreover, the changed work function (WF) in two gas systems in comparison with that of the pristine Pd-WTe2 monolayer suggests its potential as a WF-based gas sensor for sensing two gases as well. This paper uncovers the gas sensing potential of the Pd-WTe2 monolayer to evaluate the operation status of SF6 insulation devices, which also illustrates the strong potential of WTe2-based materials for gas sensing applications in some other fields.
Collapse
Affiliation(s)
- Zhuoli Xu
- Hubei
Engineering Research Center for Safety Monitoring of New Energy and
Power Grid Equipment, Hubei University of
Technology, Wuhan430068, China
| | - Hao Cui
- College
of Artificial Intelligence, Southwest University, Chongqing400715, China
| | - Guozhi Zhang
- Hubei
Engineering Research Center for Safety Monitoring of New Energy and
Power Grid Equipment, Hubei University of
Technology, Wuhan430068, China
| |
Collapse
|
210
|
Weiser J, Cui J, Dewhurst RD, Braunschweig H, Engels B, Fantuzzi F. Structure and bonding of proximity-enforced main-group dimers stabilized by a rigid naphthyridine diimine ligand. J Comput Chem 2023; 44:456-467. [PMID: 36054757 DOI: 10.1002/jcc.26994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/31/2022]
Abstract
The development of ligands capable of effectively stabilizing highly reactive main-group species has led to the experimental realization of a variety of systems with fascinating properties. In this work, we computationally investigate the electronic, structural, energetic, and bonding features of proximity-enforced group 13-15 homodimers stabilized by a rigid expanded pincer ligand based on the 1,8-naphthyridine (napy) core. We show that the redox-active naphthyridine diimine (NDI) ligand enables a wide variety of structural motifs and element-element interaction modes, the latter ranging from isolated, element-centered lone pairs (e.g., E = Si, Ge) to cases where through-space π bonds (E = Pb), element-element multiple bonds (E = P, As) and biradical ground states (E = N) are observed. Our results hint at the feasibility of NDI-E2 species as viable synthetic targets, highlighting the versatility and potential applications of napy-based ligands in main-group chemistry.
Collapse
Affiliation(s)
- Jonas Weiser
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Jingjing Cui
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Rian D Dewhurst
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Bernd Engels
- Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Felipe Fantuzzi
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,School of Chemistry and Forensic Science, University of Kent, Canterbury, UK
| |
Collapse
|
211
|
Li H, Zhou Y, Wang G, Zeng X, Zhou M. Formation and infrared spectroscopic characterization of carbon suboxide complexes TM-η 1 -C 3 O 2 and the inserted ketenylidene complexes OCTMCCO (TM=Cu, Ag, Au) in solid neon. J Comput Chem 2023; 44:129-137. [PMID: 35130353 DOI: 10.1002/jcc.26817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/31/2022]
Abstract
The reactions of coinage metal atoms Cu, Ag and Au with carbon suboxide (C3 O2 ) are studied by matrix isolation infrared spectroscopy. The weakly bound complexes TM-η1 -C3 O2 (TM=Cu, Ag, Au), in which the carbon suboxide ligand binds to the metal center in the monohapto fashion are formed as initial reaction products. The complexes subsequently isomerize to the inserted products OCTMCCO upon visible light (λ = 400-500 nm) excitation. The analysis of the electronic structure using modern quantum chemistry methods suggests that the linear OCTMCCO complexes are best described by the bonding interactions between the TM+ cation in the electronic singlet ground state and the [OC…CCO]- ligands in the doublet state forming two TM+ ← ligands σ donation and two TM+ → ligands π backdonation bonding components. In addition, the CuCCO, AgCCO and AuCCO complexes are also formed, which are predicted to be bent.
Collapse
Affiliation(s)
- Hongmin Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Yangyu Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Guanjun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Mingfei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| |
Collapse
|
212
|
Yu R, Yan GR, Liu YQ, Cui ZH. Two-layer molecular rotors: A zinc dimer rotating over planar hypercoordinate motifs. J Comput Chem 2023; 44:240-247. [PMID: 35470906 DOI: 10.1002/jcc.26871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022]
Abstract
Multi-layer molecular rotors represent a class of unique combination of topology and bonding, featuring a barrier-free rotation of one layer with respect to other layers. This emerging fluxional behavior has been found in a few doped boron clusters. Herein, we strongly enrich this intriguing family followed by an effective design strategy, summarized as essential factors: i) considerable electrostatic interactions originated from a strong charge transfer between layers; ii) the absence of strong covalent bonds between layers; and iii) fully delocalized σ/π electrons from at least one layer. We found that planar hypercoordinate motifs consisting of monocyclic boron rings and metals with σ + π dual aromaticity can be regarded as one promising layer, which can support the suspended X2 (X = Zn, Cd, Hg) dimers. By detailed investigations of thermodynamic and kinetic stabilities of 60 species, eventually, MB7 X2 - and MB8 X2 (X = Zn, Cd; M = Be, Ru, Os; Be works only for Zn-based cases) clusters were verified to be the global-minimum two-layer molecular rotors. Especially, their electronic structure analyses vividly confirm the practicability of the electronic structure requirements mentioned above for designing multi-layer molecular rotors.
Collapse
Affiliation(s)
- Rui Yu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, China
| | - Gai-Ru Yan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, China
| | - Yu-Qian Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, China
| | - Zhong-Hua Cui
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, China.,Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun, China
| |
Collapse
|
213
|
Gransbury GK, Réant BLL, Wooles AJ, Emerson-King J, Chilton NF, Liddle ST, Mills DP. Electronic structure comparisons of isostructural early d- and f-block metal(iii) bis(cyclopentadienyl) silanide complexes. Chem Sci 2023; 14:621-634. [PMID: 36741509 PMCID: PMC9847655 DOI: 10.1039/d2sc04526e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
We report the synthesis of the U(iii) bis(cyclopentadienyl) hypersilanide complex [U(Cp'')2{Si(SiMe3)3}] (Cp'' = {C5H3(SiMe3)2-1,3}), together with isostructural lanthanide and group 4 M(iii) homologues, in order to meaningfully compare metal-silicon bonding between early d- and f-block metals. All complexes were characterised by a combination of NMR, EPR, UV-vis-NIR and ATR-IR spectroscopies, single crystal X-ray diffraction, SQUID magnetometry, elemental analysis and ab initio calculations. We find that for the [M(Cp'')2{Si(SiMe3)3}] (M = Ti, Zr, La, Ce, Nd, U) series the unique anisotropy axis is conserved tangential to ; this is governed by the hypersilanide ligand for the d-block complexes to give easy plane anisotropy, whereas the easy axis is fixed by the two Cp'' ligands in f-block congeners. This divergence is attributed to hypersilanide acting as a strong σ-donor and weak π-acceptor with the d-block metals, whilst f-block metals show predominantly electrostatic bonding with weaker π-components. We make qualitative comparisons on the strength of covalency to derive the ordering Zr > Ti ≫ U > Nd ≈ Ce ≈ La in these complexes, using a combination of analytical techniques. The greater covalency of 5f3 U(iii) vs. 4f3 Nd(iii) is found by comparison of their EPR and electronic absorption spectra and magnetic measurements, with calculations indicating that uranium 5f orbitals have weak π-bonding interactions with both the silanide and Cp'' ligands, in addition to weak δ-antibonding with Cp''.
Collapse
Affiliation(s)
- Gemma K Gransbury
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Benjamin L L Réant
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Jack Emerson-King
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicholas F Chilton
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - David P Mills
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
214
|
Haimerl M, Piesch M, Yadav R, Roesky PW, Scheer M. Reactivity of E 4 (E 4 =P 4 , As 4 , AsP 3 ) towards Low-Valent Al(I) and Ga(I) Compounds. Chemistry 2023; 29:e202202529. [PMID: 36173973 PMCID: PMC10100333 DOI: 10.1002/chem.202202529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 01/14/2023]
Abstract
The reactivity of yellow arsenic and the interpnictogen compound AsP3 towards low-valent group 13 compounds was investigated. The reactions of [LAl] (1, L=[{N(C6 H3 i Pr2 -2,6)C(Me)}2 CH]- ) with As4 and AsP3 lead to [(LAl)2 (μ,η1:1:1:1 -E4 )] (E4 =As4 (3 b), AsP3 (3 c)) by insertion of two fragments [LAl] into two of the six E-E edges of the E4 tetrahedra. Furthermore, the reaction of [LGa] (2) with E4 afforded [LGa(η1:1 -E4 )] (E4 =As4 (4 b), AsP3 (4 c)). In these compounds, only one E-E bond of the E4 tetrahedra was cleaved. These compounds represent the first examples of the conversion of yellow arsenic and AsP3 , respectively, with group 13 compounds. Furthermore, the reactivity of the gallium complexes towards unsaturated transition metal units or polypnictogen (En ) ligand complexes was investigated. This leads to the heterobimetallic compounds [(LGa)(μ,η2:1:1 -P4 )(LNi)] (5 a), [(Cp'''Co)(μ,η4:1:1 -E4 )(LGa)] (E=P (6 a), As (6 b), Cp'''=η5 -C5 H2 t Bu3 ) and [(Cp'''Ni)(η3:1:1 -E3 )(LGa)] (E=P (7 a), As (7 b)), which combine two different ligand systems in one complex (nacnac and Cp) as well as two different types of metals (main group and transition metals). The products were characterized by crystallographic and spectroscopic methods.
Collapse
Affiliation(s)
- Maria Haimerl
- Institute for Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Martin Piesch
- Institute for Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Ravi Yadav
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Peter W Roesky
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Manfred Scheer
- Institute for Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
215
|
Eilers M, Schwitalla K, Dirksen T, Schmidtmann M, Fischer M, Beckhaus R. The Parent Allene H 2C═C═CH 2 as an Allyl Ligand Precursor in Reactions with Bis(pentafulvene)titanium Complexes. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Marcel Eilers
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Kevin Schwitalla
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Tobias Dirksen
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Marc Schmidtmann
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Malte Fischer
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, D-28359 Bremen, Germany
| | - Rüdiger Beckhaus
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| |
Collapse
|
216
|
Pu Z, Qin J, Fu X, Qiu R, Su B, Shuai M, Li F. C-O Bond Activation in Mononuclear Lanthanide Oxocarbonyl Complexes OLn(η 2-CO) (Ln = La, Ce, Pr, and Nd). Inorg Chem 2023; 62:363-371. [PMID: 36546726 DOI: 10.1021/acs.inorgchem.2c03452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fundamental investigation of metal-CO interactions is of great importance for the development of high-performance catalysts to CO activation. Herein, a series of side-on bonded mononuclear lanthanide (Ln) oxocarbonyl complexes OLn(η2-CO) (Ln = La, Ce, Pr, and Nd) have been prepared and identified in solid argon matrices. The complexes exhibit uncommonly low C-O stretching bands near 1630 cm-1, indicating remarkable C-O bond activation in these Ln analogues. The η2-CO ligand in OLn(η2-CO) can be claimed as an anion on the basis of the experimental observations and quantum chemistry investigations, although the CO anion is commonly considered to be unstable with electron auto-detachment. The CO activation in OLn(η2-CO) is attributed to the photoinduced intramolecular charge transfer from LnO to CO rather than the generally accepted metal → CO π back-donation, which conforms to the traditional Dewar-Chatt-Duncanson motif. Energy decomposition analysis combined with natural orbitals for chemical valence calculations demonstrates that the bonding between LnO and η2-CO arises from the combination of dominant ionic forces (>76%) and normal Lewis "acid-base" interactions. The fundamental findings provide guidelines for the catalyst design of CO activation.
Collapse
Affiliation(s)
- Zhen Pu
- Institute of Materials, China Academy of Engineering Physics, Mailbox No. 9-21, Huafengxincun, Jiangyou, 621908 Sichuan, P. R. China
| | - Jianwei Qin
- Institute of Materials, China Academy of Engineering Physics, Mailbox No. 9-21, Huafengxincun, Jiangyou, 621908 Sichuan, P. R. China
| | - Xiaoguo Fu
- Institute of Materials, China Academy of Engineering Physics, Mailbox No. 9-21, Huafengxincun, Jiangyou, 621908 Sichuan, P. R. China
| | - Ruizhi Qiu
- Institute of Materials, China Academy of Engineering Physics, Mailbox No. 9-21, Huafengxincun, Jiangyou, 621908 Sichuan, P. R. China
| | - Bin Su
- Institute of Materials, China Academy of Engineering Physics, Mailbox No. 9-21, Huafengxincun, Jiangyou, 621908 Sichuan, P. R. China
| | - Maobing Shuai
- Institute of Materials, China Academy of Engineering Physics, Mailbox No. 9-21, Huafengxincun, Jiangyou, 621908 Sichuan, P. R. China
| | - Fang Li
- School of Materials and Chemistry, Southwest University of Science and Technology, 59 Middle Section of Qinglong Road, Mianyang 621010, P.R. China
| |
Collapse
|
217
|
Steffenfauseweh H, Rottschäfer D, Vishnevskiy YV, Neumann B, Stammler HG, Szczepanik DW, Ghadwal RS. Isolation of an Annulated 1,4-Distibabenzene Diradicaloid. Angew Chem Int Ed Engl 2023; 62:e202216003. [PMID: 36598396 DOI: 10.1002/anie.202216003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
The first 1,4-distibabenzene-1,4-diide compound [(ADC)Sb]2 (5) based on an anionic dicarbene (ADC) (ADC=PhC{N(Dipp)C}2 , Dipp=2,6-iPr2 C6 H3 ) is reported as a bordeaux-red solid. Compound 5, featuring a central six-membered C4 Sb2 ring with formally SbI atoms may be regarded as a base-stabilized cyclic bis-stibinidene in which each of the Sb atoms bears two lone-pairs of electrons. 5 undergoes 2 e-oxidation with Ph3 C[B(C6 F5 )4 ] to afford [(ADC)Sb]2 [B(C6 F5 )4 ]2 (6) as a brick-red solid. Each of the Sb atoms of 6 has an unpaired electron and a lone-pair. The broken-symmetry open-shell singlet diradical solution for (6)2+ is calculated to be 2.13 kcal mol-1 more stable than the closed-shell singlet. The diradical character of (6)2+ according to SS-CASSCF (state-specific complete active space self-consistent field) and UHF (unrestricted Hartree-Fock) methods amounts to 36 % and 39 %, respectively. Treatments of 6 with (PhE)2 yield [(ADC)Sb(EPh)]2 [B(C6 F5 )4 ]2 (7-E) (E=S or Se). Reaction of 5 with (cod)Mo(CO)4 affords [(ADC)Sb]2 Mo(CO)4 (8).
Collapse
Affiliation(s)
- Henric Steffenfauseweh
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Dennis Rottschäfer
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany.,Current address: Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, Marburg, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Dariusz W Szczepanik
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| |
Collapse
|
218
|
Dollberg K, Schneider S, Richter R, Dunaj T, von Hänisch C. Synthesis and Application of Alkali Metal Antimonide-A New Approach to Antimony Chemistry. Angew Chem Int Ed Engl 2022; 61:e202213098. [PMID: 36301563 PMCID: PMC10099276 DOI: 10.1002/anie.202213098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 11/06/2022]
Abstract
Alkali metal dihydrogen-antimonides [M(L)x SbH2 ], short: alkali metal antimonides (M=Li, Na, K, Rb, Cs; 1: L=pmdta; 2: L=crown-ether), were prepared from stibine and n-Butyllithium, M(hmds) (hmds=hexamethyldisilazane) or MOtBu, respectively. We developed a generally applicable synthesis route for these compounds and the obtained compounds were examined on their stability depending on the alkali metal and stabilizing additives used, whereby the use of appropriate crown-ethers allowed their isolation and characterization at room temperature. Moreover, the 1,4-dioxane adduct [Na(dioxane)x SbH2 ] was the appropriate starting compound for the synthesis of the first primary silylstibane (Me3 Si)3 SiSbH2 (3) which was characterized by NMR and IR spectroscopy. Reaction of 3 with (Dipp2 NacNac)Ga (Dipp2 NacNac=HC{C(Me)N(Dipp)}2 ; Dipp=2,6-iPr2 C6 H3 ) resulted in the formation of (Dipp2 NacNac)GaH(SbHSi(SiMe3 )3 ) (4) which was furthermore characterized by single crystal x-ray diffraction.
Collapse
Affiliation(s)
- Kevin Dollberg
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Selina Schneider
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Roman‐Malte Richter
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Tobias Dunaj
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Carsten von Hänisch
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| |
Collapse
|
219
|
Blasco D, Sundholm D. Gold(I)···Lanthanide(III) Bonds in Discrete Heterobimetallic Compounds: A Combined Computational and Topological Study. Inorg Chem 2022; 61:20308-20315. [PMID: 36475614 PMCID: PMC9768751 DOI: 10.1021/acs.inorgchem.2c02717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 12/12/2022]
Abstract
The chemical nature of the ligand-unsupported gold(I)-lanthanide(III) bond in the proposed [LnIII(η5-Cp)2][AuIPh2] (Ln-Au; LnIII = LaIII, EuIII, or LuIII; Cp = cyclopentadienide; Ph = phenyl) models is examined from a theoretical viewpoint. The covalent bond-like Au-Ln distances (Au-La, 2.95 Å; Au-Eu, 2.85 Å; Au-Lu, 2.78 Å) result from a strong interaction between the oppositely charged fragments (ΔEintMP2 > 600 kJ mol-1), including the aforementioned metal-metal bond and additional LnIII-Cipso and C-H···π interactions. The Au-Ln bond has been characterized as a chemical bond rather than a strong metallophilic interaction with the aid of energy decomposition analysis, interaction region indicator, and quantum theory of atoms in molecules topological tools. The chemical nature of the Au-Ln bond cannot be fully ascribed to a covalent or an ionic model; an intermediate situation or a charge shift bond is proposed. The [AuIPh2]- anion has also been identified as a suitable lanthanide(III) emission sensitizer for La-Au and Lu-Au.
Collapse
Affiliation(s)
- Daniel Blasco
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O. Box 55
(A.I. Virtasen aukio 1), FIN-00014Helsinki, Finland
- Departamento
de Química, Centro de Investigación en Síntesis
Química (CISQ), Universidad de La
Rioja, Madre de Dios 53, 26006Logroño, Spain
| | - Dage Sundholm
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O. Box 55
(A.I. Virtasen aukio 1), FIN-00014Helsinki, Finland
| |
Collapse
|
220
|
Szynkiewicz N, Chojnacki J, Grubba R. Phosphinophosphoranes: Mixed-Valent Phosphorus Compounds with Ambiphilic Properties. Inorg Chem 2022; 61:19925-19932. [PMID: 36453123 DOI: 10.1021/acs.inorgchem.2c03166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Herein, we present a simple synthesis of mixed-valent phosphinophosphoranes bearing three- and five-coordinate phosphorus centers. Compounds with phosphorus-phosphorus bonds were synthesized via a reaction of lithium phosphides RR'PLi with cat2PCl (cat = catecholate), whereas derivatives with methylene-linked phosphorus centers were obtained via a reaction of phosphanylmethanides RR'CH2Li with cat2PCl. The presence of accessible lone-pair electrons on the P-phosphanyl atom of phosphinophosphoranes during the reaction of the title compounds with H3B·SMe2, where phosphinophosphorane-borane adducts were formed quantitatively, was confirmed. Furthermore, the Lewis basic and Lewis acidic properties of the phosphinophosphoranes in reactions with phenyl isothiocyanate were tested. Depending on the structure of the starting phosphinophosphorane, phosphinophosphorylation of PhNCS or formation of a five-membered zwitterionic adduct was observed. The structures of the isolated compounds were unambiguously determined by heteronuclear nuclear magnetic resonance spectroscopy and single-crystal X-ray diffraction. Moreover, by applying density functional theory calculations, we compared the Lewis basicity and nucleophilicity of diversified trivalent P-centers.
Collapse
Affiliation(s)
- Natalia Szynkiewicz
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233Gdańsk, Poland
| | - Jarosław Chojnacki
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233Gdańsk, Poland
| | - Rafał Grubba
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233Gdańsk, Poland
| |
Collapse
|
221
|
Liu YH, Li CC, Cheng WK, Li YH, Lin RY, Shieh M. Paramagnetic Semiconducting Se–Mn Clusters: A Mn 3Se 4-Stabilized Selenide Radical Intermediate and Its Aggregated Derivatives. Inorg Chem 2022; 61:20433-20444. [DOI: 10.1021/acs.inorgchem.2c03080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yu-Hsin Liu
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan116325, Republic of China
| | - Cai-Cen Li
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan116325, Republic of China
| | - Wen-Kai Cheng
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan116325, Republic of China
| | - Yu-Huei Li
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan116325, Republic of China
| | - Ru Yan Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan116325, Republic of China
| | - Minghuey Shieh
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan116325, Republic of China
| |
Collapse
|
222
|
Gienger C, Schrenk C, Schnepf A, Klementyeva SV. Oxidative Coupling of [Ge 9(Si(SiMe 3) 3) 2] 2– with f Elements. Inorg Chem 2022; 61:20248-20252. [DOI: 10.1021/acs.inorgchem.2c03971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christian Gienger
- Chemistry Department, University of Tübingen Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Claudio Schrenk
- Chemistry Department, University of Tübingen Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Andreas Schnepf
- Chemistry Department, University of Tübingen Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Svetlana V. Klementyeva
- Chemistry Department, University of Tübingen Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
223
|
Govindarajan R, Deolka S, Khusnutdinova JR. Heterometallic bond activation enabled by unsymmetrical ligand scaffolds: bridging the opposites. Chem Sci 2022; 13:14008-14031. [PMID: 36540828 PMCID: PMC9728565 DOI: 10.1039/d2sc04263k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/27/2022] [Indexed: 08/19/2023] Open
Abstract
Heterobi- and multimetallic complexes providing close proximity between several metal centers serve as active species in artificial and enzymatic catalysis, and in model systems, showing unique modes of metal-metal cooperative bond activation. Through the rational design of well-defined, unsymmetrical ligand scaffolds, we create a convenient approach to support the assembly of heterometallic species in a well-defined and site-specific manner, preventing them from scrambling and dissociation. In this perspective, we will outline general strategies for the design of unsymmetrical ligands to support heterobi- and multimetallic complexes that show reactivity in various types of heterometallic cooperative bond activation.
Collapse
Affiliation(s)
- R Govindarajan
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| | - Shubham Deolka
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| | - Julia R Khusnutdinova
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| |
Collapse
|
224
|
Krüger J, Wölper C, Schulz S. Role of Group 13 Metals in the Electronic Properties of L(X)M-Substituted Pnictinidenes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Julia Krüger
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, Essen 45141, Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, Essen 45141, Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, Essen 45141, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, Duisburg 47057, Germany
| |
Collapse
|
225
|
Kotur B, Babizhetskyy V, Smetana V, Zheng C, Mudring AV. Crystal and electronic structures of a new hexagonal silicide Sc38Co144Si97. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
226
|
Shieh M, Li YH. A rare class of multiply bonded trigonal-planar pnictogen complexes: Rational syntheses, versatile reactivities, and unique semiconducting properties. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
227
|
Fischer M, Roy MMD, Wales LL, Ellwanger MA, McManus C, Roper AF, Heilmann A, Aldridge S. Taming Heavier Group 14 Imine Analogues: Accessing Tin Nitrogen [Sn=N] Double Bonds and their Cycloaddition/Metathesis Chemistry. Angew Chem Int Ed Engl 2022; 61:e202211616. [PMID: 36161749 PMCID: PMC9828258 DOI: 10.1002/anie.202211616] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Indexed: 01/12/2023]
Abstract
A systematic study to access stable stannaimines is reported, by combining different heteroleptic stannylenes with a range of organic azides. The reactions of terphenyl-/hypersilyl-substituted stannylenes yield the putative tin nitrogen double bond, but is directly followed by 1,2-silyl migration to give SnII systems featuring bulky silylamido ligands. By contrast, the transition from a two σ donor ligand set to a mixed σ-donor/π-donor scaffold allows access to three new stannaimines which can be handled at room temperature. The reactivity profile of these Sn=N bonded species is crucially dependent on the substituent at the nitrogen atom. As such, the Sn=NMes (Mes=2,4,6-Me3 C6 H2 ) system is capable of activating a broad range of substrates under ambient conditions via 1,2-addition reactions, [2+2] and [4+2] cycloaddition reactions. Most interestingly, very rare examples of main group multiple bond metathesis reactions are also found to be viable.
Collapse
Affiliation(s)
- Malte Fischer
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Matthew M. D. Roy
- Department of ChemistryCatalysis Research Center and Institute for Silicon ChemistryTechnische Universität München85748Garching bei MünchenGermany
| | - Lewis. L. Wales
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Mathias A. Ellwanger
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Caitilin McManus
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Aisling F. Roper
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Andreas Heilmann
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Simon Aldridge
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| |
Collapse
|
228
|
Obi AD, Dickie DA, Tiznado W, Frenking G, Pan S, Gilliard RJ. A Multidimensional Approach to Carbodiphosphorane–Bismuth Coordination Chemistry: Cationization, Redox-Flexibility, and Stabilization of a Crystalline Bismuth Hydridoborate. Inorg Chem 2022; 61:19452-19462. [DOI: 10.1021/acs.inorgchem.2c03337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Akachukwu D. Obi
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - William Tiznado
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago 8320000, Chile
| | - Gernot Frenking
- Philipps-Universität Marburg Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Sudip Pan
- Philipps-Universität Marburg Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Robert J. Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| |
Collapse
|
229
|
Two-dimensional SiC/AlN based type-II van der Waals heterobilayer as a promising photocatalyst for overall water disassociation. Sci Rep 2022; 12:20106. [PMID: 36418922 PMCID: PMC9684528 DOI: 10.1038/s41598-022-24663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Two-dimensional (2D) van der Waals (vdW) heterostructures made by vertical assembling of two different layers have drawn immense attention in the photocatalytic water disassociation process. Herein, we suggest a novel 2D/2D vdW heterobilayer consisting of silicon carbide (SiC) and aluminum nitride (AlN) as an exciting photocatalyst for solar-to-hydrogen conversion reactions using first-principles calculations. Notably, the heterostructure presents an inherent type-II band orientation wherein the photogenic holes and electrons are spatially separated in the SiC layer and the AlN layer, respectively. Our results indicate that the SiC/AlN heterostructure occupies a suitable band-gap of 2.97 eV which straddles the kinetic overpotentials of the hydrogen production reaction and oxygen production reaction. Importantly, the built-in electric field at the interface created by substantial charge transfer prohibits carrier recombination and further improves the photocatalytic performance. The heterostructure has an ample absorption profile ranging from the ultraviolet to the near-infrared regime, while the intensity of the absorption reaches up to 2.16 × 105 cm-1. In addition, external strain modulates the optical absorption of the heterostructure effectively. This work provides an intriguing insight into the important features of the SiC/AlN heterostructure and renders useful information on the experimental design of a novel vdW heterostructure for solar energy-driven water disassociation with superior efficiency.
Collapse
|
230
|
Zhu Q, Fettinger JC, Vasko P, Power PP. Hydrostannylation of Olefins by a Hydridostannylene Tungsten Complex. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Qihao Zhu
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - James C. Fettinger
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Petra Vasko
- Department of Chemistry, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Philip P. Power
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
231
|
Sharma MK, Chabbra S, Wölper C, Weinert HM, Reijerse EJ, Schnegg A, Schulz S. Modulating the frontier orbitals of L(X)Ga-substituted diphosphenes [L(X)GaP] 2 (X = Cl, Br) and their facile oxidation to radical cations. Chem Sci 2022; 13:12643-12650. [PMID: 36519043 PMCID: PMC9645402 DOI: 10.1039/d2sc04207j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/11/2022] [Indexed: 09/19/2023] Open
Abstract
Modulating the electronic structures of main group element compounds is crucial to control their chemical reactivity. Herein we report on the synthesis, frontier orbital modulation, and one-electron oxidation of two L(X)Ga-substituted diphosphenes [L(X)GaP]2 (X = Cl 2a, Br 2b; L = HC[C(Me)N(Ar)]2, Ar = 2,6-i-Pr2C6H3). Photolysis of L(Cl)GaPCO 1 gave [L(Cl)GaP]22a, which reacted with Me3SiBr with halide exchange to [L(Br)GaP]22b. Reactions with MeNHC (MeNHC = 1,3,4,5-tetramethylimidazol-2-ylidene) gave the corresponding carbene-coordinated complexes L(X)GaPP(MeNHC)Ga(X)L (X = Cl 3a, Br 3b). DFT calculations revealed that the carbene coordination modulates the frontier orbitals (i.e. HOMO/LUMO) of diphosphenes 2a and 2b, thereby affecting the reactivity of 3a and 3b. In marked contrast to diphosphenes 2a and 2b, the cyclic voltammograms (CVs) of the carbene-coordinated complexes each show one reversible redox event at E 1/2 = -0.65 V (3a) and -0.36 V (3b), indicating their one-electron oxidation to the corresponding radical cations as was confirmed by reactions of 3a and 3b with the [FeCp2][B(C6F5)4], yielding the radical cations [L(X)GaPP(MeNHC)Ga(X)L]B(C6F5)4 (X = Cl 4a, Br 4b). The unpaired spin in 4a (79%) and 4b (80%) is mainly located at the carbene-uncoordinated phosphorus atoms as was revealed by DFT calculations and furthermore experimentally proven in reactions with n Bu3SnH, yielding the diphosphane cations [L(X)GaPHP(MeNHC)Ga(X)L]B(C6F5)4 (X = Cl 5a, Br 5b). Compounds 2-5 were fully characterized by NMR and IR spectroscopy as well as by single crystal X-ray diffraction (sc-XRD), and compounds 4a and 4b were further studied by EPR spectroscopy, while their bonding nature was investigated by DFT calculations.
Collapse
Affiliation(s)
- Mahendra K Sharma
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
| | - Sonia Chabbra
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 Mülheim an der Ruhr D-45470 Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
| | - Hanns M Weinert
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
| | - Edward J Reijerse
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 Mülheim an der Ruhr D-45470 Germany
| | - Alexander Schnegg
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 Mülheim an der Ruhr D-45470 Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199 47057 Duisburg Germany
| |
Collapse
|
232
|
Kaur A, Wilson DJD. Ligand-stabilized heteronuclear diatomics of group 13 and 15. J Comput Chem 2022; 43:1964-1977. [PMID: 36066184 PMCID: PMC9826221 DOI: 10.1002/jcc.26995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 01/11/2023]
Abstract
A theoretical investigation of ligand-stabilized MX diatomics (M = group 13, X = group 15 element) with N-heterocyclic carbene (NHC) ligands has been carried out to assess bonding and electronic structure. Binding of two ligands in the form L-MX-L is generally preferred over binding of a single ligand as L-MX or MX-L. Binding of carbene donor ligands is predicted to be thermodynamically favorable for all the systems, and is very favorable for the lighter group 15 systems (nitrogen and phosphorus). Detailed analysis of the bonding in these complexes has been carried out with energy decomposition analysis (EDA). In all cases, the carbene to boron and carbene to nitrogen bonding is described as an electron-sharing double bond with both σ and π bonding interactions. For the heavier elements, bonding to C (except for PC interactions) is best described as a donor-acceptor σ single bond.
Collapse
Affiliation(s)
- Aishvaryadeep Kaur
- Department of Biochemistry and ChemistryLa Trobe Institute of Molecular Science, La Trobe UniversityMelbourneVictoriaAustralia
| | - David J. D. Wilson
- Department of Biochemistry and ChemistryLa Trobe Institute of Molecular Science, La Trobe UniversityMelbourneVictoriaAustralia
| |
Collapse
|
233
|
Laglera-Gándara C, Ríos P, Fernández-de-Córdova FJ, Barturen M, Fernández I, Conejero S. σ-GeH and Germyl Cationic Pt(II) Complexes. Inorg Chem 2022; 61:20848-20859. [PMID: 36322561 PMCID: PMC9949701 DOI: 10.1021/acs.inorgchem.2c03186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The low electron count Pt(II) complexes [Pt(NHC')(NHC)][BArF] (where NHC is a N-heterocyclic carbene ligand and NHC' its metalated form) react with tertiary hydrogermanes HGeR3 at room temperature to generate the 14-electron platinum(II) germyl derivatives [Pt(GeR3)(NHC)2][BArF]. Low-temperature NMR studies allowed us to detect and characterize spectroscopically some of the σ-GeH intermediates [Pt(η2-HGeR3)(NHC')(NHC)][BArF] that evolve into the platinum-germyl species. One of these compounds has been characterized by X-ray diffraction studies, and the interaction of the H-Ge bond with the platinum center has been analyzed in detail by computational methods, which suggest that the main contribution is the donation of the H-Ge to a σ*(Pt-C) orbital, but backdonation from the platinum to the σ*(Ge-H) orbital is significant. Primary and secondary hydrogermanes also produce the corresponding platinum-germyl complexes, a result that contrasts with the reactivity observed with primary silanes, in which carbon-silicon bond-forming reactions have been reported. According to density functional theory calculations, the formation of Pt-Ge/C-H bonds is both kinetically and thermodynamically preferred over the competitive reaction pathway leading to Pt-H/C-Ge bonds.
Collapse
Affiliation(s)
- Carlos
J. Laglera-Gándara
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica, Centro de Innovación en Química Avanzada
(ORFEO-CINQA), CSIC and Universidad de Sevilla, Sevilla 41092, Spain
| | - Pablo Ríos
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica, Centro de Innovación en Química Avanzada
(ORFEO-CINQA), CSIC and Universidad de Sevilla, Sevilla 41092, Spain,
| | - Francisco José Fernández-de-Córdova
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica, Centro de Innovación en Química Avanzada
(ORFEO-CINQA), CSIC and Universidad de Sevilla, Sevilla 41092, Spain
| | - Marina Barturen
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica, Centro de Innovación en Química Avanzada
(ORFEO-CINQA), CSIC and Universidad de Sevilla, Sevilla 41092, Spain
| | - Israel Fernández
- Departamento
de Química Orgánica I y Centro de Innovación
en Química Avanzada (ORFEO-CINQA), facultad de Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain,
| | - Salvador Conejero
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica, Centro de Innovación en Química Avanzada
(ORFEO-CINQA), CSIC and Universidad de Sevilla, Sevilla 41092, Spain,
| |
Collapse
|
234
|
Garçon M, Phanopoulos A, Sackman GA, Richardson C, White AJP, Cooper RI, Edwards AJ, Crimmin MR. The Continuum Between Hexagonal Planar and Trigonal Planar Geometries. Angew Chem Int Ed Engl 2022; 61:e202211948. [PMID: 36094744 PMCID: PMC9828084 DOI: 10.1002/anie.202211948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Indexed: 01/12/2023]
Abstract
New heterometallic hydride complexes that involve the addition of {Mg-H} and {Zn-H} bonds to group 10 transition metals (Pd, Pt) are reported. The side-on coordination of a single {Mg-H} to Pd forms a well-defined σ-complex. In contrast, addition of three {Mg-H} or {Zn-H} bonds to Pd or Pt results in the formation of planar complexes with subtly different geometries. We compare their structures through experiment (X-ray diffraction, neutron diffraction, multinuclear NMR), computational methods (DFT, QTAIM, NCIPlot), and theoretical analysis (MO diagram, Walsh diagram). These species can be described as snapshots along a continuum of bonding between ideal trigonal planar and hexagonal planar geometries.
Collapse
Affiliation(s)
- Martí Garçon
- Department of ChemistryMolecular Sciences Research HubImperial College London82 Wood Lane, Shepherds BushLondonW12 0BZUK
| | - Andreas Phanopoulos
- Department of ChemistryMolecular Sciences Research HubImperial College London82 Wood Lane, Shepherds BushLondonW12 0BZUK
| | - George A. Sackman
- Chemical CrystallographyChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK,Australian Centre for Neutron Scattering, ANSTONew Illawarra RoadLucas HeightsNSW, 2234Australia
| | - Christopher Richardson
- School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongNSW 2522Australia
| | - Andrew J. P. White
- Department of ChemistryMolecular Sciences Research HubImperial College London82 Wood Lane, Shepherds BushLondonW12 0BZUK
| | - Richard I. Cooper
- Chemical CrystallographyChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Alison J. Edwards
- Australian Centre for Neutron Scattering, ANSTONew Illawarra RoadLucas HeightsNSW, 2234Australia
| | - Mark R. Crimmin
- Department of ChemistryMolecular Sciences Research HubImperial College London82 Wood Lane, Shepherds BushLondonW12 0BZUK
| |
Collapse
|
235
|
Simple harmonic oscillation model explaining MA torsional locking in surface passivated MAPbI3 crystal. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
236
|
Isaac C, Miloserdov FM, Pécharman AF, Lowe JP, McMullin CL, Whittlesey MK. Structure and Reactivity of [Ru-Al] and [Ru-Sn] Heterobimetallic PPh 3-Based Complexes. Organometallics 2022; 41:2716-2730. [PMID: 36249448 PMCID: PMC9554919 DOI: 10.1021/acs.organomet.2c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 11/30/2022]
Abstract
Treatment of [Ru(PPh3)(C6H4PPh2)2H][Li(THF)2] with AlMe2Cl and SnMe3Cl leads to elimination of LiCl and CH4 and formation of the heterobimetallic complexes [Ru(C6H4PPh2)2{PPh2C6H4AlMe(THF)}H] 5 and [Ru(PPh3)(C6H4PPh2)(PPh2C6H4SnMe2)] 6, respectively. The pathways to 5 and 6 have been probed by variable temperature NMR studies, together with input from DFT calculations. Complete reaction of H2 occurs with 5 at 60 °C and with 6 at room temperature to yield the spectroscopically characterized trihydride complexes [Ru(PPh2)2{PPh2C6H4AlMe}H3] 7 and [Ru(PPh2)2{PPh2C6H4SnMe2}H3] 8. In the presence of CO, 6 forms the acylated phosphine complex, [Ru(CO)2(C(O)C6H4PPh2)(PPh2C6H4SnMe2)] 9, through a series of intermediates that were identified by NMR spectroscopy in conjunction with 13CO labeling. Complex 6 undergoes addition and substitution reactions with the N-heterocyclic carbene 1,3,4,5-tetramethylimidazol-2-ylidene (IMe4) to give [Ru(IMe4)2(PPh2C6H4)(PPh2C6H4SnMe2)] 10, which converted via rare N-Me group C-H activation to [Ru(IMe4)(PPh3)(IMe4)'(PPh2C6H4SnMe2)] 11 upon heating at 60 °C and to a mixture of [Ru(IMe4)2(IMe4)'(PPh2C6H4SnMe2)] 12 and [Ru(PPh3)(PPh2C6H4)(IMe4-SnMe2)'] 13 at 120 °C.
Collapse
Affiliation(s)
- Connie
J. Isaac
- Department of Chemistry, University
of Bath, Bath BA2 7AY, U.K.
| | | | | | - John P. Lowe
- Department of Chemistry, University
of Bath, Bath BA2 7AY, U.K.
| | | | | |
Collapse
|
237
|
Zhao Q, Li S, Man Y, Li S, Li L, Li N, Ning Q. Adsorption and sensing performances of Rh-embedded PtSe2 monolayer upon CO and HCHO in dry-type reactors: A first-principles study. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
238
|
Hamdaoui M, Liu F, Cornaton Y, Lu X, Shi X, Zhang H, Liu J, Spingler B, Djukic JP, Duttwyler S. An Iridium-Stabilized Borenium Intermediate. J Am Chem Soc 2022; 144:18359-18374. [PMID: 36173688 DOI: 10.1021/jacs.2c06298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exploration of new organometallic systems based on polyhedral boron clusters has the potential to solve challenging chemical problems such as the stabilization of reactive intermediates and transition-state-like species postulated for E-H (E = H, B, C, Si) bond activation reactions. We report on facile and clean B-H activation of a hydroborane by a new iridium boron cluster complex. The product of this reaction is an unprecedented and fully characterized transition metal-stabilized boron cation or borenium. Moreover, this intermediate bears an unusual intramolecular B···H interaction between the hydrogen originating from the activated hydroborane and the cyclometallated metal-bonded boron atom of the boron cluster. This B···H interaction is proposed to be an arrested insertion of hydrogen into the Bcage-metal bond and the initiation step for iridium "cage-walking" around the upper surface of the boron cluster. The "cage-walking" process is supported by the hydrogen-deuterium exchange observed at the boron cluster, and a mechanism is proposed on the basis of theoretical methods with a special focus on the role of noncovalent interactions. All new compounds were isolated and fully characterized by NMR spectroscopy and elemental analysis. Key compounds were studied by single crystal X-ray diffraction and X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Mustapha Hamdaoui
- Department of Chemistry, Zheijang University, Hangzhou 310027, China
| | - Fan Liu
- Department of Chemistry, Zheijang University, Hangzhou 310027, China
| | - Yann Cornaton
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg UMR 7177 CNRS, Université de Strasbourg, Strasbourg 67000, France
| | - Xingyu Lu
- Instrumentation Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, China
| | - Xiaohuo Shi
- Instrumentation Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, China
| | - Huan Zhang
- Instrumentation Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, China
| | - Jiyong Liu
- Department of Chemistry, Zheijang University, Hangzhou 310027, China
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Jean-Pierre Djukic
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg UMR 7177 CNRS, Université de Strasbourg, Strasbourg 67000, France
| | - Simon Duttwyler
- Department of Chemistry, Zheijang University, Hangzhou 310027, China
| |
Collapse
|
239
|
Fang W, Zhu Q, Zhu C. Recent advances in heterometallic clusters with f-block metal-metal bonds: synthesis, reactivity and applications. Chem Soc Rev 2022; 51:8434-8449. [PMID: 36164971 DOI: 10.1039/d2cs00424k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the heterometallic synergistic effects from different metals, heterometallic clusters are of great importance in small-molecule activation and catalysis. For example, both biological nitrogen fixation and photosynthetic splitting of water into oxygen are thought to involve multimetallic catalytic sites with d-block transition metals. Benefitting from the larger coordination numbers of f-block metals (rare-earth metals and actinide elements), heterometallic clusters containing f-block metal-metal bonds have long attracted the interest of both experimental and theoretical chemists. Therefore, a series of effective strategies or platforms have been developed in recent years for the construction of heterometallic clusters with f-block metal-metal bonds. More importantly, synergistic effects between f-block metals and transition metals have been observed in small-molecule activation and catalysis. This tutorial review highlights the recent advances in the construction of heterometallic molecular clusters with f-block metal-metal bonds and also their reactivities and applications. It is hoped that this tutorial review will persuade chemists to develop more efficient strategies to construct clusters with f-block metal-metal bonds and also further expand their applications with heterometallic synergistic effects.
Collapse
Affiliation(s)
- Wei Fang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Qin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
240
|
Hu C, Goicoechea JM. Synthesis, Structure and Reactivity of a Cyapho(dicyano)methanide Salt. Angew Chem Int Ed Engl 2022; 61:e202208921. [PMID: 35876032 PMCID: PMC9805078 DOI: 10.1002/anie.202208921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 01/09/2023]
Abstract
We describe the synthesis of a cyapho(dicyano)methanide salt, [K(18-crown-6)][C(CN)2 (CP)], from reaction of [Na(18-crown-6)][PH2 ] (18-crown-6=1,4,7,10,13,16-hexaoxacyclooctadecane) with 1,1-diethoxy-2,2-dicyanoethylene (EtO)2 C=C(CN)2 . The reaction proceeds through a Michael addition-elimination pathway to afford [Na(18-crown-6)][HP{C(OEt)=C(CN)2 }]. Addition of a strong, non-nucleophilic base (KHMDS) to this intermediate results in the formation of [K(18-crown-6)][C(CN)2 (CP)]. Subsequent reactivity studies reveal that the cyapho(dicyano)methanide ion is susceptible to protonation with strong acids to afford the parent acid HC(CN)2 (CP). The reactivity of the cyaphide moiety in [C(CN)2 (CP)]- was explored through coordination to metal centers and in cycloaddition reactions with azides.
Collapse
Affiliation(s)
- Chenyang Hu
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Jose M. Goicoechea
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
241
|
Barthélemy A, Scherer H, Krossing I. Direct Comparison of Subvalent, Polycationic Group 13 Cluster Compounds: Lessons learned on Isoelectronic DMPE Substituted Gallium and Indium Tetracation Salts. Chemistry 2022; 28:e202201369. [PMID: 35695015 PMCID: PMC9796046 DOI: 10.1002/chem.202201369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Indexed: 12/30/2022]
Abstract
The tetracationic, univalent cluster compounds [{M(dmpe)}4 ]4+ (M=Ga, In; dmpe=bis(dimethylphosphino)ethane) were synthesized as their pf salts ([pf]- =[Al(ORF )4 ]- ; RF =C(CF3 )3 ). The four-membered ring in [{M(dmpe)}4 ]4+ is slightly puckered for M=Ga and almost square planar for M=In. Yet, although structurally similar, only the gallium cluster is prevalent in solution, while the indium cluster forms temperature dependent equilibria that include even the monomeric cation [In(dmpe)]+ . This system is the first report of one and the same ligand inducing formation of isoelectronic and isostructural gallium/indium cluster cations. The system allows to study systematically analogies and differences with thermodynamic considerations and bonding analyses, but also to outline perspectives for bond activation using cationic, subvalent group 13 clusters.
Collapse
Affiliation(s)
- Antoine Barthélemy
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF)Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Harald Scherer
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF)Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF)Universität FreiburgAlbertstr. 2179104FreiburgGermany
| |
Collapse
|
242
|
Li K, Liu W, Zhang H, Cheng L, Zhang Y, Wang Y, Chen N, Zhu C, Chai Z, Wang S. Progress in solid state and coordination chemistry of actinides in China. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the past decade, the area of solid state chemistry of actinides has witnessed a rapid development in China, based on the significantly increased proportion of the number of actinide containing crystal structures reported by Chinese researchers from only 2% in 2010 to 36% in 2021. In this review article, we comprehensively overview the synthesis, structure, and characterizations of representative actinide solid compounds including oxo-compounds, organometallic compounds, and endohedral metallofullerenes reported by Chinese researchers. In addition, Chinese researchers pioneered several potential applications of actinide solid compounds in terms of adsorption, separation, photoelectric materials, and photo-catalysis, which are also briefly discussed. It is our hope that this contribution not only calls for further development of this area in China, but also arouses new research directions and interests in actinide chemistry and material sciences.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University , Yantai , 264005 , China
| | - Hailong Zhang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Liwei Cheng
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science and State Key Laboratory of Radiation Medicine and Protection, Soochow University , Suzhou , Jiangsu 215123 , China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials , School of Chemistry and Chemical Engineering, Nanjing University , Nanjing , 210023 , China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| |
Collapse
|
243
|
Xu J, Pan S, Yao S, Frenking G, Driess M. The Heaviest Bottleable Metallylone: Synthesis of a Monatomic, Zero-Valent Lead Complex ("Plumbylone"). Angew Chem Int Ed Engl 2022; 61:e202209442. [PMID: 35848899 PMCID: PMC9545849 DOI: 10.1002/anie.202209442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 10/26/2022]
Abstract
The elusive plumbylone {[SiII (Xant)SiII ]Pb0 } 3 stabilized by the bis(silylene)xanthene chelating ligand 1, [SiII (Xant)SiII =PhC(NtBu)2 Si(Xant)Si(NtBu)2 CPh], and its isolable carbonyl iron complex {[SiII (Xant)SiII ]Pb0 Fe(CO)4 } 4 are reported. The compounds 3 and 4 were obtained stepwise via reduction of the lead(II) dibromide complex {[SiII (Xant)SiII ]PbBr2 } 2, prepared from the bis(silylene)xanthene 1 and PbBr2 , employing potassium naphthalenide and K2 Fe(CO)4 , respectively. While the genuine plumbylone 3 is rather labile even at -60 °C, its Pb0 →Fe(CO)4 complex 4 turned out to be relatively stable and bottleable. However, solutions of 4 decompose readily to elemental Pb and {[SiII (Xant)SiII ]Fe(CO)3 } 5 at 80 °C. Reaction of 4 with [Rh(CO)2 Cl]2 leads to the formation of the unusual dimeric [(OC)2 RhPb(Cl)Fe(CO)4 ] complex 6 with trimetallic Rh-Pb-Fe bonds. The molecular and electronic structures of 3 and 4 were established by Density Functional Theory (DFT) calculations.
Collapse
Affiliation(s)
- Jian Xu
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStrasse des 17. Juni 115, Sekr. C210623BerlinGermany
| | - Sudip Pan
- Philipps-Universität MarburgFachbereich Chemie35032MarburgGermany
| | - Shenglai Yao
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStrasse des 17. Juni 115, Sekr. C210623BerlinGermany
| | - Gernot Frenking
- Philipps-Universität MarburgFachbereich Chemie35032MarburgGermany
- Donostia International Physics Center (DIPC)20018San SebastianSpain
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStrasse des 17. Juni 115, Sekr. C210623BerlinGermany
| |
Collapse
|
244
|
Lin X, Mo Y. On the Bonding Nature in the Crystalline Tri-Thorium Cluster: Core-Shell Syngenetic σ-Aromaticity. Angew Chem Int Ed Engl 2022; 61:e202209658. [PMID: 35856937 PMCID: PMC9541753 DOI: 10.1002/anie.202209658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 11/10/2022]
Abstract
A unique thorium-thorium bond was observed in the crystalline tri-thorium cluster [{Th(η8 -C8 H8 )(μ3 -Cl)2 }3 {K(THF)2 }2 ]∞ , though the claim of σ-aromaticity for Th3 bond has been questioned. Herein, a new type of core-shell syngenetic bonding model is proposed to describe the stability of this tri-thorium cluster. The model involves a 3c-2e bond in the Th3 core and a multicentered (ThCl2 )3 charge-shift bond with 12 electrons scattering along the outer shell. To differentiate the strengths of the 3c-2e bond and the charge-shift bond, the block-localized wavefunction (BLW) method which falls into the ab initio valence bond (VB) theory is employed to construct a strictly core/shell localized state and its contributing covalent resonance structure for the Th3 core bond. By comparing with the σ-aromatic H3 + and nonaromatic Li3 + , the computed resonance energies and extra cyclic resonance energies confirm that this Th3 core bond is truly delocalized and σ-aromatic.
Collapse
Affiliation(s)
- Xuhui Lin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural DrugsSchool of Life Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Yirong Mo
- Department of NanoscienceJoint School of Nanoscience and NanoengineeringUniversity of North Carolina at GreensboroGreensboroNC 27401USA
| |
Collapse
|
245
|
Zechovský J, Kertész E, Kremláček V, Hejda M, Mikysek T, Erben M, Růžička A, Jambor R, Benkő Z, Dostál L. Exploring Differences between Bis(aldimino)- and amino-aldimino- N, C, N-Pincer-Stabilized Pnictinidenes: Limits of Synthesis, Structure, and Reversible Tautomerization-Controlled Oxidation. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jan Zechovský
- Department of General and Inorganic Chemistry, University of Pardubice, Studentská 573, CZ 532 10 Pardubice, Czech Republic
| | - Erik Kertész
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Vít Kremláček
- Department of General and Inorganic Chemistry, University of Pardubice, Studentská 573, CZ 532 10 Pardubice, Czech Republic
| | - Martin Hejda
- Department of General and Inorganic Chemistry, University of Pardubice, Studentská 573, CZ 532 10 Pardubice, Czech Republic
| | - Tomáš Mikysek
- Department of Analytical Chemistry, University of Pardubice, Studentská 573, CZ 532 10 Pardubice, Czech Republic
| | - Milan Erben
- Department of General and Inorganic Chemistry, University of Pardubice, Studentská 573, CZ 532 10 Pardubice, Czech Republic
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, University of Pardubice, Studentská 573, CZ 532 10 Pardubice, Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry, University of Pardubice, Studentská 573, CZ 532 10 Pardubice, Czech Republic
| | - Zoltán Benkő
- Department of Inorganic and Analytical Chemistry and ELKH-BME Computation Driven Chemistry Research Group, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Libor Dostál
- Department of General and Inorganic Chemistry, University of Pardubice, Studentská 573, CZ 532 10 Pardubice, Czech Republic
| |
Collapse
|
246
|
Description of covalent bond in terms of generalized charges: potential and dissociation energy of homonuclear compound. Struct Chem 2022. [DOI: 10.1007/s11224-022-02047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
247
|
Baskaran S, Jung J. Termolecular Eley–Rideal pathway for efficient
CO
oxidation on phosphorene‐supported single‐atom cobalt catalyst. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sambath Baskaran
- Department of Chemistry University of Ulsan Nam‐gu, Ulsan Republic of Korea
| | - Jaehoon Jung
- Department of Chemistry University of Ulsan Nam‐gu, Ulsan Republic of Korea
| |
Collapse
|
248
|
Coordination of cage compounds by Cu(I) nacnac compounds. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
249
|
Yao W, Guan H, Zhang K, Wang G, Wu X, Jia Z. Nb-doped PtS2 monolayer for detection of C2H2 and C2H4 in on-load tap-changer of the oil-immersed transformers: A first-principles study. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
250
|
Raabe J, Albert J, Poller MJ. Spectroscopic, Crystallographic, and Electrochemical Study of Different Manganese(II)‐Substituted Keggin‐Type Phosphomolybdates. Chemistry 2022; 28:e202201084. [PMID: 35731027 PMCID: PMC9546069 DOI: 10.1002/chem.202201084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 11/23/2022]
Abstract
Adjusting the RedOx activity of polyoxometalate catalysts is a key challenge for the catalysis of selective oxidation reactions. For this purpose, the possibility of influencing the RedOx potential by the introduction of an additional RedOx‐active element was investigated. Thereby, Keggin‐type polyoxometalates (POMs) with up to three different elements in the metal framework were created. An advanced and reproducible synthetic procedure to incorporate MnII and additionally VV into Keggin‐type heteropolyacids alongside comprehensive characterization of the new molecules is presented. The success of our syntheses was confirmed by vibrational spectroscopy (IR and Raman) and elemental analysis. Furthermore, the new compounds were analyzed by NMR spectroscopy to investigate the characteristics of the POMs in solution. The structures of successfully crystalized compounds were determined by single‐crystal X‐ray diffraction. Moreover, all synthesized compounds were characterized using UV/Vis spectroscopy and electrochemical analysis to get further insights into the electronic transfer processes and redox potentials.
Collapse
Affiliation(s)
- Jan‐Christian Raabe
- Institute of Technical and Macromolecular Chemistry Hamburg University Bundesstrasse 45 20146 Hamburg Germany
| | - Jakob Albert
- Institute of Technical and Macromolecular Chemistry Hamburg University Bundesstrasse 45 20146 Hamburg Germany
| | - Maximilian J. Poller
- Institute of Technical and Macromolecular Chemistry Hamburg University Bundesstrasse 45 20146 Hamburg Germany
| |
Collapse
|