201
|
Jesus SA, Schmidt A, Fickel J, Doherr MG, Boonprasert K, Thitaram C, Sariya L, Ratanakron P, Hildebrandt TB. Assessing Coagulation Parameters in Healthy Asian Elephants (Elephas maximus) from European and Thai Populations. Animals (Basel) 2022; 12:ani12030361. [PMID: 35158684 PMCID: PMC8833339 DOI: 10.3390/ani12030361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
The Asian elephant population is continuously declining due to several extrinsic reasons in their range countries, but also due to diseases in captive populations worldwide. One of these diseases, the elephant endotheliotropic herpesvirus (EEHV) hemorrhagic disease, is very impactful because it particularly affects Asian elephant calves. It is commonly fatal and presents as an acute and generalized hemorrhagic syndrome. Therefore, having reference values of coagulation parameters, and obtaining such values for diseased animals in a very short time, is of great importance. We analyzed prothrombin time (PT), activated partial thromboplastin time (aPTT), and fibrinogen concentrations using a portable and fast point-of-care analyzer (VetScan Pro) in 127 Asian elephants from Thai camps and European captive herds. We found significantly different PT and aPTT coagulation times between elephants from the two regions, as well as clear differences in fibrinogen concentration. Nevertheless, these alterations were not expected to have biological or clinical implications. We have also sequenced the coagulation factor VII gene of 141 animals to assess the presence of a previously reported hereditary coagulation disorder in Asian elephants and to investigate the presence of other mutations. We did not find the previously reported mutation in our study population. Instead, we discovered the presence of several new single nucleotide polymorphisms, two of them being considered as deleterious by effect prediction software.
Collapse
Affiliation(s)
- Sónia A. Jesus
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany;
- Correspondence:
| | - Anke Schmidt
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany; (A.S.); (J.F.)
| | - Jörns Fickel
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany; (A.S.); (J.F.)
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Marcus G. Doherr
- Institute for Veterinary Epidemiology and Biostatistics, Freie Universität, 14163 Berlin, Germany;
| | - Khajohnpat Boonprasert
- Center of Elephant and Wildlife Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (K.B.); (C.T.)
| | - Chatchote Thitaram
- Center of Elephant and Wildlife Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (K.B.); (C.T.)
| | - Ladawan Sariya
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Parntep Ratanakron
- Faculty of Veterinary Science and Applied Zoology, Chulabhorn Royal Academy, Bangkok 10210, Thailand;
| | - Thomas B. Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany;
- Faculty of Veterinary Medicine, Freie Universität, 14163 Berlin, Germany
| |
Collapse
|
202
|
Sun B, van Dissel D, Mo I, Boysen P, Haslene-Hox H, Lund H. Identification of novel biomarkers of inflammation in Atlantic salmon (Salmo salar L.) by a plasma proteomic approach. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104268. [PMID: 34571096 DOI: 10.1016/j.dci.2021.104268] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Monitoring fish welfare has become a central issue for the fast-growing aquaculture industry, and finding proper biomarkers of stress, inflammation and infection is necessary for surveillance and documentation of fish health. In this study, a proteomic approach using mass spectrometry was applied to identify indicators of the acute response in Atlantic salmon blood plasma by comparing Aeromonas salmonicida subsp. salmonicida infected fish and non-infected controls. The antimicrobial proteins cathelicidin (CATH), L-plastin (Plastin-2, LCP1) and soluble toll-like receptor 5 (sTLR5) were uniquely or mainly identified in the plasma of infected fish. In addition, five immune-related proteins showed significantly increased expression in plasma of infected fish: haptoglobin, high affinity immunoglobulin Fc gamma receptor I (FcγR1, CD64), leucine-rich alpha 2 glycoprotein (LRG1), complement C4 (C4) and phospholipase A2 inhibitor 31 kDa subunit-like protein. However, various fibrinogen components, CD209 and CD44 antigen-like molecules decreased in infected fish. Selected biomarkers were further verified by Western blot analysis of plasma and real time PCR of spleen and liver, including CATH1, CATH2 and L-plastin. A significant increase of L-plastin occurred as early as 24 h after infection, and a CATH2 increase was observed from 72 h in plasma of infected fish. Real time PCR of selected genes confirmed increased transcription of CATH1 and CATH2. In addition, serum amyloid A mRNA significantly increased in liver and spleen after bacterial infection. However, transcription of L-plastin was not consistently induced in liver and spleen. The results of the present study reveal novel and promising biomarkers of the acute phase response and inflammation in Atlantic salmon.
Collapse
Affiliation(s)
- Baojian Sun
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Dino van Dissel
- SINTEF AS, Department of Biotechnology and Nanomedicine, Trondheim, Norway
| | - Ingrid Mo
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Preben Boysen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Hanne Haslene-Hox
- SINTEF AS, Department of Biotechnology and Nanomedicine, Trondheim, Norway
| | - Hege Lund
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
203
|
Systemic low-grade inflammation and depressive symptomology at chronic phase of ischemic stroke: The chain mediating role of fibrinogen and neutrophil counts. Brain Behav Immun 2022; 100:332-341. [PMID: 34728390 DOI: 10.1016/j.bbi.2021.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Post-stroke depression (PSD) is the most common psychological consequence of stroke. Increased inflammatory markers resulting from ischemic stroke may played an important role in the pathogenesis of depressive symptomology. The present study was conducted to further elucidate the relationship between stroke severity, systemic low-grade inflammation and chronic phase post-stroke depressive symptomology (CP-PSDS). METHODS A total of 897 stroke patients were consecutively recruited in this multicenter prospective cohort study and followed up for 1 year. The analytical sample consisted of 436 patients with ischemic stroke (23.4% female, median age = 57 years) from this cohort. Serum concentrations of inflammatory markers were measured in all 436 patients with ischemic stroke, from fasting morning venous blood samples on admission. Stroke severity was evaluated using the National Institutes of Health Stroke Scale (NIHSS) on admission and post-stroke depressive symptomology (PSDS) was evaluated by 17-item Hamilton Rating Scale for Depression (HRSD). RESULTS In the fully adjusted models, we observed that 1) NIHSS (Model 2: β = 0.200, 95%CI, 0.057 ∼ 0.332), fibrinogen (Model 2: β = 0.828, 95%CI, 0.269 ∼ 1.435), white blood cell counts (WBC, model 2: β = 0.354, 95%CI, 0.122 ∼ 0.577) and neutrophil counts (Model 2: β = 0.401, 95%CI, 0.126 ∼ 0.655) can independently predict the CP-PSDS after ischemic stroke onset; 2) fibrinogen (Indirect effect = 0.027, 95%CI, 0.007 ∼ 0.063, 13.4% mediated), WBC (Indirect effect = 0.024, 95%CI, 0.005 ∼ 0.058, 11.8% mediated) and neutrophil counts (Indirect effect = 0.030, 95%CI, 0.006 ∼ 0.069, 14.8% mediated) could partially mediate the association between stroke severity and CP-PSDS, and 3) stroke severity might cause CP-PSDS partly through the chain-mediating role of both fibrinogen and neutrophil counts (chain mediated effect = 0.003, 95%CI, 0.000 ∼ 0.011, p = 0.025, 1.6% mediated). CONCLUSIONS Findings revealed that fibrinogen, WBC and neutrophil counts may be independent predictors of CP-PSDS and partial mediators of the relationship between stroke severity and CP-PSDS among patients with ischemic stroke. In addition, the chain mediating effect of fibrinogen and neutrophil counts might play an important role in the occurrence of CP-PSDS. However, no inflammatory markers were associated with CP-PSDS in females.
Collapse
|
204
|
Costa-Júnior JFS, Parcero GC, Machado JC. Shear Elastic Coefficient of Normal and Fibrinogen-Deficient Clotting Plasma Obtained with a Sphere-Motion-Based Acoustic-Radiation-Force Approach. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:111-123. [PMID: 34674885 DOI: 10.1016/j.ultrasmedbio.2021.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Blood coagulation is a process involving several chemical reactions governed by coagulation factors, during which the shear elastic coefficient, μ, varies as the medium transitions from liquid to gel phase. This work used ultrasound to measure μ during the clotting of human plasma samples by tracking the motion of a glass sphere located inside a cuvette filled with the plasma. A 2.03 MHz ultrasonic system generated an impulsive acoustic radiation force acting on the sphere, and a 4.89 MHz pulse-echo ultrasonic system tracked the sphere displacement induced by that force. Measurements of μ were determined by fitting a μ-dependent theoretical model to the motion waveform of the sphere immersed in clotting normal plasma and plasma samples with fibrinogen (FI) concentrations of 1.2 (FI-deficiency) and 3.6 (FI-normal) g/L. For normal plasma, μ started at 14.22 Pa and increased rapidly until 2 min, then slowly until it reached 210.23 Pa at 35 min after the clotting process started. A similar trend was exhibited in plasma samples with FI concentrations of 1.2 and 3.6 g/L, with μ reaching 120.55 and 679.42 Pa, respectively. A theoretical model, related to the kinetics of clot-structure formation, describes the time changes of μ for the clotting plasma samples. The sphere-motion-based acoustic-radiation-force approach allowed us to measure the shear elastic coefficient during the coagulation process of plasma samples with normal and deficient FI concentrations. Our results suggest that the method used in this study is capable of being used to detect bleeding disorders.
Collapse
Affiliation(s)
- José Francisco Silva Costa-Júnior
- Brazilian Air Force Academy, Pirassununga, Brazil; Biomedical Engineering Program-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - João Carlos Machado
- Biomedical Engineering Program-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Post-Graduation Program on Surgical Sciences, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
205
|
Heurich M, Föcking M, Mongan D, Cagney G, Cotter DR. Dysregulation of complement and coagulation pathways: emerging mechanisms in the development of psychosis. Mol Psychiatry 2022; 27:127-140. [PMID: 34226666 PMCID: PMC8256396 DOI: 10.1038/s41380-021-01197-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Early identification and treatment significantly improve clinical outcomes of psychotic disorders. Recent studies identified protein components of the complement and coagulation systems as key pathways implicated in psychosis. These specific protein alterations are integral to the inflammatory response and can begin years before the onset of clinical symptoms of psychotic disorder. Critically, they have recently been shown to predict the transition from clinical high risk to first-episode psychosis, enabling stratification of individuals who are most likely to transition to psychotic disorder from those who are not. This reinforces the concept that the psychosis spectrum is likely a central nervous system manifestation of systemic changes and highlights the need to investigate plasma proteins as diagnostic or prognostic biomarkers and pathophysiological mediators. In this review, we integrate evidence of alterations in proteins belonging to the complement and coagulation protein systems, including the coagulation, anticoagulation, and fibrinolytic pathways and their dysregulation in psychosis, into a consolidated mechanism that could be integral to the progression and manifestation of psychosis. We consolidate the findings of altered blood proteins relevant for progression to psychotic disorders, using data from longitudinal studies of the general population in addition to clinical high-risk (CHR) individuals transitioning to psychotic disorder. These are compared to markers identified from first-episode psychosis and schizophrenia as well as other psychosis spectrum disorders. We propose the novel hypothesis that altered complement and coagulation plasma levels enhance their pathways' activating capacities, while low levels observed in key regulatory components contribute to excessive activation observed in patients. This hypothesis will require future testing through a range of experimental paradigms, and if upheld, complement and coagulation pathways or specific proteins could be useful diagnostic or prognostic tools and targets for early intervention and preventive strategies.
Collapse
Affiliation(s)
- Meike Heurich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| | - Melanie Föcking
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Mongan
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gerard Cagney
- grid.7886.10000 0001 0768 2743School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - David R. Cotter
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
206
|
McLarnon JG. A Leaky Blood–Brain Barrier to Fibrinogen Contributes to Oxidative Damage in Alzheimer’s Disease. Antioxidants (Basel) 2021; 11:antiox11010102. [PMID: 35052606 PMCID: PMC8772934 DOI: 10.3390/antiox11010102] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
The intactness of blood–brain barrier (BBB) is compromised in Alzheimer’s disease (AD). Importantly, evidence suggests that the perturbation and abnormalities appearing in BBB can manifest early in the progression of the disease. The disruption of BBB allows extravasation of the plasma protein, fibrinogen, to enter brain parenchyma, eliciting immune reactivity and response. The presence of amyloid-β (Aβ) peptide leads to the formation of abnormal aggregates of fibrin resistant to degradation. Furthermore, Aβ deposits act on the contact system of blood coagulation, altering levels of thrombin, fibrin clots and neuroinflammation. The neurovascular unit (NVU) comprises an ensemble of brain cells which interact with infiltrating fibrinogen. In particular, interaction of resident immune cell microglia with fibrinogen, fibrin and Aβ results in the production of reactive oxygen species (ROS), a neurotoxic effector in AD brain. Overall, fibrinogen infiltration through a leaky BBB in AD animal models and in human AD tissue is associated with manifold abnormalities including persistent fibrin aggregation and clots, microglial-mediated production of ROS and diminished viability of neurons and synaptic connectivity. An objective of this review is to better understand how processes associated with BBB leakiness to fibrinogen link vascular pathology with neuronal and synaptic damage in AD.
Collapse
Affiliation(s)
- James G McLarnon
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada
| |
Collapse
|
207
|
Mehrdad R, Zahra K, Mansouritorghabeh H. Hemostatic System (Fibrinogen Level, D-Dimer, and FDP) in Severe and Non-Severe Patients With COVID-19: A Systematic Review and Meta-Analysis. Clin Appl Thromb Hemost 2021; 27:10760296211010973. [PMID: 34933579 PMCID: PMC8728788 DOI: 10.1177/10760296211010973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 in COVID-19 triggers abnormalities in coagulation parameters that can
contribute to thrombosis. The goals of this research were to determine the
levels of fibrinogen, D-dimer and FDP in COVID-19 patients. Following a
systematic study, among 1198 articles, 35 studies were included in the
meta-analysis of fibrinogen levels in both severe and non-severe groups. The
funnel plot, Egger’s regression asymmetry test, and Begg’s test used to measure
the bias of publications. All meta-analysis performed by comprehensive
meta-analysis version 2 (CMA2). The pooled findings of fibrinogen levels
revealed a significant rise in fibrinogen levels in severe COVID-19 than
non-severe patients with COVID-19. The D-dimer and FDP levels were significantly
higher in severe patients than non-severe patients with COVID-19 were. The
levels of fibrinogen, D-dimer, and FDP have increased significantly in ICU
patients compared to non-ICU patients. Although, levels of clotting parameters
do not always correlate with the severity of disease, these findings showed the
diagnostic importance for fibrinogen, D-dimer, and FDP in COVID-19. The presence
of a continuous rise in serial measurements of fibrinogen, D-dimer, and FDP may
predict that patients with COVID-19 may become critically ill.
Collapse
Affiliation(s)
- Rostami Mehrdad
- Laboratory Hematology and Blood Banking, Mashhad University of
Medical Sciences, Mashhad, Iran
| | - Khoshnegah Zahra
- Laboratory Hematology and Blood Banking, Mashhad University of
Medical Sciences, Mashhad, Iran
| | - Hassan Mansouritorghabeh
- Central Diagnostic Laboratories, Ghaem Hospital, Mashhad University
of Medical Sciences, Mashhad, Iran
- Hassan Mansouritorghabeh, PhD, Central
Diagnostic Laboratories, Ghaem Hospital, Mashhad University of Medical Sciences,
Mashhad, Iran.
| |
Collapse
|
208
|
Extension of the Human Fibrinogen Database with Detailed Clinical Information—The αC-Connector Segment. Int J Mol Sci 2021; 23:ijms23010132. [PMID: 35008554 PMCID: PMC8745514 DOI: 10.3390/ijms23010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Fibrinogen, an abundant plasma glycoprotein, is involved in the final stage of blood coagulation. Decreased fibrinogen levels, which may be caused by mutations, are manifested mainly in bleeding and thrombotic disorders. Clinically relevant mutations of fibrinogen are listed in the Human Fibrinogen Database. For the αC-connector (amino acids Aα240–410, nascent chain numbering), we have extended this database, with detailed descriptions of the clinical manifestations among members of reported families. This includes the specification of bleeding and thrombotic events and results of coagulation assays. Where available, the impact of a mutation on clotting and fibrinolysis is reported. The collected data show that the Human Fibrinogen Database reports considerably fewer missense and synonymous mutations than the general COSMIC and dbSNP databases. Homozygous nonsense or frameshift mutations in the αC-connector are responsible for most clinically relevant symptoms, while heterozygous mutations are often asymptomatic. Symptomatic subjects suffer from bleeding and, less frequently, from thrombotic events. Miscarriages within the first trimester and prolonged wound healing were reported in a few subjects. All mutations inducing thrombotic phenotypes are located at the identical positions within the consensus sequence of the tandem repeats.
Collapse
|
209
|
Albumin and fibrinogen kinetics in sepsis: a prospective observational study. Crit Care 2021; 25:436. [PMID: 34920728 PMCID: PMC8684235 DOI: 10.1186/s13054-021-03860-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022] Open
Abstract
Background The measurement of circulating substrate concentrations does not provide information about substrate kinetics. It, therefore, remains unclear if a decrease in plasma concentration of albumin, as seen during critical illness, is a consequence of suppressed production in the liver or increased peripheral clearance. In this study, using stable isotope tracer infusions, we measured albumin and fibrinogen kinetics in septic patients and in a control group of non-septic subjects. Methods With the approval from the institutional Research Ethics Board and after obtaining written informed consent from patients or their substitute decision maker, mechanically ventilated patients with sepsis and patients scheduled for elective coronary artery bypass grafting were enrolled. Patients in the non-sepsis group were studied on the day before surgery. The stable isotope L-[ring-2H5]phenylalanine was used to measure absolute synthesis rates (ASR) of albumin and fibrinogen. A priming dose of L-[ring-2H5]phenylalanine (4 µmol/kg) was given followed by a six-hour infusion at a rate of 0.15 µmol/kg/min. At baseline and hourly thereafter, blood was drawn to measure isotope enrichments by gas chromatography/mass spectrometry. Very low density lipoprotein apolipoprotein-B 100 isotopic enrichment was used to represent the isotopic enrichment of the phenylalanine precursor pool from which the liver synthesizes proteins. Plasma albumin and fibrinogen concentrations were also measured. Results Mean plasma albumin in septic patients was decreased when compared to non-septic patients, while synthesis rates were comparable. Mean plasma fibrinogen and ASR in septic patients was increased when compared to non-septic patients. In non-septic patients, no statistically significant correlation between plasma albumin and ASR was observed but plasma fibrinogen significantly correlated with ASR. In septic patients, plasma albumin and fibrinogen significantly correlated with ASR. Conclusions While septic patients showed lower plasma albumin levels than non-septic patients, albumin synthesis was similar in the two groups suggesting that hypoalbuminemia during sepsis was not caused by suppressed hepatic production but a result of enhanced clearance from the circulation. Hyperfibrinogenemia in septic patients was a consequence of increased fibrinogen production. Trial registration: ClinicalTrials.gov: NCT02865408 (registered on August 12, 2016) and ClinicalTrials.gov: NCT02549443 (registered on September 15, 2015). Supplementary Information The online version contains supplementary material available at 10.1186/s13054-021-03860-7.
Collapse
|
210
|
Wu S, Wu G, Wu H. A Comparison of Coagulation Function in Patients Receiving Aspirin and Cefoperazone-Sulbactam With and Without Vitamin K 1: A Retrospective, Observational Study. Clin Ther 2021; 43:e335-e345. [PMID: 34819242 DOI: 10.1016/j.clinthera.2021.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE The study objective was to explore whether prophylaxis with vitamin K1 improves abnormal coagulation function-associated cefoperazone-sulbactam in patients treated in the long term with low-dose aspirin. METHODS This retrospective, observational study assessed patients treated with long-term low-dose aspirin in a naval military hospital in China from 2004 to 2018, including all patients treated concurrently with cefoperazone-sulbactam with or without vitamin K1. Differences in the coagulation index were analyzed statistically before and after receipt of cefoperazone-sulbactam. FINDINGS The cohort included 227 patients. After cefoperazone-sulbactam treatment, the mean (SD) prothrombin time (PT) was 14.07 (3.07) seconds, activated partial thromboplastin time (aPTT) was 35.15 (4.78) seconds, and international normalized ratio (INR) was 1.49 (0.49) in the cefoperazone-sulbactam group, which was significantly higher than the PT of 11.55 (1.29), aPTT of 31.37 (2.20), and INR of 1.12 (0.35) before cefoperazone-sulbactam treatment. No significant difference was in the cefoperazone-sulbactam plus vitamin K1 group. In addition, no significant difference was found in the thrombin time or fibrinogen level between before and after cefoperazone-sulbactam treatment in both groups. The mean (SD) platelet counts of the 2 groups were 197.34 (71.82) × 109/L and 187.75 (72.66) × 1 09/L after cefoperazone-sulbactam treatment, respectively, which was significantly lower than 231.77 (77.05) × 109/L and 232.08 (84.48) × 109/L before cefoperazone-sulbactam treatment. There were greater proportions of coagulation disorders (prolongation of PT, aPTT, INR, and bleeding) after cefoperazone-sulbactam treatment in the cefoperazone-sulbactam group compared with that in the cefoperazone-sulbactam plus vitamin K1 group. IMPLICATIONS Results indicate that, after adding cefoperazone-sulbactam to the regimens of patients receiving long-term low-dose aspirin, therapy contributed to remarkable increase in abnormal coagulation function and coagulation disorders. Prophylaxis with vitamin K1 decreased the risk of these abnormalities in blood coagulation parameters associated with cefoperazone-sulbactam in patients taking long-term aspirin.
Collapse
Affiliation(s)
- Shuxie Wu
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Gao Wu
- Department of Pharmacy, First Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Hanbin Wu
- Clinical Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
211
|
Li Z, Liu Y, Lu T, Peng S, Liu F, Sun J, Xiang H. Acute effect of fine particulate matter on blood pressure, heart rate and related inflammation biomarkers: A panel study in healthy adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113024. [PMID: 34837873 PMCID: PMC8655618 DOI: 10.1016/j.ecoenv.2021.113024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 05/07/2023]
Abstract
Epidemiological evidence of short-term fine particulate matter (PM2.5) exposure on blood pressure (BP), heart rate (HR) and related inflammation biomarkers has been inconsistent. We aimed to explore the acute effect of PM2.5 on BP, HR and the mediation effect of related inflammation biomarkers. A total of 32 healthy college students were recruited to perform 4 h of exposure at two sites with different PM2.5 concentrations in Wuhan between May 2019 and June 2019. The individual levels of PM2.5 concentration, BP and HR were measured hourly for each participant. Blood was drawn from each participant after each visit and we measured the levels of inflammation markers, including serum high-sensitivity C-reactive protein and plasma fibrinogen. Linear mixed-effect models were to explore the acute effect of PM2.5 exposure on BP, HR, and related inflammation biomarkers. In addition, we evaluated related inflammation biomarkers as the mediator in the association of PM2.5 and cardiovascular health indicators. The results showed that a 10 μg/m3 increment in PM2.5 concentration was associated with an increase of 0.84 (95% CI: 0.54, 1.15) beats/min (bpm) in HR and a 3.52% (95% CI: 1.60%, 5.48%) increase in fibrinogen. The lag effect model showed that the strongest effect on HR was observed at lag 3 h of PM2.5 exposure [1.96 bpm (95% CI: 1.19, 2.75)], but for fibrinogen, delayed exposure attenuated the association. Increased fibrinogen levels may account for 39.07% (P = 0.44) of the elevated HR by PM2.5. Null association was observed when it comes to short-term PM2.5 exposure and BP. Short-term exposure to PM2.5 was associated with elevated HR and increased fibrinogen levels. But our finding was not enough to suggest that exposure to PM2.5 might induce adverse cardiovascular effects by the pathway of inflammation.
Collapse
Affiliation(s)
- Zhaoyuan Li
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Yisi Liu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Tianjun Lu
- Department of Earth Science and Geography, California State University Dominguez Hills, 1000 E. Victoria St, Carson, CA 90747, USA
| | - Shouxin Peng
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Feifei Liu
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Jinhui Sun
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Hao Xiang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China.
| |
Collapse
|
212
|
Uchio R, Kawasaki K, Okuda-Hanafusa C, Saji R, Muroyama K, Murosaki S, Yamamoto Y, Hirose Y. Curcuma longa extract improves serum inflammatory markers and mental health in healthy participants who are overweight: a randomized, double-blind, placebo-controlled trial. Nutr J 2021; 20:91. [PMID: 34774052 PMCID: PMC8590273 DOI: 10.1186/s12937-021-00748-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Background The dietary spice Curcuma longa, also known as turmeric, has various biological effects. Both a water extract and a supercritical carbon dioxide extract of C. longa showed anti-inflammatory activities in animal studies. However, the anti-inflammatory effect in humans of a mixture of these two C. longa extracts (CLE) is poorly understood. Therefore, we investigated the effect of CLE containing anti-inflammatory turmeronols on chronic inflammation and general health. Methods We performed a randomized, double-blind, placebo-controlled study in healthy subjects aged 50 to 69 years with overweight. Participants took two capsules containing CLE (CLE group, n = 45) or two placebo capsules (placebo group, n = 45) daily for 12 weeks, and serum inflammatory markers were measured. Participants also completed two questionnaires: the Medical Outcomes Study (MOS) 36-Item Short-Form Health Survey (SF-36) and the Profile of Mood States (POMS) scale. Treatment effects were analyzed by two way analysis of variance followed by a t test (significance level, p < 0.05). Results After the intervention, the CLE group had a significantly lower body weight (p < 0.05) and body mass index (p < 0.05) than the placebo group and significantly lower serum levels of C-reactive protein (p < 0.05) and complement component 3 (p < 0.05). In addition, the CLE group showed significant improvement of the MOS SF-36 mental health score (p < 0.05) and POMS anger-hostility score (p < 0.05). Conclusion CLE may ameliorate chronic low-grade inflammation and thus help to improve mental health and mood disturbance. Trial registration UMIN-CTR, UMIN000037370. Registered 14 July 2019, https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000042607 Supplementary Information The online version contains supplementary material available at 10.1186/s12937-021-00748-8.
Collapse
Affiliation(s)
- Ryusei Uchio
- Research & Development Institute, House Wellness Foods Corp., 3-20 Imoji, Itami, Hyogo, 664-0011, Japan.
| | - Kengo Kawasaki
- Research & Development Institute, House Wellness Foods Corp., 3-20 Imoji, Itami, Hyogo, 664-0011, Japan
| | - Chinatsu Okuda-Hanafusa
- Research & Development Institute, House Wellness Foods Corp., 3-20 Imoji, Itami, Hyogo, 664-0011, Japan
| | - Ryosuke Saji
- Research & Development Institute, House Wellness Foods Corp., 3-20 Imoji, Itami, Hyogo, 664-0011, Japan
| | - Koutarou Muroyama
- Research & Development Institute, House Wellness Foods Corp., 3-20 Imoji, Itami, Hyogo, 664-0011, Japan
| | - Shinji Murosaki
- Research & Development Institute, House Wellness Foods Corp., 3-20 Imoji, Itami, Hyogo, 664-0011, Japan
| | - Yoshihiro Yamamoto
- Research & Development Institute, House Wellness Foods Corp., 3-20 Imoji, Itami, Hyogo, 664-0011, Japan
| | - Yoshitaka Hirose
- Research & Development Institute, House Wellness Foods Corp., 3-20 Imoji, Itami, Hyogo, 664-0011, Japan
| |
Collapse
|
213
|
Abstract
In this issue of Immunity, Vega-Pérez et al. (2021) reveal the formation of a dynamic multicellular aggregate within a fibrin scaffold consisting of large peritoneal macrophages, B1 cells, neutrophils, and monocytes during antibacterial immunity in the peritoneum. Anticoagulants targeting thrombin or peritoneal macrophage depletion by clodronate impaired efficient control of E. coli infection.
Collapse
|
214
|
Onishi T, Ishihara T, Nogami K. Coagulation and fibrinolysis balance in disseminated intravascular coagulation. Pediatr Int 2021; 63:1311-1318. [PMID: 33660897 DOI: 10.1111/ped.14684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Sepsis is a common underlying disease associated with disseminated intravascular coagulation (DIC). We have recently determined hemostatic pathological states at diagnosis through simultaneous assessment of coagulation and fibrinolysis potentials in sepsis-associated DIC using clot-fibrinolysis waveform analysis. Here we aimed to investigate hemostatic pathological states, focusing on the balance between coagulation and fibrinolysis dynamics during the clinical course in pediatric sepsis-associated DIC. METHODS Coagulation and fibrinolysis potential functions in three pediatric patients with sepsis-associated DIC during their clinical course were quantified using clot-fibrinolysis waveform analysis. A maximum coagulation velocity (|min1|) and maximum fibrinolysis velocity (|FL-min1|) was calculated as a ratio relative to normal plasma. RESULTS In case 1, coagulation-enhanced and fibrinolysis-depressed state (|min1|-ratio 2.22 and |FL-min1|-ratio 0.42) was observed on day 1. This discrepancy significantly reduced after anticoagulant therapy and plasma exchange on day 2. A well-balanced hemostatic state (0.70 and 0.62, respectively) was restored on day 7. In case 2, fibrinolysis-impaired state (|min1|-ratio 1.09 and |FL-min1|-ratio 0.21) was seen on day 1. The |min1| ratio was slightly prolonged and the |FL-min1| ratio was severely decreased. Both were restored on day 7 and returned to normal levels on day 12. In case 3, twofold coagulation- and fibrinolysis-enhanced states (|min1|-ratio 1.99 and |FL-min1|-ratio 1.11) were seen on day 1. However, both potentials rapidly decreased on day 2 (0.49 and 0.0, respectively). She died on day 5. CONCLUSIONS The hemostatic pathological states in sepsis-associated DIC depend on disease progression. Comprehensive assessment of coagulation-fibrinolysis potentials over time may therefore be helpful in considering optimal treatment plans for sepsis-associated DIC.
Collapse
Affiliation(s)
- Tomoko Onishi
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| | - Takashi Ishihara
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| | - Keiji Nogami
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
215
|
McCord JM, Hybertson BM, Cota-Gomez A, Gao B. Nrf2 activator PB125® as a carnosic acid-based therapeutic agent against respiratory viral diseases, including COVID-19. Free Radic Biol Med 2021; 175:56-64. [PMID: 34058321 PMCID: PMC8413148 DOI: 10.1016/j.freeradbiomed.2021.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022]
Abstract
PB125® is a phytochemical composition providing potent Nrf2 activation as well as a number of direct actions that do not involve Nrf2. Nrf2 is a transcription actor that helps maintain metabolic balance by providing redox-sensitive expression of numerous genes controlling normal day-to-day metabolic pathways. When ordinary metabolism is upset by extraordinary events such as injury, pathogenic infection, air or water pollution, ingestion of toxins, or simply by the slow but incessant changes brought about by aging and genetic variations, Nrf2 may also be called into action by the redox changes resulting from these events, whether acute or chronic. A complicating factor in all of this is that Nrf2 levels decline with aging, leaving the elderly less able to maintain proper redox balance. The dysregulated gene expression that results can cause or exacerbate a wide variety of pathological conditions, including susceptibility to viral infections. This review examines the characteristics desirable in Nrf2 activators that have therapeutic potential, as well as some of the patterns of dysregulated gene expression commonly observed during pulmonary infections and the normalizing effects possible by judicious use of phytochemicals to increase the activation level of available Nrf2.
Collapse
Affiliation(s)
- Joe M McCord
- Pathways Bioscience, Aurora, CO, 80045, USA; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Brooks M Hybertson
- Pathways Bioscience, Aurora, CO, 80045, USA; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Adela Cota-Gomez
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO, 80045, USA; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
216
|
Larson EA, Larson HJ, Taylor JA, Klein RF. Deletion of Coagulation Factor IX Compromises Bone Mass and Strength: Murine Model of Hemophilia B (Christmas Disease). Calcif Tissue Int 2021; 109:577-585. [PMID: 34117910 PMCID: PMC8484143 DOI: 10.1007/s00223-021-00872-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/02/2021] [Indexed: 11/04/2022]
Abstract
Osteopenia and osteoporosis have increasingly become a recognized morbidity in those persons with hemophilia (PwH) receiving inadequate prophylactic clotting factor replacement. Animal models can control or eliminate genetic and environmental factors and allow for invasive testing not clinically permissible. Here, we describe the skeletal phenotype of juvenile and adult male mice with a genetically engineered deficiency in coagulation factor IX (FIX KO). Although the somatic growth of FIX KO mice matched that of their wild-type (WT) littermates at 10 and 20 weeks of age, the FIX KO mice displayed reduced bone mineral density (BMD), reduced cortical and cancellous bone mass, and diminished whole bone fracture resistance. These findings coupled with parallel observations in a murine model of hemophilia A (FVIII deficiency) point to an effector downstream of the coagulation cascade that is necessary for normal skeletal development. Further study of potential mechanisms underlying the bone disease observed in rare clotting factor deficiency syndromes may lead to new diagnostic and therapeutic insights for metabolic bone diseases in general.
Collapse
Affiliation(s)
- Emily A Larson
- Portland Veterans Affairs Research Foundation, Portland, OR, USA
| | - Hillary J Larson
- Portland Veterans Affairs Research Foundation, Portland, OR, USA
| | - Jason A Taylor
- The Hemophilia Center, Oregon Health & Science University, Portland, OR, USA
| | - Robert F Klein
- Medical Research Service, Portland Veterans Affairs Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA.
- Division of Endocrinology, Diabetes & Clinical Nutrition, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
217
|
Amaihunwa K, Etim EA, Osime E, Jeremiah ZA. Effect of Obesity on Soluble Vascular Cell–Adhesion Molecules, Fibrinogen, and von Willebrand Factor Antigen among Obese People in Sapele, Southern Nigeria. PATHOLOGY AND LABORATORY MEDICINE INTERNATIONAL 2021. [DOI: 10.2147/plmi.s328891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
218
|
Yan J, Xie K, Jiang X, Han X, Wang L, Yan M. D-dimer for diagnosis of periprosthetic joint infection: A meta-analysis. J Orthop Sci 2021; 26:1036-1042. [PMID: 33127211 DOI: 10.1016/j.jos.2020.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/19/2020] [Accepted: 09/26/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The D-dimer test is easily available to detect periprosthetic joint infection (PJI). This study aimed to estimate the diagnostic accuracy of the D-dimer test in PJI diagnosis and identify possible independent factors affecting the diagnostic value of this test. METHODS MEDLINE and EMBASE databases identified literature until February 2020 that utilized the D-dimer test for PJI diagnosis. The pooled sensitivity, specificity, area under the curve (AUC), diagnostic odds ratio (DOR), positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were calculated to evaluate the diagnostic accuracy of the D-dimer test. Meta-regression and subgroup analyses were performed to assess potential heterogeneity. RESULTS The databases identified 243 records, and eight studies were included in the final analysis. The pooled sensitivity and specificity of the D-dimer test for PJI diagnosis were 0.78 (95% confidence interval [CI], 0.69-0.84) and 0.74 (95% CI, 0.85-0.99), respectively. The AUCs and DORs of the D-dimer test were 0.83 (95% CI, 0.79-0.86) and 10 (95% CI, 4-24), respectively. The PLR and NLR of the D-dimer test for PJI detection were 3.0 (95% CI, 1.9-4.8) and 0.30 (95% CI, 0.20-0.47), respectively. The results of the meta-regression and subgroup analyses indicated that studies that excluded patients with hypercoagulation disorder had higher sensitivity (0.85 vs 0.86) and specificity (0.83 vs 0.62). The sensitivity of the D-dimer test also improved in studies that excluded patients with inflammatory arthritis (0.81 vs 0.75). CONCLUSION The D-dimer test is a practical method for PJI diagnosis, especially in patients without history of hypercoagulation disorder and inflammatory arthritis.
Collapse
Affiliation(s)
- Jiren Yan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Kai Xie
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xu Jiang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuequan Han
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liao Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengning Yan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
219
|
Hou HQ, Xiang XL, Pan YS, Zhang QH, Li H, Meng X, Wang YJ. Baseline or 90-day fibrinogen levels and long-term outcomes after ischemic stroke or TIA: Results from the China national stroke registry Ⅲ. Atherosclerosis 2021; 337:35-41. [PMID: 34757269 DOI: 10.1016/j.atherosclerosis.2021.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS Elevated fibrinogen levels have been observed in patients with acute ischemic stroke, but the association of fibrinogen with stroke outcomes is still undefined. We aimed to assess the association between baseline or 90-day fibrinogen levels and long-term outcomes in patients with ischemic stroke or transient ischemic attack (TIA). METHODS Using data from the China National Stroke Registry Ⅲ, this substudy included 10 518 patients within 7 days (baseline) of onset and 6268 patients at 90 days of recovery. Multivariate Cox regression and logistic regression analyses were used to assess the associations of fibrinogen with poor functional outcome (modified Rankin Scale score 3-6), dependence (modified Rankin Scale score 3-5), all-cause death, and stroke recurrence at 1 year. RESULTS Fibrinogen levels at 90 days were higher than those at baseline (443.5 mg/dl versus 393.7 mg/dl; p < 0.001). A high baseline fibrinogen level was associated with poor functional outcome (odds ratio [OR], 1.63; 95% confidence interval [CI], 1.35-1.97) and dependence (OR, 1.68; 95% CI, 1.36-2.09) after adjusting for all confounding risk factors. In contrast, further adjustment for high-sensitivity C-reactive protein attenuated the association between baseline fibrinogen level and all-cause death or stroke recurrence. Furthermore, a high 90-day fibrinogen level was also associated with poor functional outcome (OR, 1.46; 95% CI, 1.07-2.00) and dependence (OR, 1.43; 95% CI, 1.03-1.98) after adjusting for all confounding risk factors. CONCLUSIONS High baseline and 90-day fibrinogen levels were associated with outcomes in patients with ischemic stroke or TIA.
Collapse
Affiliation(s)
- Hui-Qing Hou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Stroke, Beijing Institute for Brain Disorders, China; Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiang-Long Xiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Stroke, Beijing Institute for Brain Disorders, China
| | - Yue-Song Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Stroke, Beijing Institute for Brain Disorders, China
| | - Qi-Hui Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Dongfang Hospital, Beijing Chinese Medical University, Beijing, China
| | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Stroke, Beijing Institute for Brain Disorders, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Stroke, Beijing Institute for Brain Disorders, China
| | - Yong-Jun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Stroke, Beijing Institute for Brain Disorders, China.
| |
Collapse
|
220
|
Gavriilaki E, Eftychidis I, Papassotiriou I. Update on endothelial dysfunction in COVID-19: severe disease, long COVID-19 and pediatric characteristics. J LAB MED 2021. [DOI: 10.1515/labmed-2021-0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Objectives
To review current literature on the role of endothelial dysfunction in coronavirus disease-2019 (COVID-19) infection in terms of pathophysiology, laboratory features and markers, clinical phenotype in adults and children, as well as long COVID-19.
Content
We conducted a thorough assessment of the literature and critically analyzed current data, mostly utilizing the PubMed and Medline search engines to find original studies published in the previous decade.
Summary and Outlook
Accumulating evidence suggests that endothelial dysfunction may be a common denominator of severe COVID-19 in adults and children, as well as long COVID-19, implicating mutual pathophysiological pathways. This narrative review summarizes the up-to-date knowledge of endothelial dysfunction caused by COVID-19, including novel aspects of long COVID-19 and pediatric disease. This knowledge is important in order not only to understand the multisystemic attack of COVID-19, but also to improve patient management and prognosis.
Collapse
Affiliation(s)
- Eleni Gavriilaki
- Hematology Department – BMT Unit , G. Papanikolaou Hospital , Thessaloniki , Greece
| | - Ioannis Eftychidis
- Hematology Department – BMT Unit , G. Papanikolaou Hospital , Thessaloniki , Greece
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry , “Aghia Sophia” Children’s Hospital , Athens , Greece
- IFCC Emerging Technologies Division , Emerging Technologies in Pediatric Laboratory Medicine (C-ETPLM) , Milan , Italy
| |
Collapse
|
221
|
Ryu JK, Sozmen EG, Dixit K, Montano M, Matsui Y, Liu Y, Helmy E, Deerinck TJ, Yan Z, Schuck R, Acevedo RM, Spencer CM, Thomas R, Pico AR, Zamvil SS, Lynch KL, Ellisman MH, Greene WC, Akassoglou K. SARS-CoV-2 spike protein induces abnormal inflammatory blood clots neutralized by fibrin immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34671772 DOI: 10.1101/2021.10.12.464152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Blood clots are a central feature of coronavirus disease-2019 (COVID-19) and can culminate in pulmonary embolism, stroke, and sudden death. However, it is not known how abnormal blood clots form in COVID-19 or why they occur even in asymptomatic and convalescent patients. Here we report that the Spike protein from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to the blood coagulation factor fibrinogen and induces structurally abnormal blood clots with heightened proinflammatory activity. SARS-CoV-2 Spike virions enhanced fibrin-mediated microglia activation and induced fibrinogen-dependent lung pathology. COVID-19 patients had fibrin autoantibodies that persisted long after acute infection. Monoclonal antibody 5B8, targeting the cryptic inflammatory fibrin epitope, inhibited thromboinflammation. Our results reveal a procoagulant role for the SARS-CoV-2 Spike and propose fibrin-targeting interventions as a treatment for thromboinflammation in COVID-19. One-Sentence Summary SARS-CoV-2 spike induces structurally abnormal blood clots and thromboinflammation neutralized by a fibrin-targeting antibody.
Collapse
|
222
|
Müller MCA, Dujardin RWG, Thachil J, van Mierlo G, Zeerleder SS, Juffermans NP. The relation between fibrinogen level, neutrophil activity and nucleosomes in the onset of disseminated intravascular coagulation in the critically ill. J Intern Med 2021; 290:922-927. [PMID: 34137469 DOI: 10.1111/joim.13346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Nucleosomes and neutrophil extracellular traps (NETs) are important in the pathophysiology of disseminated intravascular coagulation (DIC). Fibrinogen, as an acute phase reactant, may be protective by engaging neutrophils. We hypothesize that DIC can occur when NET formation becomes uncontrolled in relation to low fibrinogen levels. PATIENTS/METHOD The ratio of both circulating nucleosomes and human neutrophil elastase alpha-1-antitrypsine complexes (HNE-a1ATc) to fibrinogen was correlated to thrombocytopenia, DIC and organ failure in 64 critically ill coagulopathic patients. RESULTS A high nucleosome to fibrinogen ratio correlated with thrombocytopenia and organ failure (ρ -0.391, p 0.01 and ρ 0.556, p 0.01, respectively). A high HNE-a1ATc to fibrinogen ratio correlated with thrombocytopenia, DIC and organ failure (ρ -0.418, p 0.01, ρ 0.391, p 0.01 and ρ 0.477, p 0.01 respectively). CONCLUSION These findings support the hypothesis that fibrinogen is protective against DIC by counterbalancing excessive neutrophil activation.
Collapse
Affiliation(s)
- Marcella C A Müller
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Romein W G Dujardin
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jecko Thachil
- Department of Hematology, Manchester Royal Infirmary, Manchester, United Kingdom
| | | | - Sacha S Zeerleder
- Sanquin Research, Amsterdam, The Netherlands.,Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, and Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Onze Lieve Vrouwe Gasthuis Hospital, Amsterdam, The Netherlands
| |
Collapse
|
223
|
Chen Y, Cao F, Xiao JP, Fang XY, Wang XR, Ding LH, Wang DG, Pan HF. Emerging role of air pollution in chronic kidney disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52610-52624. [PMID: 34448134 DOI: 10.1007/s11356-021-16031-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Chronic kidney disease (CKD), a global disease burden related to high rates of incidence and mortality, manifests as progressive and irretrievable nephron loss and decreased kidney regeneration capacity. Emerging studies have suggested that exposure to air pollution is closely relevant to increased risk of CKD, CKD progression and end-stage kidney disease (ESKD). Inhaled airborne particles may cause vascular injury, intraglomerular hypertension, or glomerulosclerosis through non-hemodynamic and hemodynamic factors with multiple complex interactions. The mechanisms linking air pollutants exposure to CKD include elevated blood pressure, worsening oxidative stress and inflammatory response, DNA damage and abnormal metabolic changes to aggravate kidney damage. In the present review, we will discuss the epidemiologic observations linking air pollutants exposure to the incidence and progression of CKD. Then, we elaborate the potential roles of several air pollutants including particulate matter and gaseous co-pollutants, environmental tobacco smoke, and gaseous heavy metals in its pathogenesis. Finally, this review outlines the latent effect of air pollution in ESKD patients undergoing dialysis or renal transplant, kidney cancer and other kidney diseases. The information obtained may be beneficial for further elucidating the pathogenesis of CKD and making proper preventive strategies for this disease.
Collapse
Affiliation(s)
- Yue Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Fan Cao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China
| | - Jian-Ping Xiao
- Department of Nephrology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin-Yu Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Xue-Rong Wang
- Department of Nephrology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li-Hong Ding
- Department of Nephrology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - De-Guang Wang
- Department of Nephrology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
224
|
Gatt D, Ben-Shimol S, Hazan G, Golan Tripto I, Goldbart A, Aviram M. Comparison of septic and nonseptic pulmonary embolism in children. Pediatr Pulmonol 2021; 56:3395-3401. [PMID: 34379881 DOI: 10.1002/ppul.25604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Septic pulmonary embolism (SPE) in children is a rare disease. Data are scarce regarding the clinical and laboratory manifestation of SPE compared with nonseptic pulmonary embolism (ns-PE). Furthermore, specific guidelines for the management of SPE in children are lacking. AIM We compared the clinical course and outcome of children with SPE and ns-PE. METHODS A retrospective, cohort study of hospitalized children, 2005-2020, with documented pulmonary embolism imaging. RESULTS Sixteen children (eight SPE, eight ns-PE) were identified. Episodes of SPE occurred secondary to endocarditis, musculoskeletal and soft tissue infections, with Staphylococcus aureus (n = 4) and streptococcus spp. (n = 2) as the most common pathogens. Radiographically, SPE presented as a microvascular disease with parenchymatic nodules/cavitations, whereas ns-PE presented as larger vessel disease with filling defects. Risk factors (including thrombophilia) were noted in 0% and 87.5% of SPE and ns-PE patients, respectively (p < .01). Pulmonary embolism diagnosis was delayed in SPE compared with ns-PE (median: 8.5 days vs. 1 day). The SPE group had higher rates of fever (100% vs. 12.5%, p < .01), C-reactive protein (CRP levels; 18.49 vs. 4.37 mg/dl, p = .02), and fibrinogen levels (880 vs. 467 mg/dl, p < .001). Antithrombotic treatment for >4 months was administrated to 14.3% and 87.5% of SPE and ns-PE patients, respectively (p < .01). One ns-PE patient had a second thromboembolic event compared to none in the SPE group. CONCLUSIONS SPE in children is a unique subgroup of PE with different clinical and laboratory findings that requires a different diagnostic approach and probably shorter duration of antithrombotic treatment.
Collapse
Affiliation(s)
- Dvir Gatt
- Department of Pediatrics, Soroka University Medical Center, Beer Sheva, Israel.,Pediatric Pulmonary Unit, Soroka University Medical Center, Beer Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shalom Ben-Shimol
- Infectious Disease Unit, Soroka University Medical Center, Beer Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Guy Hazan
- Pediatric Pulmonary Unit, Soroka University Medical Center, Beer Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Inbal Golan Tripto
- Department of Pediatrics, Soroka University Medical Center, Beer Sheva, Israel.,Pediatric Pulmonary Unit, Soroka University Medical Center, Beer Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Aviv Goldbart
- Department of Pediatrics, Soroka University Medical Center, Beer Sheva, Israel.,Pediatric Pulmonary Unit, Soroka University Medical Center, Beer Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Micha Aviram
- Department of Pediatrics, Soroka University Medical Center, Beer Sheva, Israel.,Pediatric Pulmonary Unit, Soroka University Medical Center, Beer Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
225
|
Pronto-Laborinho AC, Lopes CS, Conceição VA, Gromicho M, Santos NC, de Carvalho M, Carvalho FA. γ' Fibrinogen as a Predictor of Survival in Amyotrophic Lateral Sclerosis. Front Cardiovasc Med 2021; 8:715842. [PMID: 34568457 PMCID: PMC8458885 DOI: 10.3389/fcvm.2021.715842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/09/2021] [Indexed: 12/05/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an aggressive neurodegenerative disorder related to neuroinflammation that is associated with increased risk of thrombosis. We aimed to evaluate γ' fibrinogen plasma level (an in vivo variant of fibrinogen) as a biomarker in ALS, and to test its role as a predictor of disease progression and survival. Sixty-seven consecutive patients with ALS were followed and the results were compared with those from 82 healthy blood donors. Patients were clinically evaluated at the time of blood sampling and on follow-up (every 3 months for the beginning of the follow-up until death) by applying the revised ALS Functional Rating Scale. Human plasma γ' fibrinogen concentration was quantified using a specific two-site sandwich kit enzyme-linked immunosorbent assay. We found, for the first time, a positive association between γ' fibrinogen concentration and survival in ALS patients: patients with higher γ' fibrinogen plasma levels survived longer, and this finding was not influenced by confounders such as age, gender, respiratory impairment, or functionality (ALSFRS-R score). Since increased levels have a positive impact on outcome, this novel biomarker should be further investigated in ALS.
Collapse
Affiliation(s)
| | - Catarina S Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Vasco A Conceição
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Gromicho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mamede de Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon, Portugal
| | - Filomena A Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
226
|
Bajtay Z. Biologia Futura: stories about the functions of β 2-integrins in human phagocytes. Biol Futur 2021; 72:7-13. [PMID: 34554501 DOI: 10.1007/s42977-020-00063-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/21/2020] [Indexed: 01/12/2023]
Abstract
Integrins are essential membrane proteins that provide a tightly regulated link between the extracellular matrix and the intracellular cytoskeletal network. These cell surface proteins are composed of a non-covalently bound α chain and β chain. The leukocyte-specific complement receptor 3 (CR3, αMβ2, CD11b/CD18) and complement receptor 4 (CR4, αXβ2, CD11c/CD18) belong to the family of β2-integrins. These receptors bind multiple ligands like iC3b, ICAMs, fibrinogen or LPS, thus allowing them to partake in phagocytosis, cellular adhesion, extracellular matrix rearrangement and migration. CR3 and CR4 were generally expected to mediate identical functions due to their structural homology, overlapping ligand specificity and parallel expression on human phagocytes. Despite their similarities, the expression level and function of these receptors differ in a cell-type-specific manner, both under physiological and inflammatory conditions.We investigated comprehensively the individual role of CR3 and CR4 in various functions of human phagocytes, and we proved that there is a "division of labour" between these two receptors. In this review, I will summarize our current knowledge about this area.
Collapse
Affiliation(s)
- Zsuzsa Bajtay
- Institute of Biology, Department of Immunology and MTA-ELTE Immunology Research Group, Eötvös Loránd University, Pázmány P. s. 1/C, Budapest, H-1117, Hungary.
| |
Collapse
|
227
|
Seabrook N, Kedar A, Bills G, Sarker S, Rock WA, Pinkston C, Kedar A, Abell T. Inflammatory Markers and Mortality in Diabetic Versus Idiopathic Gastroparesis. Am J Med Sci 2021; 363:218-223. [PMID: 34555370 DOI: 10.1016/j.amjms.2021.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/05/2021] [Accepted: 07/28/2021] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Markers of systemic inflammation have been shown to be elevated in patients with gastroparesis (Gp). We hypothesized the presence of elevated markers of inflammation and/or coagulation can predict death in gastroparesis. METHODS Retrospective evaluation of 396 patients with symptoms of gastroparesis with baseline measures of inflammation and coagulation, using a database of patients from 2001 through 2011 followed for an additional 5 plus years. Patients were divided into two groups; diabetic (DM; n=137) and non-diabetic (non-DM; n=259). Inflammation, evaluated by C-reactive protein (CRP), and coagulation by fibrinogen by factor VIII assays, was compared to patient mortality, reported as death during the follow-up period. RESULTS Six DM and 13 non-DM patients died during the study period. DM patients had higher fibrinogen, CRP, and factor VIII levels of 454.0±135.2, 4.0±6.3, and 168±63.5, versus non-DM whose levels were 410.4±127.9, 2.6±4.9, 140.4±127.9, p=0.03, 0.001, and <0.001 respectively. Hypercoagulability risk differed by DM status (37% Vs. 29%, p=0.08). Compared to living non-DM, deceased non-DM/idiopathic patients had lower factor VIII (142.3±51.2 vs 117.7±40.3, p=0.07). The majority of deceased non-DM patients had abnormal fibrinogen (62%) but CRP and factor VIII were normal (80% and 85% respectively). CONCLUSIONS In this sample of 396 patients with symptoms of gastroparesis, systemic inflammation and coagulopathy appear related to diabetes mellitus. Patients who died had markers of inflammation and coagulation that differed from those still alive. Further analysis may suggest a link between inflammation, hypercoagulability, and the mechanism for mortality in gastroparesis or as a marker of disease severity.
Collapse
Affiliation(s)
- Nelson Seabrook
- Department of Internal Medicine, University of Louisville Medical Center, Louisville, KY
| | - Ashwini Kedar
- Institute of Liver and Biliary Sciences, New Delhi, India
| | - Gregory Bills
- Department of Internal Medicine, University of Louisville Medical Center, Louisville, KY
| | - Shabnam Sarker
- Department of Gastroenterology, Vanderbilt University, Nashville, TN
| | - William A Rock
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS
| | - Christina Pinkston
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Louisville, KY
| | - Archana Kedar
- Department of Internal Medicine, University of Louisville Medical Center, Louisville, KY
| | - Thomas Abell
- Department of Internal Medicine, University of Louisville Medical Center, Louisville, KY.
| |
Collapse
|
228
|
Deshayes de Cambronne R, Fouet A, Picart A, Bourrel AS, Anjou C, Bouvier G, Candeias C, Bouaboud A, Costa L, Boulay AC, Cohen-Salmon M, Plu I, Rambaud C, Faurobert E, Albigès-Rizo C, Tazi A, Poyart C, Guignot J. CC17 group B Streptococcus exploits integrins for neonatal meningitis development. J Clin Invest 2021; 131:136737. [PMID: 33465054 DOI: 10.1172/jci136737] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/13/2021] [Indexed: 12/28/2022] Open
Abstract
Group B Streptococcus (GBS) is the major cause of human neonatal infections. A single clone, designated CC17-GBS, accounts for more than 80% of meningitis cases, the most severe form of the infection. However, the events allowing blood-borne GBS to penetrate the brain remain largely elusive. In this study, we identified the host transmembrane receptors α5β1 and αvβ3 integrins as the ligands of Srr2, a major CC17-GBS-specific adhesin. Two motifs located in the binding region of Srr2 were responsible for the interaction between CC17-GBS and these integrins. We demonstrated in a blood-brain-barrier cellular model that both integrins contributed to the adhesion and internalization of CC17-GBS. Strikingly, both integrins were overexpressed during the postnatal period in the brain vessels of the blood-brain barrier and blood-cerebrospinal fluid barrier and contributed to juvenile susceptibility to CC17 meningitis. Finally, blocking these integrins decreased the ability of CC17-GBS to cross into the CNS of juvenile mice in an in vivo model of meningitis. Our study demonstrated that CC17-GBS exploits integrins in order to cross the brain vessels, leading to meningitis. Importantly, it provides host molecular insights into neonate's susceptibility to CC17-GBS meningitis, thereby opening new perspectives for therapeutic and prevention strategies of GBS-elicited meningitis.
Collapse
Affiliation(s)
| | - Agnès Fouet
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Amandine Picart
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Anne-Sophie Bourrel
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris, France
| | - Cyril Anjou
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Guillaume Bouvier
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, C3BI, Paris, France
| | - Cristina Candeias
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Abdelouhab Bouaboud
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Lionel Costa
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Anne-Cécile Boulay
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Martine Cohen-Salmon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Isabelle Plu
- Sorbonne Université/Département de Neuropathologie Raymond Escourolle - Hôpital Pitié-Salpêtrière - Assistance Publique-Hôpitaux de Paris, France
| | - Caroline Rambaud
- Université de Versailles Saint Quentin en Yvelines (Université Paris-Saclay)/Service d'anatomie-pathologique et médecine légale, Hôpital Raymond Poincaré, Garches, France
| | - Eva Faurobert
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, France/Université Grenoble Alpes, La Tronche, France
| | - Corinne Albigès-Rizo
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, France/Université Grenoble Alpes, La Tronche, France
| | - Asmaa Tazi
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris, France.,Centre National de Référence des Streptocoques, France
| | - Claire Poyart
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris, France.,Centre National de Référence des Streptocoques, France
| | - Julie Guignot
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| |
Collapse
|
229
|
Sulimai N, Brown J, Lominadze D. The Effects of Fibrinogen's Interactions with Its Neuronal Receptors, Intercellular Adhesion Molecule-1 and Cellular Prion Protein. Biomolecules 2021; 11:1381. [PMID: 34572594 PMCID: PMC8464854 DOI: 10.3390/biom11091381] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
Neuroinflammatory diseases, such as Alzheimer's disease (AD) and traumatic brain injury (TBI), are associated with the extravascular deposition of the fibrinogen (Fg) derivative fibrin and are accompanied with memory impairment. We found that during the hyperfibrinogenemia that typically occurs during AD and TBI, extravasated Fg was associated with amyloid beta and astrocytic cellular prion protein (PrPC). These effects coincided with short-term memory (STM) reduction and neurodegeneration. However, the mechanisms of a direct Fg-neuron interaction and its functional role in neurodegeneration are still unclear. Cultured mouse brain neurons were treated with Fg in the presence or absence of function-blockers of its receptors, PrPC or intercellular adhesion molecule-1 (ICAM-1). Associations of Fg with neuronal PrPC and ICAM-1 were characterized. The expression of proinflammatory marker interleukin 6 (IL-6) and the generation of reactive oxygen species (ROS), mitochondrial superoxide, and nitrite in neurons were assessed. Fg-induced neuronal death was also evaluated. A strong association of Fg with neuronal PrPC and ICAM-1, accompanied with overexpression of IL-6 and enhanced generation of ROS, mitochondrial superoxide, and nitrite as well as the resulting neuronal death, was found. These effects were reduced by blocking the function of neuronal PrPC and ICAM-1, suggesting that the direct interaction of Fg with its neuronal receptors can induce overexpression of IL-6 and increase the generation of ROS, nitrite, and mitochondrial superoxide, ultimately leading to neuronal death. These effects can be a mechanism of neurodegeneration and the resultant memory reduction seen during TBI and AD.
Collapse
Affiliation(s)
- Nurul Sulimai
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (N.S.); (J.B.)
| | - Jason Brown
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (N.S.); (J.B.)
| | - David Lominadze
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (N.S.); (J.B.)
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
230
|
Torun A, Çakırca TD, Çakırca G, Portakal RD. The value of C-reactive protein/albumin, fibrinogen/albumin, and neutrophil/lymphocyte ratios in predicting the severity of CoVID-19. ACTA ACUST UNITED AC 2021; 67:431-436. [PMID: 34468610 DOI: 10.1590/1806-9282.20200883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/01/2021] [Indexed: 01/14/2023]
Abstract
OBJECTIVE This retrospective study aimed to determine the predictive values of the C-reactive protein (CRP)/albumin ratio (CAR), fibrinogen/albumin ratio (FAR), and neutrophil/lymphocyte ratio (NLR) parameters, which reflect the systemic inflammatory status, for the severity of COVID-19. METHODS A total of 188 patients diagnosed with COVID-19 were enrolled in this study. Among them, 118 were in the severe group, and 70 were in the non-severe group. Levels of albumin, CRP, D-dimer, procalcitonin, fibrinogen, and hemoglobin; leukocyte, neutrophil, lymphocyte, and monocyte counts; and the FAR, CAR, and NLR were compared between the two groups. RESULTS The CAR, FAR, and NLR values were significantly higher in the severe group compared to the non-severe group. CAR, FAR, and NLR were positively correlated with leukocyte and neutrophil counts and CRP, procalcitonin, and fibrinogen levels. On the other hand, they were inversely correlated with monocyte (except for NLR) and lymphocyte counts. Receiver operator characteristic analysis showed that the area under the curve (AUC) for CAR, FAR, and NLR was 0.841, 0.737, and 0.802, respectively. CONCLUSIONS Our investigation revealed that the CAR, FAR, and NLR indices can be used to predict the severity of COVID-19, among which CAR was the best predictor of severe COVID-19.
Collapse
Affiliation(s)
- Ayşe Torun
- Şanliurfa Education and Research Hospital, Department of Infectious Diseases and Clinical Microbiology - Şanliurfa, Turkey
| | - Tuba Damar Çakırca
- Şanliurfa Education and Research Hospital, Department of Infectious Diseases and Clinical Microbiology - Şanliurfa, Turkey
| | - Gökhan Çakırca
- Sanliurfa Mehmet Akif Inan Training Research Hospital, Department of Biochemistry, - Şanliurfa, Turkey
| | - Reyhan Derya Portakal
- Sanliurfa Training and Research Hospital, Department of Chest Diseases - Sanliurfa, Turkey
| |
Collapse
|
231
|
Sigmund IK, Puchner SE, Windhager R. Serum Inflammatory Biomarkers in the Diagnosis of Periprosthetic Joint Infections. Biomedicines 2021; 9:biomedicines9091128. [PMID: 34572314 PMCID: PMC8467465 DOI: 10.3390/biomedicines9091128] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 11/23/2022] Open
Abstract
Accurate preoperative diagnosis of periprosthetic joint infections (PJIs) can be very challenging, especially in patients with chronic PJI caused by low-virulence microorganisms. Serum parameters, such as serum C-reactive protein (CRP) or the erythrocyte sedimentation rate (ESR), are—among other diagnostic test methods—widely used to distinguish septic from aseptic failure after total hip or knee arthroplasty and are recommended by the AAOS in the preoperative setting. However, they are systemic parameters, and therefore, unspecific. Nevertheless, they may be the first and occasionally the only preoperative indication, especially when clinical symptoms are lacking. They are easy to obtain, cheap, and are available worldwide. In the last decade, different novel serum biomarkers (percentage of neutrophils, neutrophils to lymphocytes ratio, platelet count to mean platelet volume ratio, fibrinogen, D-Dimer, Il-6, PCT) were investigated to find a more specific and accurate serum parameter in the diagnosis of PJI. This article reviews the diagnostic value of established (serum CRP, ESR, WBC) and ‘novel’ serum inflammatory biomarkers (fibrinogen, D-dimer, interleukin-6 (IL-6), procalcitonin, percentage of neutrophils (%N), neutrophils to lymphocytes ratio (NLR), platelet count to mean platelet volume ratio (PC/mPV)) for the preoperative diagnosis of periprosthetic joint infections.
Collapse
|
232
|
Liang X, Wu T, Chen Q, Jiang J, Jiang Y, Ruan Y, Zhang H, Zhang S, Zhang C, Chen P, Lv Y, Xin J, Shi D, Chen X, Li J, Xu Y. Serum proteomics reveals disorder of lipoprotein metabolism in sepsis. Life Sci Alliance 2021; 4:4/10/e202101091. [PMID: 34429344 PMCID: PMC8385306 DOI: 10.26508/lsa.202101091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
This study illustrated that lipoprotein and lipid metabolism might play a significant role in patients with sepsis and that complement activation was significantly enriched in patients with sepsis-associated encephalopathy. Sepsis is defined as an organ dysfunction syndrome and it has high mortality worldwide. This study analysed the proteome of serum from patients with sepsis to characterize the pathological mechanism and pathways involved in sepsis. A total of 59 patients with sepsis were enrolled for quantitative proteomic analysis. Weighted gene co-expression network analysis (WGCNA) was performed to construct a co-expression network specific to sepsis. Key regulatory modules that were detected were highly correlated with sepsis patients and related to multiple functional groups, including plasma lipoprotein particle remodeling, inflammatory response, and wound healing. Complement activation was significantly associated with sepsis-associated encephalopathy. Triglyceride/cholesterol homeostasis was found to be related to sepsis-associated acute kidney injury. Twelve hub proteins were identified, which might be predictive biomarkers of sepsis. External validation of the hub proteins showed their significantly differential expression in sepsis patients. This study identified that plasma lipoprotein processes played a crucial role in sepsis patients, that complement activation contributed to sepsis-associated encephalopathy, and that triglyceride/cholesterol homeostasis was associated with sepsis-associated acute kidney injury.
Collapse
Affiliation(s)
- Xi Liang
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Tianzhou Wu
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jing Jiang
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongpo Jiang
- Department of Intensive Care Unit, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Yanyun Ruan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Huaping Zhang
- Department of Intensive Care Unit, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Sheng Zhang
- Department of Intensive Care Unit, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Chao Zhang
- Department of Intensive Care Unit, Taizhou Enze Medical Center (Group) Enze Hospital, Taizhou, China
| | - Peng Chen
- Department of Intensive Care Unit, Taizhou Enze Medical Center (Group) Enze Hospital, Taizhou, China
| | - Yuhang Lv
- Department of Intensive Care Unit, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jiaojiao Xin
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongyan Shi
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China .,Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Li
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China .,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinghe Xu
- Department of Intensive Care Unit, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
233
|
Xue L, Tao L, Li X, Wang Y, Wang B, Zhang Y, Gao N, Dong Y, Xu N, Xiong C, Zhou T, Liu Z, Liu H, He J, Li K, Geng Y, Li M. Plasma fibrinogen, D-dimer, and fibrin degradation product as biomarkers of rheumatoid arthritis. Sci Rep 2021; 11:16903. [PMID: 34413382 PMCID: PMC8377052 DOI: 10.1038/s41598-021-96349-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/30/2021] [Indexed: 12/29/2022] Open
Abstract
This study aimed to assess the association of coagulation-related indicators such as plasma fibrinogen (FIB), D-dimer, and fibrin degradation product (FDP) in rheumatoid arthritis (RA) with the disease activity. Data from 105 RA patients and 102 age- and gender-matched healthy controls were collected in the retrospective study. Disease activity score in 28 joints based on C-reactive protein (DAS28-CRP) was used to divide RA patients into low activity group (DAS28-CRP ≤ 2.7) and active group (DAS28-CRP > 2.7). Receiver operating characteristic (ROC) curve was applied to determine area under the curve (AUC). The association between plasma FIB, D-dimer, and FDP and DAS28-CRP was evaluated by spearman correlation. Logistical regression analysis was used to identify the independent variables associated with RA disease activity. RA patients showed higher levels of plasma FIB, D-dimer, and FDP than the controls (P < 0.01). Plasma FIB, D-dimer, and FDP were also increased in active groups of RA patients than those in inactive groups (P < 0.001). ROC curve analyses revealed that the AUC of D-dimer was higher than erythrocyte sedimentation rate (ESR) and rheumatoid factor (RF), and that of FDP was higher than RF in RA patients. In addition, the optimal cut-off value of plasma FIB, D-dimer, and FDP for RA diagnosis was 286 mg/dL, 470 μg/L, and 1.45 mg/L, respectively. Spearman analysis showed that plasma FIB, D-dimer, and FDP were positively related with DAS28-CRP (P < 0.001) in RA patients. Logistical regression analysis showed that D-dimer (odds ratio 2.862, 95% confidence interval 1.851-5.426, P < 0.001) was an independent variable associated with RA disease activity. FIB, D-dimer, and FDP were increased in RA patients and positively correlated with the disease activity of RA. D-dimer may act as a novel inflammatory indice for indicating disease activity in RA patients.
Collapse
Affiliation(s)
- Li Xue
- Department of Clinical Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Li Tao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xueyi Li
- Department of Rheumatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yan Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Biao Wang
- Department of Immunology and Pathogenic Biology, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanping Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ning Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yanying Dong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Nan Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Chaoliang Xiong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ting Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zeshi Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hailong Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Juntao He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- National Local Joint Engineering Research Centre of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Yan Geng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Ming Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
234
|
Ghorbani S, Yong VW. The extracellular matrix as modifier of neuroinflammation and remyelination in multiple sclerosis. Brain 2021; 144:1958-1973. [PMID: 33889940 PMCID: PMC8370400 DOI: 10.1093/brain/awab059] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Remyelination failure contributes to axonal loss and progression of disability in multiple sclerosis. The failed repair process could be due to ongoing toxic neuroinflammation and to an inhibitory lesion microenvironment that prevents recruitment and/or differentiation of oligodendrocyte progenitor cells into myelin-forming oligodendrocytes. The extracellular matrix molecules deposited into lesions provide both an altered microenvironment that inhibits oligodendrocyte progenitor cells, and a fuel that exacerbates inflammatory responses within lesions. In this review, we discuss the extracellular matrix and where its molecules are normally distributed in an uninjured adult brain, specifically at the basement membranes of cerebral vessels, in perineuronal nets that surround the soma of certain populations of neurons, and in interstitial matrix between neural cells. We then highlight the deposition of different extracellular matrix members in multiple sclerosis lesions, including chondroitin sulphate proteoglycans, collagens, laminins, fibronectin, fibrinogen, thrombospondin and others. We consider reasons behind changes in extracellular matrix components in multiple sclerosis lesions, mainly due to deposition by cells such as reactive astrocytes and microglia/macrophages. We next discuss the consequences of an altered extracellular matrix in multiple sclerosis lesions. Besides impairing oligodendrocyte recruitment, many of the extracellular matrix components elevated in multiple sclerosis lesions are pro-inflammatory and they enhance inflammatory processes through several mechanisms. However, molecules such as thrombospondin-1 may counter inflammatory processes, and laminins appear to favour repair. Overall, we emphasize the crosstalk between the extracellular matrix, immune responses and remyelination in modulating lesions for recovery or worsening. Finally, we review potential therapeutic approaches to target extracellular matrix components to reduce detrimental neuroinflammation and to promote recruitment and maturation of oligodendrocyte lineage cells to enhance remyelination.
Collapse
Affiliation(s)
- Samira Ghorbani
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
235
|
Abstract
The CNS vasculature tightly regulates the passage of circulating molecules and leukocytes into the CNS. In the neuroinflammatory disease multiple sclerosis (MS), these regulatory mechanisms fail, and autoreactive T cells invade the CNS via blood vessels, leading to neurological deficits depending on where the lesions are located. The region-specific mechanisms directing the development of such lesions are not well understood. In this study, we investigated whether pericytes regulate CNS endothelial cell permissiveness toward leukocyte trafficking into the brain parenchyma. By using a pericyte-deficient mouse model, we show that intrinsic changes in the brain vasculature due to absence of pericytes facilitate the neuroinflammatory cascade and can influence the localization of the neuroinflammatory lesions. Pericytes regulate the development of organ-specific characteristics of the brain vasculature such as the blood–brain barrier (BBB) and astrocytic end-feet. Whether pericytes are involved in the control of leukocyte trafficking in the adult central nervous system (CNS), a process tightly regulated by CNS vasculature, remains elusive. Using adult pericyte-deficient mice (Pdgfbret/ret), we show that pericytes limit leukocyte infiltration into the CNS during homeostasis and autoimmune neuroinflammation. The permissiveness of the vasculature toward leukocyte trafficking in Pdgfbret/ret mice inversely correlates with vessel pericyte coverage. Upon induction of experimental autoimmune encephalomyelitis (EAE), pericyte-deficient mice die of severe atypical EAE, which can be reversed with fingolimod, indicating that the mortality is due to the massive influx of immune cells into the brain. Additionally, administration of anti-VCAM-1 and anti–ICAM-1 antibodies reduces leukocyte infiltration and diminishes the severity of atypical EAE symptoms of Pdgfbret/ret mice, indicating that the proinflammatory endothelium due to absence of pericytes facilitates exaggerated neuroinflammation. Furthermore, we show that the presence of myelin peptide-specific peripheral T cells in Pdgfbret/ret;2D2tg mice leads to the development of spontaneous neurological symptoms paralleled by the massive influx of leukocytes into the brain. These findings indicate that intrinsic changes within brain vasculature can promote the development of a neuroinflammatory disorder.
Collapse
|
236
|
Yang Z, Ren T, Liu S, Cai C, Gong W, Shu Y. Preoperative serum fibrinogen as a valuable predictor in the nomogram predicting overall survival of postoperative patients with gallbladder cancer. J Gastrointest Oncol 2021; 12:1661-1672. [PMID: 34532118 PMCID: PMC8421908 DOI: 10.21037/jgo-21-357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Coagulation and fibrinolysis activation are frequently observed in cancer patients, and the tumors in these cases are thought to be associated with a higher risk of invasion, metastasis and worse long-term outcome. The specific aim of this study was to develop an effective prognostic nomogram to help make individualized estimates for patients with resected gallbladder cancer (GBC). METHODS Patients with resected GBC who were diagnosed between 2006 and 2014 at Xinhua Hospital were selected. Model performance was measured by c-index and calibration curve. The results were further validated using bootstrap and a cohort of 38 patients from a branch hospital who underwent surgery from 2006 to 2014. RESULTS Backward stepwise selection and Lasso were applied respectively to select predictors. T stage, N stage, and preoperative serum fibrinogen were included in the final model. Predictions correlated well with observed 1- and 3-year survival. The c-index for predicting survival was 0.74 (95% confidence interval, 0.70-0.78), which was statistically higher than that of the AJCC 7th system and Nevin system (P=0.04, 0.04, respectively). In the validation cohort, the nomogram performed better than the other two staging systems (c-index: 0.71 vs. 0.67 and 0.67). CONCLUSIONS The validated nomogram is a practical tool for predicting the overall survival (OS) of postoperative GBC patients. Preoperative serum fibrinogen levels were associated with tumor progression and may be an independent predictor for GBC patients.
Collapse
Affiliation(s)
- Ziyi Yang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Tai Ren
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- Ministry of Education - Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shilei Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Chen Cai
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yijun Shu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| |
Collapse
|
237
|
ten Cate H, Guzik TJ, Eikelboom J, Spronk HMH. Pleiotropic actions of factor Xa inhibition in cardiovascular prevention: mechanistic insights and implications for anti-thrombotic treatment. Cardiovasc Res 2021; 117:2030-2044. [PMID: 32931586 PMCID: PMC8318102 DOI: 10.1093/cvr/cvaa263] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/10/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease in which atherothrombotic complications lead to cardiovascular morbidity and mortality. At advanced stages, myocardial infarction, ischaemic stroke, and peripheral artery disease, including major adverse limb events, are caused either by acute occlusive atherothrombosis or by thromboembolism. Endothelial dysfunction, vascular smooth muscle cell activation, and vascular inflammation are essential in the development of acute cardiovascular events. Effects of the coagulation system on vascular biology extend beyond thrombosis. Under physiological conditions, coagulation proteases in blood are pivotal in maintaining haemostasis and vascular integrity. Under pathological conditions, including atherosclerosis, the same coagulation proteases (including factor Xa, factor VIIa, and thrombin) become drivers of atherothrombosis, working in concert with platelets and vessel wall components. While initially atherothrombosis was attributed primarily to platelets, recent advances indicate the critical role of fibrin clot and plasma coagulation factors. Mechanisms of atherothrombosis and hypercoagulability vary depending on plaque erosion or plaque rupture. In addition to contributing to thrombus formation, factor Xa and thrombin can affect endothelial dysfunction, oxidative stress, vascular smooth muscle cell function as well as immune cell activation and vascular inflammation. By these mechanisms, they promote atherosclerosis and contribute to plaque instability. In this review, we first discuss the postulated vasoprotective mechanisms of protease-activated receptor signalling induced by coagulation enzymes under physiological conditions. Next, we discuss preclinical studies linking coagulation with endothelial cell dysfunction, thromboinflammation, and atherogenesis. Understanding these mechanisms is pivotal for the introduction of novel strategies in cardiovascular prevention and therapy. We therefore translate these findings to clinical studies of direct oral anticoagulant drugs and discuss the potential relevance of dual pathway inhibition for atherothrombosis prevention and vascular protection.
Collapse
Affiliation(s)
- Hugo ten Cate
- Department of Internal Medicine, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Biochemistry, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Tomasz J Guzik
- Institute of Cardiovascular & Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, Glasgow, UK
- Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - John Eikelboom
- Population Health Research Institute, Hamilton General Hospital and McMaster University, Hamilton, L8L 2x2, ON, Canada
| | - Henri M H Spronk
- Department of Internal Medicine, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Biochemistry, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
238
|
Plasmatic Coagulation Capacity Correlates With Inflammation and Abacavir Use During Chronic HIV Infection. J Acquir Immune Defic Syndr 2021; 87:711-719. [PMID: 33492017 DOI: 10.1097/qai.0000000000002633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/21/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND D-dimer concentrations in people living with HIV (PLHIV) on combination antiretroviral therapy (cART) are increased and have been linked to mortality. D-dimer is a biomarker of in vivo coagulation. In contrast to reports on D-dimer, data on coagulation capacity in PLHIV are conflicting. In this study, we assessed the effect of cART and inflammation on coagulation capacity. SETTING We explored coagulation capacity using calibrated thrombin generation (TG) and linked this to persistent inflammation and cART in a cross-sectional study including PLHIV with viral suppression and uninfected controls. METHODS We used multivariate analyses to identify independent factors influencing in vivo coagulation (D-dimer) and ex vivo coagulation capacity (TG). RESULTS Among 208 PLHIV, 94 (45%) were on an abacavir-containing regimen. D-dimer levels (219.1 vs 170.5 ng/mL, P = 0.001) and inflammatory makers (sCD14, sCD163, and high-sensitive C-reactive protein) were increased in PLHIV compared with those in controls (n = 56). PLHIV experienced lower TG (reflected by endogenous thrombin potential [ETP]) when compared with controls, after correction for age, sex, and antiretroviral therapy. Abacavir use was independently associated with increased ETP. Prothrombin concentrations were strongly associated with ETP and lower in PLHIV on a non-abacavir-containing regimen compared with those in controls, suggesting consumption as a possible mechanism for HIV-associated reduction in TG. D-dimer concentrations were associated with inflammation, but not TG. CONCLUSIONS Abacavir use was associated with increased TG and could serve as an additional factor in the reported increase in thrombotic events during abacavir use. Increased exposure to triggers that propagate coagulation, such as inflammation, likely underlie increased D-dimer concentrations found in most PLHIV.
Collapse
|
239
|
Liu X, Guo R, Tian J. Association of Plasma Fibrinogen Levels on Postoperative Day 1 with 2-Year Survival of Orthotopic Liver Transplantation for HBV-Related HCC. Lab Med 2021; 53:30-38. [PMID: 34268570 DOI: 10.1093/labmed/lmab052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
OBJECTIVE To clarify the prognostic values of hemostatic parameters to predict the survival of patients undergoing orthotopic liver transplantation (OLT) for hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). METHODS The data of 182 consecutive adult patients who underwent OLT for HBV-related HCC were subjected to univariate and multivariate analyses. RESULTS Ascites and fibrinogen levels on postoperative day (POD) 1 were independent predictors of postoperative 2-year mortality (both P <.05). Kaplan-Meier survival analysis showed that the higher the fibrinogen level on POD 1, the better the 1- and 2-year survival of patients with ascites (P <.05), whereas the fibrinogen level on POD 1 was associated with 1-year (P <.05) but not 2-year survival of patients without ascites. CONCLUSION Fibrinogen on POD 1 is a predictor of 2-year post-OLT survival of patients with HBV-related HCC with ascites.
Collapse
Affiliation(s)
- Xia Liu
- Department of Intensive Care Unit, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Renyong Guo
- Department of Laboratory Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jie Tian
- Department of Intensive Care Unit, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
240
|
Tse K, Beamer E, Simpson D, Beynon RJ, Sills GJ, Thippeswamy T. The Impacts of Surgery and Intracerebral Electrodes in C57BL/6J Mouse Kainate Model of Epileptogenesis: Seizure Threshold, Proteomics, and Cytokine Profiles. Front Neurol 2021; 12:625017. [PMID: 34322075 PMCID: PMC8312573 DOI: 10.3389/fneur.2021.625017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/07/2021] [Indexed: 01/01/2023] Open
Abstract
Intracranial electroencephalography (EEG) is commonly used to study epileptogenesis and epilepsy in experimental models. Chronic gliosis and neurodegeneration at the injury site are known to be associated with surgically implanted electrodes in both humans and experimental models. Currently, however, there are no reports on the impact of intracerebral electrodes on proteins in the hippocampus and proinflammatory cytokines in the cerebral cortex and plasma in experimental models. We used an unbiased, label-free proteomics approach to identify the altered proteins in the hippocampus, and multiplex assay for cytokines in the cerebral cortex and plasma of C57BL/6J mice following bilateral surgical implantation of electrodes into the cerebral hemispheres. Seven days following surgery, a repeated low dose kainate (KA) regimen was followed to induce status epilepticus (SE). Surgical implantation of electrodes reduced the amount of KA necessary to induce SE by 50%, compared with mice without surgery. Tissues were harvested 7 days post-SE (i.e., 14 days post-surgery) and compared with vehicle-treated mice. Proteomic profiling showed more proteins (103, 6.8% of all proteins identified) with significantly changed expression (p < 0.01) driven by surgery than by KA treatment itself without surgery (27, 1.8% of all proteins identified). Further, electrode implantation approximately doubled the number of KA-induced changes in protein expression (55, 3.6% of all identified proteins). Further analysis revealed that intracerebral electrodes and KA altered the expression of proteins associated with epileptogenesis such as inflammation (C1q system), neurodegeneration (cystatin-C, galectin-1, cathepsin B, heat-shock protein 25), blood–brain barrier dysfunction (fibrinogen-α, serum albumin, α2 macroglobulin), and gliosis (vimentin, GFAP, filamin-A). The multiplex assay revealed a significant increase in key cytokines such as TNFα, IL-1β, IL-4, IL-5, IL-6, IL-10, IL12p70, IFN-γ, and KC/GRO in the cerebral cortex and some in the plasma in the surgery group. Overall, these findings demonstrate that surgical implantation of depth electrodes alters some of the molecules that may have a role in epileptogenesis in experimental models.
Collapse
Affiliation(s)
- Karen Tse
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.,Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Edward Beamer
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Deborah Simpson
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Graeme J Sills
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Thimmasettappa Thippeswamy
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
241
|
Galanakis DK, Protopopova A, Zhang L, Li K, Marmorat C, Scheiner T, Koo J, Savitt AG, Rafailovich M, Weisel J. Fibers Generated by Plasma Des-AA Fibrin Monomers and Protofibril/Fibrinogen Clusters Bind Platelets: Clinical and Nonclinical Implications. TH OPEN 2021; 5:e273-e285. [PMID: 34240000 PMCID: PMC8260279 DOI: 10.1055/s-0041-1725976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Objective Soluble fibrin (SF) is a substantial component of plasma fibrinogen (fg), but its composition, functions, and clinical relevance remain unclear. The study aimed to evaluate the molecular composition and procoagulant function(s) of SF. Materials and Methods Cryoprecipitable, SF-rich (FR) and cryosoluble, SF-depleted (FD) fg isolates were prepared and adsorbed on one hydrophilic and two hydrophobic surfaces and scanned by atomic force microscopy (AFM). Standard procedures were used for fibrin polymerization, crosslinking by factor XIII, electrophoresis, and platelet adhesion. Results Relative to FD fg, thrombin-induced polymerization of FR fg was accelerated and that induced by reptilase was markedly delayed, attributable to its decreased (fibrinopeptide A) FpA. FR fg adsorption to each surface yielded polymeric clusters and co-cryoprecipitable solitary monomers. Cluster components were crosslinked by factor XIII and comprised ≤21% of FR fg. In contrast to FD fg, FR fg adsorption on hydrophobic surfaces resulted in fiber generation enabled by both clusters and solitary monomers. This began with numerous short protofibrils, which following prolonged adsorption increased in number and length and culminated in surface-linked three-dimensional fiber networks that bound platelets. Conclusion The abundance of adsorbed protofibrils resulted from (1) protofibril/fg clusters whose fg was dissociated during adsorption, and (2) adsorbed des-AA monomers that attracted solution counterparts initiating protofibril assembly and elongation by their continued incorporation. The substantial presence of both components in transfused plasma and cryoprecipitate augments hemostasis by accelerating thrombin-induced fibrin polymerization and by tightly anchoring the resulting clot to the underlying wound or to other abnormal vascular surfaces.
Collapse
Affiliation(s)
- Dennis K Galanakis
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, New York
| | - Anna Protopopova
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Liudi Zhang
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York
| | - Kao Li
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York
| | - Clement Marmorat
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York
| | - Tomas Scheiner
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Jaseung Koo
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York
| | - Anne G Savitt
- Department of Microbiology and Immunology, Stony Brook University School of Medicine, Stony Brook, New York
| | - Miriam Rafailovich
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York
| | - John Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
242
|
Chen JL, Chen DM, Luo C, Sun Y, Zhao YX, Huang CQ, Zhao KX, Xiao Q. Fibrinogen, fibrin degradation products and risk of sarcopenia. Clin Nutr 2021; 40:4830-4837. [PMID: 34358823 DOI: 10.1016/j.clnu.2021.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/27/2021] [Accepted: 06/27/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Increasing data suggests that chronic low-grade inflammation plays an important role on development of sarcopenia. The present study was designed to identify the association between fibrinogen, fibrin degradation products (FDP) and sarcopenia risk in hospitalized old patients. METHODS A total of 437 patients were enrolled in this cross-sectional study (148 with sarcopenia and 289 without sarcopenia). Sarcopenia was diagnosed according to the Asian Working Group for Sarcopenia (AWGS) 2019 criteria. Body composition, grip strength and gait speed were performed to participants. Fibrinogen, FDP levels were measured. Logistic regression analyses were carried out to assess the association between fibrinogen and sarcopenia, between FDP and sarcopenia, respectively. RESULTS Compared to non-sarcopenic patients, fibrinogen and FDP levels were found to be higher in the sarcopenic group (3.07 g/L vs 2.79 g/L, 1.75 μg/mL vs 1.00 μg/mL, respectively, p < 0.05). Multiple linear regression analysis showed a significant negative association between fibrinogen and gait speed (β: -0.164, p = 0.008), and muscle strength (β: -0.231, p < 0.001). Multivariable logistic regression analysis showed that fibrinogen and FDP were independently associated with sarcopenia (odds ratio 1.32 [95% confidence interval 1.03, 1.70], p = 0.009; odds ratio 1.07 [95% confidence interval 1.01, 1.19], p = 0.049, respectively). ROC curve revealed that the cutoff values of fibrinogen and FDP to predict sarcopenia risk were 2.54 g/L and 1.15 μg/mL, respectively. CONCLUSIONS In hospitalized old patients, serum fibrinogen and FDP levels are elevated in sarcopenia patients than those without sarcopenia. Fibrinogen and FDP are associated with sarcopenia in a concentration-dependent manner.
Collapse
Affiliation(s)
- Jin-Liang Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016, Chongqing, China
| | - Dong-Mei Chen
- Department of Respiratory and Critical Care Medicine, Karamay Central Hospital, No. 67, Zhunger Road, Karamay District, Karamay City, 834000, Xinjiang, China
| | - Cheng Luo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016, Chongqing, China
| | - Yue Sun
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016, Chongqing, China
| | - Yu-Xing Zhao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016, Chongqing, China
| | - Chang-Quan Huang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016, Chongqing, China
| | - Ke-Xiang Zhao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016, Chongqing, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016, Chongqing, China.
| |
Collapse
|
243
|
Wang C, Li X, Ning W, Gong S, Yang F, Fang C, Gong Y, Wu D, Huang M, Gou Y, Fu S, Ren Y, Yang R, Qiu Y, Xue Y, Xu Y, Zhou X. Multi-omic profiling of plasma reveals molecular alterations in children with COVID-19. Theranostics 2021; 11:8008-8026. [PMID: 34335977 PMCID: PMC8315065 DOI: 10.7150/thno.61832] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
Rationale: Children usually develop less severe symptoms responding to Coronavirus Disease 2019 (COVID-19) than adults. However, little is known about the molecular alterations and pathogenesis of COVID-19 in children. Methods: We conducted plasma proteomic and metabolomic profilings of the blood samples of a cohort containing 18 COVID-19-children with mild symptoms and 12 healthy children, which were enrolled from hospital admissions and outpatients, respectively. Statistical analyses were performed to identify molecules specifically altered in COVID-19-children. We also developed a machine learning-based pipeline named inference of biomolecular combinations with minimal bias (iBM) to prioritize proteins and metabolites strongly altered in COVID-19-children, and experimentally validated the predictions. Results: By comparing to the multi-omic data in adults, we identified 44 proteins and 249 metabolites differentially altered in COVID-19-children against healthy children or COVID-19-adults. Further analyses demonstrated that both deteriorative immune response/inflammation processes and protective antioxidant or anti-inflammatory processes were markedly induced in COVID-19-children. Using iBM, we prioritized two combinations that contained 5 proteins and 5 metabolites, respectively, each exhibiting a total area under curve (AUC) value of 100% to accurately distinguish COVID-19-children from healthy children or COVID-19-adults. Further experiments validated that all the 5 proteins were up-regulated upon coronavirus infection. Interestingly, we found that the prioritized metabolites inhibited the expression of pro-inflammatory factors, and two of them, methylmalonic acid (MMA) and mannitol, also suppressed coronaviral replication, implying a protective role of these metabolites in COVID-19-children. Conclusion: The finding of a strong antagonism of deteriorative and protective effects provided new insights on the mechanism and pathogenesis of COVID-19 in children that mostly underwent mild symptoms. The identified metabolites strongly altered in COVID-19-children could serve as potential therapeutic agents of COVID-19.
Collapse
Affiliation(s)
- Chong Wang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy Sciences, Wuhan, Hubei 430071, China
| | - Xufang Li
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
| | - Wanshan Ning
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Sitang Gong
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
| | - Fengxia Yang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
| | - Chunxiao Fang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
| | - Yu Gong
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
| | - Di Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy Sciences, Wuhan, Hubei 430071, China
| | - Muhan Huang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy Sciences, Wuhan, Hubei 430071, China
| | - Yujie Gou
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shanshan Fu
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Ren
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy Sciences, Wuhan, Hubei 430071, China
| | - Ruyi Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy Sciences, Wuhan, Hubei 430071, China
| | - Yang Qiu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy Sciences, Wuhan, Hubei 430071, China
| | - Yu Xue
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yi Xu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
| | - Xi Zhou
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy Sciences, Wuhan, Hubei 430071, China
| |
Collapse
|
244
|
Ma SX, Seo BA, Kim D, Xiong Y, Kwon SH, Brahmachari S, Kim S, Kam TI, Nirujogi RS, Kwon SH, Dawson VL, Dawson TM, Pandey A, Na CH, Ko HS. Complement and Coagulation Cascades are Potentially Involved in Dopaminergic Neurodegeneration in α-Synuclein-Based Mouse Models of Parkinson's Disease. J Proteome Res 2021; 20:3428-3443. [PMID: 34061533 PMCID: PMC8628316 DOI: 10.1021/acs.jproteome.0c01002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder that results in motor dysfunction and, eventually, cognitive impairment. α-Synuclein protein is known as a central protein to the pathophysiology of PD, but the underlying pathological mechanism still remains to be elucidated. In an effort to understand how α-synuclein underlies the pathology of PD, various PD mouse models with α-synuclein overexpression have been developed. However, systemic analysis of the brain proteome of those mouse models is lacking. In this study, we established two mouse models of PD by injecting α-synuclein preformed fibrils (PFF) or by inducing overexpression of human A53T α-synuclein to investigate common pathways in the two different types of the PD mouse models. For more accurate quantification of mouse brain proteome, the proteins were quantified using the method of stable isotope labeling with amino acids in mammals . We identified a total of 8355 proteins from the two mouse models; ∼6800 and ∼7200 proteins from α-synuclein PFF-injected mice and human A53T α-synuclein transgenic mice, respectively. Through pathway analysis of the differentially expressed proteins common to both PD mouse models, it was discovered that the complement and coagulation cascade pathways were enriched in the PD mice compared to control animals. Notably, a validation study demonstrated that complement component 3 (C3)-positive astrocytes were increased in the ventral midbrain of the intrastriatal α-synuclein PFF-injected mice and C3 secreted from astrocytes could induce the degeneration of dopaminergic neurons. This is the first study that highlights the significance of the complement and coagulation pathways in the pathogenesis of PD through proteome analyses with two sophisticated mouse models of PD.
Collapse
Affiliation(s)
- Shi-Xun Ma
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Bo Am Seo
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Donghoon Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Pharmacology, Peripheral Neuropathy Research Center, Dong-A University College of Medicine, Busan 49201, South Korea
| | - Yulan Xiong
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Seung-Hwan Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Saurav Brahmachari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Sangjune Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Raja Sekhar Nirujogi
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Sang Ho Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Adrienne Helis Malvin Medical Research Foundation, New Orleans 70130, Louisiana, United States
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Adrienne Helis Malvin Medical Research Foundation, New Orleans 70130, Louisiana, United States
- Diana Helis Henry Medical Research Foundation, New Orleans 70130, Louisiana, United States
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Chan Hyun Na
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Adrienne Helis Malvin Medical Research Foundation, New Orleans 70130, Louisiana, United States
- Diana Helis Henry Medical Research Foundation, New Orleans 70130, Louisiana, United States
| |
Collapse
|
245
|
Jeon MT, Kim KS, Kim ES, Lee S, Kim J, Hoe HS, Kim DG. Emerging pathogenic role of peripheral blood factors following BBB disruption in neurodegenerative disease. Ageing Res Rev 2021; 68:101333. [PMID: 33774194 DOI: 10.1016/j.arr.2021.101333] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
The responses of central nervous system (CNS) cells such as neurons and glia in neurodegenerative diseases (NDs) suggest that regulation of neuronal and glial functions could be a strategy for ND prevention and/or treatment. However, attempts to develop such therapeutics for NDs have been hindered by the challenge of blood-brain barrier (BBB) permeability and continued constitutive neuronal loss. These limitations indicate the need for additional perspectives for the prevention/treatment of NDs. In particular, the disruption of the blood-brain barrier (BBB) that accompanies NDs allows brain infiltration by peripheral factors, which may stimulate innate immune responses involved in the progression of neurodegeneration. The accumulation of blood factors like thrombin, fibrinogen, c-reactive protein (CRP) and complement components in the brain has been observed in NDs and may activate the innate immune system in the CNS. Thus, strengthening the integrity of the BBB may enhance its protective role to attenuate ND progression and functional loss. In this review, we describe the innate immune system in the CNS and the contribution of blood factors to the role of the CNS immune system in neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Min-Tae Jeon
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Kyu-Sung Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Eun Seon Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Suji Lee
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Jieun Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Hyang-Sook Hoe
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea.
| | - Do-Geun Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea.
| |
Collapse
|
246
|
Fibrin(ogen) as a Therapeutic Target: Opportunities and Challenges. Int J Mol Sci 2021; 22:ijms22136916. [PMID: 34203139 PMCID: PMC8268464 DOI: 10.3390/ijms22136916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
Fibrinogen is one of the key molecular players in haemostasis. Thrombin-mediated release of fibrinopeptides from fibrinogen converts this soluble protein into a network of fibrin fibres that form a building block for blood clots. Thrombin-activated factor XIII further crosslinks the fibrin fibres and incorporates antifibrinolytic proteins into the network, thus stabilising the clot. The conversion of fibrinogen to fibrin also exposes binding sites for fibrinolytic proteins to limit clot formation and avoid unwanted extension of the fibrin fibres. Altered clot structure and/or incorporation of antifibrinolytic proteins into fibrin networks disturbs the delicate equilibrium between clot formation and lysis, resulting in either unstable clots (predisposing to bleeding events) or persistent clots that are resistant to lysis (increasing risk of thrombosis). In this review, we discuss the factors responsible for alterations in fibrin(ogen) that can modulate clot stability, in turn predisposing to abnormal haemostasis. We also explore the mechanistic pathways that may allow the use of fibrinogen as a potential therapeutic target to treat vascular thrombosis or bleeding disorders. Better understanding of fibrinogen function will help to devise future effective and safe therapies to modulate thrombosis and bleeding risk, while maintaining the fine balance between clot formation and lysis.
Collapse
|
247
|
Effect of Whole-Body Cryotherapy on Morphological, Rheological and Biochemical Indices of Blood in People with Multiple Sclerosis. J Clin Med 2021; 10:jcm10132833. [PMID: 34198961 PMCID: PMC8268166 DOI: 10.3390/jcm10132833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to examine and assess the impact of a series of 20 whole-body cryotherapy (WBC) treatments on the biochemical and rheological indices of blood in people with multiple sclerosis. In this prospective controlled study, the experimental group consisted of 15 women aged 34-55 (mean age, 41.53 ± 6.98 years) with diagnosed multiple sclerosis who underwent a series of whole-body cryotherapy treatments. The first control group consisted of 20 women with diagnosed multiple sclerosis. This group had no intervention in the form of whole-body cryotherapy. The second control group consisted of 15 women aged 30-49 years (mean age, 38.47 ± 6.0 years) without neurological diseases and other chronic diseases who also underwent the whole-body cryotherapy treatment. For the analysis of the blood indices, venous blood was taken twice (first, on the day of initiation of whole-body cryotherapy treatments and, second, after a series of 20 cryotherapy treatments). The blood counts were determined using an ABX MICROS 60 hematological analyzer (USA). The LORCA analyzer (Laser-Optical Rotational Cell Analyzer, RR Mechatronics, the Netherlands) was used to study the aggregation and deformability of erythrocytes. The total protein serum measurement was performed using a Cobas 6000 analyzer, Roche and a Proteinogram-Minicap Sebia analyzer. Fibrinogen determinations were made using a Bio-Ksel, Chrom-7 camera. Statistically significant differences and changes after WBC in the levels of red blood cells (RBC), hemoglobin (HGB), hematocrit (HCT), elongation index, total extend of aggregation (AMP), and proteins (including fibrinogen) were observed. However, there was no significant effect of a series of 20 WBC treatments on changes in blood counts, rheology, and biochemistry in women with multiple sclerosis. Our results show that the use of WBC has a positive effect on the rheological properties of the blood of healthy women.
Collapse
|
248
|
Bordbar M, de Mutsert R, Cevval M, Rosendaal FR, Jukema JW, Lijfering WM. Differential effect of statin use on coagulation markers: an active comparative analysis in the NEO study. Thromb J 2021; 19:45. [PMID: 34176487 PMCID: PMC8237446 DOI: 10.1186/s12959-021-00299-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Background Statins are a potential treatment for venous thromboembolism (VTE) prophylaxis complementary to conventional anticoagulants without associated bleeding complications. This study aimed to compare pro-thrombotic activities of different classes of lipid-lowering drugs in an active comparator design and determine whether there is a relation between statin versus fibrate/niacin use and pro-coagulant factor outcomes. Methods This is a cross-sectional analysis of participants from the Netherlands Epidemiology of Obesity study using any class of lipid-lowering drugs, including any types of statins, niacin, and fibrates. We performed linear regression analyses to determine fibrinogen, factor (F) VIII, FIX, and FXI activity in statins versus fibrate/niacin users and adjusted for age, sex, tobacco smoking, body mass index (BMI), hypertension, diabetes, and prevalent cardiovascular disease. Results Among 1043 participants, the mean age was 58.4 ± 5.2 years, 61% were men, and the mean BMI was 31.3 ± 4.5 kg/m2. Clinical characteristics were balanced between statin and fibrate/niacin users. Statin users had lower mean FXI (18.3 IU/dL, 95% confidence interval (CI) 9.4 to 27.3) levels compared to fibrate/niacin users. The level of FVIII (15.8 IU/dL, 95% CI − 0.003 to 31.6), and FIX (11.3 IU/dL, 95% CI − 0.4 to 23.2) were lower in statin users than fibrate/niacin users with marginal statistical significance. Conclusion Current statin use was associated with lower plasma levels of FXI than fibrate/niacin use. The effects on coagulation factors may, in part, explain the benefit of statin therapy rendered in primary and secondary prevention of VTE.
Collapse
Affiliation(s)
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Melike Cevval
- Department of Clinical Epidemiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Willem M Lijfering
- Department of Clinical Epidemiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.
| |
Collapse
|
249
|
Exposure to Ambient NO 2 Increases the Risk of Dry Eye Syndrome in Females: An 11-Year Population-Based Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136860. [PMID: 34206755 PMCID: PMC8296916 DOI: 10.3390/ijerph18136860] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/02/2023]
Abstract
Previous studies have indicated that women suffer from dry eye syndrome (DES) more significantly than men. Therefore, we specifically explore the associations between air pollutant levels and the risks of DES for women. The study obtained 27,605 participants from the 29 recruitment centers of the Taiwan Biobank, which was established in October 2012. A large scale cross-sectional study involving DES sufferers and age- and education-matched control groups without DES was designed. Based on the municipality of residence, the predicted concentration levels of various air pollutants, including PM2.5, sulfur dioxide (SO2), ozone (O3), and nitrogen dioxide (NO2) were estimated by using hybrid kriging/LUR model. Multiple logistic regressions were applied to estimate the prevalence ratios (PR) of DES and 95% confidence interval. Hormone supplementations, DBP, allergies, and arthritis were considered as important comorbidities for increased PR risk of DES. In addition, with each standard deviation (SD) increment of PM2.5 and temperature, women had significant increases in PRs of DES of 1.09- and 1.07-fold, respectively; conversely, each SD increment of relative humidity (RH) had a protective effect against the risk of DES. After considering hormone supplementation, arthritis, and allergy, the SD increment of NO2 and temperature were associated with the PRs of DES. In conclusion, significant associations of ambient NO2 concentration, RH and temperature with DES indicated the importance of increased environmental protection in the female population. Female exposure to high levels of NO2 when receiving hormone supplementation, or suffering with allergies or arthritis, had significantly increased risk of DES.
Collapse
|
250
|
Wang H, Zhou H, Jiang R, Qian Z, Wang F, Cao L. Globulin, the albumin-to-globulin ratio, and fibrinogen perform well in the diagnosis of Periprosthetic joint infection. BMC Musculoskelet Disord 2021; 22:583. [PMID: 34172035 PMCID: PMC8235840 DOI: 10.1186/s12891-021-04463-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/07/2021] [Indexed: 01/03/2023] Open
Abstract
Background Although periprosthetic joint infection (PJI) is a severe complication of total joint arthroplasty (TJA), the diagnosis of PJI remains challenging. Albumin (ALB), globulin (GLB), the albumin-to-globulin ratio (AGR), and fibrinogen could be indicators of the body’s inflammatory state. This study aimed to compare the diagnostic accuracy of these biomarkers with that of other inflammatory biomarkers in PJI patients. Methods We conducted a retrospective cohort study that included a consecutive series of patients undergoing debridement antibiotic irrigation and implant retention (DAIR), one-stage or the first stage of a two-stage revision total knee arthroplasty (TKA) or total hip arthroplasty (THA) for acute (n = 31) or chronic (n = 51) PJI, or revision TKA or THA for aseptic failures (n = 139) between January 2017 and December 2019 in our hospital. The 2013 criteria of the Musculoskeletal Infection Society (2013 MSIS) were used as the reference standard for the diagnosis of PJI. The preoperative ALB, GLB, AGR, fibrinogen, D-dimer, platelet count, fibrin degradation product (FDP), platelet-to-lymphocyte (PLR), platelet count to mean platelet volume ratio (PVR), neutrophil-to-lymphocyte ratio (NLR), erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) levels were assessed. The receiver operating characteristic curve (ROC), sensitivity, and specificity were utilized to compare different biomarkers. Results Compared with the aseptic patients, the GLB, D-dimer, fibrinogen, FDP, platelet count, PVR, PLR, NLR, ESR, and CRP levels of PJI patients were significantly higher (P < 0.01); however, the ALB and AGR levels were significantly lower (P < 0.01). The area under the curve (AUC), sensitivity and specificity were 0.774, 67.50, 77.54% for ALB; 0.820, 57.50, 89.86% for GLB; 0.845, 66.25, 93.48% for AGR; 0.832, 78.48, 78.95% for fibrinogen; 0.877, 81.48, 85.07% for ESR; 0.909, 83.95, 88.89% for CRP; 0.683, 55.22, 75.83% for D-dimer; 0.664, 38.81, 88.33% for FDP; 0.678, 52.44, 79.86% for platelet count; 0.707, 48.78, 86.33% for PVR; 0.700, 51.22, 80.58% for PLR; and 0.678, 52.44, 81.30% for NLR, respectively. In the clinic, GLB, AGR and fibrinogen could be used for diagnosis of patients suspected of having PJI. Conclusion Our study demonstrated that GLB, AGR, and fibrinogen were promising biomarkers in the diagnosis of PJI.
Collapse
Affiliation(s)
- Huhu Wang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Haikang Zhou
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Rendong Jiang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhenhao Qian
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Fei Wang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Li Cao
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|