201
|
Illarionova NB, Petrovski DV, Razumov IA, Zavyalov EL. Effects of radiation and manganese oxide nanoparticles on human glioblastoma cell line U-87 MG glycolysis. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gliomas are the most common type of malignant brain tumors. Standard treatment of gliomas consists of surgical excision of the tumor with subsequent chemotherapy and radiotherapy. Tumor cells are characterized by rapid division with an increased uptake of glucose and its catabolism during glycolysis. To maintain rapid division, the level of glycolysis of the tumor cell is significantly increased, compared with normal cells. It is known that some nanoparticles (NP) have the property of accumulating in tumors. In particular, NPs of manganese oxide can penetrate into the brain and, with considerable accumulation, cause toxic effects. These facts served as a prerequisite for studying the effects of manganese oxide NPs on the viability of glioma cells. The purpose of this work was to study the effects of manganese oxide NPs, as well as their combination with gamma irradiation on the glycolysis of glioma cells. The cells were irradiated using the research radiobiological gamma-installation IGUR-1 based on 137Cs. The level of cell glycolysis was determined using the standard glycolytic stress test on a Seahorse XFp platform. Cell viability was determined using the ViaCount reagent staining of living and dead cells. Their count was performed using flow cytometry. We showed that the glycolysis of U-87 MG glioma cells was significantly reduced when incubated for 48 hours with manganese oxide NPs. Irradiation in combination with NPs or alone did not have significant effects on glycolysis of gliomas. Glioma incubation with manganese oxide NPs for 72 hours led to a significant reduction in cell viability. This study may be useful for the development of new therapies and diagnosis of gliomas.
Collapse
Affiliation(s)
| | | | | | - E. L. Zavyalov
- Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
| |
Collapse
|
202
|
Alieva M, Leidgens V, Riemenschneider MJ, Klein CA, Hau P, van Rheenen J. Intravital imaging of glioma border morphology reveals distinctive cellular dynamics and contribution to tumor cell invasion. Sci Rep 2019; 9:2054. [PMID: 30765850 PMCID: PMC6375955 DOI: 10.1038/s41598-019-38625-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/18/2018] [Indexed: 01/08/2023] Open
Abstract
The pathogenesis of glioblastoma (GBM) is characterized by highly invasive behavior allowing dissemination and progression. A conclusive image of the invasive process is not available. The aim of this work was to study invasion dynamics in GBM using an innovative in vivo imaging approach. Primary brain tumor initiating cell lines from IDH-wild type GBM stably expressing H2B-Dendra2 were implanted orthotopically in the brains of SCID mice. Using high-resolution time-lapse intravital imaging, tumor cell migration in the tumor core, border and invasive front was recorded. Tumor cell dynamics at different border configurations were analyzed and multivariate linear modelling of tumor cell spreading was performed. We found tumor border configurations, recapitulating human tumor border morphologies. Not only tumor borders but also the tumor core was composed of highly dynamic cells, with no clear correlation to the ability to spread into the brain. Two types of border configurations contributed to tumor cell spreading through distinct invasion patterns: an invasive margin that executes slow but directed invasion, and a diffuse infiltration margin with fast but less directed movement. By providing a more detailed view on glioma invasion patterns, our study may improve accuracy of prognosis and serve as a basis for personalized therapeutic approaches.
Collapse
Affiliation(s)
- Maria Alieva
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
- Prinses Máxima Center for Pediatric Oncology, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands.
| | - Verena Leidgens
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, Regensburg, Germany
| | | | - Christoph A Klein
- Department of Experimental Medicine, University of Regensburg, Regensburg, Germany
| | - Peter Hau
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, Regensburg, Germany.
| | - Jacco van Rheenen
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| |
Collapse
|
203
|
Vo TM, Burchett R, Brun M, Monckton EA, Poon HY, Godbout R. Effects of nuclear factor I phosphorylation on calpastatin ( CAST) gene variant expression and subcellular distribution in malignant glioma cells. J Biol Chem 2019; 294:1173-1188. [PMID: 30504225 DOI: 10.1074/jbc.ra118.004787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
Malignant glioma (MG) is the most lethal primary brain tumor. In addition to having inherent resistance to radiation treatment and chemotherapy, MG cells are highly infiltrative, rendering focal therapies ineffective. Genes involved in MG cell migration and glial cell differentiation are up-regulated by hypophosphorylated nuclear factor I (NFI), which is dephosphorylated by the phosphatase calcineurin in MG cells. Calcineurin is cleaved and thereby activated by calpain proteases, which are, in turn, inhibited by calpastatin (CAST). Here, we show that the CAST gene is a target of NFI and has NFI-binding sites in its intron 3 region. We also found that NFI-mediated regulation of CAST depends on NFI's phosphorylation state. We noted that occupation of CAST intron 3 by hypophosphorylated NFI results in increased activation of an alternative promoter. This activation resulted in higher levels of CAST transcript variants, leading to increased levels of CAST protein that lacks the N-terminal XL domain. CAST was primarily present in the cytoplasm of NFI-hypophosphorylated MG cells, with a predominantly perinuclear immunostaining pattern. NFI knockdown in NFI-hypophosphorylated MG cells increased CAST levels at the plasma membrane. These results suggest that NFI plays an integral role in the regulation of CAST variants and CAST subcellular distribution. Along with the previous findings indicating that NFI activity is regulated by calcineurin, these results provide a foundation for further investigations into the possibility of regulatory cross-talk between NFI and the CAST/calpain/calcineurin signaling pathway in MG cells.
Collapse
Affiliation(s)
- The Minh Vo
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - Rebecca Burchett
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - Miranda Brun
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - Elizabeth A Monckton
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - Ho-Yin Poon
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada.
| |
Collapse
|
204
|
van Bodegraven EJ, van Asperen JV, Robe PAJ, Hol EM. Importance of GFAP isoform-specific analyses in astrocytoma. Glia 2019; 67:1417-1433. [PMID: 30667110 PMCID: PMC6617972 DOI: 10.1002/glia.23594] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
Gliomas are a heterogenous group of malignant primary brain tumors that arise from glia cells or their progenitors and rely on accurate diagnosis for prognosis and treatment strategies. Although recent developments in the molecular biology of glioma have improved diagnosis, classical histological methods and biomarkers are still being used. The glial fibrillary acidic protein (GFAP) is a classical marker of astrocytoma, both in clinical and experimental settings. GFAP is used to determine glial differentiation, which is associated with a less malignant tumor. However, since GFAP is not only expressed by mature astrocytes but also by radial glia during development and neural stem cells in the adult brain, we hypothesized that GFAP expression in astrocytoma might not be a direct indication of glial differentiation and a less malignant phenotype. Therefore, we here review all existing literature from 1972 up to 2018 on GFAP expression in astrocytoma patient material to revisit GFAP as a marker of lower grade, more differentiated astrocytoma. We conclude that GFAP is heterogeneously expressed in astrocytoma, which most likely masks a consistent correlation of GFAP expression to astrocytoma malignancy grade. The GFAP positive cell population contains cells with differences in morphology, function, and differentiation state showing that GFAP is not merely a marker of less malignant and more differentiated astrocytoma. We suggest that discriminating between the GFAP isoforms GFAPδ and GFAPα will improve the accuracy of assessing the differentiation state of astrocytoma in clinical and experimental settings and will benefit glioma classification.
Collapse
Affiliation(s)
- Emma J van Bodegraven
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jessy V van Asperen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Pierre A J Robe
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105, BA, Amsterdam, The Netherlands
| |
Collapse
|
205
|
Differentiation of Glioblastoma and Solitary Brain Metastasis by Gradient of Relative Cerebral Blood Volume in the Peritumoral Brain Zone Derived from Dynamic Susceptibility Contrast Perfusion Magnetic Resonance Imaging. J Comput Assist Tomogr 2019; 43:13-17. [PMID: 30015801 DOI: 10.1097/rct.0000000000000771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The purpose of our study was to evaluate the efficacy of the relative cerebral blood volume (rCBV) gradient in the peritumoral brain zone (PBZ)-the difference in the rCBV values from the area closest to the enhancing lesion to the area closest to the healthy white matter-in differentiating glioblastoma (GB) from solitary brain metastasis (MET). METHODS A 3.0-T magnetic resonance imaging (MRI) machine was used to perform dynamic susceptibility contrast perfusion MRI (DSC-MRI) on 43 patients with a solitary brain tumor (24 GB, 19 MET). The rCBV ratios were acquired by DSC-MRI data in 3 regions of the PBZ (near the enhancing tumor, G1; intermediate distance from the enhancing tumor, G2; far from the enhancing tumor, G3). The maximum rCBV ratios in the PBZ (rCBVp) and the enhancing tumor were also calculated, respectively. The perfusion parameters were evaluated using the nonparametric Mann-Whitney test. The sensitivity, specificity, accuracy, and the area under the receiver operating characteristic curve were identified. RESULTS The rCBVp ratios and rCBV gradient in the PBZ were significantly higher in GB compared with MET (P < 0.05 for both rCBVp ratios and rCBV gradient). The threshold values of 0.50 or greater for rCBVp ratios provide sensitivity and specificity of 57.69% and 79.17%, respectively, for differentiation of GB from MET. Compared with rCBVp ratios, rCBV gradient had higher sensitivity (94.44%) and specificity (91.67%) using the threshold value of greater than 0.06. CONCLUSIONS The parameter of rCBV gradient derived from DSC-MRI in the PBZ seems to be the most efficient parameter to differentiate GB from METs.
Collapse
|
206
|
Heffron TP. Challenges of developing small-molecule kinase inhibitors for brain tumors and the need for emphasis on free drug levels. Neuro Oncol 2019; 20:307-312. [PMID: 29016919 DOI: 10.1093/neuonc/nox179] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Despite biological rationale and significant clinical study, the pursuit of small-molecule kinase inhibitors for the treatment of brain cancers has had very limited success. This Advance-in-Brief discusses the need for drugs to achieve free brain penetration to engage their targets where CNS tumors reside. This need to achieve free, as opposed to total, drug concentrations in the brain may be a contributing factor to why so many small-molecule kinase inhibitors have not realized success in the neuro-oncology setting. For kinase targets of interest for brain cancer, either the vast majority of small-molecule inhibitors have data suggesting that free brain penetration would be limited or there are inadequate data to suggest that free brain penetration could be expected. Therefore, kinase targets of interest in the treatment of brain cancers may be inadequately assessed due to a lack of freely brain-penetrant inhibitors available for clinical study. Encouraging recent drug discovery efforts that focused on achieving free brain penetration for cancers in the CNS are highlighted. Still, further efforts are needed to enable thorough clinical evaluation of biological hypotheses.
Collapse
|
207
|
Cluster analysis of the results of intraoperative optical spectroscopic diagnostics In brain glioma neurosurgery. BIOMEDICAL PHOTONICS 2019. [DOI: 10.24931/2413-9432-2018-7-4-23-34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The paper presents the results of a comparative study of methods of cluster analysis of optical intraoperative spectroscopy data during surgery of glial tumors with varying degree of malignancy. The analysis was carried out both for individual patients and for the entire dataset. The data were obtained using combined optical spectroscopy technique, which allowed simultaneous registration of diffuse reflectance spectra of broadband radiation in the 500–600 nm spectral range (for the analysis of tissue blood supply and the degree of hemoglobin oxygenation), fluorescence spectra of 5‑ALA induced protoporphyrin IX (Pp IX) (for analysis of the malignancy degree) and signal of diffusely reflected laser light used to excite Pp IX fluorescence (to take into account the scattering properties of tissues). To determine the threshold values of these parameters for the tumor, the infltration zone and the normal white matter, we searched for the natural clusters in the available intraoperative optical spectroscopy data and compared them with the results of the pathomorphology. It was shown that, among the considered clustering methods, EM‑algorithm and k‑means methods are optimal for the considered data set and can be used to build a decision support system (DSS) for spectroscopic intraoperative navigation in neurosurgery. Results of clustering relevant to thepathological studies were also obtained using the methods of spectral and agglomerative clustering. These methods can be used to postprocess combined spectroscopy data.
Collapse
|
208
|
Peerlings J, Compter I, Janssen F, Wiggins CJ, Postma AA, Mottaghy FM, Lambin P, Hoffmann AL. Characterizing geometrical accuracy in clinically optimised 7T and 3T magnetic resonance images for high-precision radiation treatment of brain tumours. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2019; 9:35-42. [PMID: 33458423 PMCID: PMC7807620 DOI: 10.1016/j.phro.2018.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 11/23/2018] [Accepted: 12/05/2018] [Indexed: 11/27/2022]
Abstract
Background and purpose In neuro-oncology, high spatial accuracy is needed for clinically acceptable high-precision radiation treatment planning (RTP). In this study, the clinical applicability of anatomically optimised 7-Tesla (7T) MR images for reliable RTP is assessed with respect to standard clinical imaging modalities. Materials and methods System- and phantom-related geometrical distortion (GD) were quantified on clinically-relevant MR sequences at 7T and 3T, and on CT images using a dedicated anthropomorphic head phantom incorporating a 3D grid-structure, creating 436 points-of-interest. Global GD was assessed by mean absolute deviation (MADGlobal). Local GD relative to the magnetic isocentre was assessed by MADLocal. Using 3D displacement vectors of individual points-of-interest, GD maps were created. For clinically acceptable radiotherapy, 7T images need to meet the criteria for accurate dose delivery (GD < 1 mm) and present comparable GD as tolerated in clinically standard 3T MR/CT-based RTP. Results MADGlobal in 7T and 3T images ranged from 0.3 to 2.2 mm and 0.2-0.8 mm, respectively. MADLocal increased with increasing distance from the isocentre, showed an anisotropic distribution, and was significantly larger in 7T MR sequences (MADLocal = 0.2-1.2 mm) than in 3T (MADLocal = 0.1-0.7 mm) (p < 0.05). Significant differences in GD were detected between 7T images (p < 0.001). However, maximum MADLocal remained ≤1 mm within 68.7 mm diameter spherical volume. No significant differences in GD were found between 7T and 3T protocols near the isocentre. Conclusions System- and phantom-related GD remained ≤1 mm in central brain regions, suggesting that 7T MR images could be implemented in radiotherapy with clinically acceptable spatial accuracy and equally tolerated GD as in 3T MR/CT-based RTP. For peripheral regions, GD should be incorporated in safety margins for treatment uncertainties. Moreover, the effects of sequence-related factors on GD needs further investigation to obtain RTP-specific MR protocols.
Collapse
Affiliation(s)
- Jurgen Peerlings
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Inge Compter
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Fiere Janssen
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Alida A Postma
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Felix M Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Department of Nuclear Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Aswin L Hoffmann
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Institute of Radiooncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,OncoRay National Center for Radiation Research in Oncology, Dresden, Germany.,Department of Radiotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
209
|
Atkins RJ, Stylli SS, Kurganovs N, Mangiola S, Nowell CJ, Ware TM, Corcoran NM, Brown DV, Kaye AH, Morokoff A, Luwor RB, Hovens CM, Mantamadiotis T. Cell quiescence correlates with enhanced glioblastoma cell invasion and cytotoxic resistance. Exp Cell Res 2019; 374:353-364. [DOI: 10.1016/j.yexcr.2018.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022]
|
210
|
Tian Y, Mi G, Chen Q, Chaurasiya B, Li Y, Shi D, Zhang Y, Webster TJ, Sun C, Shen Y. Acid-Induced Activated Cell-Penetrating Peptide-Modified Cholesterol-Conjugated Polyoxyethylene Sorbitol Oleate Mixed Micelles for pH-Triggered Drug Release and Efficient Brain Tumor Targeting Based on a Charge Reversal Mechanism. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43411-43428. [PMID: 30508486 DOI: 10.1021/acsami.8b15147] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glioblastoma multiforme is the most devastating malignant brain tumor in adults. Even with the standard care of therapy, the prognosis remains dismal due to tumor heterogeneity, tumor infiltration, and, more importantly, the restrictive nature of the blood-brain barrier (BBB). To overcome the challenge of effectively delivering therapeutic cargo into the brain, herein a "smart", multifunctional polymeric micelle was developed using a cholesterol-conjugated polyoxyethylene sorbitol oleate. A cell-penetrating peptide, arginine-glycine repeats (RG)5, was incorporated into the micelles to improve cellular uptake, while a pH-sensitive masking sequence, histidine-glutamic acid repeats (HE)5, was introduced for charge shielding to minimize nonspecific binding and uptake at physiological pH. Results demonstrated that (RG)5- and (HE)5-modified mixed micelles were optimized using this strategy to effectively mask the cationic charges of the activated cell-penetrating peptide (RG)5 at physiological pH, i.e., limiting internalization, and were selectively triggered in response to a mildly acidic microenvironment in vitro based on a charge reversal mechanism. In vivo results further confirmed that such micelles preferentially accumulated in both brain and tumor tissues in both xenograft and orthotropic glioma mouse models. Furthermore, micelles significantly inhibited tumor growth with limited toxicity to peripheral tissues. The combination of BBB penetration, tumor targeting, potent efficacy, and high tolerance of these micelles strongly suggests that they could be a promising candidate for safe and effective drug delivery to the brain.
Collapse
Affiliation(s)
- Yu Tian
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Gujie Mi
- Department of Chemical Engineering, 313 Snell Engineering Center , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Qian Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Birendra Chaurasiya
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Yanan Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Di Shi
- Department of Chemical Engineering, 313 Snell Engineering Center , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Yong Zhang
- Children's Hospital of Nanjing Medical University , Nanjing 210008 , China
| | - Thomas J Webster
- Department of Chemical Engineering, 313 Snell Engineering Center , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Chunmeng Sun
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Yan Shen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
211
|
Kumar NN, Pizzo ME, Nehra G, Wilken-Resman B, Boroumand S, Thorne RG. Passive Immunotherapies for Central Nervous System Disorders: Current Delivery Challenges and New Approaches. Bioconjug Chem 2018; 29:3937-3966. [PMID: 30265523 PMCID: PMC7234797 DOI: 10.1021/acs.bioconjchem.8b00548] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Passive immunotherapy, i.e., the administration of exogenous antibodies that recognize a specific target antigen, has gained significant momentum as a potential treatment strategy for several central nervous system (CNS) disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and brain cancer, among others. Advances in antibody engineering to create therapeutic antibody fragments or antibody conjugates have introduced new strategies that may also be applied to treat CNS disorders. However, drug delivery to the CNS for antibodies and other macromolecules has thus far proven challenging, due in large part to the blood-brain barrier and blood-cerebrospinal fluid barriers that greatly restrict transport of peripherally administered molecules from the systemic circulation into the CNS. Here, we summarize the various passive immunotherapy approaches under study for the treatment of CNS disorders, with a primary focus on disease-specific and target site-specific challenges to drug delivery and new, cutting edge methods.
Collapse
Affiliation(s)
- Niyanta N. Kumar
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Michelle E. Pizzo
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
- Clinical Neuroengineering Training Program, University of
Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Geetika Nehra
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Brynna Wilken-Resman
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Sam Boroumand
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Robert G. Thorne
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
- Clinical Neuroengineering Training Program, University of
Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Neuroscience Training Program & Center for
Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin 53705, United
States
- Cellular and Molecular Pathology Graduate Training Program,
University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
212
|
Virga J, Bognár L, Hortobágyi T, Csősz É, Kalló G, Zahuczki G, Steiner L, Hutóczki G, Reményi-Puskár J, Klekner A. The Expressional Pattern of Invasion-Related Extracellular Matrix Molecules in CNS Tumors. Cancer Invest 2018; 36:492-503. [PMID: 30501525 DOI: 10.1080/07357907.2018.1545855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aim of the study: Astrocytomas are primary CNS malignancies which infiltrate the peritumoral tissue, even when they are low-grade. Schwannomas are also primary CNS tumors, however, they do not show peritumoral infiltration similarly to brain metastases which almost never invade the neighboring parts of brain. Extracellular matrix is altered in composition in various cancer types and is proposed to play an important role in the development of invasiveness of astrocytic tumors. This study aims to identify differences in the ECM composition of CNS tumors with different invasiveness.Materials and methods: The mRNA and protein levels of ECM components were measured by QRT-PCR and mass-spectrometry, respectively, in grade II astrocytoma, NSCLC brain metastasis, schwannomas, and non-tumor brain control samples. Expressional data was analyzed statistically with ANOVA and nearest neighbor search.Results: There is a significant difference in the expressional pattern of invasion-related ECM components among various CNS tumors, especially among those of different embryonic origin. Non-invasive tumors show only slight differences in the expressional pattern of ECM molecules. Tumor samples can be separated based on their expressional pattern using statistical classifiers, therefore the ECM composition seems to be typical of various cancer types.Conclusions: Differences in the expressional pattern of the ECM could be responsible for the different invasiveness of various CNS tumors.
Collapse
Affiliation(s)
- József Virga
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - László Bognár
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - Tibor Hortobágyi
- Department of Neuropathology, University of Debrecen, Debrecen, Hungary
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Gergő Kalló
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Gábor Zahuczki
- UD-GenoMed Medical Genomic Technologies Research & Development Services Ltd., Debrecen, Hungary
| | - László Steiner
- UD-GenoMed Medical Genomic Technologies Research & Development Services Ltd., Debrecen, Hungary
| | - Gábor Hutóczki
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | | | - Almos Klekner
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
213
|
Kim Y, Cho HH, Kim ST, Park H, Nam D, Kong DS. Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI. Neuroradiology 2018; 60:1297-1305. [DOI: 10.1007/s00234-018-2091-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
|
214
|
Cho HH, Lee SH, Kim J, Park H. Classification of the glioma grading using radiomics analysis. PeerJ 2018; 6:e5982. [PMID: 30498643 PMCID: PMC6252243 DOI: 10.7717/peerj.5982] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Grading of gliomas is critical information related to prognosis and survival. We aimed to apply a radiomics approach using various machine learning classifiers to determine the glioma grading. METHODS We considered 285 (high grade n = 210, low grade n = 75) cases obtained from the Brain Tumor Segmentation 2017 Challenge. Manual annotations of enhancing tumors, non-enhancing tumors, necrosis, and edema were provided by the database. Each case was multi-modal with T1-weighted, T1-contrast enhanced, T2-weighted, and FLAIR images. A five-fold cross validation was adopted to separate the training and test data. A total of 468 radiomics features were calculated for three types of regions of interest. The minimum redundancy maximum relevance algorithm was used to select features useful for classifying glioma grades in the training cohort. The selected features were used to build three classifier models of logistics, support vector machines, and random forest classifiers. The classification performance of the models was measured in the training cohort using accuracy, sensitivity, specificity, and area under the curve (AUC) of the receiver operating characteristic curve. The trained classifier models were applied to the test cohort. RESULTS Five significant features were selected for the machine learning classifiers and the three classifiers showed an average AUC of 0.9400 for training cohorts and 0.9030 (logistic regression 0.9010, support vector machine 0.8866, and random forest 0.9213) for test cohorts. DISCUSSION Glioma grading could be accurately determined using machine learning and feature selection techniques in conjunction with a radiomics approach. The results of our study might contribute to high-throughput computer aided diagnosis system for gliomas.
Collapse
Affiliation(s)
- Hwan-ho Cho
- Department of Electronic and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Seung-hak Lee
- Department of Electronic and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Jonghoon Kim
- Department of Electronic and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
215
|
Warntjes M, Blystad I, Tisell A, Larsson EM. Synthesizing a Contrast-Enhancement Map in Patients with High-Grade Gliomas Based on a Postcontrast MR Imaging Quantification Only. AJNR Am J Neuroradiol 2018; 39:2194-2199. [PMID: 30409854 DOI: 10.3174/ajnr.a5870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/24/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Administration of a gadolinium-based contrast agent is an important diagnostic biomarker for blood-brain barrier damage. In clinical use, detection is based on subjective comparison of native and postgadolinium-based contrast agent T1-weighted images. Quantitative MR imaging studies have suggested a relation between the longitudinal relaxation rate and proton-density in the brain parenchyma, which is disturbed by gadolinium-based contrast agents. This discrepancy can be used to synthesize a contrast-enhancement map based solely on the postgadolinium-based contrast agent acquisition. The aim of this study was to compare synthetic enhancement maps with subtraction maps of native and postgadolinium-based contrast agent images. MATERIALS AND METHODS For 14 patients with high-grade gliomas, quantitative MR imaging was performed before and after gadolinium-based contrast agent administration. The quantification sequence was multidynamic and multiecho, with a scan time of 6 minutes. The 2 image stacks were coregistered using in-plane transformation. The longitudinal relaxation maps were subtracted and correlated with the synthetic longitudinal relaxation enhancement maps on the basis of the postgadolinium-based contrast agent images only. ROIs were drawn for tumor delineation. RESULTS Linear regression of the subtraction and synthetic longitudinal relaxation enhancement maps showed a slope of 1.02 ± 0.19 and an intercept of 0.05 ± 0.12. The Pearson correlation coefficient was 0.861 ± 0.059, and the coefficient of variation was 0.18 ± 0.04. On average, a volume of 1.71 ± 1.28 mL of low-intensity enhancement was detected in the synthetic enhancement maps outside the borders of the drawn ROI. CONCLUSIONS The study shows that there was a good correlation between subtraction longitudinal relaxation enhancement maps and synthetic longitudinal relaxation enhancement maps in patients with high-grade gliomas. The method may improve the sensitivity and objectivity for the detection of gadolinium-based contrast agent enhancement.
Collapse
Affiliation(s)
- M Warntjes
- From the Centre for Medical Image Science and Visualization (M.W., I.B.., A.T.) .,Division of Cardiovascular Medicine (M.W.).,SyntheticMR AB (M.W.), Linköping, Sweden
| | - I Blystad
- From the Centre for Medical Image Science and Visualization (M.W., I.B.., A.T.).,Departments of Radiology (I.B.)
| | - A Tisell
- From the Centre for Medical Image Science and Visualization (M.W., I.B.., A.T.).,Radiation Physics (A.T.), Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - E-M Larsson
- Department of Surgical Sciences and Radiology (E.-M.L.), Uppsala University, Uppsala, Sweden
| |
Collapse
|
216
|
Toxicological study of doxorubicin-loaded PLGA nanoparticles for the treatment of glioblastoma. Int J Pharm 2018; 554:161-178. [PMID: 30414476 DOI: 10.1016/j.ijpharm.2018.11.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022]
Abstract
Doxorubicin loaded in poloxamer 188-coated PLGA nanoparticles (Dox-NP + P188) was shown to produce a high antitumor effect against the experimental orthotopic 101.8 glioblastoma in rats upon intravenous administration. The objective of the present study was to evaluate the acute and chronic toxicity of this nanoformulation. The parent drug was used as a reference formulation. Acute toxicity of doxorubicin-loaded nanoparticles in mice and rats was similar to that of free doxorubicin. The chronic toxicity study was conducted in Chinchilla rabbits; the treatment regimen consisted of 30 daily intravenous injections using two dosage levels: 0.22 mg/kg/day and 0.15 mg/kg/day. The study included assessment of the body weight, hematological parameters, blood biochemical parameters, urinalysis, and pathomorphological evaluation of the internal organs. The results of the study demonstrated that the hematological, cardiac, and testicular toxicity of doxorubicin could be reduced by binding the drug to PLGA nanoparticles. Coating of PLGA nanoparticles with poloxamer 188 contributed to the reduction of cardiotoxicity. Functional and morphological abnormalities caused by the nanoparticulate doxorubicin were dose-dependent and reversible. Altogether these results provide evidence that the PLGA-based nanoformulation not only might enable the broadening of the spectrum of doxorubicin activity but also an improvement of its safety profile.
Collapse
|
217
|
Oraiopoulou ME, Tzamali E, Tzedakis G, Liapis E, Zacharakis G, Vakis A, Papamatheakis J, Sakkalis V. Integrating in vitro experiments with in silico approaches for Glioblastoma invasion: the role of cell-to-cell adhesion heterogeneity. Sci Rep 2018; 8:16200. [PMID: 30385804 PMCID: PMC6212459 DOI: 10.1038/s41598-018-34521-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/01/2018] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma cells adopt migration strategies to invade into the brain parenchyma ranging from individual to collective mechanisms, whose role and dynamics are not yet fully understood. In this work, we explore Glioblastoma heterogeneity and recapitulate its invasive patterns both in vitro, by utilizing primary cells along with the U87MG cell line, and in silico, by adopting discrete, individual cell-based mathematics. Glioblastoma cells are cultured three-dimensionally in an ECM-like substrate. The primary Glioblastoma spheroids adopt a novel cohesive pattern, mimicking perivascular invasion in the brain, while the U87MG adopt a typical, starburst invasive pattern under the same experimental setup. Mathematically, we focus on the role of the intrinsic heterogeneity with respect to cell-to-cell adhesion. Our proposed mathematical approach mimics the invasive morphologies observed in vitro and predicts the dynamics of tumour expansion. The role of the proliferation and migration is also explored showing that their effect on tumour morphology is different per cell type. The proposed model suggests that allowing cell-to-cell adhesive heterogeneity within the tumour population is sufficient for variable invasive morphologies to emerge which remain originally undetectable by conventional imaging, indicating that exploration in pathological samples is needed to improve our understanding and reveal potential patient-specific therapeutic targets.
Collapse
Affiliation(s)
- M-E Oraiopoulou
- Department of Medicine, University of Crete, Heraklion, Crete, Greece
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - E Tzamali
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - G Tzedakis
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - E Liapis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - G Zacharakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - A Vakis
- Department of Medicine, University of Crete, Heraklion, Crete, Greece
- Neurosurgery Clinic, University General Hospital of Heraklion, Crete, Greece
| | - J Papamatheakis
- Gene Expression Laboratory, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - V Sakkalis
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece.
| |
Collapse
|
218
|
Inhibition of PIM1 blocks the autophagic flux to sensitize glioblastoma cells to ABT-737-induced apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:175-189. [PMID: 30389373 DOI: 10.1016/j.bbamcr.2018.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/05/2018] [Accepted: 10/24/2018] [Indexed: 01/27/2023]
Abstract
Overcoming apoptosis resistance is one major issue in glioblastoma (GB) therapies. Accumulating evidence indicates that resistance to apoptosis in GB is mediated via upregulation of pro-survival BCL2-family members. The synthetic BH3-mimetic ABT-737 effectively targets BCL2, BCL2 like 1 and BCL2 like 2 but still barely affects cell survival which is presumably due to its inability to inhibit myeloid cell leukemia 1 (MCL1). The constitutively active serine/threonine kinase proviral integration site for moloney murine leukemia virus 1 (PIM1) was recently found to be overexpressed in GB patient samples and to maintain cell survival in these tumors. For different GB cell lines, Western Blot, mitochondrial fractionation, fluorescence microscopy, effector caspase assays, flow cytometry, and an adult organotypic brain slice transplantation model were used to investigate the putative PIM1/MCL1 signaling axis regarding potential synergistic effects with ABT-737. We demonstrate that combination of the PIM1 inhibitor SGI-1776 or the pan-PIM kinase inhibitor AZD1208 with ABT-737 strongly sensitizes GB cells to apoptosis. Unexpectedly, this effect was found to be MCL1-independent, but could be partially blocked by caspase 8 (CASP8) inhibition. Remarkably, the analysis of autophagy markers in combination with the observation of massive accumulation and hampered degradation of autophagosomes suggests a completely novel function of PIM1 as a late stage autophagy regulator, maintaining the autophagic flux at the level of autophagosome/lysosome fusion. Our data indicate that PIM1 inhibition and ABT-737 synergistically induce apoptosis in an MCL1-independent but CASP8-dependent manner in GB. They also identify PIM1 as a suitable target for overcoming apoptosis resistance in GB.
Collapse
|
219
|
Kim Y, Kang H, Powathil G, Kim H, Trucu D, Lee W, Lawler S, Chaplain M. Role of extracellular matrix and microenvironment in regulation of tumor growth and LAR-mediated invasion in glioblastoma. PLoS One 2018; 13:e0204865. [PMID: 30286133 PMCID: PMC6171904 DOI: 10.1371/journal.pone.0204865] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
The cellular dispersion and therapeutic control of glioblastoma, the most aggressive type of primary brain cancer, depends critically on the migration patterns after surgery and intracellular responses of the individual cancer cells in response to external biochemical cues in the microenvironment. Recent studies have shown that miR-451 regulates downstream molecules including AMPK/CAB39/MARK and mTOR to determine the balance between rapid proliferation and invasion in response to metabolic stress in the harsh tumor microenvironment. Surgical removal of the main tumor is inevitably followed by recurrence of the tumor due to inaccessibility of dispersed tumor cells in normal brain tissue. In order to address this complex process of cell proliferation and invasion and its response to conventional treatment, we propose a mathematical model that analyzes the intracellular dynamics of the miR-451-AMPK- mTOR-cell cycle signaling pathway within a cell. The model identifies a key mechanism underlying the molecular switches between proliferative phase and migratory phase in response to metabolic stress in response to fluctuating glucose levels. We show how up- or down-regulation of components in these pathways affects the key cellular decision to infiltrate or proliferate in a complex microenvironment in the absence and presence of time delays and stochastic noise. Glycosylated chondroitin sulfate proteoglycans (CSPGs), a major component of the extracellular matrix (ECM) in the brain, contribute to the physical structure of the local brain microenvironment but also induce or inhibit glioma invasion by regulating the dynamics of the CSPG receptor LAR as well as the spatiotemporal activation status of resident astrocytes and tumor-associated microglia. Using a multi-scale mathematical model, we investigate a CSPG-induced switch between invasive and non-invasive tumors through the coordination of ECM-cell adhesion and dynamic changes in stromal cells. We show that the CSPG-rich microenvironment is associated with non-invasive tumor lesions through LAR-CSGAG binding while the absence of glycosylated CSPGs induce the critical glioma invasion. We illustrate how high molecular weight CSPGs can regulate the exodus of local reactive astrocytes from the main tumor lesion, leading to encapsulation of non-invasive tumor and inhibition of tumor invasion. These different CSPG conditions also change the spatial profiles of ramified and activated microglia. The complex distribution of CSPGs in the tumor microenvironment can determine the nonlinear invasion behaviors of glioma cells, which suggests the need for careful therapeutic strategies.
Collapse
Affiliation(s)
- Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
- Mathematical Biosciences Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Hyunji Kang
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Gibin Powathil
- Department of Mathematics, Swansea University, Swansea, United Kingdom
| | - Hyeongi Kim
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Dumitru Trucu
- Division of Mathematics, University of Dundee, Dundee, United Kingdom
| | - Wanho Lee
- National Institute for Mathematical Sciences, Daejeon, Republic of Korea
| | - Sean Lawler
- Department of neurosurgery, Brigham and Women’s Hospital & Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark Chaplain
- School of Mathematics and Statistics, Mathematical Institute, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
220
|
Kazerooni AF, Nabil M, Zadeh MZ, Firouznia K, Azmoudeh-Ardalan F, Frangi AF, Davatzikos C, Rad HS. Characterization of active and infiltrative tumorous subregions from normal tissue in brain gliomas using multiparametric MRI. J Magn Reson Imaging 2018; 48:938-950. [PMID: 29412496 PMCID: PMC6081259 DOI: 10.1002/jmri.25963] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/20/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Targeted localized biopsies and treatments for diffuse gliomas rely on accurate identification of tissue subregions, for which current MRI techniques lack specificity. PURPOSE To explore the complementary and competitive roles of a variety of conventional and quantitative MRI methods for distinguishing subregions of brain gliomas. STUDY TYPE Prospective. POPULATION Fifty-one tissue specimens were collected using image-guided localized biopsy surgery from 10 patients with newly diagnosed gliomas. FIELD STRENGTH/SEQUENCE Conventional and quantitative MR images consisting of pre- and postcontrast T1 w, T2 w, T2 -FLAIR, T2 -relaxometry, DWI, DTI, IVIM, and DSC-MRI were acquired preoperatively at 3T. ASSESSMENT Biopsy specimens were histopathologically attributed to glioma tissue subregion categories of active tumor (AT), infiltrative edema (IE), and normal tissue (NT) subregions. For each tissue sample, a feature vector comprising 15 MRI-based parameters was derived from preoperative images and assessed by a machine learning algorithm to determine the best multiparametric feature combination for characterizing the tissue subregions. STATISTICAL TESTS For discrimination of AT, IE, and NT subregions, a one-way analysis of variance (ANOVA) test and for pairwise tissue subregion differentiation, Tukey honest significant difference, and Games-Howell tests were applied (P < 0.05). Cross-validated feature selection and classification methods were implemented for identification of accurate multiparametric MRI parameter combination. RESULTS After exclusion of 17 tissue specimens, 34 samples (AT = 6, IE = 20, and NT = 8) were considered for analysis. Highest accuracies and statistically significant differences for discrimination of IE from NT and AT from NT were observed for diffusion-based parameters (AUCs >90%), and the perfusion-derived parameter as the most accurate feature in distinguishing IE from AT. A combination of "CBV, MD, T2 _ISO, FLAIR" parameters showed high diagnostic performance for identification of the three subregions (AUC ∼90%). DATA CONCLUSION Integration of a few quantitative along with conventional MRI parameters may provide a potential multiparametric imaging biomarker for predicting the histopathologically proven glioma tissue subregions. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;48:938-950.
Collapse
Affiliation(s)
- Anahita Fathi Kazerooni
- Quantitative MR Imaging and Spectroscopy Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Nabil
- Department of Statistics, Faculty of Mathematical Science, University of Guilan, Rasht, Iran
| | - Mehdi Zeinali Zadeh
- Department of Neurological Surgery, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kavous Firouznia
- Advanced Diagnostic and Interventional Radiology Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Azmoudeh-Ardalan
- Department of Pathology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alejandro F. Frangi
- Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, UK
| | - Christos Davatzikos
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hamidreza Saligheh Rad
- Quantitative MR Imaging and Spectroscopy Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
221
|
Yamamoto J, Kakeda S, Shimajiri S, Nakano Y, Saito T, Ide S, Moriya J, Korogi Y, Nishizawa S. Evaluation of Peritumoral Brain Parenchyma Using Contrast-Enhanced 3D Fast Imaging Employing Steady-State Acquisition at 3T for Differentiating Metastatic Brain Tumors and Glioblastomas. World Neurosurg 2018; 120:e719-e729. [PMID: 30165229 DOI: 10.1016/j.wneu.2018.08.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Metastatic brain tumors and glioblastomas are the 2 of the most common brain neoplasms in adults. However, distinguishing solitary metastatic brain tumors from glioblastomas on conventional magnetic resonance imaging remains particularly challenging. Thus, we aimed to retrospectively assess the role of contrast-enhanced fast imaging employing steady-state acquisition (CE-FIESTA) imaging in distinguishing between metastatic brain tumors and glioblastomas. MATERIALS AND METHODS Forty-three patients with metastatic brain tumors and 14 patients with glioblastomas underwent conventional magnetic resonance imaging and CE-FIESTA before surgery. First, 1 neuroradiologist and 1 neurosurgeon classified the CE-FIESTA findings for the peritumoral brain parenchyma by consensus. Next, the 2 neuroradiologists performed an observer performance study comparing tumor shape classification (smooth or irregular margins), a classic imaging finding, with the CE-FIESTA classification of the peritumoral brain parenchyma. RESULTS The CE-FIESTA findings for the peritumoral brain parenchyma were classified as follows: type A, no hyperintense rim; type B, partial hyperintense rim; and type C, extended hyperintense rim. With regard to the diagnosis of metastatic brain tumors, the observer performance study demonstrated that the mean sensitivity, specificity, and accuracy of an extended hyperintense rim classification (type C) on CE-FIESTA images were 95.3%, 85.7%, and 93.0%, respectively. The accuracy of the CE-FIESTA classification was significantly higher than that of the tumor shape classification. CONCLUSIONS CE-FIESTA images may provide useful information for distinguishing metastatic brain tumors from glioblastomas, especially when focusing on differences in the peritumoral brain parenchyma.
Collapse
Affiliation(s)
- Junkoh Yamamoto
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | - Shingo Kakeda
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shohei Shimajiri
- Department of Surgical Pathology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiteru Nakano
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takeshi Saito
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Satoru Ide
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Junji Moriya
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yukunori Korogi
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shigeru Nishizawa
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
222
|
Sun X, Wang J, Huang M, Chen T, Chen J, Zhang F, Zeng H, Xu Z, Ke Y. STAT3 promotes tumour progression in glioma by inducing FOXP1 transcription. J Cell Mol Med 2018; 22:5629-5638. [PMID: 30134017 PMCID: PMC6201216 DOI: 10.1111/jcmm.13837] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/21/2018] [Indexed: 01/25/2023] Open
Abstract
Objective This paper investigated the effects of STAT3 through promoting FOXP1 transcription on proliferation, apoptosis and invasion in glioma cells. Methods Quantitative real‐time PCR (qRT‐PCR) and Western blot assay were administered to assess the mRNA and protein expression levels of STAT3 and FOXP1 in glioma tissues and cells, respectively. Luciferase reporter and Chromatin Immunoprecipitation (ChIP) assays were implemented to determine the correlation between STAT3 and FOXP1. MTT and colony formation assays were conducted to identify cell growth. Flow cytometry was run to detect the cell apoptosis rate of glioma cells. Transwell assays were conducted to reveal cell invasion ability. Results The mRNA and protein expression levels of STAT3 were highly expressed in glioma tissues and cells. After cells transfected with siRNA of STAT3, both STAT3 and FOXP1 were simultaneously downregulated. STAT3 directly regulated FOXP1 transcription. STAT3 promoted cell proliferation, inhibited cell apoptosis and enhanced cell invasion through promoting FOXP1 transcription in glioma cells. Conclusion In summary, STAT3 gene was a transcriptional regulator of FOXP1. Depleted STAT3 restrained cell proliferation and invasion, promoted cell apoptosis in glioma cells. This molecular mechanism between STAT3 and FOXP1 can serve as a therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Xinlin Sun
- National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jihui Wang
- National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Min Huang
- National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Taoliang Chen
- National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiansheng Chen
- National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fabing Zhang
- National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huijun Zeng
- National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhimin Xu
- Affiliated Bayi Brain Hospital, PLA General Army Hospital, Beijing, China
| | - Yiquan Ke
- National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
223
|
Schaub C, Kebir S, Junold N, Hattingen E, Schäfer N, Steinbach JP, Weyerbrock A, Hau P, Goldbrunner R, Niessen M, Mack F, Stuplich M, Tzaridis T, Bähr O, Kortmann RD, Schlegel U, Schmidt-Graf F, Rohde V, Braun C, Hänel M, Sabel M, Gerlach R, Krex D, Belka C, Vatter H, Proescholdt M, Herrlinger U, Glas M. Tumor growth patterns of MGMT-non-methylated glioblastoma in the randomized GLARIUS trial. J Cancer Res Clin Oncol 2018; 144:1581-1589. [PMID: 29808316 DOI: 10.1007/s00432-018-2671-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/16/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND We evaluated patterns of tumor growth in patients with newly diagnosed MGMT-non-methylated glioblastoma who were assigned to undergo radiotherapy in conjunction with bevacizumab/irinotecan (BEV/IRI) or standard temozolomide (TMZ) within the randomized phase II GLARIUS trial. METHODS In 142 patients (94 BEV/IRI, 48 TMZ), we reviewed magnetic resonance imaging scans at baseline and first tumor recurrence. Based on contrast-enhanced T1-weighted and fluid-attenuated inversion recovery images, we assessed tumor growth patterns and tumor invasiveness. Tumor growth patterns were classified as either multifocal or local at baseline and recurrence; at first recurrence, we additionally assessed whether distant lesions appeared. Invasiveness was determined as either diffuse or non-diffuse. Associations with treatment arms were calculated using Fisher's exact test. RESULTS At baseline, 115 of 142 evaluable patients (81%) had a locally confined tumor. Between treatment arms, there was no significant difference in the fraction of tumors that changed from an initially local tumor growth pattern to a multifocal pattern (12 and 13%, p = 0.55). Distant lesions appeared in 17% (BEV/IRI) and 13% (TMZ) of patients (p = 0.69). 15% of patients in the BEV/IRI arm and 8% in the TMZ arm developed a diffuse growth pattern from an initially non-diffuse pattern (p = 0.42). CONCLUSIONS The tumor growth and invasiveness patterns do not differ between BEV/IRI and TMZ-treated MGMT-non-methylated glioblastoma patients in the GLARIUS trial. BEV/IRI was not associated with an increased rate of multifocal, distant, or highly invasive tumors at the time of recurrence.
Collapse
Affiliation(s)
- Christina Schaub
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Sied Kebir
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, Bonn, Germany
- West German Cancer Center (WTZ), University Hospital Essen and German Cancer Consortium, Partner Site University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nina Junold
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Elke Hattingen
- Neuroradiology; Department of Radiology, University of Bonn Medical Center, Bonn, Germany
| | - Niklas Schäfer
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, Bonn, Germany
- West German Cancer Center (WTZ), University Hospital Essen and German Cancer Consortium, Partner Site University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Joachim P Steinbach
- Dr. Senckenberg Institute of Neurooncology, University of Frankfurt, Frankfurt, Germany
| | - Astrid Weyerbrock
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany
| | - Peter Hau
- Department of Neurology and Wilhelm Sander NeuroOncology Unit, University of Regensburg, Regensburg, Germany
| | | | - Michael Niessen
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Frederic Mack
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Moritz Stuplich
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Theophilos Tzaridis
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Oliver Bähr
- Dr. Senckenberg Institute of Neurooncology, University of Frankfurt, Frankfurt, Germany
| | | | - Uwe Schlegel
- Department of Neurology, Knappschaftskrankenhaus Klinikum der Ruhr-Universität Bochum, Bochum, Germany
| | - Friederike Schmidt-Graf
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Veit Rohde
- Department of Neurosurgery, Georg-August-University, Göttingen, Germany
| | - Christian Braun
- Department of Neurology, University Hospital Tübingen, Tübingen, Germany
| | - Mathias Hänel
- Department of Internal Medicine III, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Michael Sabel
- Department of Neurosurgery, Medizinische Fakultät, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Rüdiger Gerlach
- Department of Neurosurgery, HELIOS Klinikum Erfurt, Erfurt, Germany
| | - Dietmar Krex
- Department of Neurosurgery, Technical University Dresden, Dresden, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU Munich, Munich, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Martin Proescholdt
- Department of Neurosurgery, University of Regensburg, Regensburg, Germany
| | - Ulrich Herrlinger
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, Bonn, Germany.
- West German Cancer Center (WTZ), University Hospital Essen and German Cancer Consortium, Partner Site University Hospital Essen, University Duisburg-Essen, Essen, Germany.
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
224
|
Breznik B, Limbaeck Stokin C, Kos J, Khurshed M, Hira VVV, Bošnjak R, Lah TT, Van Noorden CJF. Cysteine cathepsins B, X and K expression in peri-arteriolar glioblastoma stem cell niches. J Mol Histol 2018; 49:481-497. [PMID: 30046941 PMCID: PMC6182580 DOI: 10.1007/s10735-018-9787-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/19/2018] [Indexed: 01/09/2023]
Abstract
Glioblastoma (GBM) is the most lethal brain tumor also due to malignant and therapy-resistant GBM stem cells (GSCs) that are localized in protecting hypoxic GSC niches. Some members of the cysteine cathepsin family of proteases have been found to be upregulated in GBM. Cathepsin K gene expression is highly elevated in GBM tissue versus normal brain and it has been suggested to regulate GSC migration out of the niches. Here, we investigated the cellular distribution of cathepsins B, X and K in GBM tissue and whether these cathepsins are co-localized in GSC niches. Therefore, we determined expression of these cathepsins in serial paraffin sections of 14 human GBM samples and serial cryostat sections of two samples using immunohistochemistry and metabolic mapping of cathepsin activity using selective fluorogenic substrates. We detected cathepsins B, X and K in peri-arteriolar GSC niches in 9 out of 16 GBM samples, which were defined by co-expression of the GSC marker CD133, the niche marker stromal-derived factor-1α (SDF-1α) and smooth muscle actin as a marker for arterioles. The expression of cathepsin B and X was detected in stromal cells and cancer cells throughout the GBM sections, whereas cathepsin K expression was more restricted to arteriole-rich regions in the GBM sections. Metabolic mapping showed that cathepsin B, but not cathepsin K is active in GSC niches. On the basis of these findings, it is concluded that cathepsins B, X and K have distinct functions in GBM and that cathepsin K is the most likely GSC niche-related cathepsin of the three cathepsins investigated.
Collapse
Affiliation(s)
- Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia. .,International Postgraduate School Jozef Stefan, Jamova 39, 1000, Ljubljana, Slovenia.
| | - Clara Limbaeck Stokin
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Janko Kos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, 7 Aškerčeva cesta, 1000, Ljubljana, Slovenia
| | - Mohammed Khurshed
- Cancer Center Amsterdam, Department of Medical Biology at the Academic Medical Center, Amsterdam UMC, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Vashendriya V V Hira
- Cancer Center Amsterdam, Department of Medical Biology at the Academic Medical Center, Amsterdam UMC, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Roman Bošnjak
- Department of Neurosurgery, University Clinical Centre Ljubljana, Zaloška cesta 7, 1000, Ljubljana, Slovenia
| | - Tamara T Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia.,International Postgraduate School Jozef Stefan, Jamova 39, 1000, Ljubljana, Slovenia
| | - Cornelis J F Van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia.,Cancer Center Amsterdam, Department of Medical Biology at the Academic Medical Center, Amsterdam UMC, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
225
|
Shen J, Zhang T, Cheng Z, Zhu N, Wang H, Lin L, Wang Z, Yi H, Hu M. Lycorine inhibits glioblastoma multiforme growth through EGFR suppression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:157. [PMID: 30016965 PMCID: PMC6050662 DOI: 10.1186/s13046-018-0785-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 06/07/2018] [Indexed: 02/06/2023]
Abstract
Background Lycorine has been revealed to inhibit the development of many kinds of malignant tumors, including glioblastoma multiforme (GBM). Although compelling evidences demonstrated Lycorine’s inhibition on cancers through some peripheral mechanism, in-depth mechanism studies of Lycotine’s anti-GBM effects still call for further exploration. Epidermal Growth Factor Receptor (EGFR) gene amplification and mutations are the most common oncogenic events in GBM. Targeting EGFR by small molecular inhibitors is a rational strategy for GBM treatment. Methods The molecular docking modeling and in vitro EGFR kinase activity system were employed to identify the potential inhibitory effects of Lycorine on EGFR. And the Biacore assay was used to confirm the direct binding status between Lycorine and the intracellular EGFR (696–1022) domain. In vitro assays were conducted to test the suppression of Lycorine on the biological behavior of GBM cells. By RNA interference, EGFR expression was reduced then cells underwent proliferation assay to investigate whether Lycorine’s inhibition on GBM cells was EGFR-dependent or not. RT-PCR and western blotting analysis were carried out to investigate the underlined molecular mechanism that Lycorine exerted on EGFR itself and EGFR signaling pathway. Three different xenograft models (an U251-luc intracranially orthotopic transplantation model, an EGFR stably knockdown U251 subcutaneous xenograft model and a patient-derived xenograft model) were performed to verify Lycorine’s therapeutic potential on GBM in vivo. Results We identified a novel small natural molecule Lycorine binding to the intracellular EGFR (696–1022) domain as an inhibitor of EGFR. Lycorine decreased GBM cell proliferation, migration and colony formation by inducing cell apoptosis in an EGFR-mediated manner. Furthermore, Lycorine inhibited the xenograft tumor growths in three animal models in vivo. Besides, Lycorine impaired the phosphorylation of EGFR, AKT, which were mechanistically associated with expression alteration of a series of cell survival and death regulators and metastasis-related MMP9 protein. Conclusions Our findings identify Lycorine directly interacts with EGFR and inhibits EGFR activation. The most significant result is that Lycorine displays satisfactory therapeutic effect in our patient-derived GBM tumor xenograft, thus supporting the conclusion that Lycorine may be considered as a promising candidate in clinical therapy for GBM.
Collapse
Affiliation(s)
- Jia Shen
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| | - Tao Zhang
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437000, China
| | - Zheng Cheng
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437000, China
| | - Ni Zhu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437000, China
| | - Hua Wang
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437000, China
| | - Li Lin
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437000, China
| | - Zexia Wang
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437000, China
| | - Haotian Yi
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437000, China
| | - Meichun Hu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437000, China.
| |
Collapse
|
226
|
Alfonso JCL, Talkenberger K, Seifert M, Klink B, Hawkins-Daarud A, Swanson KR, Hatzikirou H, Deutsch A. The biology and mathematical modelling of glioma invasion: a review. J R Soc Interface 2018; 14:rsif.2017.0490. [PMID: 29118112 DOI: 10.1098/rsif.2017.0490] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022] Open
Abstract
Adult gliomas are aggressive brain tumours associated with low patient survival rates and limited life expectancy. The most important hallmark of this type of tumour is its invasive behaviour, characterized by a markedly phenotypic plasticity, infiltrative tumour morphologies and the ability of malignant progression from low- to high-grade tumour types. Indeed, the widespread infiltration of healthy brain tissue by glioma cells is largely responsible for poor prognosis and the difficulty of finding curative therapies. Meanwhile, mathematical models have been established to analyse potential mechanisms of glioma invasion. In this review, we start with a brief introduction to current biological knowledge about glioma invasion, and then critically review and highlight future challenges for mathematical models of glioma invasion.
Collapse
Affiliation(s)
- J C L Alfonso
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - K Talkenberger
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - M Seifert
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - B Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany.,German Cancer Consortium (DKTK), partner site, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Hawkins-Daarud
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - K R Swanson
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - H Hatzikirou
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - A Deutsch
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| |
Collapse
|
227
|
Maldonado MD, Batchala P, Ornan D, Fadul C, Schiff D, Itri JN, Jain R, Patel SH. Features of diffuse gliomas that are misdiagnosed on initial neuroimaging: a case control study. J Neurooncol 2018; 140:107-113. [PMID: 29959694 DOI: 10.1007/s11060-018-2939-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE The neuroimaging diagnosis of diffuse gliomas can be challenging owing to their variable clinical and radiologic presentation. The purpose of this study was to identify factors that are associated with imaging errors in the diagnosis of diffuse gliomas. METHODS A retrospective case-control analysis was undertaken. 18 misdiagnosed diffuse gliomas on initial neuroimaging (cases) and 108 accurately diagnosed diffuse gliomas on initial neuroimaging (controls) were collected. Clinical, pathological, and imaging metrics were tabulated for each patient. The tabulated metrics were compared between cases and controls to determine factors associated with misdiagnosis. RESULTS Cases of misdiagnosed diffuse glioma (vs controls) were more likely to undergo initial triage as a stroke workup [OR 14.429 (95% CI 4.345, 47.915), p < 0.0001], were less likely to enhance [OR 0.283 (95% CI 0.098, 0.812), p = 0.02], were smaller (mean diameter 4.4 vs 6.0 cm, p = 0.0008), produced less midline shift (median midline shift 0.0 vs 2.0 mm, p = 0.003), were less likely to demonstrate necrosis [OR 0.156 (95% CI 0.034-0.713), p = 0.008], and were less likely to have IV contrast administered on the initial MRI [OR 0.100 (95% CI 0.020, 0.494), p = 0.008]. CONCLUSION Several clinical and radiologic metrics are associated with diffuse gliomas that are missed or misdiagnosed on the initial neuroimaging study. Knowledge of these associations may aid in avoiding misinterpretation and accurately diagnosing such cases in clinical practice.
Collapse
Affiliation(s)
- M D Maldonado
- Division of Neuroradiology, Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA
| | - P Batchala
- Division of Neuroradiology, Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA
| | - D Ornan
- Division of Neuroradiology, Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA
| | - C Fadul
- Division of Neuro-Oncology, Department of Neurology, University of Virginia Health System, Charlottesville, VA, USA
| | - D Schiff
- Division of Neuro-Oncology, Department of Neurology, University of Virginia Health System, Charlottesville, VA, USA
| | - J N Itri
- Department of Radiology, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - R Jain
- Department of Radiology, NYU School of Medicine, New York, NY, USA.,Department of Neurosurgery, NYU School of Medicine, New York, NY, USA
| | - S H Patel
- Division of Neuroradiology, Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
| |
Collapse
|
228
|
Pedrosa de Barros N, Meier R, Pletscher M, Stettler S, Knecht U, Herrmann E, Schucht P, Reyes M, Gralla J, Wiest R, Slotboom J. On the relation between MR spectroscopy features and the distance to MRI-visible solid tumor in GBM patients. Magn Reson Med 2018; 80:2339-2355. [DOI: 10.1002/mrm.27359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Nuno Pedrosa de Barros
- University Institute for Diagnostic and Interventional Neuroradiology, University of Bern; Bern Switzerland
| | - Raphael Meier
- University Institute for Diagnostic and Interventional Neuroradiology, University of Bern; Bern Switzerland
| | - Martin Pletscher
- University Institute for Diagnostic and Interventional Neuroradiology, University of Bern; Bern Switzerland
| | - Samuel Stettler
- University Institute for Diagnostic and Interventional Neuroradiology, University of Bern; Bern Switzerland
| | - Urspeter Knecht
- University Institute for Diagnostic and Interventional Neuroradiology, University of Bern; Bern Switzerland
| | - Evelyn Herrmann
- Department of Radiation Oncology; University of Bern; Bern Switzerland
| | - Philippe Schucht
- Department of Neurosurgery; University of Bern; Bern Switzerland
| | - Mauricio Reyes
- Institute for Surgical Technology and Biomechanics, University of Bern; Bern Switzerland
| | - Jan Gralla
- University Institute for Diagnostic and Interventional Neuroradiology, University of Bern; Bern Switzerland
| | - Roland Wiest
- University Institute for Diagnostic and Interventional Neuroradiology, University of Bern; Bern Switzerland
| | - Johannes Slotboom
- University Institute for Diagnostic and Interventional Neuroradiology, University of Bern; Bern Switzerland
| |
Collapse
|
229
|
Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating Front of Human Glioblastoma. Cell Rep 2018; 21:1399-1410. [PMID: 29091775 DOI: 10.1016/j.celrep.2017.10.030] [Citation(s) in RCA: 659] [Impact Index Per Article: 94.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/19/2017] [Accepted: 10/08/2017] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain cancer in adults and is notoriously difficult to treat because of its diffuse nature. We performed single-cell RNA sequencing (RNA-seq) on 3,589 cells in a cohort of four patients. We obtained cells from the tumor core as well as surrounding peripheral tissue. Our analysis revealed cellular variation in the tumor's genome and transcriptome. We were also able to identify infiltrating neoplastic cells in regions peripheral to the core lesions. Despite the existence of significant heterogeneity among neoplastic cells, we found that infiltrating GBM cells share a consistent gene signature between patients, suggesting a common mechanism of infiltration. Additionally, in investigating the immunological response to the tumors, we found transcriptionally distinct myeloid cell populations residing in the tumor core and the surrounding peritumoral space. Our data provide a detailed dissection of GBM cell types, revealing an abundance of information about tumor formation and migration.
Collapse
|
230
|
Molecular classification of patients with grade II/III glioma using quantitative MRI characteristics. J Neurooncol 2018; 139:633-642. [PMID: 29860714 DOI: 10.1007/s11060-018-2908-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/19/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Molecular markers of WHO grade II/III glioma are known to have important prognostic and predictive implications and may be associated with unique imaging phenotypes. The purpose of this study is to determine whether three clinically relevant molecular markers identified in gliomas-IDH, 1p/19q, and MGMT status-show distinct quantitative MRI characteristics on FLAIR imaging. METHODS Sixty-one patients with grade II/III gliomas who had molecular data and MRI available prior to radiation were included. Quantitative MRI features were extracted that measured tissue heterogeneity (homogeneity and pixel correlation) and FLAIR border distinctiveness (edge contrast; EC). T-tests were conducted to determine whether patients with different genotypes differ across the features. Logistic regression with LASSO regularization was used to determine the optimal combination of MRI and clinical features for predicting molecular subtypes. RESULTS Patients with IDH wildtype tumors showed greater signal heterogeneity (p = 0.001) and lower EC (p = 0.008) within the FLAIR region compared to IDH mutant tumors. Among patients with IDH mutant tumors, 1p/19q co-deleted tumors had greater signal heterogeneity (p = 0.002) and lower EC (p = 0.005) compared to 1p/19q intact tumors. MGMT methylated tumors showed lower EC (p = 0.03) compared to the unmethylated group. The combination of FLAIR border distinctness, heterogeneity, and pixel correlation optimally classified tumors by IDH status. CONCLUSION Quantitative imaging characteristics of FLAIR heterogeneity and border pattern in grade II/III gliomas may provide unique information for determining molecular status at time of initial diagnostic imaging, which may then guide subsequent surgical and medical management.
Collapse
|
231
|
Fu MH, Wang CY, Hsieh YT, Fang KM, Tzeng SF. Functional Role of Matrix gla Protein in Glioma Cell Migration. Mol Neurobiol 2018; 55:4624-4636. [PMID: 28707070 DOI: 10.1007/s12035-017-0677-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/28/2017] [Indexed: 11/30/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor subtype. Despite that metastasis of GBM beyond the central nervous system (CNS) is rare, its malignancy is attributed to the highly infiltration trait, leading to the difficulty of complete surgical excision. Matrix gla protein (MGP) is a vitamin K-dependent small secretory protein, and functions as a calcification inhibitor. The involvement of MGP function in glioma cell dynamics remains to be clarified. The study showed that a low proliferative rat C6 glioma cell line named as C6-2 exhibited faster migratory and invasive capability compared to that observed in a high tumorigenic rat C6 glioma cell line (called as C6-1). Interestingly, C6-2 cells expressed higher levels of MGP molecules than C6-1 cells did. Lentivirus-mediated short hairpin RNA (shRNA) against MGP gene expression (MGP-KD) in C6-2 cells or lentivirus-mediated overexpression of MGP transcripts in C6-1 cells resulted in the morphological alteration of the two cell lines. Moreover, MGP-KD caused a decline in cell migration and invasion ability of C6-2 cells. In contrast, increased expression of MGP in C6-1 cells promoted their cell migration and invasion. The observations were further verified by the results from the implantation of C6-1 and C6-2 cells into ex vivo brain slice and in vivo rat brain. Thus, our results demonstrate that the manipulation of MGP expression in C6 glioma cells can mediate glioma cell migratory activity. Moreover, our findings indicate the possibility that high proliferative glioma cells expressing a high level of MGP may exist and contribute to tumor infiltration and recurrence.
Collapse
Affiliation(s)
- Mu-Hui Fu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Yen Wang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, #1 University Road, Tainan City, 70101, Taiwan
| | - Yun-Ti Hsieh
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, #1 University Road, Tainan City, 70101, Taiwan
| | - Kuan-Min Fang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, #1 University Road, Tainan City, 70101, Taiwan
| | - Shun-Fen Tzeng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, #1 University Road, Tainan City, 70101, Taiwan.
| |
Collapse
|
232
|
Bahrami N, Piccioni D, Karunamuni R, Chang YH, White N, Delfanti R, Seibert TM, Hattangadi-Gluth JA, Dale A, Farid N, McDonald CR. Edge Contrast of the FLAIR Hyperintense Region Predicts Survival in Patients with High-Grade Gliomas following Treatment with Bevacizumab. AJNR Am J Neuroradiol 2018; 39:1017-1024. [PMID: 29622553 PMCID: PMC6002890 DOI: 10.3174/ajnr.a5620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/07/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Treatment with bevacizumab is standard of care for recurrent high-grade gliomas; however, monitoring response to treatment following bevacizumab remains a challenge. The purpose of this study was to determine whether quantifying the sharpness of the fluid-attenuated inversion recovery hyperintense border using a measure derived from texture analysis-edge contrast-improves the evaluation of response to bevacizumab in patients with high-grade gliomas. MATERIALS AND METHODS MRIs were evaluated in 33 patients with high-grade gliomas before and after the initiation of bevacizumab. Volumes of interest within the FLAIR hyperintense region were segmented. Edge contrast magnitude for each VOI was extracted using gradients of the 3D FLAIR images. Cox proportional hazards models were generated to determine the relationship between edge contrast and progression-free survival/overall survival using age and the extent of surgical resection as covariates. RESULTS After bevacizumab, lower edge contrast of the FLAIR hyperintense region was associated with poorer progression-free survival (P = .009) and overall survival (P = .022) among patients with high-grade gliomas. Kaplan-Meier curves revealed that edge contrast cutoff significantly stratified patients for both progression-free survival (log-rank χ2 = 8.3, P = .003) and overall survival (log-rank χ2 = 5.5, P = .019). CONCLUSIONS Texture analysis using edge contrast of the FLAIR hyperintense region may be an important predictive indicator in patients with high-grade gliomas following treatment with bevacizumab. Specifically, low FLAIR edge contrast may partially reflect areas of early tumor infiltration. This study adds to a growing body of literature proposing that quantifying features may be important for determining outcomes in patients with high-grade gliomas.
Collapse
Affiliation(s)
- N Bahrami
- From the Center for Multimodal Imaging and Genetics (N.B., N.W., C.R.M.)
- Department of Psychiatry (N.B., Y.-H.C., C.R.M.)
- Department of Radiology (N.B., N.W., R.D., A.D., N.F., C.R.M.)
- Multimodal Imaging Laboratory (N.B., N.W., A.D., C.R.M.)
| | - D Piccioni
- Department of Neurosciences (D.P., A.D., N.F.)
| | - R Karunamuni
- Department of Radiation Medicine (R.K., T.M.S., J.A.H.-G.), University of California, San Diego, La Jolla, California
| | - Y-H Chang
- Department of Psychiatry (N.B., Y.-H.C., C.R.M.)
| | - N White
- From the Center for Multimodal Imaging and Genetics (N.B., N.W., C.R.M.)
- Department of Radiology (N.B., N.W., R.D., A.D., N.F., C.R.M.)
- Multimodal Imaging Laboratory (N.B., N.W., A.D., C.R.M.)
| | - R Delfanti
- Department of Radiology (N.B., N.W., R.D., A.D., N.F., C.R.M.)
| | - T M Seibert
- Department of Radiation Medicine (R.K., T.M.S., J.A.H.-G.), University of California, San Diego, La Jolla, California
| | - J A Hattangadi-Gluth
- Department of Radiation Medicine (R.K., T.M.S., J.A.H.-G.), University of California, San Diego, La Jolla, California
| | - A Dale
- Multimodal Imaging Laboratory (N.B., N.W., A.D., C.R.M.)
- Department of Neurosciences (D.P., A.D., N.F.)
| | - N Farid
- Department of Radiology (N.B., N.W., R.D., A.D., N.F., C.R.M.)
- Department of Neurosciences (D.P., A.D., N.F.)
| | - C R McDonald
- From the Center for Multimodal Imaging and Genetics (N.B., N.W., C.R.M.)
- Department of Psychiatry (N.B., Y.-H.C., C.R.M.)
- Department of Radiology (N.B., N.W., R.D., A.D., N.F., C.R.M.)
- Multimodal Imaging Laboratory (N.B., N.W., A.D., C.R.M.)
| |
Collapse
|
233
|
Karjalainen SL, Haapasalo HK, Aspatwar A, Barker H, Parkkila S, Haapasalo JA. Carbonic anhydrase related protein expression in astrocytomas and oligodendroglial tumors. BMC Cancer 2018; 18:584. [PMID: 29792187 PMCID: PMC5966923 DOI: 10.1186/s12885-018-4493-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 05/09/2018] [Indexed: 01/18/2023] Open
Abstract
Background Carbonic anhydrase related proteins (CARPs) VIII, X and XI functionally differ from the other carbonic anhydrase (CA) enzymes. Structurally, they lack the zinc binding residues, which are important for enzyme activity of classical CAs. The distribution pattern of the CARPs in fetal brain implies their role in brain development. In the adult brain, CARPs are mainly expressed in the neuron bodies but only weaker reactivity has been found in the astrocytes and oligodendrocytes. Altered expression patterns of CARPs VIII and XI have been linked to cancers outside the central nervous system. There are no reports on CARPs in human astrocytomas or oligodendroglial tumors. We wanted to assess the expression of CARPs VIII and XI in these tumors and study their association to different clinicopathological features and tumor-associated CAs II, IX and XII. Methods The tumor material for this study was obtained from surgical patients treated at the Tampere University Hospital in 1983–2009. CARP VIII staining was analyzed in 391 grade I-IV gliomas and CARP XI in 405 gliomas. Results CARP VIII immunopositivity was observed in 13% of the astrocytomas and in 9% of the oligodendrogliomas. Positive CARP XI immunostaining was observed in 7% of the astrocytic and in 1% of the oligodendroglial tumor specimens. In our study, the most benign tumors, pilocytic astrocytomas, did not express CARPs at all. In WHO grade II-IV astrocytomas, CARPs were associated with molecular events related to more benign behavior, which was the case with CARP VIII in oligodendrogliomas and oligoastrocytomas as well. Conclusions The study observations suggest that the CARPs play a role in tumorigenesis of diffusively infiltrating gliomas. Furthermore, the molecular mechanisms beneath the cancer promoting qualities of CARPs have not yet been discovered. Thus, more studies concerning role of CARPs in oncogenesis are needed. Electronic supplementary material The online version of this article (10.1186/s12885-018-4493-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sini L Karjalainen
- Faculty of Medicine and Life Sciences University of Tampere, Arvo Ylpön katu 34, 33014, Tampere, Finland.
| | - Hannu K Haapasalo
- Fimlab Laboratories, Department of Pathology, Tampere University Hospital, Biokatu 4, PL 2000, 33521, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Life Sciences University of Tampere, Arvo Ylpön katu 34, 33014, Tampere, Finland.,Fimlab Laboratories, Department of Pathology, Tampere University Hospital, Biokatu 4, PL 2000, 33521, Tampere, Finland
| | - Harlan Barker
- Faculty of Medicine and Life Sciences University of Tampere, Arvo Ylpön katu 34, 33014, Tampere, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Life Sciences University of Tampere, Arvo Ylpön katu 34, 33014, Tampere, Finland.,Fimlab Laboratories, Department of Pathology, Tampere University Hospital, Biokatu 4, PL 2000, 33521, Tampere, Finland
| | - Joonas A Haapasalo
- Faculty of Medicine and Life Sciences University of Tampere, Arvo Ylpön katu 34, 33014, Tampere, Finland.,Fimlab Laboratories, Department of Pathology, Tampere University Hospital, Biokatu 4, PL 2000, 33521, Tampere, Finland.,Unit of Neurosurgery, Tampere University Hospital, Teiskontie 35, 33521, Tampere, Finland
| |
Collapse
|
234
|
Stepp H, Stummer W. 5‐ALA in the management of malignant glioma. Lasers Surg Med 2018; 50:399-419. [DOI: 10.1002/lsm.22933] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Herbert Stepp
- LIFE Center and Department of UrologyUniversity Hospital of MunichFeodor‐Lynen‐Str. 1981377MunichGermany
| | - Walter Stummer
- Department of NeurosurgeryUniversity Clinic MünsterAlbert‐Schweitzer‐Campus 1, Gebäude A148149MünsterGermany
| |
Collapse
|
235
|
Fiedler L, Kellner M, Gosewisch A, Oos R, Böning G, Lindner S, Albert N, Bartenstein P, Reulen HJ, Zeidler R, Gildehaus F. Evaluation of 177Lu[Lu]-CHX-A″-DTPA-6A10 Fab as a radioimmunotherapy agent targeting carbonic anhydrase XII. Nucl Med Biol 2018; 60:55-62. [DOI: 10.1016/j.nucmedbio.2018.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/05/2018] [Accepted: 02/18/2018] [Indexed: 01/15/2023]
|
236
|
Glioblastoma-secreted soluble CD44 activates tau pathology in the brain. Exp Mol Med 2018; 50:1-11. [PMID: 29622771 PMCID: PMC5938049 DOI: 10.1038/s12276-017-0008-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 01/08/2023] Open
Abstract
During aggressive tumor growth and migration, glioblastoma cells secrete diverse molecules and adhesion proteins to the extracellular matrix. Yet, the biochemical effects of the glioblastoma secretome in the brain remain largely unknown. Here we show that soluble CD44 secreted from glioblastoma cells induces neuronal degeneration through the activation of tau pathology in the brain. Glioblastoma-xenograft tissues showed a number of degenerating neurons bearing highly phosphorylated tau. Through a series of secretome-analyses, we identified that soluble CD44 was the responsible protein inducing tau phosphorylation and aggregation (EC50 = 19.1 ng/mL). The treatment of sCD44 to primary hippocampal neurons-induced tau hyperphosphorylation, leading to neuronal degeneration. Also, the injection of sCD44 into the brains of tau transgenic mice induced tau hyper-phosphorylation in hippocampal neurons. Altogether, our data suggest a neurodegenerative role of sCD44 in promoting tau pathology and serving as a molecular link between glioblastoma and neurodegeneration. A protein secreted by aggressive brain tumors triggers the degeneration of neurons in surrounding brain tissues. The most aggressive brain tumors are formed by glioblastoma cells, which secrete molecules that infiltrate surrounding brain tissues, leading to loss of memory, communication and motor functions. Researchers led by Cheolju Lee and Yun Kyung Kim at the Korea Institute of Science and Technology in Seoul have shown that the CD44 protein, secreted by glioblastoma cells, is responsible for triggering this neurodegeneration. They discovered that sCD44 activates another process known as tau pathology, which is characteristic of multiple neuro-degnerative disorders such as Alzheimer’s disease. The tau protein usually stabilizes internal cellular structures, but when it is modified by abnormal activity such as the elevated levels of sCD44 found in this study, it forms insoluble masses, disrupting neuronal structure and function.
Collapse
|
237
|
Mehrabian H, Myrehaug S, Soliman H, Sahgal A, Stanisz GJ. Evaluation of Glioblastoma Response to Therapy With Chemical Exchange Saturation Transfer. Int J Radiat Oncol Biol Phys 2018; 101:713-723. [PMID: 29893279 DOI: 10.1016/j.ijrobp.2018.03.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/02/2018] [Accepted: 03/27/2018] [Indexed: 11/25/2022]
Abstract
PURPOSE To monitor cellular and metabolic characteristics of glioblastoma (GBM) over the course of standard 6-week chemoradiation treatment with chemical exchange saturation transfer (CEST)-MRI; and to identify the earliest time point CEST could determine subsequent therapeutic response. METHODS AND MATERIALS Nineteen patients with newly diagnosed GBM were recruited, and CEST-MRI was acquired immediately before (Day0), 2 weeks (Day14) and 4 weeks (Day28) into treatment, and 1 month after the end of treatment (Day70). Several CEST metrics, including magnetization transfer ratio and area under the curve of CEST peaks corresponding to nuclear Overhauser effect (NOE) and amide protons (MTRNOE, MTRAmide, CESTNOE, and CESTAmide respectively), magnetization transfer (MT), and direct water effect were investigated. Lack of early progression was determined as no increase in tumor size or worsening of clinical symptoms according to routine post-chemoradiation serial structural MRI. RESULTS Changes in MTRNOE (nonprogressors = 1.35 ± 0.18, progressors = 0.97 ± 0.22, P = .006) and MTRAmide (nonprogressors = 1.25 ± 0.17, progressors = 0.99 ± 0.10, P = .017) between baseline (Day0) and Day14 resulted in the best separation of nonprogressors from progressors. Moreover, the baseline (Day0) MTRNOE (nonprogressors = 6.5% ± 1.6%, progressors = 9.1% ± 2.1%, P = .015), MTRAmide (nonprogressors = 6.7% ± 1.7%, progressors = 8.9% ± 1.9%, P = .028), MT (nonprogressors = 3.8% ± 0.9%, progressors = 5.4% ± 1.4%, P = .019), and CESTNOE (nonprogressors = 4.1%ċHz ± 1.7%ċHz, progressors = 6.1%ċHz ± 1.9%ċHz, P = .044) were able to identify progressors even before the start of the treatment. CONCLUSIONS Chemical exchange saturation transfer (CEST) provides imaging-based biomarkers of GBM response as early as 2 weeks into the treatment. Certain CEST metrics can characterize tumor aggressiveness and identify early progressors even before beginning the treatment. Such an early biomarker of response may allow for adjusting the GBM treatment plan for adaptive radiation therapy in early progressors and more confidently continuing standard adjuvant treatment for nonprogressors.
Collapse
Affiliation(s)
- Hatef Mehrabian
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.
| | - Sten Myrehaug
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Hany Soliman
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Greg J Stanisz
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Neurosurgery and Pediatric Neurosurgery, Medical University, Lublin, Poland
| |
Collapse
|
238
|
Soliman RK, Gamal SA, Essa AHA, Othman MH. Preoperative Grading of Glioma Using Dynamic Susceptibility Contrast MRI: Relative Cerebral Blood Volume Analysis of Intra-tumoural and Peri-tumoural Tissue. Clin Neurol Neurosurg 2018; 167:86-92. [DOI: 10.1016/j.clineuro.2018.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/27/2017] [Accepted: 01/07/2018] [Indexed: 11/28/2022]
|
239
|
Lin L, Xue Y, Duan Q, Sun B, Lin H, Huang X, Chen X. The role of cerebral blood flow gradient in peritumoral edema for differentiation of glioblastomas from solitary metastatic lesions. Oncotarget 2018; 7:69051-69059. [PMID: 27655705 PMCID: PMC5356611 DOI: 10.18632/oncotarget.12053] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Differentiation of glioblastomas from solitary brain metastases using conventional MRI remains an important unsolved problem. In this study, we introduced the conception of the cerebral blood flow (CBF) gradient in peritumoral edema-the difference in CBF values from the proximity of the enhancing tumor to the normal-appearing white matter, and investigated the contribution of perfusion metrics on the discrimination of glioblastoma from a metastatic lesion. MATERIALS AND METHODS Fifty-two consecutive patients with glioblastoma or a solitary metastatic lesion underwent three-dimensional arterial spin labeling (3D-ASL) before surgical resection. The CBF values were measured in the peritumoral edema (near: G1; Intermediate: G2; Far: G3). The CBF gradient was calculated as the subtractions CBFG1 -CBFG3, CBFG1 - CBFG2 and CBFG2 - CBFG3. A receiver operating characteristic (ROC) curve analysis was used to seek for the best cutoff value permitting discrimination between these two tumors. RESULTS The absolute/related CBF values and the CBF gradient in the peritumoral regions of glioblastomas were significantly higher than those in metastases(P < 0.038). ROC curve analysis reveals, a cutoff value of 1.92 ml/100g for the CBF gradient of CBFG1 -CBFG3 generated the best combination of sensitivity (92.86%) and specificity (100.00%) for distinguishing between a glioblastoma and metastasis. CONCLUSION The CBF gradient in peritumoral edema appears to be a more promising ASL perfusion metrics in differentiating high grade glioma from a solitary metastasis.
Collapse
Affiliation(s)
- Lin Lin
- Department of Radiology, Union Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yunjing Xue
- Department of Radiology, Union Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Qing Duan
- Department of Radiology, Union Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Bin Sun
- Department of Radiology, Union Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Hailong Lin
- Department of Radiology, Union Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xinming Huang
- Department of Radiology, Union Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaodan Chen
- Department of Radiology, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
240
|
Mikhailova V, Gulaia V, Tiasto V, Rybtsov S, Yatsunskaya M, Kagansky A. Towards an advanced cell-based in vitro glioma model system. AIMS GENETICS 2018; 5:91-112. [PMID: 31435515 PMCID: PMC6698577 DOI: 10.3934/genet.2018.2.91] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/14/2018] [Indexed: 02/06/2023]
Abstract
The modulation of tumor growth and development in vitro has always been one of the key factors in the research of the malignant transformation, including gliomas, prevalent and most deadly cancers of the brain. Indeed, cellular and molecular biology research employing in vitro model cell-based systems have great potential to advance both the mechanistic understanding and the treatment of human glial tumors, as it facilitates not only the understanding of glioma biology and its regulatory mechanisms Additionally they promise to afford the screening of the putative anti-tumor agents and alternative treatment approaches in a personalized manner, i.e. by virtue of using the patient-derived tumor material for such tests. However, in order to become reliable and representative, glioma model systems need to move towards including most inherent cancer features such as local hypoxia, specific genetic aberrations, native tumor microenvironment, and the three-dimensional extracellular matrix. This review starts with a brief introduction on the general epidemiological and molecular characteristics of gliomas followed by an overview of the cell-based in vitro models currently used in glioma research. As a conclusion, we suggest approaches to move to innovative cell-based in vitro glioma models. We consider that main criteria for selecting these approaches should include the adequate resemblance to the key in vivo characteristics, robustness, cost-effectiveness and ease to use, as well as the amenability to high throughput handling to allow the standardized drug screening.
Collapse
Affiliation(s)
- Valeriia Mikhailova
- Center for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Valeriia Gulaia
- Center for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Vladlena Tiasto
- Center for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Stanislav Rybtsov
- Scottish Centre for Regenerative Medicine of the University of Edinburgh, Edinburgh, United Kingdom
| | - Margarita Yatsunskaya
- Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS 159, Stoletij Vladivostoku Avenue, 690022, Vladivostok, Russian Federation
| | - Alexander Kagansky
- Center for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation
| |
Collapse
|
241
|
Abstract
PURPOSE OF REVIEW High-throughput genomic sequencing has identified alterations in the gene encoding human telomerase reverse transcriptase (TERT) as points of interest for elucidating the oncogenic mechanism of multiple different cancer types, including gliomas. In gliomas, the TERT promoter mutation (TPM) and resultant overexpression of TERT are observed mainly in the most aggressive (primary glioblastoma/grade IV astrocytoma) and the least aggressive (grade II oligodendroglioma) cases. This article reviews recent research on (1) the mechanism of TERT activation in glioma, (2) downstream consequences of TERT overexpression on glioma pathogenesis, and (3) targeting TPMs as a therapeutic strategy. RECENT FINDINGS New molecular classifications for gliomas include using TPMs, where the mutant group demonstrates the worst prognosis. Though a canonical function of TERT is established in regard to telomere maintenance, recent studies on non-canonical functions of TERT explore varied roles of telomerase in tumor progression and maintenance. Somatic alterations of the TERT promoter present a promising target for novel therapeutics development in primary glioma treatment.
Collapse
|
242
|
Vidyaratne L, Alam M, Shboul Z, Iftekharuddin KM. Deep Learning and Texture-Based Semantic Label Fusion for Brain Tumor Segmentation. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2018; 2018. [PMID: 29551853 DOI: 10.1117/12.2292930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Brain tumor segmentation is a fundamental step in surgical treatment and therapy. Many hand-crafted and learning based methods have been proposed for automatic brain tumor segmentation from MRI. Studies have shown that these approaches have their inherent advantages and limitations. This work proposes a semantic label fusion algorithm by combining two representative state-of-the-art segmentation algorithms: texture based hand-crafted, and deep learning based methods to obtain robust tumor segmentation. We evaluate the proposed method using publicly available BRATS 2017 brain tumor segmentation challenge dataset. The results show that the proposed method offers improved segmentation by alleviating inherent weaknesses: extensive false positives in texture based method, and the false tumor tissue classification problem in deep learning method, respectively. Furthermore, we investigate the effect of patient's gender on the segmentation performance using a subset of validation dataset. Note the substantial improvement in brain tumor segmentation performance proposed in this work has recently enabled us to secure the first place by our group in overall patient survival prediction task at the BRATS 2017 challenge.
Collapse
Affiliation(s)
- L Vidyaratne
- Vision Lab in Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529
| | - M Alam
- Vision Lab in Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529
| | - Z Shboul
- Vision Lab in Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529
| | - K M Iftekharuddin
- Vision Lab in Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529
| |
Collapse
|
243
|
Ferrer VP, Moura Neto V, Mentlein R. Glioma infiltration and extracellular matrix: key players and modulators. Glia 2018; 66:1542-1565. [DOI: 10.1002/glia.23309] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Rolf Mentlein
- Department of Anatomy; University of Kiel; Kiel Germany
| |
Collapse
|
244
|
Shboul Z, Vidyaratne L, Alam M, Reza SMS, Iftekharuddin KM. Glioblastoma and Survival Prediction. BRAINLESION : GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES. BRAINLES (WORKSHOP) 2018; 10670:358-368. [PMID: 30016377 PMCID: PMC5999323 DOI: 10.1007/978-3-319-75238-9_31] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glioblastoma is a stage IV highly invasive astrocytoma tumor. Its heterogeneous appearance in MRI poses critical challenge in diagnosis, prognosis and survival prediction. This work extracts a total of 1207 different types of texture and other features, tests their significance and prognostic values, and then utilizes the most significant features with Random Forest regression model to perform survival prediction. We use 163 cases from BraTS17 training dataset for evaluation of the proposed model. A 10-fold cross validation offers normalized root mean square error of 30% for the training dataset and the cross validated accuracy of 63%, respectively.
Collapse
Affiliation(s)
- Zeina Shboul
- Vision Lab, Electrical & Computer Engineering, Old Dominion University
| | | | - Mahbubul Alam
- Vision Lab, Electrical & Computer Engineering, Old Dominion University
| | - Syed M S Reza
- Vision Lab, Electrical & Computer Engineering, Old Dominion University
| | | |
Collapse
|
245
|
van Lith SAM, Roodink I, Verhoeff JJC, Mäkinen PI, Lappalainen JP, Ylä-Herttuala S, Raats J, van Wijk E, Roepman R, Letteboer SJ, Verrijp K, Leenders WPJ. In vivo phage display screening for tumor vascular targets in glioblastoma identifies a llama nanobody against dynactin-1-p150Glued. Oncotarget 2018; 7:71594-71607. [PMID: 27689404 PMCID: PMC5342104 DOI: 10.18632/oncotarget.12261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/19/2016] [Indexed: 12/23/2022] Open
Abstract
Diffuse gliomas are primary brain cancers that are characterised by infiltrative growth. Whereas high-grade glioma characteristically presents with perinecrotic neovascularisation, large tumor areas thrive on pre-existent vasculature as well. Clinical studies have revealed that pharmacological inhibition of the angiogenic process does not improve survival of glioblastoma patients. Direct targeting of tumor vessels may however still be an interesting therapeutic approach as it allows pinching off the blood supply to tumor cells. Such tumor vessel targeting requires the identification of tumor-specific vascular targeting agents (TVTAs). Here we describe a novel TVTA, C-C7, which we identified via in vivo biopanning of a llama nanobody phage display library in an orthotopic mouse model of diffuse glioma. We show that C-C7 recognizes a subpopulation of tumor blood vessels in glioma xenografts and clinical glioma samples. Additionally, C-C7 recognizes macrophages and activated endothelial cells in atherosclerotic lesions. By using C-C7 as bait in yeast-2-hybrid (Y2H) screens we identified dynactin-1-p150Glued as its binding partner. The interaction was confirmed by co-immunostainings with C-C7 and a commercial anti-dynactin-1-p150Glued antibody, and via co-immunoprecipitation/western blot studies. Normal brain vessels do not express dynactin-1-p150Glued and its expression is reduced under anti-VEGF therapy, suggesting that dynactin-1-p150Glued is a marker for activated endothelial cells. In conclusion, we show that in vivo phage display combined with Y2H screenings provides a powerful approach to identify tumor-targeting nanobodies and their binding partners. Using this combination of methods we identify dynactin-1-p150Glued as a novel targetable protein on activated endothelial cells and macrophages.
Collapse
Affiliation(s)
| | - Ilse Roodink
- Department of Pathology, RadboudUMC, 6500 HB, Nijmegen, The Netherlands.,Modiquest BV, LSP, Molenstraat 110, 5342 CC, Oss, The Netherlands
| | | | - Petri I Mäkinen
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Jari P Lappalainen
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, FI-70211, Kuopio, Finland.,Science Service Center and Gene Therapy Unit, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Jos Raats
- Modiquest BV, LSP, Molenstraat 110, 5342 CC, Oss, The Netherlands
| | - Erwin van Wijk
- Department of Otorhinolaryngology, RadboudUMC, 6500 HB, Nijmegen, The Netherlands
| | - Ronald Roepman
- Department of Genetics, RadboudUMC, 6500 HB, Nijmegen,The Netherlands
| | - Stef J Letteboer
- Department of Genetics, RadboudUMC, 6500 HB, Nijmegen,The Netherlands
| | - Kiek Verrijp
- Department of Pathology, RadboudUMC, 6500 HB, Nijmegen, The Netherlands
| | | |
Collapse
|
246
|
Yang Y, Liang S, Li Y, Gao F, Zheng L, Tian S, Yang P, Li L. Hepatoma-derived growth factor functions as an unfavorable prognostic marker of human gliomas. Oncol Lett 2018; 14:7179-7184. [PMID: 29344149 PMCID: PMC5754909 DOI: 10.3892/ol.2017.7180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 09/05/2017] [Indexed: 01/28/2023] Open
Abstract
Hepatoma-derived growth factor (HDGF) regulates various cellular processes involved in the onset and development of tumors. To evaluate the role of HDGF in human gliomas, western blotting analysis, immunohistochemistry staining and reverse transcription-quantitative polymerase chain reaction were performed to detect HDGF protein and mRNA expression levels in glioma and intractable epileptic brain tissue. Various clinicopathological characteristics, including age, gender, World health Organization grade, HDGF expression level, Karnofsky performance Status (KPS) and Ki-67 index were obtained from medical records. The correlation between HDGF expression and these clinicopathological characteristics was statistically evaluated. Following this, multivariate liner regression was used to evaluate their effect on patient survival time. HDGF expression, at the protein and mRNA levels, was observed to be more upregulated in glioma tissues compared with intractable epileptic brain tissue without tumor. Furthermore, the level of HDGF expression was positively associated with the grade of malignancy [grades II~IV, Ki-67 index ≥20% or KPS <80 (P<0.05)] and poor prognosis in glioma patients. Notably, the univariate survival analysis identified a negative correlation between HDGF-expression and survival time (P<0.01) and multivariate liner regression demonstrated that HDGF expression is an independent prognostic factor for gliomas (P=0.01). Overall, HDGF upregulation may be a crucial step in the development and invasion of glioma. Further survival analysis highlighted its prognostic value for this malignancy, implying its potential as a promising therapeutic target for gliomas.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurosurgery, The 451st Hospital of Chinese People's Liberation Army, Xi'an, Shaanxi 710054, P.R. China
| | - Shengru Liang
- Department of Gynaecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yuqian Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Fei Gao
- Department of Neurosurgery, The 3rd Hospital of Chinese People's Liberation, Army, Baoji, Shaanxi 721000, P.R. China
| | - Longlong Zheng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Shilai Tian
- Department of Neurosurgery, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Pu Yang
- Department of Neurosurgery, The 451st Hospital of Chinese People's Liberation Army, Xi'an, Shaanxi 710054, P.R. China
| | - Lihong Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
247
|
Role of Microenvironment in Glioma Invasion: What We Learned from In Vitro Models. Int J Mol Sci 2018; 19:ijms19010147. [PMID: 29300332 PMCID: PMC5796096 DOI: 10.3390/ijms19010147] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/30/2017] [Accepted: 12/31/2017] [Indexed: 12/21/2022] Open
Abstract
The invasion properties of glioblastoma hamper a radical surgery and are responsible for its recurrence. Understanding the invasion mechanisms is thus critical to devise new therapeutic strategies. Therefore, the creation of in vitro models that enable these mechanisms to be studied represents a crucial step. Since in vitro models represent an over-simplification of the in vivo system, in these years it has been attempted to increase the level of complexity of in vitro assays to create models that could better mimic the behaviour of the cells in vivo. These levels of complexity involved: 1. The dimension of the system, moving from two-dimensional to three-dimensional models; 2. The use of microfluidic systems; 3. The use of mixed cultures of tumour cells and cells of the tumour micro-environment in order to mimic the complex cross-talk between tumour cells and their micro-environment; 4. And the source of cells used in an attempt to move from commercial lines to patient-based models. In this review, we will summarize the evidence obtained exploring these different levels of complexity and highlighting advantages and limitations of each system used.
Collapse
|
248
|
Molecular Determinants of Malignant Brain Cancers: From Intracellular Alterations to Invasion Mediated by Extracellular Vesicles. Int J Mol Sci 2017; 18:ijms18122774. [PMID: 29261132 PMCID: PMC5751372 DOI: 10.3390/ijms18122774] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma cells invade the surrounding brain parenchyma, by migrating along the blood vessels, thus promoting cancer growth. The biological bases of these activities are grounded in profound alterations of the metabolism and the structural organization of the cells, which consequently acquire the ability to modify the surrounding microenvironment, by altering the extracellular matrix and affecting the properties of the other cells present in the brain, such as normal glial-, endothelial- and immune-cells. Most of the effects on the surrounding environment are probably exerted through the release of a variety of extracellular vesicles (EVs), which contain many different classes of molecules, from genetic material to defined species of lipids and enzymes. EV-associated molecules can be either released into the extracellular matrix (ECM) and/or transferred to neighboring cells: as a consequence, both deep modifications of the recipient cell phenotype and digestion of ECM components are obtained, thus causing cancer propagation, as well as a general brain dysfunction. In this review, we first analyze the main intracellular and extracellular transformations required for glioma cell invasion into the brain parenchyma; then we discuss how these events may be attributed, at least in part, to EVs that, like the pawns of a dramatic chess game with cancer, open the way to the tumor cells themselves.
Collapse
|
249
|
Discriminating MGMT promoter methylation status in patients with glioblastoma employing amide proton transfer-weighted MRI metrics. Eur Radiol 2017; 28:2115-2123. [PMID: 29234914 DOI: 10.1007/s00330-017-5182-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/30/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To explore the feasibility of using amide proton transfer-weighted (APTw) MRI metrics as surrogate biomarkers to identify the O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status in glioblastoma (GBM). METHODS Eighteen newly diagnosed GBM patients, who were previously scanned at 3T and had a confirmed MGMT methylation status, were retrospectively analysed. For each case, a histogram analysis in the tumour mass was performed to evaluate several quantitative APTw MRI metrics. The Mann-Whitney test was used to evaluate the difference in APTw parameters between MGMT methylated and unmethylated GBMs, and the receiver-operator-characteristic analysis was further used to assess diagnostic performance. RESULTS Ten GBMs were found to harbour a methylated MGMT promoter, and eight GBMs were unmethylated. The mean, variance, 50th percentile, 90th percentile and Width10-90 APTw values were significantly higher in the MGMT unmethylated GBMs than in the MGMT methylated GBMs, with areas under the receiver-operator-characteristic curves of 0.825, 0.837, 0.850, 0856 and 0.763, respectively, for the discrimination of MGMT promoter methylation status. CONCLUSIONS APTw signal metrics have the potential to serve as valuable imaging biomarkers for identifying MGMT methylation status in the GBM population. KEY POINTS • APTw-MRI is applied to predict MGMT promoter methylation status in GBMs. • GBMs with unmethylated MGMT promoter present higher APTw-MRI than methylated GBMs. • Multiple APTw histogram metrics can identify MGMT methylation status. • Mean APTw values showed the highest diagnostic accuracy (AUC = 0.825).
Collapse
|
250
|
Aigner A, Kögel D. Nanoparticle/siRNA-based therapy strategies in glioma: which nanoparticles, which siRNAs? Nanomedicine (Lond) 2017; 13:89-103. [PMID: 29199893 DOI: 10.2217/nnm-2017-0230] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nanomedicines allow for the delivery of small interfering RNAs (siRNAs) that are otherwise barely suitable as therapeutics for inducing RNA interference (RNAi). In preclinical studies on siRNA-based glioma treatment in vivo, various groups of nanoparticle systems, routes of administration and target genes have been explored. Targeted delivery by functionalization of nanoparticles with a ligand for crossing the blood-brain barrier and/or for enhanced target cell transfection has been described as well. Focusing on nanoparticle developments in the last approximately 10 years, this review article gives a comprehensive overview of nanoparticle systems for siRNA delivery into glioma and of preclinical in vivo studies. Furthermore, it discusses various target genes and highlights promising strategies with regard to target gene selection and combination therapies.
Collapse
Affiliation(s)
- Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology & Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|