201
|
Ramani D, De Bandt JP, Cynober L. Aliphatic polyamines in physiology and diseases. Clin Nutr 2013; 33:14-22. [PMID: 24144912 DOI: 10.1016/j.clnu.2013.09.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 01/01/2023]
Abstract
Aliphatic polyamines are a family of polycationic molecules derived from decarboxylation of the amino acid ornithine that classically comprise three molecules: putrescine, spermidine and spermine. In-cell polyamine homeostasis is tightly controlled at key steps of cell metabolism. Polyamines are involved in an array of cellular functions from DNA stabilization, and regulation of gene expression to ion channel function and, particularly, cell proliferation. As such, aliphatic polyamines play an essential role in rapidly dividing cells such as in the immune system and digestive tract. Because of their role in cell proliferation, polyamines are also involved in carcinogenesis, prompting intensive research into polyamine metabolism as a target in cancer therapy. More recently, another aliphatic polyamine, agmatine, the decarboxylated derivative of arginine, has been identified as a neurotransmitter in mammals, and investigations have focused on its effects in the CNS, notably as a neuroprotector in brain injury.
Collapse
Affiliation(s)
- D Ramani
- EA 4466, Faculté des Sciences Pharmaceutiques et Biologiques, Paris Descartes University, Sorbonne Paris Cité, and Clinical Chemistry Department, Hopitaux Universitaires Paris Centre, APHP, Paris, France
| | - J P De Bandt
- EA 4466, Faculté des Sciences Pharmaceutiques et Biologiques, Paris Descartes University, Sorbonne Paris Cité, and Clinical Chemistry Department, Hopitaux Universitaires Paris Centre, APHP, Paris, France.
| | - L Cynober
- EA 4466, Faculté des Sciences Pharmaceutiques et Biologiques, Paris Descartes University, Sorbonne Paris Cité, and Clinical Chemistry Department, Hopitaux Universitaires Paris Centre, APHP, Paris, France
| |
Collapse
|
202
|
Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P. Proc Natl Acad Sci U S A 2013; 110:15265-70. [PMID: 24003132 DOI: 10.1073/pnas.1310642110] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribosomes are the protein synthesizing factories of the cell, polymerizing polypeptide chains from their constituent amino acids. However, distinct combinations of amino acids, such as polyproline stretches, cannot be efficiently polymerized by ribosomes, leading to translational stalling. The stalled ribosomes are rescued by the translational elongation factor P (EF-P), which by stimulating peptide-bond formation allows translation to resume. Using metabolic stable isotope labeling and mass spectrometry, we demonstrate in vivo that EF-P is important for expression of not only polyproline-containing proteins, but also for specific subsets of proteins containing diprolyl motifs (XPP/PPX). Together with a systematic in vitro and in vivo analysis, we provide a distinct hierarchy of stalling triplets, ranging from strong stallers, such as PPP, DPP, and PPN to weak stallers, such as CPP, PPR, and PPH, all of which are substrates for EF-P. These findings provide mechanistic insight into how the characteristics of the specific amino acid substrates influence the fundamentals of peptide bond formation.
Collapse
|
203
|
Nishiki Y, Farb TB, Friedrich J, Bokvist K, Mirmira RG, Maier B. Characterization of a novel polyclonal anti-hypusine antibody. SPRINGERPLUS 2013; 2:421. [PMID: 24024105 PMCID: PMC3765601 DOI: 10.1186/2193-1801-2-421] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/26/2013] [Indexed: 12/26/2022]
Abstract
The translation factor eIF5A is the only protein known to contain the amino acid hypusine, which is formed posttranslationally. Hypusinated eIF5A is necessary for cellular proliferation and responses to extracellular stressors, and has been proposed as a target for pharmacologic therapy. Here, we provide the first comprehensive characterization of a novel polyclonal antibody (IU-88) that specifically recognizes the hypusinated eIF5A. IU-88 will be useful for the investigation of eIF5A biology and for the development of assays recognizing hypusinated eIF5A.
Collapse
Affiliation(s)
- Yurika Nishiki
- Departments of Medicine, Cellular and Integrative Physiology, and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | | | | | | | | | | |
Collapse
|
204
|
Kuo JHS, Lin CW. Cellular uptake on N- and C-termini conjugated FITC of Rath cell penetrating peptides and its consequences for gene-expression profiling in U-937 human macrophages and HeLa cervical cancer cells. J Drug Target 2013; 21:801-8. [PMID: 23937069 DOI: 10.3109/1061186x.2013.824456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Rath peptide has been introduced as a delivery vector that transports various membrane-impermeable cargoes in a non-covalent fashion. In this paper, we present a study on Rath peptide conjugated with fluorescein-5-isothiocynate (FITC) differing in its N- and C-termini. We conducted cellular toxicity and uptake experiments in U-937 and HeLa cells to analyze biocompatibility profiles and translocation efficiencies of Rath peptide with FITC serving as both a cargo and a fluorescent marker. We found that the conjugation of FITC on Rath peptide at N-terminus (FITC-Rath) led to more rapid cellular uptake in U-937 cells and significantly higher cellular uptake in HeLa cells than that which occurred at C-terminus. From DNA microarray analysis, FITC-Rath induced gene expression changes in both U-937 and HeLa cells. Five overlapping regulated genes were identified, and this overlap indicated that FITC-Rath displayed some degree of generality regarding gene responses in the two cell lines used. A real-time quantitative reverse transcriptase-polymerase chain reaction was used to confirm which regulated genes were affected by FITC-Rath. Cell communication, signal transduction, cell surface receptor signaling pathway, signal transducer activity and cellular process, were identified as overlapping biological themes. These data provide useful information on molecular mechanisms for using Rath-based delivery systems.
Collapse
Affiliation(s)
- Jung-hua Steven Kuo
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Jen-Te , Tainan , Taiwan
| | | |
Collapse
|
205
|
Nie J, An L, Miao K, Hou Z, Yu Y, Tan K, Sui L, He S, Liu Q, Lei X, Wu Z, Tian J. Comparative analysis of dynamic proteomic profiles between in vivo and in vitro produced mouse embryos during postimplantation period. J Proteome Res 2013; 12:3843-56. [PMID: 23841881 DOI: 10.1021/pr301044b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Assisted reproductive technology (ART) increasingly is associated with long-term side-effects on postnatal development and behaviors. High-throughput gene expression analysis has been extensively used to explore mechanisms responsible for these disorders. Our study, for the first time, provides a comparative proteomic analysis between embryos after in vivo fertilization and development (IVO, control) and in vitro fertilization and culture (IVP). By comparing the dynamic proteome during the postimplantation period, we identified 300 and 262 differentially expressed proteins (DEPs) between IVO and IVP embryos at embryonic day 7.5 (E7.5) and E10.5, respectively. Bioinformatic analysis showed many DEPs functionally associated with post-transcriptional, translational, and post-translational regulation, and these observations were consistent with correlation analysis between mRNA and protein abundance. In addition to altered gene expression due to IVP procedures, our findings suggest that aberrant processes at these various levels also contributed to proteomic alterations. In addition, numerous DEPs were involved in energy and amino acid metabolism, as well as neural and sensory development. These DEPs are potential candidates for further exploring the mechanism(s) of ART-induced intrauterine growth restriction and neurodevelopmental disorders. Moreover, significant enrichment of DEPs in pathways of neurodegenerative diseases implies the potentially increased susceptibility of ART offspring to these conditions as adults.
Collapse
Affiliation(s)
- Jingzhou Nie
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian, Beijing 100193, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Abstract
One-carbon metabolism involving the folate and methionine cycles integrates nutritional status from amino acids, glucose and vitamins, and generates diverse outputs, such as the biosynthesis of lipids, nucleotides and proteins, the maintenance of redox status and the substrates for methylation reactions. Long considered a 'housekeeping' process, this pathway has recently been shown to have additional complexity. Genetic and functional evidence suggests that hyperactivation of this pathway is a driver of oncogenesis and establishes a link to cellular epigenetic status. Given the wealth of clinically available agents that target one-carbon metabolism, these new findings could present opportunities for translation into precision cancer medicine.
Collapse
Affiliation(s)
- Jason W Locasale
- Field of Biochemistry and Molecular Cell Biology, Cornell University, Ithaca New York 14850, USA.
| |
Collapse
|
207
|
Spermidine promotes adipogenesis of 3T3-L1 cells by preventing interaction of ANP32 with HuR and PP2A. Biochem J 2013; 453:467-74. [DOI: 10.1042/bj20130263] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have shown previously that the polyamine spermidine is indispensable for differentiation of 3T3-L1 preadipocytes. In the present study, we examined the mechanism of spermidine function by using the polyamine biosynthesis inhibitor α-difluoromethylornithine in combination with the metabolically stable polyamine analogues γ-methylspermidine or (R,R)-α,ω-bismethylspermine. At the early phase of differentiation, spermidine-depleted 3T3-L1 cells showed decreased translation of the transcription factor C/EBPβ (CCAAT/enhancer-binding protein β), decreased PP2A (protein phosphatase 2A) activity and increased cytoplasmic localization of the RNA-binding protein HuR (human antigen R). The amount of HuR bound to C/EBPβ mRNA was reduced, whereas the amount of bound CUGBP2, an inhibitor of C/EBPβ translation, was increased. ANP32 (acidic nuclear phosphoprotein 32) proteins, which are known PP2A inhibitors and HuR ligands, bound more PP2A and HuR in spermidine-depleted than in control cells, whereas immunodepletion of ANP32 proteins from the lysate of spermidine-depleted cells restored PP2A activity. Taken together, our data shows that spermidine promotes C/EBPβ translation in differentiating 3T3-L1 cells, and that this process is controlled by the interaction of ANP32 with HuR and PP2A.
Collapse
|
208
|
Gutierrez E, Shin BS, Woolstenhulme CJ, Kim JR, Saini P, Buskirk AR, Dever TE. eIF5A promotes translation of polyproline motifs. Mol Cell 2013; 51:35-45. [PMID: 23727016 PMCID: PMC3744875 DOI: 10.1016/j.molcel.2013.04.021] [Citation(s) in RCA: 374] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/10/2013] [Accepted: 04/25/2013] [Indexed: 11/17/2022]
Abstract
Translation factor eIF5A, containing the unique amino acid hypusine, was originally shown to stimulate Met-puromycin synthesis, a model assay for peptide bond formation. More recently, eIF5A was shown to promote translation elongation; however, its precise requirement in protein synthesis remains elusive. We use in vivo assays in yeast and in vitro reconstituted translation assays to reveal a specific requirement for eIF5A to promote peptide bond formation between consecutive Pro residues. Addition of eIF5A relieves ribosomal stalling during translation of three consecutive Pro residues in vitro, and loss of eIF5A function impairs translation of polyproline-containing proteins in vivo. Hydroxyl radical probing experiments localized eIF5A near the E site of the ribosome with its hypusine residue adjacent to the acceptor stem of the P site tRNA. Thus, eIF5A, like its bacterial ortholog EFP, is proposed to stimulate the peptidyl transferase activity of the ribosome and facilitate the reactivity of poor substrates like Pro.
Collapse
Affiliation(s)
- Erik Gutierrez
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Byung-Sik Shin
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Joo-Ran Kim
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Preeti Saini
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Allen R. Buskirk
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Thomas E. Dever
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
209
|
Xiao Y, Nguyen S, Kim SH, Volkov OA, Tu BP, Phillips MA. Product feedback regulation implicated in translational control of the Trypanosoma brucei S-adenosylmethionine decarboxylase regulatory subunit prozyme. Mol Microbiol 2013; 88:846-61. [PMID: 23634831 DOI: 10.1111/mmi.12226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2013] [Indexed: 12/12/2022]
Abstract
Human African sleeping sickness (HAT) is caused by the parasitic protozoan Trypanosoma brucei. Polyamine biosynthesis is an important drug target in the treatment of HAT. Previously we showed that trypanosomatid S-adenosylmethionine decarboxylase (AdoMetDC), a key enzyme for biosynthesis of the polyamine spermidine, is activated by heterodimer formation with an inactive paralogue termed prozyme. Furthermore, prozyme protein levels were regulated in response to reduced AdoMetDC activity. Herein we show that T. brucei encodes three prozyme transcripts. The 3'UTRs of these transcripts were mapped and chloramphenicol acetyltransferase (CAT) reporter constructs were used to identify a 1.2 kb region that contained a 3'UTR prozyme regulatory element sufficient to upregulate CAT protein levels (but not RNA) upon AdoMetDC inhibition, supporting the hypothesis that prozyme expression is regulated translationally. To gain insight into trans-acting factors, genetic rescue of AdoMetDC RNAi knock-down lines with human AdoMetDC was performed leading to rescue of the cell growth block, and restoration of prozyme protein to wild-type levels. Metabolite analysis showed that prozyme protein levels were inversely proportional to intracellular levels of decarboxylated AdoMet (dcAdoMet). These data suggest that prozyme translation may be regulated by dcAdoMet, a metabolite not previously identified to play a regulatory role.
Collapse
Affiliation(s)
- Yanjing Xiao
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9041, USA
| | | | | | | | | | | |
Collapse
|
210
|
Chung J, Rocha AA, Tonelli RR, Castilho BA, Schenkman S. Eukaryotic initiation factor 5A dephosphorylation is required for translational arrest in stationary phase cells. Biochem J 2013; 451:257-67. [PMID: 23368777 DOI: 10.1042/bj20121553] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The protein known as eIF5A (eukaryotic initiation factor 5A) has an elusive role in translation. It has a unique and essential hypusine modification at a conserved lysine residue in most eukaryotes. In addition, this protein is modified by phosphorylation with unknown functions. In the present study we show that a phosphorylated state of eIF5A predominates in exponentially growing Trypanosoma cruzi cells, and extensive dephosphorylation occurs in cells in stationary phase. Phosphorylation occurs mainly at Ser(2), as shown in yeast eIF5A. In addition, a novel phosphorylation site was identified at Tyr(21). In exponential cells, T. cruzi eIF5A is partially associated with polysomes, compatible with a proposed function as an elongation factor, and becomes relatively enriched in polysomal fractions in stationary phase. Overexpression of the wild-type eIF5A, or eIF5A with Ser(2) replaced by an aspartate residue, but not by alanine, increases the rate of cell proliferation and protein synthesis. However, the presence of an aspartate residue instead of Ser(2) is toxic for cells reaching the stationary phase, which show a less-pronounced protein synthesis arrest and a decreased amount of eIF5A in dense fractions of sucrose gradients. We conclude that eIF5A phosphorylation and dephosphorylation cycles regulate translation according to the growth conditions.
Collapse
Affiliation(s)
- Janete Chung
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Rua Pedro de Toledo 669 L6A, São Paulo, S.P. 04039-032, Brazil
| | | | | | | | | |
Collapse
|
211
|
Galvão FC, Rossi D, Silveira WDS, Valentini SR, Zanelli CF. The deoxyhypusine synthase mutant dys1-1 reveals the association of eIF5A and Asc1 with cell wall integrity. PLoS One 2013; 8:e60140. [PMID: 23573236 PMCID: PMC3613415 DOI: 10.1371/journal.pone.0060140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/21/2013] [Indexed: 11/19/2022] Open
Abstract
The putative eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein among archaea and eukaryotes that has recently been implicated in the elongation step of translation. eIF5A undergoes an essential and conserved posttranslational modification at a specific lysine to generate the residue hypusine. The enzymes deoxyhypusine synthase (Dys1) and deoxyhypusine hydroxylase (Lia1) catalyze this two-step modification process. Although several Saccharomyces cerevisiae eIF5A mutants have importantly contributed to the study of eIF5A function, no conditional mutant of Dys1 has been described so far. In this study, we generated and characterized the dys1-1 mutant, which showed a strong depletion of mutated Dys1 protein, resulting in more than 2-fold decrease in hypusine levels relative to the wild type. The dys1-1 mutant demonstrated a defect in total protein synthesis, a defect in polysome profile indicative of a translation elongation defect and a reduced association of eIF5A with polysomes. The growth phenotype of dys1-1 mutant is severe, growing only in the presence of 1 M sorbitol, an osmotic stabilizer. Although this phenotype is characteristic of Pkc1 cell wall integrity mutants, the sorbitol requirement from dys1-1 is not associated with cell lysis. We observed that the dys1-1 genetically interacts with the sole yeast protein kinase C (Pkc1) and Asc1, a component of the 40S ribosomal subunit. The dys1-1 mutant was synthetically lethal in combination with asc1Δ and overexpression of TIF51A (eIF5A) or DYS1 is toxic for an asc1Δ strain. Moreover, eIF5A is more associated with translating ribosomes in the absence of Asc1 in the cell. Finally, analysis of the sensitivity to cell wall-perturbing compounds revealed a more similar behavior of the dys1-1 and asc1Δ mutants in comparison with the pkc1Δ mutant. These data suggest a correlated role for eIF5A and Asc1 in coordinating the translational control of a subset of mRNAs associated with cell integrity.
Collapse
Affiliation(s)
- Fabio Carrilho Galvão
- Department of Biological Sciences, Univ Estadual Paulista – UNESP, Araraquara-Saõ Paulo, Brazil
| | - Danuza Rossi
- Department of Biological Sciences, Univ Estadual Paulista – UNESP, Araraquara-Saõ Paulo, Brazil
| | | | | | | |
Collapse
|
212
|
Nguyen S, Jones DC, Wyllie S, Fairlamb AH, Phillips MA. Allosteric activation of trypanosomatid deoxyhypusine synthase by a catalytically dead paralog. J Biol Chem 2013; 288:15256-67. [PMID: 23525104 PMCID: PMC3663545 DOI: 10.1074/jbc.m113.461137] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Polyamine biosynthesis is a key drug target in African trypanosomes. The “resurrection drug” eflornithine (difluoromethylornithine), which is used clinically to treat human African trypanosomiasis, inhibits the first step in polyamine (spermidine) biosynthesis, a highly regulated pathway in most eukaryotic cells. Previously, we showed that activity of a key trypanosomatid spermidine biosynthetic enzyme, S-adenosylmethionine decarboxylase, is regulated by heterodimer formation with a catalytically dead paralog (a prozyme). Here, we describe an expansion of this prozyme paradigm to the enzyme deoxyhypusine synthase, which is required for spermidine-dependent hypusine modification of a lysine residue in the essential translation factor eIF5A. Trypanosoma brucei encodes two deoxyhypusine synthase paralogs, one that is catalytically functional but grossly impaired, and the other is inactive. Co-expression in Escherichia coli results in heterotetramer formation with a 3000-fold increase in enzyme activity. This functional complex is also present in T. brucei, and conditional knock-out studies indicate that both DHS genes are essential for in vitro growth and infectivity in mice. The recurrent evolution of paralogous, catalytically dead enzyme-based activating mechanisms may be a consequence of the unusual gene expression in the parasites, which lack transcriptional regulation. Our results suggest that this mechanism may be more widely used by trypanosomatids to control enzyme activity and ultimately influence pathogenesis than currently appreciated.
Collapse
Affiliation(s)
- Suong Nguyen
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9041, USA
| | | | | | | | | |
Collapse
|
213
|
Atemnkeng VA, Pink M, Schmitz-Spanke S, Wu XJ, Dong LL, Zhao KH, May C, Laufer S, Langer B, Kaiser A. Deoxyhypusine hydroxylase from Plasmodium vivax, the neglected human malaria parasite: molecular cloning, expression and specific inhibition by the 5-LOX inhibitor zileuton. PLoS One 2013; 8:e58318. [PMID: 23505486 PMCID: PMC3591309 DOI: 10.1371/journal.pone.0058318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/01/2013] [Indexed: 11/18/2022] Open
Abstract
Primaquine, an 8-aminoquinoline, is the only drug which cures the dormant hypnozoites of persistent liver stages from P. vivax. Increasing resistance needs the discovery of alternative pathways as drug targets to develop novel drug entities. Deoxyhypusine hydroxylase (DOHH) completes hypusine biosynthesis in eukaryotic initiation factor (eIF-5A) which is the only cellular protein known to contain the unusual amino acid hypusine. Modified EIF-5A is important for proliferation of the malaria parasite. Here, we present the first successful cloning and expression of DOHH from P. vivax causing tertiary malaria. The nucleic acid sequence of 1041 bp encodes an open reading frame of 346 amino acids. Histidine tagged expression of P. vivax DOHH detected a protein of 39.01 kDa in E. coli. The DOHH protein from P. vivax shares significant amino acid identity to the simian orthologues from P. knowlesi and P. yoelii strain H. In contrast to P. falciparum only four E-Z-type HEAT-like repeats are present in P. vivax DOHH with different homology to phycocyanin lyase subunits from cyanobacteria and in proteins participating in energy metabolism of Archaea and Halobacteria. However, phycocyanin lyase activity is absent in P. vivax DOHH. The dohh gene is present as a single copy gene and transcribed throughout the whole erythrocytic cycle. Specific inhibition of recombinant P. vivax DOHH is possible by complexing the ferrous iron with zileuton, an inhibitor of mammalian 5-lipoxygenase (5-LOX). Ferrous iron in the active site of 5-LOX is coordinated by three conserved histidines and the carboxylate of isoleucine(673). Zileuton inhibited the P. vivax DOHH protein with an IC50 of 12,5 nmol determined by a relative quantification by GC/MS. By contrast, the human orthologue is only less affected with an IC50 of 90 nmol suggesting a selective iron-complexing strategy for the parasitic enzyme.
Collapse
Affiliation(s)
| | - Mario Pink
- Occupational Medicine, University of Duisburg-Essen, Essen, Germany
| | | | - Xian-Jun Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
| | - Liang-Liang Dong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
| | - Caroline May
- Immune Proteomics, Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Stefan Laufer
- Pharmazeutische Chemie, Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Barbara Langer
- Institute of Pharmacogenetics, University of Duisburg-Essen, Essen, Germany
| | - Annette Kaiser
- Institute of Pharmacogenetics, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
214
|
Abstract
Upon activation, quiescent naive T cells undergo a growth phase followed by massive clonal expansion and differentiation that are essential for appropriate immune defense and regulation. Accumulation of cell biomass during the initial growth and rapid proliferation during the expansion phase is associated with dramatically increased bioenergetic and biosynthetic demands. This not only requires a metabolic rewiring during the transition between resting and activation but also 'addicts' active T cells to certain metabolic pathways in ways that naive and memory T cells are not. We consider such addiction in terms of the biological effects of deprivation of metabolic substrates or inhibition of specific pathways in T cells. In this review, we illustrate the relevant metabolic pathways revealed by recent metabolic flux analysis and discuss the consequences of metabolic intervention on specific metabolic pathways in T lymphocytes.
Collapse
Affiliation(s)
- Ruoning Wang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | | |
Collapse
|
215
|
Dias CAO, Garcia W, Zanelli CF, Valentini SR. eIF5A dimerizes not only in vitro but also in vivo and its molecular envelope is similar to the EF-P monomer. Amino Acids 2013; 44:631-44. [PMID: 22945904 DOI: 10.1007/s00726-012-1387-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 08/01/2012] [Indexed: 11/28/2022]
Abstract
The protein eukaryotic initiation factor 5A (eIF5A) is highly conserved among archaea and eukaryotes, but not in bacteria. Bacteria have the elongation factor P (EF-P), which is structurally and functionally related to eIF5A. eIF5A is essential for cell viability and the only protein known to contain the amino acid residue hypusine, formed by post-translational modification of a specific lysine residue. Although eIF5A was initially identified as a translation initiation factor, recent studies strongly support a function for eIF5A in the elongation step of translation. However, the mode of action of eIF5A is still unknown. Here, we analyzed the oligomeric state of yeast eIF5A. First, by using size-exclusion chromatography, we showed that this protein exists as a dimer in vitro, independent of the hypusine residue or electrostatic interactions. Protein-protein interaction assays demonstrated that eIF5A can form oligomers in vitro and in vivo, in an RNA-dependent manner, but independent of the hypusine residue or the ribosome. Finally, small-angle X-ray scattering (SAXS) experiments confirmed that eIF5A behaves as a stable dimer in solution. Moreover, the molecular envelope determined from the SAXS data shows that the eIF5A dimer is L-shaped and superimposable on the tRNA(Phe) tertiary structure, analogously to the EF-P monomer.
Collapse
Affiliation(s)
- Camila Arnaldo Olhê Dias
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Rodovia Araraquara-Jaú, km 01, Araraquara, SP 14801-902, Brazil
| | | | | | | |
Collapse
|
216
|
Nishiki Y, Adewola A, Hatanaka M, Templin AT, Maier B, Mirmira RG. Translational control of inducible nitric oxide synthase by p38 MAPK in islet β-cells. Mol Endocrinol 2013; 27:336-49. [PMID: 23250488 PMCID: PMC3683810 DOI: 10.1210/me.2012-1230] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 11/19/2012] [Indexed: 01/04/2023] Open
Abstract
The MAPKs are transducers of extracellular signals such as proinflammatory cytokines. In islet β-cells, cytokines acutely activate expression of the Nos2 gene encoding inducible nitric oxide synthase (iNOS), which ultimately impairs insulin release. Because iNOS production can also be regulated posttranscriptionally, we asked whether MAPKs participate in posttranscriptional regulatory events in β-cells and primary islets in response to cytokine signaling. We show that cytokines acutely reduce cellular oxygen consumption rate and impair aconitase activity. Inhibition of iNOS with l-NMMA or inhibition of Nos2 mRNA translation with GC7 [an inhibitor of eukaryotic translation initiation factor 5A (eIF5A) activity] reversed these defects, as did inhibition of p38 MAPK by PD169316. Although inhibition of p38 had no effect on the nuclear translocation of nuclear factor κB or the abundance of Nos2 transcripts during the immediate period after cytokine exposure, its inhibition or knockdown resulted in significant reduction in iNOS protein, a finding suggestive of a permissive role for p38 in Nos2 translation. Polyribosomal profiling experiments using INS-1 β-cells revealed that Nos2 mRNA remained associated with polyribosomes in the setting of p38 inhibition, in a manner similar to that seen with blockade of translational elongation by cycloheximide. Consistent with a role in translational elongation, p38 activity is required in part for the activation of the translational factor eIF5A by promoting its hypusination. Our results suggest a novel signaling pathway in β-cells in which p38 MAPK promotes translation elongation of Nos2 mRNA via regulation of eIF5A hypusination.
Collapse
Affiliation(s)
- Yurika Nishiki
- Department of Pediatrics and the Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
217
|
Depletion of cellular polyamines, spermidine and spermine, causes a total arrest in translation and growth in mammalian cells. Proc Natl Acad Sci U S A 2013; 110:2169-74. [PMID: 23345430 DOI: 10.1073/pnas.1219002110] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The polyamines, putrescine, spermidine, and spermine, are essential polycations, intimately involved in the regulation of cellular proliferation. Although polyamines exert dynamic effects on the conformation of nucleic acids and macromolecular synthesis in vitro, their specific functions in vivo are poorly understood. We investigated the cellular function of polyamines by overexpression of a key catabolic enzyme, spermidine/spermine N(1)-acetyltransferase 1 (SAT1) in mammalian cells. Transient cotransfection of HeLa cells with GFP and SAT1 vectors suppressed GFP protein expression without lowering its mRNA level, an indication that the block in GFP expression was not at transcription, but at translation. Fluorescence single-cell imaging also revealed specific inhibition of endogenous protein synthesis in the SAT1 overexpressing cells, without any inhibition of synthesis of DNA or RNA. Overexpression of SAT1 using a SAT1 adenovirus led to rapid depletion of cellular spermidine and spermine, total inhibition of protein synthesis, and growth arrest within 24 h. The SAT1 effect is most likely due to depletion of spermidine and spermine, because stable polyamine analogs that are not substrates for SAT1 restored GFP and endogenous protein synthesis. Loss of polysomes with increased 80S monosomes in the polyamine-depleted cells suggests a direct role for polyamines in translation initiation. Our data provide strong evidence for a primary function of polyamines, spermidine and spermine, in translation in mammalian cells.
Collapse
|
218
|
Abstract
A protein that associates with the ribosome alleviates stalling and stimulates translation of proline-rich motifs.
[Also see Reports by
Ude
et al.
and
Doerfel
et al.
]
Collapse
Affiliation(s)
- Allen R Buskirk
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | |
Collapse
|
219
|
Caraglia M, Park MH, Wolff EC, Marra M, Abbruzzese A. eIF5A isoforms and cancer: two brothers for two functions? Amino Acids 2013; 44:103-9. [PMID: 22139412 PMCID: PMC3536922 DOI: 10.1007/s00726-011-1182-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/22/2011] [Indexed: 12/11/2022]
Abstract
Eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein that contains the unusual amino acid hypusine [N(ε)-(4-amino-2-hydroxybutyl)lysine]. The role of hypusine formation in the eIF5A protein in the regulation of cell proliferation and apoptosis is addressed in the present review. Moreover, vertebrates carry two genes that encode two eIF5A isoforms, eIF5A-1 and eIF5A-2, which, in humans, are 84% identical. However, the biological functions of these two isoforms may be significantly different. In fact, eIF5A-1 is demonstrable in most cells of different histogenesis, whereas eIF5A-2 protein is detectable only in certain human cancer cells or tissues, suggesting its role as a potential oncogene. In this review we focus our attention on the involvement of eIF5A-1 in the triggering of an apoptotic program and in the regulation of cell proliferation. In addition, the potential oncogenic role and prognostic significance of eIF5A-2 in the prediction of the survival of cancer patients is described. eIF5A-1 and/or the eIF5A-2 isoform may serve as a new molecular diagnostic or prognostic marker or as a molecular target for anti-cancer therapy.
Collapse
Affiliation(s)
- M Caraglia
- Department of Biochemistry and Biophysics, Second University of Naples, Via Costantinopoli, 16, 80138 Naples, Italy.
| | | | | | | | | |
Collapse
|
220
|
Mittal N, Subramanian G, Bütikofer P, Madhubala R. Unique posttranslational modifications in eukaryotic translation factors and their roles in protozoan parasite viability and pathogenesis. Mol Biochem Parasitol 2013; 187:21-31. [PMID: 23201129 DOI: 10.1016/j.molbiopara.2012.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 11/04/2012] [Accepted: 11/05/2012] [Indexed: 11/21/2022]
Abstract
Protozoan parasites are one of the major causes of diseases worldwide. The vector transmitted parasites exhibit complex life cycles involving interactions between humans, protozoa, and arthropods. In order to adapt themselves to the changing microenvironments, they have to undergo complex morphological and metabolic changes. These changes can be brought about by expressing a new pool of proteins in the cell or by modifying the existing repertoire of proteins via posttranslational modifications (PTMs). PTMs involve covalent modification and processing of proteins thereby modulating their functions. Some of these changes may involve PTMs of parasite proteins to help the parasite survive within the host and the vector. Out of many PTMs known, three are unique since they occur only on single proteins: ethanolamine phosphoglycerol (EPG) glutamate, hypusine and diphthamide. These modifications occur on eukaryotic elongation factor 1A (eEF1A), eukaryotic initiation factor 5A (eIF5A) and eukaryotic elongation factor 2 (eEF2), respectively. Interestingly, the proteins carrying these unique modifications are all involved in the elongation steps of translation. Here we review these unique PTMs, which are well conserved in protozoan parasites, and discuss their roles in viability and pathogenesis of parasites. Characterization of these modifications and studying their roles in physiology as well as pathogenesis will provide new insights in parasite biology, which may also help in developing new therapeutic interventions.
Collapse
Affiliation(s)
- Nimisha Mittal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | |
Collapse
|
221
|
Bullwinkle TJ, Zou SB, Rajkovic A, Hersch SJ, Elgamal S, Robinson N, Smil D, Bolshan Y, Navarre WW, Ibba M. (R)-β-lysine-modified elongation factor P functions in translation elongation. J Biol Chem 2012; 288:4416-23. [PMID: 23277358 DOI: 10.1074/jbc.m112.438879] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational modification of bacterial elongation factor P (EF-P) with (R)-β-lysine at a conserved lysine residue activates the protein in vivo and increases puromycin reactivity of the ribosome in vitro. The additional hydroxylation of EF-P at the same lysine residue by the YfcM protein has also recently been described. The roles of modified and unmodified EF-P during different steps in translation, and how this correlates to its physiological role in the cell, have recently been linked to the synthesis of polyproline stretches in proteins. Polysome analysis indicated that EF-P functions in translation elongation, rather than initiation as proposed previously. This was further supported by the inability of EF-P to enhance the rate of formation of fMet-Lys or fMet-Phe, indicating that the role of EF-P is not to specifically stimulate formation of the first peptide bond. Investigation of hydroxyl-(β)-lysyl-EF-P showed 30% increased puromycin reactivity but no differences in dipeptide synthesis rates when compared with the β-lysylated form. Unlike disruption of the other genes required for EF-P modification, deletion of yfcM had no phenotypic consequences in Salmonella. Taken together, our findings indicate that EF-P functions in translation elongation, a role critically dependent on post-translational β-lysylation but not hydroxylation.
Collapse
Affiliation(s)
- Tammy J Bullwinkle
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Eichler J, Maupin-Furlow J. Post-translation modification in Archaea: lessons from Haloferax volcanii and other haloarchaea. FEMS Microbiol Rev 2012; 37:583-606. [PMID: 23167813 DOI: 10.1111/1574-6976.12012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/13/2012] [Accepted: 11/13/2012] [Indexed: 01/11/2023] Open
Abstract
As an ever-growing number of genome sequences appear, it is becoming increasingly clear that factors other than genome sequence impart complexity to the proteome. Of the various sources of proteomic variability, post-translational modifications (PTMs) most greatly serve to expand the variety of proteins found in the cell. Likewise, modulating the rates at which different proteins are degraded also results in a constantly changing cellular protein profile. While both strategies for generating proteomic diversity are adopted by organisms across evolution, the responsible pathways and enzymes in Archaea are often less well described than are their eukaryotic and bacterial counterparts. Studies on halophilic archaea, in particular Haloferax volcanii, originally isolated from the Dead Sea, are helping to fill the void. In this review, recent developments concerning PTMs and protein degradation in the haloarchaea are discussed.
Collapse
Affiliation(s)
- Jerry Eichler
- Department of Life Sciences, Ben Gurion University, Beersheva, Israel.
| | | |
Collapse
|
223
|
Epis MR, Giles KM, Kalinowski FC, Barker A, Cohen RJ, Leedman PJ. Regulation of expression of deoxyhypusine hydroxylase (DOHH), the enzyme that catalyzes the activation of eIF5A, by miR-331-3p and miR-642-5p in prostate cancer cells. J Biol Chem 2012; 287:35251-35259. [PMID: 22908221 PMCID: PMC3471734 DOI: 10.1074/jbc.m112.374686] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 08/16/2012] [Indexed: 01/30/2023] Open
Abstract
The enzyme deoxyhypusine hydroxylase (DOHH) catalyzes the activation of eukaryotic translation initiation factor (eIF5A), a protein essential for cell growth. Using bioinformatic predictions and reporter gene assays, we have identified a 182-nt element within the DOHH 3'-untranslated region (3'-UTR) that contains a number of target sites for miR-331-3p and miR-642-5p. Quantitative RT-PCR studies demonstrated overexpression of DOHH mRNA and underexpression of miR-331-3p and miR-642-5p in several prostate cancer cell lines compared with normal prostate epithelial cells. Transient overexpression of miR-331-3p and/or miR-642-5p in DU145 prostate cancer cells reduced DOHH mRNA and protein expression and inhibited cell proliferation. We observed synergistic growth inhibition with the combination of miR-331-3p and miR-642-5p and mimosine, a pharmacological DOHH inhibitor. Finally, we identified a significant inverse relationship between the expression of miR-331-3p or miR-642-5p and DOHH in a cohort of human prostate cancer tissues. Our results suggest a novel role for miR-331-3p and miR-642-5p in the control of prostate cancer cell growth via the regulation of DOHH expression and eIF5A activity.
Collapse
Affiliation(s)
- Michael R Epis
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research and University of Western Australia Centre for Medical Research, Royal Perth Hospital, Perth, Western Australia 6000, Australia
| | - Keith M Giles
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research and University of Western Australia Centre for Medical Research, Royal Perth Hospital, Perth, Western Australia 6000, Australia
| | - Felicity C Kalinowski
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research and University of Western Australia Centre for Medical Research, Royal Perth Hospital, Perth, Western Australia 6000, Australia
| | - Andrew Barker
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research and University of Western Australia Centre for Medical Research, Royal Perth Hospital, Perth, Western Australia 6000, Australia
| | - Ronald J Cohen
- Uropath Pty, Ltd., West Leederville, Western Australia 6007, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research and University of Western Australia Centre for Medical Research, Royal Perth Hospital, Perth, Western Australia 6000, Australia; School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia 6009, Australia.
| |
Collapse
|
224
|
Les mille et une manières d'inactiver les fonctions des gènes suppresseurs de tumeur. Bull Cancer 2012. [DOI: 10.1684/bdc.2012.1629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
225
|
Preukschas M, Hagel C, Schulte A, Weber K, Lamszus K, Sievert H, Pällmann N, Bokemeyer C, Hauber J, Braig M, Balabanov S. Expression of eukaryotic initiation factor 5A and hypusine forming enzymes in glioblastoma patient samples: implications for new targeted therapies. PLoS One 2012; 7:e43468. [PMID: 22927971 PMCID: PMC3424167 DOI: 10.1371/journal.pone.0043468] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/20/2012] [Indexed: 12/23/2022] Open
Abstract
Glioblastomas are highly aggressive brain tumors of adults with poor clinical outcome. Despite a broad range of new and more specific treatment strategies, therapy of glioblastomas remains challenging and tumors relapse in all cases. Recent work demonstrated that the posttranslational hypusine modification of the eukaryotic initiation factor 5A (eIF-5A) is a crucial regulator of cell proliferation, differentiation and an important factor in tumor formation, progression and maintenance. Here we report that eIF-5A as well as the hypusine-forming enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH) are highly overexpressed in glioblastoma patient samples. Importantly, targeting eIF-5A and its hypusine modification with GC7, a specific DHS-inhibitor, showed a strong antiproliferative effect in glioblastoma cell lines in vitro, while normal human astrocytes were not affected. Furthermore, we identified p53 dependent premature senescence, a permanent cell cycle arrest, as the primary outcome in U87-MG cells after treatment with GC7. Strikingly, combined treatment with clinically relevant alkylating agents and GC7 had an additive antiproliferative effect in glioblastoma cell lines. In addition, stable knockdown of eIF-5A and DHS by short hairpin RNA (shRNA) could mimic the antiproliferative effects of GC7. These findings suggest that pharmacological inhibition of eIF-5A may represent a novel concept to treat glioblastomas and may help to substantially improve the clinical course of this tumor entity.
Collapse
Affiliation(s)
- Michael Preukschas
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Hagel
- Department of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Schulte
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Weber
- Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henning Sievert
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nora Pällmann
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joachim Hauber
- Heinrich-Pette-Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Melanie Braig
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Balabanov
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
226
|
Scuoppo C, Miething C, Lindqvist L, Reyes J, Ruse C, Appelmann I, Yoon S, Krasnitz A, Teruya-Feldstein J, Pappin D, Pelletier J, Lowe SW. A tumour suppressor network relying on the polyamine-hypusine axis. Nature 2012; 487:244-8. [PMID: 22722845 DOI: 10.1038/nature11126] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 04/05/2012] [Indexed: 12/21/2022]
Abstract
Tumour suppressor genes encode a broad class of molecules whose mutational attenuation contributes to malignant progression. In the canonical situation, the tumour suppressor is completely inactivated through a two-hit process involving a point mutation in one allele and chromosomal deletion of the other. Here, to identify tumour suppressor genes in lymphoma, we screen a short hairpin RNA library targeting genes deleted in human lymphomas. We functionally identify those genes whose suppression promotes tumorigenesis in a mouse lymphoma model. Of the nine tumour suppressors we identified, eight correspond to genes occurring in three physically linked 'clusters', suggesting that the common occurrence of large chromosomal deletions in human tumours reflects selective pressure to attenuate multiple genes. Among the new tumour suppressors are adenosylmethionine decarboxylase 1 (AMD1) and eukaryotic translation initiation factor 5A (eIF5A), two genes associated with hypusine, a unique amino acid produced as a product of polyamine metabolism through a highly conserved pathway. Through a secondary screen surveying the impact of all polyamine enzymes on tumorigenesis, we establish the polyamine-hypusine axis as a new tumour suppressor network regulating apoptosis. Unexpectedly, heterozygous deletions encompassing AMD1 and eIF5A often occur together in human lymphomas and co-suppression of both genes promotes lymphomagenesis in mice. Thus, some tumour suppressor functions can be disabled through a two-step process targeting different genes acting in the same pathway.
Collapse
Affiliation(s)
- Claudio Scuoppo
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Wang L, Xu C, Wang C, Wang Y. Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance. BMC PLANT BIOLOGY 2012; 12:118. [PMID: 22834699 PMCID: PMC3479025 DOI: 10.1186/1471-2229-12-118] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/09/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND The eukaryotic translation initiation factor 5A (eIF5A) promotes formation of the first peptide bond at the onset of protein synthesis. However, the function of eIF5A in plants is not well understood. RESULTS In this study, we characterized the function of eIF5A (TaeIF5A1) from Tamarix androssowii. The promoter of TaeIF5A1 with 1,486 bp in length was isolated, and the cis-elements in the promoter were identified. A WRKY (TaWRKY) and RAV (TaRAV) protein can specifically bind to a W-box motif in the promoter of TaeIF5A1 and activate the expression of TaeIF5A1. Furthermore, TaeIF5A1, TaWRKY and TaRAV share very similar expression pattern and are all stress-responsive gene that functions in the abscisic acid (ABA) signaling pathway, indicating that they are components of a single regulatory pathway. Transgenic yeast and poplar expressing TaeIF5A1 showed elevated protein levels combined with improved abiotic stresses tolerance. Furthermore, TaeIF5A1-transformed plants exhibited enhanced superoxide dismutase (SOD) and peroxidase (POD) activities, lower electrolyte leakage and higher chlorophyll content under salt stress. CONCLUSIONS These results suggested that TaeIF5A1 is involved in abiotic stress tolerance, and is likely regulated by transcription factors TaWRKY and TaRAV both of which can bind to the W-box motif. In addition, TaeIF5A1 may mediate stress tolerance by increasing protein synthesis, enhancing ROS scavenging by improving SOD and POD activities, and preventing chlorophyll loss and membrane damage. Therefore, eIF5A may play an important role in plant adaptation to changing environmental conditions.
Collapse
MESH Headings
- Abscisic Acid/metabolism
- Abscisic Acid/pharmacology
- Adaptation, Physiological
- Cell Membrane/genetics
- Cell Membrane/metabolism
- Chlorophyll/genetics
- Chlorophyll/metabolism
- Cloning, Molecular
- Gene Expression Regulation, Plant
- Genetic Vectors
- Peptide Initiation Factors/genetics
- Peptide Initiation Factors/metabolism
- Peroxidase/genetics
- Peroxidase/metabolism
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/physiology
- Promoter Regions, Genetic
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Regulatory Sequences, Nucleic Acid
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Salt-Tolerant Plants/genetics
- Salt-Tolerant Plants/metabolism
- Salt-Tolerant Plants/physiology
- Signal Transduction
- Sodium Chloride/pharmacology
- Solubility
- Stress, Physiological
- Superoxide Dismutase/genetics
- Superoxide Dismutase/metabolism
- Tamaricaceae/genetics
- Tamaricaceae/metabolism
- Tamaricaceae/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transformation, Genetic
- Eukaryotic Translation Initiation Factor 5A
Collapse
Affiliation(s)
- Liuqiang Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, China
| | - Chenxi Xu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, China
| |
Collapse
|
228
|
Taylor CA, Liu Z, Tang TC, Zheng Q, Francis S, Wang TW, Ye B, Lust JA, Dondero R, Thompson JE. Modulation of eIF5A expression using SNS01 nanoparticles inhibits NF-κB activity and tumor growth in murine models of multiple myeloma. Mol Ther 2012; 20:1305-14. [PMID: 22588272 PMCID: PMC3392975 DOI: 10.1038/mt.2012.94] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 04/11/2012] [Indexed: 12/31/2022] Open
Abstract
Despite recent advances in the first-line treatment of multiple myeloma, almost all patients eventually experience relapse with drug-resistant disease. New therapeutic modalities are needed, and to this end, SNS01, a therapeutic nanoparticle, is being investigated for treatment of multiple myeloma. The antitumoral activity of SNS01 is based upon modulation of eukaryotic translation initiation factor 5A (eIF5A), a highly conserved protein that is involved in many cellular processes including proliferation, apoptosis, differentiation and inflammation. eIF5A is regulated by post-translational hypusine modification, and overexpression of hypusination-resistant mutants of eIF5A induces apoptosis in many types of cancer cells. SNS01 is a polyethylenimine (PEI)-based nanoparticle that contains both a B-cell-specific expression plasmid expressing a non-hypusinable mutant of eIF5A and a small interfering RNA (siRNA) which depletes endogenous hypusinated eIF5A. Reducing hypusine-modified eIF5A levels was found to inhibit phosphorylation and activity of ERK MAPK and nuclear factor-κB (NF-κB), and thus sensitize myeloma cells to apoptosis resulting from transfection of a plasmid expressing eIF5A(K50R). SNS01 exhibited significant antitumoral activity in both KAS-6/1 (95% inhibition; P < 0.05) and RPMI 8226 (59% inhibition; P < 0.05) multiple myeloma xenograft models following systemic administration. These results highlight the potential of using this approach as a new therapeutic strategy for multiple myeloma.
Collapse
Affiliation(s)
- Catherine A Taylor
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Zhongda Liu
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Terence C Tang
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Qifa Zheng
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Sarah Francis
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Tzann-Wei Wang
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Bin Ye
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - John A Lust
- Department of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - John E Thompson
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Senesco Technologies, Bridgewater, New Jersey, USA
| |
Collapse
|
229
|
Dever TE, Green R. The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harb Perspect Biol 2012; 4:a013706. [PMID: 22751155 DOI: 10.1101/cshperspect.a013706] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This work summarizes our current understanding of the elongation and termination/recycling phases of eukaryotic protein synthesis. We focus here on recent advances in the field. In addition to an overview of translation elongation, we discuss unique aspects of eukaryotic translation elongation including eEF1 recycling, eEF2 modification, and eEF3 and eIF5A function. Likewise, we highlight the function of the eukaryotic release factors eRF1 and eRF3 in translation termination, and the functions of ABCE1/Rli1, the Dom34:Hbs1 complex, and Ligatin (eIF2D) in ribosome recycling. Finally, we present some of the key questions in translation elongation, termination, and recycling that remain to be answered.
Collapse
Affiliation(s)
- Thomas E Dever
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
230
|
Bae N, Lödl M, Pollak A, Lubec G. Mass spectrometrical analysis of bilin-binding protein from the wing of Hebomoia glaucippe (Linnaeus, 1758) (Lepidoptera: Pieridae). Electrophoresis 2012; 33:1787-94. [DOI: 10.1002/elps.201100569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Narkhyun Bae
- Department of Pediatrics; Medical University of Vienna; Vienna; Austria
| | - Martin Lödl
- Naturhistorisches Museum Wien; Vienna; Austria
| | - Arnold Pollak
- Department of Pediatrics; Medical University of Vienna; Vienna; Austria
| | - Gert Lubec
- Department of Pediatrics; Medical University of Vienna; Vienna; Austria
| |
Collapse
|
231
|
Peil L, Starosta AL, Virumäe K, Atkinson GC, Tenson T, Remme J, Wilson DN. Lys34 of translation elongation factor EF-P is hydroxylated by YfcM. Nat Chem Biol 2012; 8:695-7. [PMID: 22706199 DOI: 10.1038/nchembio.1001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 04/11/2012] [Indexed: 11/09/2022]
Abstract
Lys34 of the conserved translation elongation factor P (EF-P) is post-translationally lysinylated by YjeK and YjeA--a modification that is critical for bacterial virulence. Here we show that the currently accepted Escherichia coli EF-P modification pathway is incomplete and lacks a final hydroxylation step mediated by YfcM, an enzyme distinct from deoxyhypusine hydroxylase that catalyzes the final maturation step of eukaryotic initiation factor 5A, the eukaryotic EF-P homolog.
Collapse
Affiliation(s)
- Lauri Peil
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
232
|
Takano A, Kakehi JI, Takahashi T. Thermospermine is not a minor polyamine in the plant kingdom. PLANT & CELL PHYSIOLOGY 2012; 53:606-16. [PMID: 22366038 DOI: 10.1093/pcp/pcs019] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Thermospermine is a structural isomer of spermine, which is one of the polyamines studied extensively in the past, and is produced from spermidine by the action of thermospermine synthase encoded by a gene named ACAULIS5 (ACL5) in plants. According to recent genome sequencing analyses, ACL5-like genes are widely distributed throughout the plant kingdom. In Arabidopsis, ACL5 is expressed specifically during xylem formation from procambial cells to differentiating xylem vessels. Loss-of-function mutants of ACL5 display overproliferation of xylem vessels along with severe dwarfism, suggesting that thermospermine plays a role in the repression of xylem differentiation. Studies of suppressor mutants of acl5 that recover the wild-type phenotype in the absence of thermospermine suggest that thermospermine acts on the translation of specific mRNAs containing upstream open reading frames (uORFs). Thermospermine is a novel type of plant growth regulator and may also serve in the control of wood biomass production.
Collapse
Affiliation(s)
- Ayaka Takano
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | | |
Collapse
|
233
|
Yukl ET, Wilmot CM. Cofactor biosynthesis through protein post-translational modification. Curr Opin Chem Biol 2012; 16:54-9. [PMID: 22387133 DOI: 10.1016/j.cbpa.2012.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 11/25/2022]
Abstract
Post-translational modifications of amino acids can be used to generate novel cofactors capable of chemistries inaccessible to conventional amino acid side chains. The biosynthesis of these sites often requires one or more enzyme or protein accessory factors, the functions of which are quite diverse and often difficult to isolate in cases where multiple enzymes are involved. Herein is described the current knowledge of the biosynthesis of urease and nitrile hydratase metal centers, pyrroloquinoline quinone, hypusine, and tryptophan tryptophylquinone cofactors along with the most recent work elucidating the functions of individual accessory factors in these systems. These examples showcase the breadth and diversity of this continually expanding field.
Collapse
Affiliation(s)
- Erik T Yukl
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, United States
| | | |
Collapse
|
234
|
Kaiser A. Translational control of eIF5A in various diseases. Amino Acids 2012; 42:679-84. [PMID: 21818564 DOI: 10.1007/s00726-011-1042-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
Translational control is a crucial component in the development and progression of different diseases. Translational control may involve selective translation of specific mRNAs, which promote cell proliferation or lead to alterations in translation factor levels and activities. Eukaryotic initiation factor 5A (eIF5A) is the only known protein to contain the unusual amino acid hypusine [N (ε)-(4-amino-2-hydroxybutyl)-lysine], which is formed from the polyamine spermidine by two catalytic steps. eIF5A is involved in translation, elongation and stimulating peptide bond formation. Hypusination of eIF5A is essential for its activity in promoting cell proliferation. Meanwhile, there is evidence that eIF5A is a key protein in the pathogenicity of different diseases, such as diabetes, several human cancers, malaria and HIV-1 infections. Hitherto, the available data suggest that eIF5A has a role of a cell context-dependent function being more proliferative in the case of several human cancers and being involved under stress conditions in diabetes. Secondly, in HIV-1 infections and in diabetes, eIF5A also has a nuclear function by its sequence-specific binding of mRNAs as an mRNA-shuttle in conjunction with nuclear membrane export proteins. This binding may also influence the half-lives of mRNAs or their sequestration. Based on these data, there is a considerable therapeutic interest in eIF5A as a selective target for drug development through inhibition of hypusination.
Collapse
Affiliation(s)
- Annette Kaiser
- Institut für Technische Chemie und Pharmazeutische Chemie, University of Applied Sciences, Cologne, Betzdorfer Str.2, 50679, Cologne, Germany.
| |
Collapse
|
235
|
Nishimura K, Lee SB, Park JH, Park MH. Essential role of eIF5A-1 and deoxyhypusine synthase in mouse embryonic development. Amino Acids 2012; 42:703-10. [PMID: 21850436 PMCID: PMC3220921 DOI: 10.1007/s00726-011-0986-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/10/2011] [Indexed: 10/17/2022]
Abstract
The eukaryotic initiation factor 5A (eIF5A) contains a polyamine-derived amino acid, hypusine [N(ε)-(4-amino-2-hydroxybutyl)lysine]. Hypusine is formed post-translationally by the addition of the 4-aminobutyl moiety from the polyamine spermidine to a specific lysine residue, catalyzed by deoxyhypusine synthase (DHPS), and subsequent hydroxylation by deoxyhypusine hydroxylase (DOHH). The eIF5A precursor protein and both of its modifying enzymes are highly conserved, suggesting a vital cellular function for eIF5A and its hypusine modification. To address the functions of eIF5A and the first modification enzyme, DHPS, in mammalian development, we knocked out the Eif5a or the Dhps gene in mice. Eif5a heterozygous knockout mice and Dhps heterozygous knockout mice were viable and fertile. However, homozygous Eif5a1 (gt/gt) embryos and Dhps (gt/gt) embryos died early in embryonic development, between E3.5 and E7.5. Upon transfer to in vitro culture, homozygous Eif5a (gt/gt) or Dhps (gt/gt) blastocysts at E3.5 showed growth defects when compared to heterozygous or wild type blastocysts. Thus, the knockout of either the eIF5A-1 gene (Eif5a) or of the deoxyhypusine synthase gene (Dhps) caused early embryonic lethality in mice, indicating the essential nature of both eIF5A-1 and deoxyhypusine synthase in mammalian development.
Collapse
Affiliation(s)
| | - Seung Bum Lee
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Bldg 30, Room 211, MD 20892-4340, USA
| | - Jong Hwan Park
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Bldg 30, Room 211, MD 20892-4340, USA
| | - Myung Hee Park
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Bldg 30, Room 211, MD 20892-4340, USA
| |
Collapse
|
236
|
Dias CAO, Gregio APB, Rossi D, Galvão FC, Watanabe TF, Park MH, Valentini SR, Zanelli CF. eIF5A interacts functionally with eEF2. Amino Acids 2012; 42:697-702. [PMID: 21822730 PMCID: PMC3245752 DOI: 10.1007/s00726-011-0985-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/02/2011] [Indexed: 11/27/2022]
Abstract
eIF5A is highly conserved from archaea to mammals, essential for cell viability and the only protein known to contain the essential amino acid residue hypusine, generated by a unique posttranslational modification. eIF5A was originally identified as a translation initiation factor due to its ability to stimulate the formation of the first peptide bond. However, recent studies have shown that depletion of eIF5A causes a significant decrease in polysome run-off and an increase in the ribosome transit time, suggesting that eIF5A is actually involved in the elongation step of protein synthesis. We have previously shown that the depletion mutant tif51A-3 (eIF5A(C39Y/G118D)) shows a sicker phenotype when combined with the dominant negative mutant eft2 ( H699K ) of the elongation factor eEF2. In this study, we used the eIF5A(K56A) mutant to further investigate the relationship between eIF5A and eEF2. The eIF5A(K56A) mutant is temperature sensitive and has a defect in protein synthesis, but instead of causing depletion of the eIF5A protein, this mutant has a defect in hypusine modification. Like the mutant tif51A-3, the eIF5A(K56A) mutant is synthetic sick with the mutant eft2 ( H699K ) of eEF2. High-copy eEF2 not only improves cell growth of the eIF5A(K56A) mutant, but also corrects its increased cell size defect. Moreover, eEF2 suppression of the eIF5A(K56A) mutant is correlated with the improvement of total protein synthesis and with the increased resistance to the protein synthesis inhibitor hygromycin B. Finally, the polysome profile defect of the eIF5A(K56A) mutant is largely corrected by high-copy eEF2. Therefore, these results demonstrate that eIF5A is closely related to eEF2 function during translation elongation.
Collapse
Affiliation(s)
- Camila A. O. Dias
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| | - Ana Paula Borges Gregio
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| | - Danuza Rossi
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| | - Fábio Carrilho Galvão
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| | - Tatiana F. Watanabe
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| | - Myung Hee Park
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Sandro R. Valentini
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| | - Cleslei F. Zanelli
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| |
Collapse
|
237
|
Hyvönen MT, Keinänen TA, Khomutov M, Simonian A, Vepsäläinen J, Park JH, Khomutov AR, Alhonen L, Park MH. Effects of novel C-methylated spermidine analogs on cell growth via hypusination of eukaryotic translation initiation factor 5A. Amino Acids 2012; 42:685-95. [PMID: 21861168 PMCID: PMC3223563 DOI: 10.1007/s00726-011-0984-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/17/2011] [Indexed: 12/13/2022]
Abstract
The polyamines, putrescine, spermidine, and spermine, are ubiquitous multifunctional cations essential for cellular proliferation. One specific function of spermidine in cell growth is its role as a butylamine donor for hypusine synthesis in the eukaryotic initiation factor 5A (eIF5A). Here, we report the ability of novel mono-methylated spermidine analogs (α-MeSpd, β-MeSpd, γ-MeSpd, and ω-MeSpd) to function in the hypusination of eIF5A and in supporting the growth of DFMO-treated DU145 cells. We also tested them as substrates and inhibitors for deoxyhypusine synthase (DHS) in vitro. Of these compounds, α-MeSpd, β-MeSpd, and γ-MeSpd (but not ω-MeSpd) were substrates for DHS in vitro, while they all inhibited the enzyme reaction. As racemic mixtures, only α-MeSpd and β-MeSpd supported long-term growth (9-18 days) of spermidine-depleted DU145 cells, whereas γ-MeSpd and ω-MeSpd did not. The S-enantiomer of α-MeSpd, which supported long-term growth, was a good substrate for DHS in vitro, whereas the R-isomer was not. The long-term growth of DFMO-treated cells correlated with the hypusine modification of eIF5A by intracellular methylated spermidine analogs. These results underscore the critical requirement for hypusine modification in mammalian cell proliferation and provide new insights into the specificity of the deoxyhypusine synthase reaction.
Collapse
Affiliation(s)
- Mervi T. Hyvönen
- A.I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Tuomo A. Keinänen
- Department of Biosciences, Laboratory of Chemistry, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Maxim Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | - Alina Simonian
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | - Jouko Vepsäläinen
- Department of Biosciences, Laboratory of Chemistry, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jong Hwan Park
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex R. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | - Leena Alhonen
- A.I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Myung Hee Park
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
238
|
Implications of the Use of Eukaryotic Translation Initiation Factor 5A (eIF5A) for Prognosis and Treatment of Hepatocellular Carcinoma. Int J Hepatol 2012; 2012:760928. [PMID: 23029619 PMCID: PMC3458302 DOI: 10.1155/2012/760928] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 08/21/2012] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver malignancy and accounts for most of the total liver cancer cases. Lack of treatment options and late diagnosis contribute to high mortality rate of HCC. In eukaryotes, translation of messenger RNA (mRNA) to protein is a key process in protein biosynthesis in which initiation of translation involves interaction of different eukaryotic translation initiation factors (eIFs), ribosome subunits and mRNAs. Eukaryotic translation initiation factor 5A (eIF5A) is one of the eIFs involved in translation initiation and eIF5A2, one of its isoforms, is upregulated in various cancers including HCC as a result of chromosomal instability, where it resides. In HCC, eIF5A2 expression is associated with adverse prognosis such as presence of tumor metastasis and venous infiltration. Based on eIF5A2 functional studies, suppressing eIF5A2 expression by short interfering RNA alleviates the tumorigenic properties of HCC cells in vitro while ectopic expression of eIF5A2 enhances the aggressiveness of HCC cells in vivo and in vitro by inducing epithelial-mesenchymal transition. In conclusion, eIF5A2 is a potential prognostic marker as well as a therapeutic target for HCC.
Collapse
|
239
|
Willert E, Phillips MA. Regulation and function of polyamines in African trypanosomes. Trends Parasitol 2011; 28:66-72. [PMID: 22192816 DOI: 10.1016/j.pt.2011.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 02/03/2023]
Abstract
The polyamine biosynthetic pathway is an important drug target for the treatment of human African trypanosomiasis (HAT), raising interest in understanding polyamine function and their mechanism of regulation. Polyamine levels are tightly controlled in mammalian cells, but similar regulatory mechanisms appear absent in trypanosomes. Instead trypanosomatid S-adenosylmethionine decarboxylase (AdoMetDC), which catalyzes a key step in the biosynthesis of the polyamine spermidine, is activated by dimerization with an inducible protein termed prozyme. Prozyme is an inactive paralog of the active AdoMetDC enzyme that evolved by gene duplication and is found only in the trypanosomatids. In Trypanosoma brucei, AdoMetDC activity appears to be controlled by regulation of prozyme protein levels, potentially at the translational level.
Collapse
Affiliation(s)
- Erin Willert
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | | |
Collapse
|
240
|
Park JH, Johansson HE, Aoki H, Huang BX, Kim HY, Ganoza MC, Park MH. Post-translational modification by β-lysylation is required for activity of Escherichia coli elongation factor P (EF-P). J Biol Chem 2011; 287:2579-90. [PMID: 22128152 DOI: 10.1074/jbc.m111.309633] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial elongation factor P (EF-P) is the ortholog of archaeal and eukaryotic initiation factor 5A (eIF5A). EF-P shares sequence homology and crystal structure with eIF5A, but unlike eIF5A, EF-P does not undergo hypusine modification. Recently, two bacterial genes, yjeA and yjeK, encoding truncated homologs of class II lysyl-tRNA synthetase and of lysine-2,3-aminomutase, respectively, have been implicated in the modification of EF-P to convert a specific lysine to a hypothetical β-lysyl-lysine. Here we present biochemical evidence for β-lysyl-lysine modification in Escherichia coli EF-P and for its role in EF-P activity by characterizing native and recombinant EF-P proteins for their modification status and activity in vitro. Mass spectrometric analyses confirmed the lysyl modification at lysine 34 in native and recombinant EF-P proteins. The β-lysyl-lysine isopeptide was identified in the exhaustive Pronase digests of native EF-P and recombinant EF-P isolated from E. coli coexpressing EF-P, YjeA, and YjeK but not in the digests of proteins derived from the vectors encoding EF-P alone or EF-P together with YjeA, indicating that both enzymes, YjeA and YjeK, are required for β-lysylation of EF-P. Endogenous EF-P as well as the recombinant EF-P preparation containing β-lysyl-EF-P stimulated N-formyl-methionyl-puromycin synthesis ∼4-fold over the preparations containing unmodified EF-P and/or α-lysyl-EF-P. The mutant lacking the modification site lysine (K34A) was inactive. This is the first report of biochemical evidence for the β-lysylation of EF-P in vivo and the requirement for this modification for the activity of EF-P.
Collapse
Affiliation(s)
- Jong-Hwan Park
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
241
|
Role of polyamines, their analogs and transglutaminases in biological and clinical perspectives. Amino Acids 2011; 42:397-409. [DOI: 10.1007/s00726-011-1129-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 09/26/2011] [Indexed: 01/07/2023]
|
242
|
Abstract
Elongation factor P (EF-P) is posttranslationally modified at a conserved lysyl residue by the coordinated action of two enzymes, PoxA and YjeK. We have previously established the importance of this modification in Salmonella stress resistance. Here we report that, like poxA and yjeK mutants, Salmonella strains lacking EF-P display increased susceptibility to hypoosmotic conditions, antibiotics, and detergents and enhanced resistance to the compound S-nitrosoglutathione. The susceptibility phenotypes are largely explained by the enhanced membrane permeability of the efp mutant, which exhibits increased uptake of the hydrophobic dye 1-N-phenylnaphthylamine (NPN). Analysis of the membrane proteomes of wild-type and efp mutant Salmonella strains reveals few changes, including the prominent overexpression of a single porin, KdgM, in the efp mutant outer membrane. Removal of KdgM in the efp mutant background ameliorates the detergent, antibiotic, and osmosensitivity phenotypes and restores wild-type permeability to NPN. Our data support a role for EF-P in the translational regulation of a limited number of proteins that, when perturbed, renders the cell susceptible to stress by the adventitious overexpression of an outer membrane porin.
Collapse
|
243
|
Šečkutė J, McCloskey DE, Thomas HJ, Secrist JA, Pegg AE, Ealick SE. Binding and inhibition of human spermidine synthase by decarboxylated S-adenosylhomocysteine. Protein Sci 2011; 20:1836-44. [PMID: 21898642 PMCID: PMC3267948 DOI: 10.1002/pro.717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 01/07/2023]
Abstract
Aminopropyltransferases are essential enzymes that form polyamines in eukaryotic and most prokaryotic cells. Spermidine synthase (SpdS) is one of the most well-studied enzymes in this biosynthetic pathway. The enzyme uses decarboxylated S-adenosylmethionine and a short-chain polyamine (putrescine) to make a medium-chain polyamine (spermidine) and 5'-deoxy-5'-methylthioadenosine as a byproduct. Here, we report a new spermidine synthase inhibitor, decarboxylated S-adenosylhomocysteine (dcSAH). The inhibitor was synthesized, and dose-dependent inhibition of human, Thermatoga maritima, and Plasmodium falciparum spermidine synthases, as well as functionally homologous human spermine synthase, was determined. The human SpdS/dcSAH complex structure was determined by X-ray crystallography at 2.0 Å resolution and showed consistent active site positioning and coordination with previously known structures. Isothermal calorimetry binding assays confirmed inhibitor binding to human SpdS with K(d) of 1.1 ± 0.3 μM in the absence of putrescine and 3.2 ± 0.1 μM in the presence of putrescine. These results indicate a potential for further inhibitor development based on the dcSAH scaffold.
Collapse
Affiliation(s)
- Jolita Šečkutė
- Department of Chemistry and Chemical Biology, Cornell UniversityIthaca, New York 14853
| | - Diane E McCloskey
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of MedicineHershey, Pennsylvania 17033,Department of Pharmacology, Milton S. Hershey Medical Center, Pennsylvania State University College of MedicineHershey, Pennsylvania 17033
| | | | | | - Anthony E Pegg
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of MedicineHershey, Pennsylvania 17033,Department of Pharmacology, Milton S. Hershey Medical Center, Pennsylvania State University College of MedicineHershey, Pennsylvania 17033
| | - Steven E Ealick
- Department of Chemistry and Chemical Biology, Cornell UniversityIthaca, New York 14853,*Correspondence to: Steven E. Ealick, 120 Baker Lab, Cornell University, Ithaca, NY 14853-1301. E-mail:
| |
Collapse
|
244
|
Abstract
The polyamines are ubiquitous polycationic compounds. Over the past 40 yr, investigation has shown that some of these, namely spermine, spermidine, and putrescine, are essential to male and female reproductive processes and to embryo/fetal development. Indeed, their absence is characterized by infertility and arrest in embryogenesis. Mammals synthesize polyamines de novo from amino acids or import these compounds from the diet. Information collected recently has shown that polyamines are essential regulators of cell growth and gene expression, and they have been implicated in both mitosis and meiosis. In male reproduction, polyamine expression correlates with stages of spermatogenesis, and polyamines appear to function in promoting sperm motility. There is evidence for polyamine involvement in ovarian follicle development and ovulation in female mammals, and polyamine synthesis is required for steroidogenesis in the ovary. Studies of the embryo indicate a polyamine requirement that can be met from maternal sources before implantation, whereas elimination of polyamine synthesis abrogates embryo development at gastrulation. Polyamines play roles in embryo implantation, in decidualization, and in placental formation and function, and polyamine privation during gestation results in intrauterine growth retardation. Emerging information implicates dietary arginine and dietary polyamines as nutritional regulators of fertility. The mechanisms by which polyamines regulate these multiple and diverse processes are not yet well explored; thus, there is fertile ground for further productive investigation.
Collapse
Affiliation(s)
- Pavine L C Lefèvre
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Canada QC J2S 2M2
| | | | | |
Collapse
|
245
|
Roy H, Zou SB, Bullwinkle TJ, Wolfe BS, Gilreath MS, Forsyth CJ, Navarre WW, Ibba M. The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-β-lysine. Nat Chem Biol 2011; 7:667-9. [PMID: 21841797 PMCID: PMC3177975 DOI: 10.1038/nchembio.632] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/17/2011] [Indexed: 11/09/2022]
Abstract
The lysyl-tRNA synthetase paralog PoxA modifies elongation factor P (EF-P) with α-lysine at low efficiency. Cell-free extracts contained non-α-lysine substrates of PoxA that modified EF-P by a change in mass consistent with β–lysine, a substrate also predicted by genomic analyses. EF-P was efficiently, functionally, modified with (R)-β-lysine but not (S)-β-lysine or genetically encoded α-amino acids, indicating that PoxA has evolved an activity orthogonal to that of the canonical aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- Hervé Roy
- Department of Microbiology, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Cerrada-Gimenez M, Häkkinen MR, Vepsäläinen J, Auriola S, Alhonen L, Keinänen TA. Polyamine flux analysis by determination of heavy isotope incorporation from 13C, 15N-enriched amino acids into polyamines by LC–MS/MS. Amino Acids 2011; 42:451-60. [DOI: 10.1007/s00726-011-1024-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 05/24/2011] [Indexed: 11/29/2022]
|
247
|
Shi C, Welsh PA, Sass-Kuhn S, Wang X, McCloskey DE, Pegg AE, Feith DJ. Characterization of transgenic mice with overexpression of spermidine synthase. Amino Acids 2011; 42:495-505. [PMID: 21809077 DOI: 10.1007/s00726-011-1028-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/26/2011] [Indexed: 12/23/2022]
Abstract
A composite cytomegalovirus-immediate early gene enhancer/chicken β-actin promoter (CAG) was utilized to generate transgenic mice that overexpress human spermidine synthase (SpdS) to determine the impact of elevated spermidine synthase activity on murine development and physiology. CAG-SpdS mice were viable and fertile and tissue SpdS activity was increased up to ninefold. This increased SpdS activity did not result in a dramatic elevation of spermidine or spermine levels but did lead to a 1.5- to 2-fold reduction in tissue spermine:spermidine ratio in heart, muscle and liver tissues with the highest levels of SpdS activity. This new mouse model enabled simultaneous overexpression of SpdS and other polyamine biosynthetic enzymes by combining transgenic animals. The combined overexpression of both SpdS and spermine synthase (SpmS) in CAG-SpdS/CAG-SpmS bitransgenic mice did not impair viability or lead to overt developmental abnormalities but instead normalized the elevated tissue spermine:spermidine ratios of CAG-SpmS mice. The CAG-SpdS mice were bred to MHC-AdoMetDC mice with a >100-fold increase in cardiac S-adenosylmethionine decarboxylase (AdoMetDC) activity to determine if elevated dcAdoMet would facilitate greater spermidine accumulation in mice with SpdS overexpression. CAG-SpdS/MHC-AdoMetDC bitransgenic animals were produced at the expected frequency and exhibited cardiac polyamine levels comparable to MHC-AdoMetDC littermates. Taken together these results indicate that SpdS levels are not rate limiting in vivo for polyamine biosynthesis and are unlikely to exert significant regulatory effects on cellular polyamine content and function.
Collapse
Affiliation(s)
- Chenxu Shi
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, PO Box 850, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | | | | | | | |
Collapse
|
248
|
Abstract
Covalent modifications of proteins often modulate their biological functions or change their subcellular location. Among the many known protein modifications, three are exceptional in that they only occur on single proteins: ethanolamine phosphoglycerol, diphthamide and hypusine. Remarkably, the corresponding proteins carrying these modifications, elongation factor 1A, elongation factor 2 and initiation factor 5A, are all involved in elongation steps of translation. For diphthamide and, in part, hypusine, functional essentiality has been demonstrated, whereas no functional role has been reported so far for ethanolamine phosphoglycerol. We review the biosynthesis, attachment and physiological roles of these unique protein modifications and discuss common and separate features of the target proteins, which represent essential proteins in all organisms.
Collapse
Affiliation(s)
- Eva Greganova
- Institute for Biochemistry and Molecular Medicine, University of Berne, Berne, Switzerland
| | | | | |
Collapse
|
249
|
Templin AT, Maier B, Nishiki Y, Tersey SA, Mirmira RG. Deoxyhypusine synthase haploinsufficiency attenuates acute cytokine signaling. Cell Cycle 2011; 10:1043-9. [PMID: 21389784 PMCID: PMC3100881 DOI: 10.4161/cc.10.7.15206] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 11/19/2022] Open
Abstract
Deoxyhypusine synthase (DHS) catalyzes the post-translational formation of the amino acid hypusine. Hypusine is unique to the eukaryotic translational initiation factor 5A (eIF5A), and is required for its functions in mRNA shuttling, translational elongation, and stress granule formation. In recent studies, we showed that DHS promotes cytokine and ER stress signaling in the islet β cell and thereby contributes to its dysfunction in the setting of diabetes mellitus. Here, we review the evidence supporting a role for DHS (and hypusinated eIF5A) in cellular stress responses, and provide new data on the phenotype of DHS knockout mice. We show that homozygous knockout mice are embryonic lethal, but heterozygous knockout mice appear normal with no evidence of growth or metabolic deficiencies. Mouse embryonic fibroblasts from heterozygous knockout mice attenuate acute cytokine signaling, as evidenced by reduced production of inducible nitric oxide synthase, but show no statistically significant defects in proliferation or cell cycle progression. Our data are discussed with respect to the utility of sub-maximal inhibition of DHS in the setting of inflammatory states, such as diabetes mellitus.
Collapse
Affiliation(s)
- Andrew T Templin
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN USA
| | | | | | | | | |
Collapse
|
250
|
Zou SB, Roy H, Ibba M, Navarre WW. Elongation factor P mediates a novel post-transcriptional regulatory pathway critical for bacterial virulence. Virulence 2011; 2:147-51. [PMID: 21317554 DOI: 10.4161/viru.2.2.15039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bacterial pathogens detect and integrate multiple environmental signals to coordinate appropriate changes in gene expression including the selective expression of virulence factors, changes to metabolism and the activation of stress response systems. Mutations that abolish the ability of the pathogen to respond to external cues are typically attenuating. Here we discuss our recent discovery of a novel post-transcriptional regulatory pathway critical for Salmonella virulence and stress resistance. The enzymes PoxA and YjeK coordinately attach a unique beta-amino acid onto a highly conserved lysine residue in the translation factor elongation factor P (EF-P). Strains in which EF-P is unmodified due to the absence of PoxA or YjeK are attenuated for virulence and display highly pleiotropic phenotypes, including hypersusceptibility to a wide range of unrelated antimicrobial compounds. Work from our laboratory and others now suggests that EF-P, previously thought to be essential, instead plays an ancillary role in translation by regulating the synthesis of a relatively limited subset of proteins. Other observations suggest that the eukaryotic homolog of EF-P, eIF5A, may illicit similar changes in the translation machinery during stress adaptation, indicating that the role of these factors in physiology may be broadly conserved.
Collapse
Affiliation(s)
- S Betty Zou
- Department of Molecular Genetics, University of Toronto, ON, Canada
| | | | | | | |
Collapse
|