201
|
Liao R, Wang M, Han D, Huang Z, Zeng Y. High-temporal-resolution, full-field optical angiography based on short-time modulation depth for vascular occlusion tests. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:86002. [PMID: 27490222 DOI: 10.1117/1.jbo.21.8.086002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
We developed high-temporal-resolution, full-field optical angiography for use in vascular occlusion tests (VOTs). In the proposed method, undersampled signals are acquired by a high-speed digital camera that separates the dynamic and static speckle signals. The two types of speckle signal are used to calculate the short-time modulation depth (STMD) of each of the camera pixels. STMD is then used to realize high-temporal-resolution, full-field optical angiography. Phantom and biological experiments conducted and demonstrated the feasibility of using our proposed method to perform VOTs and to study the reaction kinetics in microfluidic systems.
Collapse
Affiliation(s)
- Riwei Liao
- Foshan University, Department of Photoelectric Technology, Foshan 528000, ChinabSouth China Normal University, School of Physics and Telecommunication, Guangzhou 510006, China
| | - Mingyi Wang
- Foshan University, Department of Photoelectric Technology, Foshan 528000, China
| | - Dingan Han
- Foshan University, Department of Photoelectric Technology, Foshan 528000, China
| | - Zuohua Huang
- South China Normal University, School of Physics and Telecommunication, Guangzhou 510006, China
| | - Yaguang Zeng
- Foshan University, Department of Photoelectric Technology, Foshan 528000, China
| |
Collapse
|
202
|
Tang Y, Li S, Li S, Yang X, Qin Y, Zhang Y, Liu C. Screening and isolation of potential lactate dehydrogenase inhibitors from five Chinese medicinal herbs: Soybean, Radix pueraria, Flos pueraria, Rhizoma belamcandae, and Radix astragali. J Sep Sci 2016; 39:2043-9. [PMID: 27059876 DOI: 10.1002/jssc.201600050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 12/21/2022]
Abstract
Stroke is among the leading causes of death and severe disability worldwide. Flavonoids have been extensively used in the treatment of ischemic stroke by reducing lactate dehydrogenase levels and thereby enhancing blood perfusion to the ischemic region. Here, we used ultrafiltration high-performance liquid chromatography coupled with diode array detection and mass spectrometry for the rapid screening and identification of flavonoids from five Chinese medicinal herbs: soybean, Radix pueraria, Flos pueraria, Rhizoma belamcandae, and Radix astragali. Using PC12 cells as a suitable in vitro model of toxicity, cell viability was quantitated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results showed that the extracts of soybean and the six major components, namely, acetyldaidzin, malonylgenistin, daidiain, glycitin, genistin, and acetylcitin; the extract of R. pueraria and its main component daidzein; the extract of F. pueraria and its three major components, tectorigenin, tectoridin, and tectorigenin-7-O-xylosylglucosid; and the extract of R. belamcandae and its main component, tectoridin, were strong lactate dehydrogenase inhibitors. Also, the components of R. astragali showed no bioactivity. These findings indicate that the ultrafltration high-performance liquid chromatography coupled with diode array detection and mass spectrometry method could be utilized in rapid screening and separation of bioactive compounds from a complex matrix.
Collapse
Affiliation(s)
- Ying Tang
- Central Laboratory, Changchun Normal University, Erdao District, Changchun, Jilin, China
| | - Senlin Li
- Central Laboratory, Changchun Normal University, Erdao District, Changchun, Jilin, China
| | - Sainan Li
- Central Laboratory, Changchun Normal University, Erdao District, Changchun, Jilin, China
| | - Xiaojing Yang
- Central Laboratory, Changchun Normal University, Erdao District, Changchun, Jilin, China
| | - Yao Qin
- Central Laboratory, Changchun Normal University, Erdao District, Changchun, Jilin, China
| | - Yuchi Zhang
- Central Laboratory, Changchun Normal University, Erdao District, Changchun, Jilin, China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, Erdao District, Changchun, Jilin, China
| |
Collapse
|
203
|
KEILHOFF GERBURG, LUCAS BENJAMIN, UHDE KATJA, FANSA HISHAM. Selected gene profiles of stressed NSC-34 cells and rat spinal cord following peripheral nerve reconstruction and minocycline treatment. Exp Ther Med 2016; 11:1685-1699. [PMID: 27168790 PMCID: PMC4840837 DOI: 10.3892/etm.2016.3130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022] Open
Abstract
The present study was conducted to investigate the effects of minocycline on the expression of selected transcriptional and translational profiles in the rat spinal cord following sciatic nerve (SNR) transection and microsurgical coaptation. The mRNA and protein expression levels of B cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3, major histocompatibility complex I (MHC I), tumor necrosis factor-α (TNF-α), activating transcription factor 3 (ATF3), vascular endothelial growth factor (VEGF), matrix metalloproteinase 9 (MMP9), and growth associated protein-43 (GAP-43) were monitored in the rat lumbar spinal cord following microsurgical reconstruction of the sciatic nerves and minocycline treatment. The present study used semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. As a PCR analysis of spinal cord tissue enabled the examination of the expression patterns of all cell types including glia, the motorneuron-like NSC-34 cell line was used to investigate expression level changes in motorneurons. As stressors, oxygen glucose deprivation (OGD) and lipopolysaccharide (LPS) treatment were performed. SNR did not induce significant degeneration of ventral horn motorneurons, whereas microglia activation and synaptic terminal retraction were detectable. All genes were constitutively expressed at the mRNA and protein levels in untreated spinal cord and control cells. SNR significantly increased the mRNA expression levels of all genes, albeit only temporarily. In all genes except MMP9 and GAP-43, the induction was seen ipsilaterally and contralaterally. The effects of minocycline were moderate. The expression levels of MMP9, TNF-α, MHC I, VEGF, and GAP-43 were reduced, whereas those of Bax and Bcl-2 were unaffected. OGD, but not LPS, was toxic for NSC-34 cells. No changes in the expression levels of Bax, caspase-3, MHC I or ATF3 were observed. These results indicated that motorneurons were not preferentially or solely responsible for SNR-mediated upregulation of these genes. MMP9, TNF-α, VEGF and Bcl-2 were stress-activated. These results suggest that a substantial participation of motorneurons in gene expression levels in vivo. Minocycline was also shown to have inhibitory effects. The nuclear factor-κB signalling pathway may be a possible target of minocycline.
Collapse
Affiliation(s)
- GERBURG KEILHOFF
- Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - BENJAMIN LUCAS
- Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
- Department of Trauma Surgery, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - KATJA UHDE
- Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - HISHAM FANSA
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Klinikum Bielefeld, Bielefeld D-33604, Germany
| |
Collapse
|
204
|
β-Dystroglycan cleavage by matrix metalloproteinase-2/-9 disturbs aquaporin-4 polarization and influences brain edema in acute cerebral ischemia. Neuroscience 2016; 326:141-157. [PMID: 27038751 DOI: 10.1016/j.neuroscience.2016.03.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 03/19/2016] [Accepted: 03/23/2016] [Indexed: 01/31/2023]
Abstract
Dystroglycan (DG) is widely expressed in various tissues, and throughout the cerebral microvasculature. It consists of two subunits, α-DG and β-DG, and the cleavage of the latter by matrix metalloproteinase (MMP)-2 and -9 underlies a number of physiological and pathological processes. However, the involvement of MMP-2/-9-mediated β-DG cleavage in cerebral ischemia remains uncertain. In astrocytes, DG is crucial for maintaining the polarization of aquaporin-4 (AQP4), which plays a role in the regulation of cytotoxic and vasogenic edema. The present study aimed to explore the effects of MMP-2/-9-mediated β-DG cleavage on AQP4 polarization and brain edema in acute cerebral ischemia. A model of cerebral ischemia was established via permanent middle cerebral artery occlusion (pMCAO) in male C57BL/6 mice. Western blotting, real-time polymerase chain reaction (PCR), immunohistochemical staining, immunofluorescent staining, electron microscopy, and light microscopy were used. Captopril was applied as a selective MMP-2/-9 inhibitor. Recombinant mouse MMP (rmMMP)-2 and -9 were used in an in vitro cleavage experiment. The present study demonstrated evidence of β-DG cleavage by MMP-2/-9 in pMCAO mouse brains; this cleavage was implicated in AQP4 redistribution and brain edema in cerebral ischemia. In addition, captopril exacerbated cytotoxic edema and ameliorated vasogenic edema at 24h after pMCAO, and alleviated brain edema and neurological deficit at 48h and 72h. In conclusion, this study provides novel insight into the effects of MMP-2/-9-mediated β-DG cleavage in acute cerebral ischemia. Such findings might facilitate the development of a therapeutic strategy for the optimization of MMP-2/-9 targeted treatment in cerebral ischemia.
Collapse
|
205
|
Vafadari B, Salamian A, Kaczmarek L. MMP-9 in translation: from molecule to brain physiology, pathology, and therapy. J Neurochem 2016; 139 Suppl 2:91-114. [PMID: 26525923 DOI: 10.1111/jnc.13415] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/13/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) is a member of the metzincin family of mostly extracellularly operating proteases. Despite the fact that all of these enzymes might be target promiscuous, with largely overlapping catalogs of potential substrates, MMP-9 has recently emerged as a major and apparently unique player in brain physiology and pathology. The specificity of MMP-9 may arise from its very local and time-restricted actions, even when released in the brain from cells of various types, including neurons, glia, and leukocytes. In fact, the quantity of MMP-9 is very low in the naive brain, but it is markedly activated at the levels of enzymatic activity, protein abundance, and gene expression following various physiological stimuli and pathological insults. Neuronal MMP-9 participates in synaptic plasticity by controlling the shape of dendritic spines and function of excitatory synapses, thus playing a pivotal role in learning, memory, and cortical plasticity. When improperly unleashed, MMP-9 contributes to a large variety of brain disorders, including epilepsy, schizophrenia, autism spectrum disorder, brain injury, stroke, neurodegeneration, pain, brain tumors, etc. The foremost mechanism of action of MMP-9 in brain disorders appears to be its involvement in immune/inflammation responses that are related to the enzyme's ability to process and activate various cytokines and chemokines, as well as its contribution to blood-brain barrier disruption, facilitating the extravasation of leukocytes into brain parenchyma. However, another emerging possibility (i.e., the control of MMP-9 over synaptic plasticity) should not be neglected. The translational potential of MMP-9 has already been recognized in both the diagnosis and treatment domains. The most striking translational aspect may be the discovery of MMP-9 up-regulation in a mouse model of Fragile X syndrome, quickly followed by human studies and promising clinical trials that have sought to inhibit MMP-9. With regard to diagnosis, suggestions have been made to use MMP-9 alone or combined with tissue inhibitor of matrix metalloproteinase-1 or brain-derived neurotrophic factor as disease biomarkers. MMP-9, through cleavage of specific target proteins, plays a major role in synaptic plasticity and neuroinflammation, and by those virtues contributes to brain physiology and a host of neurological and psychiatric disorders. This article is part of the 60th Anniversary special issue.
Collapse
|
206
|
Chen ZZ, Yang DD, Zhao Z, Yan H, Ji J, Sun XL. Memantine mediates neuroprotection via regulating neurovascular unit in a mouse model of focal cerebral ischemia. Life Sci 2016; 150:8-14. [PMID: 26920629 DOI: 10.1016/j.lfs.2016.02.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 01/15/2023]
Abstract
AIMS Memantine is a low-moderate affinity and uncompetitive N-methyl-d-aspartate receptor (NMDAR) antagonist, which is also a potential neuroprotectant in acute ischemic stroke for its particular action profiles. The present study was to reveal the mechanisms involved in the neuroprotection of memantine. MAIN METHODS We used a mouse model of permanent focal cerebral ischemia via middle cerebral artery occlusion to verify our hypothesis. 2,3,5-Triphenyltetrazolium chloride staining was used to compare infarct size. The amount of astrocytes and the somal volume of the microglia cell body were analyzed by immunohistochemistry and stereological estimates. Western blotting was used to determine the protein expressions. KEY FINDINGS Memantine prevented cerebral ischemia-induced brain infarct and neuronal injury, and reduced oxygen-glucose deprivation-induced cortical neuronal apoptosis. Moreover, memantine reduced the amount of the damaged astrocytes and over activated microglia after 24h of ischemia. In the early phase of ischemia, higher production of MMP-9 was observed, and thereby collagen IV was dramatically disrupted. Meanwhile, the post-synaptic density protein 95(PSD-95) was also severely cleavaged. Memantine decreased MMP-9 secretion, prevented the degradation of collagen IV in mouse brain. PSD-95 cleavage was also inhibited by memantine. SIGNIFICANCE These results suggested that memantine exerted neuroprotection effects in acute ischemic brain damage, partially via improving the functions of neurovascular unit. Taking all these findings together, we consider that memantine might be a promising protective agent against ischemic stroke.
Collapse
Affiliation(s)
- Zheng-Zhen Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Dan-Dan Yang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Zhan Zhao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Hui Yan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Juan Ji
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Xiu-Lan Sun
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China.
| |
Collapse
|
207
|
Chen H, Guan B, Shen J. Targeting ONOO -/HMGB1/MMP-9 Signaling Cascades: Potential for Drug Development from Chinese Medicine to Attenuate Ischemic Brain Injury and Hemorrhagic Transformation Induced by Thrombolytic Treatment. ACTA ACUST UNITED AC 2016. [DOI: 10.1159/000442468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
208
|
Kuo P, Scofield BA, Yu I, Chang F, Ganea D, Yen J. Interferon-β Modulates Inflammatory Response in Cerebral Ischemia. J Am Heart Assoc 2016; 5:e002610. [PMID: 26747000 PMCID: PMC4859377 DOI: 10.1161/jaha.115.002610] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/04/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND Stroke is a leading cause of death in the world. In >80% of strokes, the initial acute phase of ischemic injury is due to the occlusion of a blood vessel resulting in severe focal hypoperfusion, excitotoxicity, and oxidative damage. Interferon-β (IFNβ), a cytokine with immunomodulatory properties, was approved by the US Food and Drug Administration for the treatment of relapsing-remitting multiple sclerosis for more than a decade. Its anti-inflammatory properties and well-characterized safety profile suggest that IFNβ has therapeutic potential for the treatment of ischemic stroke. METHODS AND RESULTS We investigated the therapeutic effect of IFNβ in the mouse model of transient middle cerebral artery occlusion/reperfusion. We found that IFNβ not only reduced infarct size in ischemic brains but also lessened neurological deficits in ischemic stroke animals. Further, multiple molecular mechanisms by which IFNβ modulates ischemic brain inflammation were identified. IFNβ reduced central nervous system infiltration of monocytes/macrophages, neutrophils, CD4(+) T cells, and γδ T cells; inhibited the production of inflammatory mediators; suppressed the expression of adhesion molecules on brain endothelial cells; and repressed microglia activation in the ischemic brain. CONCLUSIONS Our results demonstrate that IFNβ exerts a protective effect against ischemic stroke through its anti-inflammatory properties and suggest that IFNβ is a potential therapeutic agent, targeting the reperfusion damage subsequent to the treatment with tissue plasminogen activator.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Brain/drug effects
- Brain/immunology
- Brain/metabolism
- Brain/pathology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Adhesion Molecules/metabolism
- Cell Line
- Chemotaxis, Leukocyte/drug effects
- Disease Models, Animal
- Endothelial Cells/drug effects
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Infarction, Middle Cerebral Artery/immunology
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/prevention & control
- Inflammation Mediators/metabolism
- Interferon-beta/pharmacology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia/drug effects
- Microglia/immunology
- Microglia/metabolism
- Neuroprotective Agents/pharmacology
- Neutrophil Infiltration/drug effects
- Neutrophils/drug effects
- Neutrophils/immunology
- Neutrophils/metabolism
- Receptor, Interferon alpha-beta/deficiency
- Receptor, Interferon alpha-beta/genetics
Collapse
Affiliation(s)
- Ping‐Chang Kuo
- Department of Microbiology and ImmunologyIndiana University School of MedicineFort WayneIN
| | - Barbara A. Scofield
- Department of Microbiology and ImmunologyIndiana University School of MedicineFort WayneIN
| | - I‐Chen Yu
- Department of Anatomy and Cell BiologyIndiana University School of MedicineFort WayneIN
| | - Fen‐Lei Chang
- Department of NeurologyIndiana University School of MedicineFort WayneIN
| | - Doina Ganea
- Department of Microbiology and ImmunologyTemple University School of MedicinePhiladelphiaPA
| | - Jui‐Hung Yen
- Department of Microbiology and ImmunologyIndiana University School of MedicineFort WayneIN
| |
Collapse
|
209
|
Pielecka-Fortuna J, Kalogeraki E, Fortuna MG, Löwel S. Optimal level activity of matrix metalloproteinases is critical for adult visual plasticity in the healthy and stroke-affected brain. eLife 2015; 5:e11290. [PMID: 26609811 PMCID: PMC4718812 DOI: 10.7554/elife.11290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/25/2015] [Indexed: 12/14/2022] Open
Abstract
The ability of the adult brain to undergo plastic changes is of particular interest in medicine, especially regarding recovery from injuries or improving learning and cognition. Matrix metalloproteinases (MMPs) have been associated with juvenile experience-dependent primary visual cortex (V1) plasticity, yet little is known about their role in this process in the adult V1. Activation of MMPs is a crucial step facilitating structural changes in a healthy brain; however, upon brain injury, upregulated MMPs promote the spread of a lesion and impair recovery. To clarify these seemingly opposing outcomes of MMP-activation, we examined the effects of MMP-inhibition on experience-induced plasticity in healthy and stoke-affected adult mice. In healthy animals, 7-day application of MMP-inhibitor prevented visual plasticity. Additionally, treatment with MMP-inhibitor once but not twice following stroke rescued plasticity, normally lost under these conditions. Our data imply that an optimal level of MMP-activity is crucial for adult visual plasticity to occur. DOI:http://dx.doi.org/10.7554/eLife.11290.001 When part of the brain becomes damaged as a result of injury or disease – for example, a stroke – other brain regions can sometimes take over from the damaged part. This is one example of a phenomenon called brain plasticity. The strengthening and weakening of connections between neurons that underlies learning and memory is another, less extreme, example of plasticity. While the brain is most plastic during childhood, it remains malleable to some degree throughout life. The brain’s visual system in particular shows robust and predictable plasticity, and so is often used by neuroscientists to study mechanisms behind plasticity. In young rodents, taping one eye shut for a few days causes inputs from that eye to visual areas of the brain to become weaker. Inputs from the open eye meanwhile become stronger, leading to improved vision in the open eye. Such plasticity also occurs in adult rodents, but the eye must be closed for longer to produce an effect. In young animals, this plasticity depends, in part, on enzymes called matrix metalloproteinases (MMPs). These help to regulate a network of proteins called the extracellular matrix, which provides structural support for cells. Pielecka-Fortuna et al. now provide the first evidence that MMP enzymes also contribute to visual plasticity in adult animals. Blocking the activity of MMPs prevented reorganisation of visual areas of the brains of adult mice in response to eye closure, and prevented vision improvements in the open eye. However, blocking MMP in adult mice whose brains had been damaged by a stroke had the opposite effect. Whereas stroke normally prevents visual system plasticity in response to eye closure, treatment with a single dose of MMP blocker rescued this plasticity. Strikingly, these benefits were lost if the mice were given two doses of MMP blocker, rather than one. These experiments show that MMP levels must be within a narrow range to support plasticity. In the healthy adult brain, blocking MMPs impairs plasticity. After stroke, MMP levels are increased and reducing them rescues plasticity. The next challenge is to identify the specific MMP enzymes responsible, and to determine whether these changes can be exploited to improve recovery from stroke. DOI:http://dx.doi.org/10.7554/eLife.11290.002
Collapse
Affiliation(s)
- Justyna Pielecka-Fortuna
- Department of Systems Neuroscience, Bernstein Focus Neurotechnology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Evgenia Kalogeraki
- Department of Systems Neuroscience, Bernstein Focus Neurotechnology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Michal G Fortuna
- Institute for Neurophysiology and Cellular Biophysics, University Medical Center, Göttingen, Germany.,German Primate Center, Göttingen, Germany
| | - Siegrid Löwel
- Department of Systems Neuroscience, Bernstein Focus Neurotechnology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
210
|
Hill JW, Nemoto EM. Matrix-derived inflammatory mediator N-acetyl proline-glycine-proline is neurotoxic and upregulated in brain after ischemic stroke. J Neuroinflammation 2015; 12:214. [PMID: 26588897 PMCID: PMC4654865 DOI: 10.1186/s12974-015-0428-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/06/2015] [Indexed: 12/03/2022] Open
Abstract
Background N-acetyl proline-glycine-proline (ac-PGP) is a matrix-derived chemokine produced through the proteolytic destruction of collagen by matrix metalloproteinases (MMPs). While upregulation and activation of MMPs and concomitant degradation of the extracellular matrix are known to be associated with neurological injury in ischemic stroke, the production of ac-PGP in stroke brain and its effects on neurons have not been investigated. Findings We examined the effects of ac-PGP on primary cortical neurons and found that it binds neuronal CXCR2 receptors, activates extracellular signal-regulated kinase 1/2 (ERK1/2), and induces apoptosis associated with caspase-3 cleavage in a dose-dependent manner. After transient ischemic stroke in rats, ac-PGP was significantly upregulated in infarcted brain tissue. Conclusions The production of ac-PGP in brain in ischemia/reperfusion injury and its propensity to induce apoptosis in neurons may link MMP-mediated destruction of the extracellular matrix and opening of the blood-brain barrier to progressive neurodegeneration associated with the initiation and propagation of inflammation. Ac-PGP may be a novel neurotoxic inflammatory mediator involved in sustained inflammation and neurodegeneration in stroke and other neurological disorders associated with activation of MMPs.
Collapse
Affiliation(s)
- Jeff W Hill
- Department of Neurosurgery, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| | - Edwin M Nemoto
- Department of Neurosurgery, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
211
|
Role of P38 MAPK on MMP Activity in Photothrombotic Stroke Mice as Measured using an Ultrafast MMP Activatable Probe. Sci Rep 2015; 5:16951. [PMID: 26581247 PMCID: PMC4652271 DOI: 10.1038/srep16951] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/22/2015] [Indexed: 12/24/2022] Open
Abstract
Matrix metalloproteinases (MMPs) exert a dual effect in ischemic stroke and thus represent an ideal target for detection and therapy. However, to date, all clinical trials of MMP inhibitors have failed, and alternative drug candidates and therapeutic targets are urgently required. Nonetheless, further investigations are limited by the lack of non-invasive imaging techniques. Here, we report a novel, fast and ultrasensitive MMP activatable optical imaging probe for the dynamic visualization of MMP activity in photothrombotic stroke mice. This probe provides a significant signal enhancement in as little as 15 min, with the highest signal intensity occurring at 1 h post-injection, and shows high sensitivity in measuring MMP activity alterations, which makes it specifically suitable for the real-time visualization of MMP activity and drug discovery in preclinical research. Moreover, using this probe, we successfully demonstrate that the regulation of the p38 mitogen-activated protein kinase (MAPK) signal pathway is capable of modulating MMP activity after stroke, revealing a novel regulatory mechanism of postischemic brain damage and overcoming the limitations of traditional therapeutic strategies associated with MMP inhibitors by using a non-invasive molecular imaging method.
Collapse
|
212
|
Ren C, Li N, Wang B, Yang Y, Gao J, Li S, Ding Y, Jin K, Ji X. Limb Ischemic Perconditioning Attenuates Blood-Brain Barrier Disruption by Inhibiting Activity of MMP-9 and Occludin Degradation after Focal Cerebral Ischemia. Aging Dis 2015; 6:406-17. [PMID: 26618042 DOI: 10.14336/ad.2015.0812] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/12/2015] [Indexed: 11/01/2022] Open
Abstract
Remote ischemic perconditioning (PerC) has been proved to have neuroprotective effects on cerebral ischemia, however, the effect of PerC on the BBB disruption and underlying mechanisms remains largely unknown. To address these issues, total 90 adult male Sprague Dawley (SD) rats were used. The rats underwent 90-min middle cerebral artery occlusion (MCAO), and the limb remote ischemic PerC was immediately applied after the onset of MCAO. We found that limb remote PerC protected BBB breakdown and brain edema, in parallel with reduced infarct volume and improved neurological deficits, after MCAO. Immunofluorescence studies revealed that MCAO resulted in disrupted continuity of claudin-5 staining in the cerebral endothelial cells with significant gap formation, which was significantly improved after PerC. Western blot analysis demonstrated that expression of tight junction (TJ) protein occludin was significantly increased, but other elements of TJ proteins, claudin-5 and ZO-1, in the BBB endothelial cells were not altered at 48 h after PerC, compared to MCAO group. The expression of matrix metalloproteinase (MMP-9), which was involved in TJ protein degradation, was decreased after PerC. Interestingly, phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2), an upstream of MMP-9 signaling, was significantly reduced in the PerC group. Our data suggest that PerC inhibits MMP-9-mediated occludin degradation, which could lead to decreased BBB disruption and brain edema after ischemic stroke.
Collapse
Affiliation(s)
- Changhong Ren
- 1 Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China ; 2 Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA ; 6 Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China ; 7 Beijing Key Laboratory of Hypoxia Translational Medicine. Beijing, China
| | - Ning Li
- 1 Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China ; 6 Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China
| | - Brian Wang
- 2 Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Yong Yang
- 3 Department of Herbal Medicine, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jinhuan Gao
- 1 Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sijie Li
- 1 Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China ; 6 Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China
| | - Yuchuan Ding
- 4 Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kunlin Jin
- 1 Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China ; 2 Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Xunming Ji
- 1 Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China ; 5 Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
213
|
Simats A, García-Berrocoso T, Montaner J. Neuroinflammatory biomarkers: From stroke diagnosis and prognosis to therapy. Biochim Biophys Acta Mol Basis Dis 2015; 1862:411-24. [PMID: 26524637 DOI: 10.1016/j.bbadis.2015.10.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/19/2015] [Accepted: 10/28/2015] [Indexed: 12/29/2022]
Abstract
Stroke is the third leading cause of death in industrialized countries and one of the largest causes of permanent disability worldwide. Therapeutic options to fight stroke are still limited and the only approved drug is tissue-plasminogen activator (tPA) and/or mechanical thrombectomy. Post-stroke inflammation is well known to contribute to the expansion of the ischemic lesion, whereas its resolution stimulates tissue repair and neuroregeneration processes. As inflammation highly influences susceptibility of stroke patients to overcome the disease, there is an increasing need to develop new diagnostic, prognostic and therapeutic strategies for post-stroke inflammation. This review provides a brief overview of the contribution of the inflammatory mechanisms to the pathophysiology of stroke. It specially focuses on the role of inflammatory biomarkers to help predicting stroke patients' outcome since some of those biomarkers might turn out to be targets to be therapeutically altered overcoming the urgent need for the identification of potent drugs to modulate stroke-associated inflammation. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
Affiliation(s)
- Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain.
| | - Teresa García-Berrocoso
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain.
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain; Neurology Department, Hospital Vall d'Hebron, Barcelona, Spain.
| |
Collapse
|
214
|
Picascia A, Grimaldi V, Iannone C, Soricelli A, Napoli C. Innate and adaptive immune response in stroke: Focus on epigenetic regulation. J Neuroimmunol 2015; 289:111-20. [PMID: 26616880 DOI: 10.1016/j.jneuroim.2015.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022]
Abstract
Inflammation and immune response play a pivotal role in the pathophysiology of ischemic stroke giving their contribution to tissue damage and repair. Emerging evidence supports the involvement of epigenetic mechanisms such as methylation, histone modification and miRNAs in the pathogenesis of stroke. Interestingly, epigenetics can influence the molecular events involved in ischemic injury by controlling the switch from pro- to anti-inflammatory response, however, this is still a field to be fully explored. The knowledge of epigenetic processes could to allow for the discovery of more sensitive and specific biomarkers for risk, onset, and progression of disease as well as further novel tools to be used in both primary prevention and therapy of stroke. Indeed, studies performed in vitro and in small animal models seem to suggest a neuroprotective role of HDAC inhibitors (e.g. valproic acid) and antagomir (e.g. anti-miR-181a) in ischemic condition by modulation of both immune and inflammatory pathways. Thus, the clinical implications of altered epigenetic mechanisms for the prevention of stroke are very promising but clinical prospective studies and translational approaches are still warranted.
Collapse
Affiliation(s)
- Antonietta Picascia
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria (AOU), Second University of Naples, Naples, Italy
| | - Vincenzo Grimaldi
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria (AOU), Second University of Naples, Naples, Italy.
| | - Carmela Iannone
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria (AOU), Second University of Naples, Naples, Italy
| | - Andrea Soricelli
- IRCCS Research Institute SDN, Naples, Italy; Department of Studies of Institutions and Territorial Systems, University of Naples Parthenope, Naples, Italy
| | - Claudio Napoli
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria (AOU), Second University of Naples, Naples, Italy; IRCCS Research Institute SDN, Naples, Italy
| |
Collapse
|
215
|
Friends or Foes: Matrix Metalloproteinases and Their Multifaceted Roles in Neurodegenerative Diseases. Mediators Inflamm 2015; 2015:620581. [PMID: 26538832 PMCID: PMC4619970 DOI: 10.1155/2015/620581] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/03/2015] [Accepted: 09/06/2015] [Indexed: 12/11/2022] Open
Abstract
Neurodegeneration is a chronic progressive loss of neuronal cells leading to deterioration of central nervous system (CNS) functionality. It has been shown that neuroinflammation precedes neurodegeneration in various neurodegenerative diseases. Matrix metalloproteinases (MMPs), a protein family of zinc-containing endopeptidases, are essential in (neuro)inflammation and might be involved in neurodegeneration. Although MMPs are indispensable for physiological development and functioning of the organism, they are often referred to as double-edged swords due to their ability to also inflict substantial damage in various pathological conditions. MMP activity is strictly controlled, and its dysregulation leads to a variety of pathologies. Investigation of their potential use as therapeutic targets requires a better understanding of their contributions to the development of neurodegenerative diseases. Here, we review MMPs and their roles in neurodegenerative diseases: Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and multiple sclerosis (MS). We also discuss MMP inhibition as a possible therapeutic strategy to treat neurodegenerative diseases.
Collapse
|
216
|
Scarano S, Dausse E, Crispo F, Toulmé JJ, Minunni M. Design of a dual aptamer-based recognition strategy for human matrix metalloproteinase 9 protein by piezoelectric biosensors. Anal Chim Acta 2015; 897:1-9. [DOI: 10.1016/j.aca.2015.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 02/07/2023]
|
217
|
Abstract
Migraine is a common disabling neurological disorder resulting from excessive cortical excitation and trigeminovascular afferent sensitization. In addition to aberrant neuronal processing, migraineurs are also at significant risk of vascular disease. Consequently, the impact of migraine extends well beyond the ictal headache and includes a well-documented association with acute ischemic stroke, particularly in young women with a history of migraine with aura. The association between migraine and stroke has been acknowledged for 40 years or more. However, examining the pathobiology of this association has become a more recent and critically important undertaking. The diversity of mechanisms underlying the association between migraine and stroke likely reflects the heterogenous nature of this disorder. Vasospasm, endothelial injury, platelet aggregation and prothrombotic states, cortical spreading depression, carotid dissection, genetic variants, and traditional vascular risk factors have been offered as putative mechanisms involved in migraine-related stroke risk. Assimilating these seemingly divergent pathomechanisms into a cogent understanding of migraine-related stroke will inform future studies and the development of new strategies for the prevention and treatment of migraine and stroke.
Collapse
Affiliation(s)
- Andrea M Harriott
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA,
| | | |
Collapse
|
218
|
Michinaga S, Seno N, Fuka M, Yamamoto Y, Minami S, Kimura A, Hatanaka S, Nagase M, Matsuyama E, Yamanaka D, Koyama Y. Improvement of cold injury-induced mouse brain edema by endothelin ETBantagonists is accompanied by decreases in matrixmetalloproteinase 9 and vascular endothelial growth factor-A. Eur J Neurosci 2015; 42:2356-70. [DOI: 10.1111/ejn.13020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Shotaro Michinaga
- Laboratory of Pharmacology; Faculty of Pharmacy; Osaka Ohtani University; 3-11-1 Nishikiori-Kita, Tonda-bayashi Osaka 584-8540 Japan
| | - Naoki Seno
- Laboratory of Pharmacology; Faculty of Pharmacy; Osaka Ohtani University; 3-11-1 Nishikiori-Kita, Tonda-bayashi Osaka 584-8540 Japan
| | - Mayu Fuka
- Laboratory of Pharmacology; Faculty of Pharmacy; Osaka Ohtani University; 3-11-1 Nishikiori-Kita, Tonda-bayashi Osaka 584-8540 Japan
| | - Yui Yamamoto
- Laboratory of Pharmacology; Faculty of Pharmacy; Osaka Ohtani University; 3-11-1 Nishikiori-Kita, Tonda-bayashi Osaka 584-8540 Japan
| | - Shizuho Minami
- Laboratory of Pharmacology; Faculty of Pharmacy; Osaka Ohtani University; 3-11-1 Nishikiori-Kita, Tonda-bayashi Osaka 584-8540 Japan
| | - Akimasa Kimura
- Laboratory of Pharmacology; Faculty of Pharmacy; Osaka Ohtani University; 3-11-1 Nishikiori-Kita, Tonda-bayashi Osaka 584-8540 Japan
| | - Shunichi Hatanaka
- Laboratory of Pharmacology; Faculty of Pharmacy; Osaka Ohtani University; 3-11-1 Nishikiori-Kita, Tonda-bayashi Osaka 584-8540 Japan
| | - Marina Nagase
- Laboratory of Pharmacology; Faculty of Pharmacy; Osaka Ohtani University; 3-11-1 Nishikiori-Kita, Tonda-bayashi Osaka 584-8540 Japan
| | - Emi Matsuyama
- Laboratory of Pharmacology; Faculty of Pharmacy; Osaka Ohtani University; 3-11-1 Nishikiori-Kita, Tonda-bayashi Osaka 584-8540 Japan
| | - Daisuke Yamanaka
- Laboratory of Pharmacology; Faculty of Pharmacy; Osaka Ohtani University; 3-11-1 Nishikiori-Kita, Tonda-bayashi Osaka 584-8540 Japan
| | - Yutaka Koyama
- Laboratory of Pharmacology; Faculty of Pharmacy; Osaka Ohtani University; 3-11-1 Nishikiori-Kita, Tonda-bayashi Osaka 584-8540 Japan
| |
Collapse
|
219
|
Aroor AR, Sowers JR, Jia G, DeMarco VG. Pleiotropic effects of the dipeptidylpeptidase-4 inhibitors on the cardiovascular system. Am J Physiol Heart Circ Physiol 2015; 307:H477-92. [PMID: 24929856 DOI: 10.1152/ajpheart.00209.2014] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dipeptidylpeptidase-4 (DPP-4) is a ubiquitously expressed transmembrane protein that removes NH2-terminal dipeptides from various substrate hormones, chemokines, neuropeptides, and growth factors. Two known substrates of DPP-4 include the incretin hormones glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide, which are secreted by enteroendocrine cells in response to postprandial hyperglycemia and account for 60–70% of postprandial insulin secretion. DPP-4 inhibitors (DPP-4i) block degradation of GLP-1 and gastric inhibitory peptide, extend their insulinotropic effect, and improve glycemia. Since 2006, several DPP-4i have become available for treatment of type 2 diabetes mellitus. Clinical trials confirm that DPP-4i raises GLP-1 levels in plasma and improves glycemia with very low risk for hypoglycemia and other side effects. Recent studies also suggest that DPP-4i confers cardiovascular and kidney protection, beyond glycemic control, which may reduce the risk for further development of the multiple comorbidities associated with obesity/type 2 diabetes mellitus, including hypertension and cardiovascular disease (CVD) and kidney disease. The notion that DPP-4i may improve CVD outcomes by mechanisms beyond glycemic control is due to both GLP-1-dependent and GLP-1-independent effects. The CVD protective effects by DPP-4i result from multiple factors including insulin resistance, oxidative stress, dyslipidemia, adipose tissue dysfunction, dysfunctional immunity, and antiapoptotic properties of these agents in the heart and vasculature. This review focuses on cellular and molecular mechanisms mediating the CVD protective effects of DPP-4i beyond favorable effects on glycemic control.
Collapse
|
220
|
Piccardi B, Palumbo V, Nesi M, Nencini P, Gori AM, Giusti B, Pracucci G, Tonelli P, Innocenti E, Sereni A, Sticchi E, Toni D, Bovi P, Guidotti M, Tola MR, Consoli D, Micieli G, Tassi R, Orlandi G, Perini F, Marcello N, Nucera A, Massaro F, DeLodovici ML, Bono G, Sessa M, Abbate R, Inzitari D. Unbalanced Metalloproteinase-9 and Tissue Inhibitors of Metalloproteinases Ratios Predict Hemorrhagic Transformation of Lesion in Ischemic Stroke Patients Treated with Thrombolysis: Results from the MAGIC Study. Front Neurol 2015; 6:121. [PMID: 26074872 PMCID: PMC4445323 DOI: 10.3389/fneur.2015.00121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/12/2015] [Indexed: 01/10/2023] Open
Abstract
Background Experimentally, metalloproteinases (MMPs) play a detrimental role related to the severity of ischemic brain lesions. Both MMPs activity and function in tissues reflect the balance between MMPs and tissue inhibitors of metalloproteinases (TIMPs). We aimed to evaluate the role of MMPs/TIMPs balance in the setting of rtPA-treated stroke patients. Methods Blood was taken before and 24-h after rtPA from 327 patients (mean age 68 years, median NIHSS 11) with acute ischemic stroke. Delta median values of each MMP/TIMP ratio [(post rtPA MMP/TIMP-baseline MMP/TIMP)/(baseline MMP/TIMP)] were analyzed related to symptomatic intracranial hemorrhage (sICH) according to NINDS criteria, relevant hemorrhagic transformation (HT) defined as confluent petechiae within the infarcted area or any parenchymal hemorrhage, stroke subtypes (according to Oxfordshire Community Stroke Project) and 3-month death. The net effect of each MMP/TIMP ratio was estimated by a logistic regression model including major clinical determinants of outcomes Results Adjusting for major clinical determinants, only increase in MMP9/TIMP1 and MMP9/TIMP2 ratios remained significantly associated with sICH (odds ratio [95% confidence interval], 1.67 [1.17–2.38], p = 0.005; 1.74 [1.21–2.49], p = 0.003, respectively). Only relative increase in MMP9/TIMP1 ratio proved significantly associated with relevant HT (odds ratio [95% confidence interval], 1.74 [1.17–2.57], p = 0.006) with a trend toward significance for MMP9/TIMP2 ratio (p = 0.007). Discussion Our data add substantial clinical evidence about the role of MMPs/TIMPs balance in rtPA-treated stroke patients. These results may serve to generate hypotheses on MMPs inhibitors to be administered together with rtPA in order to counteract its deleterious effect.
Collapse
Affiliation(s)
- Benedetta Piccardi
- Neuroscience Section, Department of Neurofarba, University of Florence , Florence , Italy
| | - Vanessa Palumbo
- Stroke Unit, Department of Neurology, Careggi University Hospital , Florence , Italy
| | - Mascia Nesi
- Stroke Unit, Department of Neurology, Careggi University Hospital , Florence , Italy
| | - Patrizia Nencini
- Stroke Unit, Department of Neurology, Careggi University Hospital , Florence , Italy
| | - Anna Maria Gori
- Department of Experimental and Clinical Medicine, Atherothrombotic Diseases Center, AOU Careggi, University of Florence , Florence , Italy
| | - Betti Giusti
- Department of Experimental and Clinical Medicine, Atherothrombotic Diseases Center, AOU Careggi, University of Florence , Florence , Italy
| | - Giovanni Pracucci
- Neuroscience Section, Department of Neurofarba, University of Florence , Florence , Italy
| | - Paolina Tonelli
- Neuroscience Section, Department of Neurofarba, University of Florence , Florence , Italy
| | - Eleonora Innocenti
- Neuroscience Section, Department of Neurofarba, University of Florence , Florence , Italy
| | - Alice Sereni
- Department of Experimental and Clinical Medicine, Atherothrombotic Diseases Center, AOU Careggi, University of Florence , Florence , Italy
| | - Elena Sticchi
- Department of Experimental and Clinical Medicine, Atherothrombotic Diseases Center, AOU Careggi, University of Florence , Florence , Italy
| | - Danilo Toni
- Emergency Department Stroke Unit, Department of Neurological Sciences, Sapienza University of Rome , Rome , Italy
| | - Paolo Bovi
- SSO Stroke Unit, U.O. Neurologia d.O., DAI di Neuroscienze, Azienda Ospedaliera Integrata , Verona , Italy
| | | | - Maria Rosaria Tola
- U.O. Neurologia, DAI Neuroscienze-Riabilitazione, Azienda Ospedaliera-Universitaria S. Anna , Ferrara , Italy
| | | | | | - Rossana Tassi
- U.O.C. Stroke Unit, Dipartimento di Scienze Neurologiche e Neurosensoriali, Azienda Ospedaliera Universitaria Senese , Siena , Italy
| | - Giovanni Orlandi
- Department of Neurosciences, Neurological Clinic, University of Pisa , Pisa , Italy
| | - Francesco Perini
- UOC di Neurologia e "Stroke Unit", Ospedale San Bortolo , Vicenza , Italy
| | - Norina Marcello
- Neurology Unit, Arcispedale Santa Maria Nuova , Reggio Emilia , Italy
| | - Antonia Nucera
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University , London, ON , Canada
| | | | - Maria Luisa DeLodovici
- Stroke Unit, Department of Neurology, Ospedale di Circolo e Fondazione Macchi , Varese , Italy
| | - Giorgio Bono
- Stroke Unit, Department of Neurology, Ospedale di Circolo e Fondazione Macchi , Varese , Italy
| | - Maria Sessa
- Department of Neurology, Istituti Ospitalieri , Cremona , Italy
| | - Rosanna Abbate
- Department of Experimental and Clinical Medicine, Atherothrombotic Diseases Center, AOU Careggi, University of Florence , Florence , Italy
| | - Domenico Inzitari
- Neuroscience Section, Department of Neurofarba, University of Florence , Florence , Italy ; Institute of Neuroscience, Italian National Research Council , Florence , Italy
| |
Collapse
|
221
|
Helbok R, Schiefecker AJ, Beer R, Dietmann A, Antunes AP, Sohm F, Fischer M, Hackl WO, Rhomberg P, Lackner P, Pfausler B, Thomé C, Humpel C, Schmutzhard E. Early brain injury after aneurysmal subarachnoid hemorrhage: a multimodal neuromonitoring study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:75. [PMID: 25887441 PMCID: PMC4384312 DOI: 10.1186/s13054-015-0809-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 02/12/2015] [Indexed: 12/01/2022]
Abstract
Introduction There is a substantial amount of evidence from animal models that early brain injury (EBI) may play an important role for secondary brain injury after aneurysmal subarachnoid hemorrhage (aSAH). Cerebral microdialysis (CMD) allows online measurement of brain metabolites, including the pro-inflammatory cytokine interleukin-6 (IL-6) and matrix metalloproteinase-9 (MMP-9), which is indicative for disruption of the blood-brain barrier. Methods Twenty-six consecutive poor-grade aSAH patients with multimodal neuromonitoring were analyzed for brain hemodynamic and metabolic changes, including CMD-IL-6 and CMD-MMP-9 levels. Statistical analysis was performed by using a generalized estimating equation with an autoregressive function. Results The baseline cerebral metabolic profile revealed brain metabolic distress and an excitatory response which improved over the following 5 days (P <0.001). Brain tissue hypoxia (brain tissue oxygen tension of less than 20 mm Hg) was common (more than 60% of patients) in the first 24 hours of neuromonitoring and improved thereafter (P <0.05). Baseline CMD-IL-6 and CMD-MMP-9 levels were elevated in all patients (median = 4,059 pg/mL, interquartile range (IQR) = 1,316 to 12,456 pg/mL and median = 851 pg/mL, IQR = 98 to 25,860 pg/mL) and significantly decreased over days (P <0.05). A higher pro-inflammatory response was associated with the development of delayed cerebral ischemia (P = 0.04), whereas admission disease severity and early brain tissue hypoxia were associated with higher CMD-MMP-9 levels (P <0.03). Brain metabolic distress and increased IL-6 levels were associated with poor functional outcome (modified Rankin Scale of more than 3, P ≤0.01). All models were adjusted for probe location, aneurysm securing procedure, and disease severity as appropriate. Conclusions Multimodal neuromonitoring techniques allow insight into pathophysiologic changes in the early phase after aSAH. The results may be used as endpoints for future interventions targeting EBI in poor-grade aSAH patients.
Collapse
Affiliation(s)
- Raimund Helbok
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Alois Josef Schiefecker
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Ronny Beer
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Anelia Dietmann
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Ana Patrícia Antunes
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria. .,Department of Neurosciences, Santa Maria Hospital, Hospital de Santa Maria, 1649-028, Lisbon, Portugal.
| | - Florian Sohm
- Department of Neurosurgery, Innsbruck Medical University, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Marlene Fischer
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Werner Oskar Hackl
- Institute of Biomedical Informatics, UMIT-University for Health Sciences, Medical Informatics and Technology, Eduard Wallnöfer-Zentrum I, 6060, Hall in Tirol, Austria.
| | - Paul Rhomberg
- Department of Radiology, Innsbruck Medical University, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Peter Lackner
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Bettina Pfausler
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Claudius Thomé
- Department of Neurosurgery, Innsbruck Medical University, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Christian Humpel
- Department of Psychiatry and Psychotherapy, Medical University Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Erich Schmutzhard
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| |
Collapse
|
222
|
Ruan Z, Wang HM, Huang XT, Fu Y, Wu J, Ye CY, Li JL, Wu L, Gong Q, Zhao WM, Zhang HY. A novel caffeoyl triterpene attenuates cerebral ischemic injury with potent anti-inflammatory and hypothermic effects. J Neurochem 2015; 133:93-103. [PMID: 25626516 DOI: 10.1111/jnc.13046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/08/2015] [Accepted: 01/19/2015] [Indexed: 12/19/2022]
Abstract
Despite the intense efforts in searching for stroke therapies, an urgent need still exists to explore novel neuroprotective agents for ischemic stroke that have high efficacy and wide therapeutic time-window. Here, we provide the first demonstration that 28-O-caffeoyl betulin (B-CA), a novel derivative of naturally occurring caffeoyl triterpene, could significantly alleviate brain infarction and neurological deficit when given as late as 6 h after transient middle cerebral artery occlusion in the rat. Moreover, post-ischemia B-CA administration exhibited long-term (14 days post stroke) protective effects on both brain infarction and functional (i.e., motor and sensory) deficits. Protective B-CA effects correlated with decreased inflammatory responses as indicated by inhibition of microglia and astrocyte activation [stained with ionized calcium-binding adapter molecule 1 (Iba-1) and glial fibrillary acidic protein (GFAP) antibody, respectively], as well as suppression of tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2 overproduction in the ipsilateral cortex of ischemic rat. B-CA administration caused significant hypothermia in the focal cerebral ischemic rat, which may contribute to its ameliorative effects on brain damage and inflammation. In view of its potency in wide therapeutic time-window, robust anti-inflammatory and hypothermic effects, this novel caffeoyl triterpene derivative may lead toward the development of effective therapeutic strategies for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zhi Ruan
- CAS Key Laboratory of Receptor Research, Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Kaushik DK, Hahn JN, Yong VW. EMMPRIN, an upstream regulator of MMPs, in CNS biology. Matrix Biol 2015; 44-46:138-46. [PMID: 25644103 DOI: 10.1016/j.matbio.2015.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/24/2015] [Accepted: 01/24/2015] [Indexed: 01/24/2023]
Abstract
Matrix metalloproteinases (MMPs) are engaged in pathologies associated with infections, tumors, autoimmune disorders and neurological dysfunctions. With the identification of an upstream regulator of MMPs, EMMPRIN (Extracellular matrix metalloproteinase inducer, CD147), it is relevant to address if EMMPRIN plays a role in the pathology of central nervous system (CNS) diseases. This would enable the possibility of a more upstream and effective therapeutic target. Indeed, conditions including gliomas, Alzheimer's disease (AD), multiple sclerosis (MS), and other insults such as hypoxia/ischemia show elevated levels of EMMPRIN which correlate with MMP production. In contrast, given EMMPRIN's role in CNS homeostasis with respect to regulation of monocarboxylate transporters (MCTs) and interactions with adhesion molecules including integrins, we need to consider that EMMPRIN may also serve important regulatory or protective functions. This review summarizes the current understanding of EMMPRIN's involvement in CNS homeostasis, its possible roles in escalating or reducing neural injury, and the mechanisms of EMMPRIN including and apart from MMP induction.
Collapse
Affiliation(s)
| | | | - V Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
| |
Collapse
|
224
|
Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov 2014; 13:904-27. [DOI: 10.1038/nrd4390] [Citation(s) in RCA: 524] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
225
|
Aggarwal A, Khera A, Singh I, Sandhir R. S-nitrosoglutathione prevents blood-brain barrier disruption associated with increased matrix metalloproteinase-9 activity in experimental diabetes. J Neurochem 2014; 132:595-608. [PMID: 25187090 DOI: 10.1111/jnc.12939] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/10/2014] [Accepted: 08/20/2014] [Indexed: 12/14/2022]
Abstract
Hyperglycemia is known to induce microvascular complications, thereby altering blood-brain barrier (BBB) permeability. This study investigated the role of matrix metalloproteinases (MMPs) and their endogenous inhibitors in increased BBB permeability and evaluated the protective effect of S-nitrosoglutathione (GSNO) in diabetes. Diabetes was induced in mice by intraperitoneal injection of streptozotocin (40 mg/kg body weight) for 5 days and GSNO was administered orally (100 μg/kg body weight) daily for 8 weeks after the induction of diabetes. A significant decline in cognitive functions was observed in diabetic mice assessed by Morris water maze test. Increased permeability to different molecular size tracers accompanied by edema and ion imbalance was observed in cortex and hippocampus of diabetic mice. Furthermore, activity of both pro and active MMP-9 was found to be significantly elevated in diabetic animals. Increased in situ gelatinase activity was observed in tissue sections and isolated microvessels from diabetic mice brain. The increase in activity of MMP-9 was attributed to increased mRNA and protein expression in diabetic mice. In addition, a significant decrease in mRNA and protein expression of tissue inhibitor of matrix metalloproteinase-1 was also observed in diabetic animals. However, GSNO supplementation to diabetic animals was able to abridge MMP-9 activation as well as tissue inhibitor of matrix metalloproteinase-1 levels, restoring BBB integrity and also improving learning and memory. Our findings clearly suggest that GSNO could prevent hyperglycemia-induced disruption of BBB by suppressing MMP-9 activity.
Collapse
Affiliation(s)
- Aanchal Aggarwal
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Chandigarh, India
| | - Alka Khera
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Chandigarh, India
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Chandigarh, India
| |
Collapse
|
226
|
Ren Y, Wei B, Song X, An N, Zhou Y, Jin X, Zhang Y. Edaravone's free radical scavenging mechanisms of neuroprotection against cerebral ischemia: review of the literature. Int J Neurosci 2014; 125:555-65. [PMID: 25171224 DOI: 10.3109/00207454.2014.959121] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Free radicals and oxidative stress play key roles in cerebral ischemic pathogenesis and represent pharmacological targets for treatment. Edaravone (Edv), one of antioxidant agents that have been used in acute ischemic stroke in both clinical settings and animal experiments, exerts neuroprotective effect on ischemic injured brains. This review is aimed to elaborate the latest molecular mechanisms of the neuroprotection of Edv on cerebral ischemia and provide reasonable evidence in its clinical application. It is found that Edv has neuroprotective influence on cerebral ischemia, which is closely related to the facets of scavenging reactive oxygen species (ROS), hydroxyl radical (ċOH) and reactive nitrogen species (RNS). And it is a good antioxidant agent that can be safely used in the treatment of cerebral ischemia and chronic neurodegenerative disorders as well as other ischemia/reperfusion (I/R)-related diseases. The combination of Edv with thrombolytic therapy also can be applied in clinical settings and will be greatly beneficial to patients with stroke.
Collapse
Affiliation(s)
- Yanxin Ren
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
227
|
Ko HM, Lee SH, Kim KC, Joo SH, Choi WS, Shin CY. The Role of TLR4 and Fyn Interaction on Lipopolysaccharide-Stimulated PAI-1 Expression in Astrocytes. Mol Neurobiol 2014; 52:8-25. [DOI: 10.1007/s12035-014-8837-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/28/2014] [Indexed: 01/05/2023]
|
228
|
ApoE-Deficient Promotes Blood–Brain Barrier Disruption in Experimental Autoimmune Encephalomyelitis via Alteration of MMP-9. J Mol Neurosci 2014; 54:282-90. [DOI: 10.1007/s12031-014-0291-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 03/18/2014] [Indexed: 10/25/2022]
|
229
|
Chen F, Qi Z, Luo Y, Hinchliffe T, Ding G, Xia Y, Ji X. Non-pharmaceutical therapies for stroke: mechanisms and clinical implications. Prog Neurobiol 2014; 115:246-69. [PMID: 24407111 PMCID: PMC3969942 DOI: 10.1016/j.pneurobio.2013.12.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 12/14/2022]
Abstract
Stroke is deemed a worldwide leading cause of neurological disability and death, however, there is currently no promising pharmacotherapy for acute ischemic stroke aside from intravenous or intra-arterial thrombolysis. Yet because of the narrow therapeutic time window involved, thrombolytic application is very restricted in clinical settings. Accumulating data suggest that non-pharmaceutical therapies for stroke might provide new opportunities for stroke treatment. Here we review recent research progress in the mechanisms and clinical implications of non-pharmaceutical therapies, mainly including neuroprotective approaches such as hypothermia, ischemic/hypoxic conditioning, acupuncture, medical gases and transcranial laser therapy. In addition, we briefly summarize mechanical endovascular recanalization devices and recovery devices for the treatment of the chronic phase of stroke and discuss the relative merits of these devices.
Collapse
Affiliation(s)
- Fan Chen
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China
| | - Zhifeng Qi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China
| | - Yuming Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China
| | - Taylor Hinchliffe
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Guanghong Ding
- Shanghai Research Center for Acupuncture and Meridian, Shanghai 201203, China
| | - Ying Xia
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA.
| | - Xunming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China.
| |
Collapse
|
230
|
Chaturvedi M, Molino Y, Sreedhar B, Khrestchatisky M, Kaczmarek L. Tissue inhibitor of matrix metalloproteinases-1 loaded poly(lactic-co-glycolic acid) nanoparticles for delivery across the blood-brain barrier. Int J Nanomedicine 2014; 9:575-88. [PMID: 24531257 PMCID: PMC3901738 DOI: 10.2147/ijn.s54750] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim The aim of this study was to develop poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) for delivery of a protein – tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) – across the blood–brain barrier (BBB) to inhibit deleterious matrix metalloproteinases (MMPs). Materials and methods The NPs were formulated by multiple-emulsion solvent-evaporation, and for enhancing BBB penetration, they were coated with polysorbate 80 (Ps80). We compared Ps80-coated and uncoated NPs for their toxicity, binding, and BBB penetration on primary rat brain capillary endothelial cell cultures and the rat brain endothelial 4 cell line. These studies were followed by in vivo studies for brain delivery of these NPs. Results Results showed that neither Ps80-coated nor uncoated NPs caused significant opening of the BBB, and essentially they were nontoxic. NPs without Ps80 coating had more binding to endothelial cells compared to Ps80-coated NPs. Penetration studies showed that TIMP-1 NPs + Ps80 had 11.21%±1.35% penetration, whereas TIMP-1 alone and TIMP-1 NPs without Ps80 coating did not cross the endothelial monolayer. In vivo studies indicated BBB penetration of intravenously injected TIMP-1 NPs + Ps80. Conclusion The study demonstrated that Ps80 coating of NPs does not cause significant toxic effects to endothelial cells and that it can be used to enhance the delivery of protein across endothelial cell barriers, both in vitro and in vivo.
Collapse
Affiliation(s)
| | | | - Bojja Sreedhar
- Indian Institute of Chemical Technology, Hyderabad, India
| | | | | |
Collapse
|