201
|
The autolysis loop of activated protein C interacts with factor Va and differentiates between the Arg506 and Arg306 cleavage sites. Blood 2000. [DOI: 10.1182/blood.v96.2.585.014k30_585_593] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anticoagulant human plasma serine protease, activated protein C (APC), inactivates blood coagulation factors Va (FVa) and VIIIa. The so-called autolysis loop of APC (residues 301-316, equivalent to chymotrypsin [CHT] residues 142-153) has been hypothesized to bind FVa. In this study, site-directed mutagenesis was used to probe the role of the charged residues in this loop in interactions between APC and FVa. Residues Arg306 (147 CHT), Glu307, Lys308, Glu309, Lys311, Arg312, and Arg314 were each individually, or in selected combinations, mutated to Ala. The purified recombinant protein C mutants were characterized using activated partial thromboplastin time (APTT) clotting assays and FVa inactivation assays. Mutants 306A, 308A, 311A, 312A, and 314A had mildly reduced anticoagulant activity. Based on FVa inactivation assays and APTT assays using purified Gln506-FVa and plasma containing Gln506-FV, it appeared that these mutants were primarily impaired for cleavage of FVa at Arg506. Studies of the quadruple APC mutant (306A, 311A, 312A, and 314A) suggested that the autolysis loop provides for up to 15-fold discrimination of the Arg506 cleavage site relative to the Arg306 cleavage site. This study shows that the loop on APC of residues 306 to 314 defines an FVa binding site and accounts for much of the difference in cleavage rates at the 2 major cleavage sites in FVa.
Collapse
|
202
|
The autolysis loop of activated protein C interacts with factor Va and differentiates between the Arg506 and Arg306 cleavage sites. Blood 2000. [DOI: 10.1182/blood.v96.2.585] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe anticoagulant human plasma serine protease, activated protein C (APC), inactivates blood coagulation factors Va (FVa) and VIIIa. The so-called autolysis loop of APC (residues 301-316, equivalent to chymotrypsin [CHT] residues 142-153) has been hypothesized to bind FVa. In this study, site-directed mutagenesis was used to probe the role of the charged residues in this loop in interactions between APC and FVa. Residues Arg306 (147 CHT), Glu307, Lys308, Glu309, Lys311, Arg312, and Arg314 were each individually, or in selected combinations, mutated to Ala. The purified recombinant protein C mutants were characterized using activated partial thromboplastin time (APTT) clotting assays and FVa inactivation assays. Mutants 306A, 308A, 311A, 312A, and 314A had mildly reduced anticoagulant activity. Based on FVa inactivation assays and APTT assays using purified Gln506-FVa and plasma containing Gln506-FV, it appeared that these mutants were primarily impaired for cleavage of FVa at Arg506. Studies of the quadruple APC mutant (306A, 311A, 312A, and 314A) suggested that the autolysis loop provides for up to 15-fold discrimination of the Arg506 cleavage site relative to the Arg306 cleavage site. This study shows that the loop on APC of residues 306 to 314 defines an FVa binding site and accounts for much of the difference in cleavage rates at the 2 major cleavage sites in FVa.
Collapse
|
203
|
Trumbo TA, Maurer MC. Examining thrombin hydrolysis of the factor XIII activation peptide segment leads to a proposal for explaining the cardioprotective effects observed with the factor XIII V34L mutation. J Biol Chem 2000; 275:20627-31. [PMID: 10801785 DOI: 10.1074/jbc.m000209200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the blood coagulation cascade, thrombin cleaves fibrinopeptides A and B from fibrinogen revealing sites for fibrin polymerization that lead to insoluble clot formation. Factor XIII stabilizes this clot by catalyzing the formation of intermolecular cross-links in the fibrin network. Thrombin activates the Factor XIII a(2) dimer by cleaving the Factor XIII activation peptide segment at the Arg(37)-Gly(38) peptide bond. Using a high performance liquid chromatography assay, the kinetic constants K(m), k(cat), and k(cat)/K(m) were determined for thrombin hydrolysis of fibrinogen Aalpha-(7-20), Factor XIII activation peptide-(28-41), and Factor XIII activation peptide-(28-41) with a Val(34) to Leu substitution. This Val to Leu mutation has been correlated with protection from myocardial infarction. In the absence of fibrin, the Factor XIII activation peptide-(28-41) exhibits a 10-fold lower k(cat)/K(m) value than fibrinogen Aalpha-(7-20). With the Factor XIII V34L mutation, decreases in K(m) and increases in k(cat) produce a 6-fold increase in k(cat)/K(m) relative to the wild-type Factor XIII sequence. A review of the x-ray crystal structures of known substrates and inhibitors of thrombin leads to a hypothesis that the new Leu generates a peptide with more extensive interactions with the surface of thrombin. As a result, the Factor XIII V34L is proposed to be susceptible to wasteful conversion of zymogen to activated enzyme. Premature depletion may provide cardioprotective effects.
Collapse
Affiliation(s)
- T A Trumbo
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA
| | | |
Collapse
|
204
|
Steinmetzer T, Batdordshjin M, Pineda F, Seyfarth L, Vogel A, Reissmann S, Hauptmann J, Stürzebecher J. New bivalent thrombin inhibitors with N(alpha)(methyl)arginine at the P1-position. Biol Chem 2000; 381:603-10. [PMID: 10987367 DOI: 10.1515/bc.2000.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A series of bivalent thrombin inhibitors was synthesized, consisting of a d-phenylalanyl-prolyl-N(alpha)(methyl)arginyl active site blocking segment, a fibrinogen recognition exosite inhibitor part, and a peptidic linker connecting these fragments. The methylation of the P1 amino acid led to a moderate decrease in affinity compared with the unmethylated analog. In addition, it prevented the thrombin catalyzed proteolysis, independent of the P1' amino acid used. This is a significant advantage compared to the original hirulogs, which strictly require a proline as P1' amino acid to reduce the cleavage C-terminal to the arginyl residue. Several analogs were prepared by incorporation of different P1' amino acids found in natural thrombin substrates. The most potent inhibitor was I-11 [dCha-Pro-N(Me)Arg-Thr-(Gly)5-DYEPIPEEA-Cha-dGlu] with a Ki of 37 pM. I-11 is highly selective and no inhibition of the related serine proteases trypsin, factor Xa and plasmin was observed. The stability of I-11 in human plasma in vitro was strongly improved compared to hirulog-1. In addition, a significantly reduced plasma clearance of I-11 was observed after intravenous injection in rats. Results from molecular modeling suggest that a strong reorganization of the hydrogen bonds in the active site of thrombin may result in the proteolytic stability found in this inhibitor series.
Collapse
Affiliation(s)
- T Steinmetzer
- Institut für Biochemie und Biophysik, Friedrich-Schiller-Universität, Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
205
|
Fox T, Haaksma EE. Computer based screening of compound databases: 1. Preselection of benzamidine-based thrombin inhibitors. J Comput Aided Mol Des 2000; 14:411-25. [PMID: 10896314 DOI: 10.1023/a:1008167012101] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We present a computational protocol which uses the known three-dimensional structure of a target enzyme to identify possible ligands from databases of compounds with low molecular weight. This is accomplished by first mapping the essential interactions in the binding site with the program GRID. The resulting regions of favorable interaction between target and ligand are translated into a database query, and with UNITY a flexible 3D database search is performed. The feasibility of this approach is calibrated with thrombin as the target. Our results show that the resulting hit lists are enriched with thrombin inhibitors compared to the total database.
Collapse
Affiliation(s)
- T Fox
- Boehringer Ingelheim Pharma KG, Department of Chemical Research/Structural Research, Biberach an der Riss, Germany.
| | | |
Collapse
|
206
|
Abstract
A large number of potent and selective therapeutic agents, useful for the treatment of several diseases, have been isolated from natural sources. For example, the most active thrombin inhibitors are those secreted by the salivary glands of leeches. One peculiar feature of these agents is the lack of any significant inhibitory cross-reaction with other serine proteinases. Hence, the knowledge of the exact mechanism of action of these molecules provides the basis for the development of new and efficient synthetic drugs. For this reason, many studies have been undertaken on the structure-activity relationships of natural thrombin inhibitors, and a large amount of detailed information has been obtained by the crystal structures of these inhibitors when complexed with thrombin. In this paper, we review natural and synthetic multisite thrombin inhibitors, whose structural aspects have been determined in detail. We also report here the approach used by us to develop a new class of synthetic, multisite directed thrombin inhibitors, named hirunorms, designed to mimic the distinctive binding mode of hirudin.
Collapse
Affiliation(s)
- A Lombardi
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Napoli Federico II, Italy
| | | | | | | | | | | |
Collapse
|
207
|
Anderson PJ, Nesset A, Dharmawardana KR, Bock PE. Characterization of proexosite I on prothrombin. J Biol Chem 2000; 275:16428-34. [PMID: 10748007 DOI: 10.1074/jbc.m001254200] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of prothrombin by factor Xa is accompanied by expression of regulatory exosites I and II on the blood coagulation proteinase, thrombin. Quantitative affinity chromatography and equilibrium binding studies with a fluorescein-labeled derivative of the exosite I-specific peptide ligand, hirudin(54-65) ([5F]Hir(54-65) (SO(3)(-)), were employed to identify and characterize this site on human and bovine prothrombin and its expression on thrombin. [5F]Hir(54-65)(SO(3)(-)) showed distinctive fluorescence excitation spectral differences in complexes with prothrombin and thrombin and bound to human prothrombin and thrombin with dissociation constants of 3.2 +/- 0.3 micrometer and 25 +/- 2 nm, respectively, demonstrating a 130-fold increase in affinity for the active proteinase. The bovine proteins similarly showed a 150-fold higher affinity of [5F]Hir(54-65)(SO(3)(-)) for thrombin compared with prothrombin, despite a 2-5-fold lower affinity of the peptides for the bovine proteins. Unlabeled, Tyr(63)-sulfated and nonsulfated hirudin peptides bound competitively with [5F]Hir(54-65)(SO(3)(-)) to human and bovine prothrombin and thrombin, exhibiting similar, 40-70-fold higher affinities for the proteinases, although nonsulfated Hir(54-65) bound with 7-17-fold lower affinity than the sulfated analog. These studies characterize proexosite I for the first time as a specific binding site for hirudin peptides on both human and bovine prothrombin that is present in a conformationally distinct, low affinity state and is activated with a approximately 100-fold increase in affinity when thrombin is formed.
Collapse
Affiliation(s)
- P J Anderson
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
208
|
Anderson PJ, Nesset A, Dharmawardana KR, Bock PE. Role of proexosite I in factor Va-dependent substrate interactions of prothrombin activation. J Biol Chem 2000; 275:16435-42. [PMID: 10748008 DOI: 10.1074/jbc.m001255200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulatory exosite I of thrombin is present on prothrombin in a precursor state (proexosite I) that specifically binds the Tyr(63)-sulfated peptide, hirudin(54-65) (Hir(54-65)(SO(3)(-))) and the nonsulfated analog. The role of proexosite I in the mechanism of factor Va acceleration of prothrombin activation was investigated in kinetic studies of the effects of peptide binding. The initial rate of human prothrombin activation by factor Xa was inhibited by the peptides in the presence of factor Va but not in the absence of the cofactor. Factor Xa and factor Va did not bind the peptide with significant affinity compared with prothrombin. Maximum inhibition reduced the factor Va-accelerated rate to a level indistinguishable from the rate in the absence of the cofactor. The effect of Hir(54-65)(SO(3)(-)) on the kinetics of prothrombin activation obeyed a model in which binding of the peptide to proexosite I prevented productive prothrombin interactions with the factor Xa-factor Va complex. Comparison of human and bovine prothrombin as substrates demonstrated a similar correlation between peptide binding and inhibition of factor Va acceleration. Inhibition of prothrombin activation by hirudin peptides was opposed by assembly on phospholipid vesicles of the membrane-bound factor Xa-factor-Va-prothrombin complex. Factor Va interactions of human and bovine prothrombin activation are concluded to share a common mechanism in which proexosite I participates in productive interactions of prothrombin as the substrate of the factor Xa-factor Va complex, possibly by directly mediating productive prothrombin-factor Va binding.
Collapse
Affiliation(s)
- P J Anderson
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
209
|
Horn M, Pavlík M, Dolecková L, Baudys M, Mares M. Arginine-based structures are specific inhibitors of cathepsin C. Application of peptide combinatorial libraries. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3330-6. [PMID: 10824120 DOI: 10.1046/j.1432-1327.2000.01364.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Novel synthetic peptide inhibitors of lysosomal cysteine proteinase cathepsin C have been designed through the use of soluble peptide combinatorial libraries. The uncovered structural inhibitory module consists of the N-terminal cluster of L-arginine residues. Its modification with D-amino acids or arginine derivatives did not increase the inhibition strength. Inhibitory potency of oligoarginines improves with the elongation of peptide chain reaching a maximum for octa-L-arginine. The oligoarginines specifically interact with the cathepsin C active site as shown by competitive-type inhibition kinetics (Ki approximately 10-5 M) and intrinsic fluorescence measurements. The inhibitory interaction of oligoarginines is established through the specific spatial contact of a net of guanidino groups in the arginine side-chains, as indicated by comparison with inhibitory action of low molecular mass guanidine derivatives (Ki approximately 10-3 M). Nonarginine polyionic compounds cannot mimic the inhibitory effect of oligoarginines. The arginine-based peptide inhibitors were selective towards cathepsin C among other cysteine proteinases tested.
Collapse
Affiliation(s)
- M Horn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Praha, Czech Republic.
| | | | | | | | | |
Collapse
|
210
|
Nienaber VL, Davidson D, Edalji R, Giranda VL, Klinghofer V, Henkin J, Magdalinos P, Mantei R, Merrick S, Severin JM, Smith RA, Stewart K, Walter K, Wang J, Wendt M, Weitzberg M, Zhao X, Rockway T. Structure-directed discovery of potent non-peptidic inhibitors of human urokinase that access a novel binding subsite. Structure 2000; 8:553-63. [PMID: 10801494 DOI: 10.1016/s0969-2126(00)00136-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Human urokinase-type plasminogen activator has been implicated in the regulation and control of basement membrane and interstitial protein degradation. Because of its role in tissue remodeling, urokinase is a central player in the disease progression of cancer, making it an attractive target for design of an anticancer clinical agent: Few urokinase inhibitors have been described, which suggests that discovery of such a compound is in the early stages. Towards integrating structural data into this process, a new human urokinase crystal form amenable to structure-based drug design has been used to discover potent urokinase inhibitors. RESULTS On the basis of crystallographic data, 2-naphthamidine was chosen as the lead scaffold for structure-directed optimization. This co-crystal structure shows the compound binding at the primary specificity pocket of the trypsin-like protease and at a novel binding subsite that is accessible from the 8-position of 2-napthamidine. This novel subsite was characterized and used to design two compounds with very different 8-substituents that inhibit urokinase with K(i) values of 30-40 nM. CONCLUSIONS Utilization of a novel subsite yielded two potent urokinase inhibitors even though this site has not been widely used in inhibitor optimization with other trypsin-like proteases, such as those reported for thrombin or factor Xa. The extensive binding pockets present at the substrate-binding groove of these other proteins are blocked by unique insertion loops in urokinase, thus necessitating the utilization of additional binding subsites. Successful implementation of this strategy and characterization of the novel site provides a significant step towards the discovery of an anticancer clinical agent.
Collapse
Affiliation(s)
- V L Nienaber
- Department of Structural Biology, Abbott Laboratories, IL 60064-6098, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Supuran CT, Scozzafava A, Briganti F, Clare BW. Protease inhibitors: synthesis and QSAR study of novel classes of nonbasic thrombin inhibitors incorporating sulfonylguanidine and O-methylsulfonylisourea moieties at P1. J Med Chem 2000; 43:1793-806. [PMID: 10794696 DOI: 10.1021/jm9903693] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using benzamidine as a lead molecule, two series of alkyl/aralkyl/arylsulfonylguanidines/sulfonyl-O-methylisoureas+ ++ have been prepared and assayed as inhibitors of two serine proteases, thrombin and trypsin. The study showed that sulfaguanidine and its corresponding O-methylisourea derivative possess moderate but intrinsically selective thrombin inhibitory properties, with K(I)'s around 100 nM against thrombin and 1350-1500 nM against trypsin. Further elaboration of these two molecules afforded compounds that inhibited thrombin with K(I)'s in the range of 12-50 nM, whereas affinity for trypsin remained relatively low. Such compounds were obtained by attaching benzyloxycarbonyl- or 4-toluenesulfonylureido-protected amino acids (such as L- and D-Phe or L-Pro) or dipeptides (such as Phe-Pro, Gly-His, beta-Ala-His, or Pro-Gly) to the two leads mentioned above, sulfaguanidine and 4-aminobenzenesulfonyl-O-methylisourea. Thus, the present study proposes two novel approaches for the preparation of high-affinity, specific thrombin inhibitors: two novel S1 anchoring moieties in the already large family of arginine/amidine-based inhibitors and novel peptidomimetic scaffolds obtained by incorporating tosylureido amino acids in the hydrophobic binding site(s). The first one is important for obtaining bioavailable thrombin inhibitors, devoid of the high basicity of the commonly used arginine/amidine-based inhibitors, whereas the second one may lead to improved water solubility of such compounds due to facilitated metal (sodium) salts formation (at the relatively acidic SO(2)NHCO protons) as well as increased stability at hydrolysis (in vivo). A QSAR study also explained the activity in terms of global properties of the molecules, electronic properties of the sulfonylguanidine/sulfonylisourea moiety, and novel descriptors, the frontier orbital phase angles (FOPA), that account for the directions of the nodes in the pi orbitals in the aromatic portion of those of the drugs in which the sulfonyl group was bound to a benzene ring. For thrombin inhibition, the size of the molecule was the dominant influence, while for trypsin inhibition the FOPA was the principal determinant of activity. The dependence of activity on the FOPA variables is perhaps the clearest example of a quantum effect in pharmacology and suggests a promising new tool for drug design.
Collapse
Affiliation(s)
- C T Supuran
- Laboratorio di Chimica Inorganica e Bioinorganica, Università degli Studi, Via Gino Capponi 7, I-50121 Florence, Italy.
| | | | | | | |
Collapse
|
212
|
Nienaber VL, Boxrud PD, Berliner LJ. Thrombin inhibitor design: X-ray and solution studies provide a novel P1 determinant. JOURNAL OF PROTEIN CHEMISTRY 2000; 19:327-33. [PMID: 11043938 DOI: 10.1023/a:1007055615190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The crystal structures of proflavin and 6-fluorotryptamine thrombin have been completed showing binding of both ligands at the active site S1 pocket. The structure of proflavin:thrombin was confirmatory, while the structure of 6-fluorotryptamine indicated a novel binding mode at the thrombin active site. Furthermore, speculation that the sodium atom identified in an extended solvent channel beneath the S pocket may play a role in binding of these ligands was investigated by direct proflavin titrations as well as chromogenic activity measurements as a function of sodium concentration at constant ionic strength. These results suggested a linkage between the sodium site and the S1 pocket. This observation could be due to a simple ionic interaction between Asp189 and the sodium ion or a more complicated structural rearrangement of the thrombin S1 pocket. Finally, the unique binding mode of 6-fluorotryptamine provides ideas toward the design of a neutrally charged thrombin inhibitor.
Collapse
Affiliation(s)
- V L Nienaber
- Department of Chemical and Physical Sciences, DuPont Merck Pharmaceutical Company, Wilmington, Delaware 19880, USA
| | | | | |
Collapse
|
213
|
Fairlie DP, Tyndall JD, Reid RC, Wong AK, Abbenante G, Scanlon MJ, March DR, Bergman DA, Chai CL, Burkett BA. Conformational selection of inhibitors and substrates by proteolytic enzymes: implications for drug design and polypeptide processing. J Med Chem 2000; 43:1271-81. [PMID: 10753465 DOI: 10.1021/jm990315t] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Inhibitors of proteolytic enzymes (proteases) are emerging as prospective treatments for diseases such as AIDS and viral infections, cancers, inflammatory disorders, and Alzheimer's disease. Generic approaches to the design of protease inhibitors are limited by the unpredictability of interactions between, and structural changes to, inhibitor and protease during binding. A computer analysis of superimposed crystal structures for 266 small molecule inhibitors bound to 48 proteases (16 aspartic, 17 serine, 8 cysteine, and 7 metallo) provides the first conclusive proof that inhibitors, including substrate analogues, commonly bind in an extended beta-strand conformation at the active sites of all these proteases. Representative superimposed structures are shown for (a) multiple inhibitors bound to a protease of each class, (b) single inhibitors each bound to multiple proteases, and (c) conformationally constrained inhibitors bound to proteases. Thus inhibitor/substrate conformation, rather than sequence/composition alone, influences protease recognition, and this has profound implications for inhibitor design. This conclusion is supported by NMR, CD, and binding studies for HIV-1 protease inhibitors/substrates which, when preorganized in an extended conformation, have significantly higher protease affinity. Recognition is dependent upon conformational equilibria since helical and turn peptide conformations are not processed by proteases. Conformational selection explains the resistance of folded/structured regions of proteins to proteolytic degradation, the susceptibility of denatured proteins to processing, and the higher affinity of conformationally constrained 'extended' inhibitors/substrates for proteases. Other approaches to extended inhibitor conformations should similarly lead to high-affinity binding to a protease.
Collapse
Affiliation(s)
- D P Fairlie
- Centre for Drug Design and Development, University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Gentry PA, Plante L, Schroeder MO, LaMarre J, Young JE, Dodds WG. Human ovarian follicular fluid has functional systems for the generation and modulation of thrombin. Fertil Steril 2000; 73:848-54. [PMID: 10731552 DOI: 10.1016/s0015-0282(99)00635-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To determine whether prothrombin is present in follicular fluid and whether the enzymatic pathways for prothrombin activation are similar to those in plasma. DESIGN Follicular fluid samples collected at the time of oocyte harvest for an assisted reproductive technology procedure (ART) were analyzed for a panel of hemostatic proteins with use of a combination of functional, chromogenic, and Western ligand blot analysis. SETTING An ART clinic and an academic research laboratory. PATIENT(S) Women undergoing ART. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Determination of components of thrombin generation and thrombin modulatory systems using functional and antigenic assay procedures. RESULT(S) Both prothrombin and components of the prothrombinase enzyme complex, which includes factors V, VII, and X, are present in follicular fluid. Other hemostatic proteins, including factors VIII and IX and vonWillebrand factor, are absent. The direct activation of prothrombin to thrombin is similar in follicular fluid and plasma. Like plasma, inhibitors of both thrombin and thrombin generation, including antithrombin, protein C, and alpha2-macroglobulin, are present in follicular fluid. CONCLUSION(S) Only a select group of hemostatic plasma proteins are present in follicular fluid. There is no direct correlation between molecular size and concentration of individual proteins in follicular fluid. These results indicate that the proteins involved in the thrombin-generating and thrombin modulatory pathways may be derived from ovarian cells, suggesting that thrombin may have a role in folliculogenesis.
Collapse
Affiliation(s)
- P A Gentry
- Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
215
|
Dennis MS, Eigenbrot C, Skelton NJ, Ultsch MH, Santell L, Dwyer MA, O'Connell MP, Lazarus RA. Peptide exosite inhibitors of factor VIIa as anticoagulants. Nature 2000; 404:465-70. [PMID: 10761907 DOI: 10.1038/35006574] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Potent anticoagulants have been derived by targeting the tissue factor-factor VIIa complex with naive peptide libraries displayed on M13 phage. The peptides specifically block the activation of factor X with a median inhibitory concentration of 1 nM and selectively inhibit tissue-factor-dependent clotting. The peptides do not bind to the active site of factor VIIa; rather, they work by binding to an exosite on the factor VIIa protease domain, and non-competitively inhibit activation of factor X and amidolytic activity. One such peptide (E-76) has a well defined structure in solution determined by NMR spectroscopy that is similar to the X-ray crystal structure when complexed with factor VIIa. These structural and functional studies indicate an allosteric 'switch' mechanism of inhibition involving an activation loop of factor VIIa and represent a new framework for developing inhibitors of serine proteases.
Collapse
Affiliation(s)
- M S Dennis
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Abstract
The protein C anticoagulant pathway converts the coagulation signal generated by thrombin into an anticoagulant response through the activation of protein C by the thrombin-thrombomodulin (TM) complex. The activated protein C (APC) thus formed interacts with protein S to inactivate two critical coagulation cofactors, factors Va and VIIIa, thereby dampening further thrombin generation. The proposed mechanisms by which TM switches the specificity of thrombin include conformational changes in thrombin, blocking access of normal substrates to thrombin and providing a binding site for protein C. The function of protein S appears to be to alter the cleavage site preferences of APC in factor Va, probably by changing the distance of the active site of APC relative to the membrane surface. The clinical relevance of this pathway is now established through the identification of deficient individuals with severe thrombotic complications and through the analysis of families with partial deficiencies in these components and an increased thrombotic tendency. One possible reason that even partial deficiencies are a thrombotic risk is that the function of the pathway can be down-regulated by inflammatory mediators. For instance, clinical studies have shown that the extent to which protein C levels decrease in patients with septic shock is predictive of a negative outcome. Initial clinical studies suggest that supplementation with protein C may be useful in the treatment of acute inflammatory diseases such as sepsis.
Collapse
Affiliation(s)
- C T Esmon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
217
|
Leung D, Abbenante G, Fairlie DP. Protease inhibitors: current status and future prospects. J Med Chem 2000; 43:305-41. [PMID: 10669559 DOI: 10.1021/jm990412m] [Citation(s) in RCA: 683] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D Leung
- Centre for Drug Design and Development, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
218
|
Sun X, Sheardown H, Tengvall P, Brash JL. Peptide modified gold-coated polyurethanes as thrombin scavenging surfaces. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2000; 49:66-78. [PMID: 10559748 DOI: 10.1002/(sici)1097-4636(200001)49:1<66::aid-jbm9>3.0.co;2-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Thin layers of gold were deposited on polyurethane film and chemisorbed with three peptides having an N-terminal cysteine: Cys-Pro-Arg, Cys-(L)Phe-Pro-Arg, and Cys-(D)Phe-Pro-Arg. The ability of these surfaces to act as thrombin scavengers was evaluated. The peptides are related to the known thrombin inhibitor Phe-Pro-Arg chloromethyl ketone and were shown to have significant thrombin inhibitory activity in solution. Attachment of the peptides to gold was confirmed by water contact angle and X-ray photoelectron spectroscopy measurements. Thrombin adsorption from a buffer and plasma was investigated, and chromogenic substrate assays were carried out for thrombin activity on the surfaces and in the supernatant following adsorption. The data suggest that the peptide-modified surfaces are able to adsorb thrombin with high affinity from a buffer and that thrombin is taken up selectively from plasma. The Cys-(D)Phe-Pro-Arg modified surfaces showed particularly high affinity for thrombin. It was also found that the activity of thrombin adsorbed on the peptide surfaces was inhibited, and inhibition was greatest on the Cys-(D)Phe-Pro-Arg surface. We concluded that the peptide surfaces may have potential as antithrombogenic materials via their ability to scavenge and inhibit thrombin generated as a result of blood-material contact.
Collapse
Affiliation(s)
- X Sun
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | | | | | | |
Collapse
|
219
|
Mende K, Petoukhova O, Koulitchkova V, Schaub GA, Lange U, Kaufmann R, Nowak G. Dipetalogastin, a potent thrombin inhibitor from the blood-sucking insect. Dipetalogaster maximus cDNA cloning, expression and characterization. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:583-90. [PMID: 10561601 DOI: 10.1046/j.1432-1327.1999.00895.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A cDNA coding for the thrombin inhibitor dipetalogastin has been isolated from a stomach library of Dipetalogaster maximus, a blood-sucking insect. The open reading frame of the cloned inhibitor cDNA codes for a protein of 344 amino-acid residues. Sequence analysis reveals the existence of three repeated homologous main regions, indicating that the inhibitor consists of three domains. Each domain shows a double-headed structure with an internal sequence homology like rhodniin, the thrombin inhibitor from the blood-sucking insect Rhodnius prolixus. Peptide sequence comparisons of the deduced amino-acid sequence exhibit a high homology of the domains I and II to the natural inhibitor dipetalogastin from the stomach content of D. maximus and to rhodniin, respectively. Significant sequence similarities to Kazal-type inhibitors, like the conserved sequence CGXDXXTYXNXC and several cysteine residues, indicate that the thrombin inhibitor from D. maximus is a further blood-sucking insect which belongs to the Kazal-type family (besides rhodniin). A biologically active recombinant protein corresponding to domain II of the dipetalogastin cDNA was expressed in Escherichia coli. The isolated recombinant dipetalogastin with a molecular mass of 12.91 kDa has proved to be a specific thrombin inhibitor similar to its natural counterpart as well as rhodniin and hirudin. The Ki value of the recombinant dipetalogastin was determined to be 49.3 +/- 22.28 fM.
Collapse
Affiliation(s)
- K Mende
- Research Unit Pharmacological Hemostaseology, Medical Faculty, Friedrich Schiller University Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
220
|
Rezaie AR. Role of exosites 1 and 2 in thrombin reaction with plasminogen activator inhibitor-1 in the absence and presence of cofactors. Biochemistry 1999; 38:14592-9. [PMID: 10545182 DOI: 10.1021/bi9913303] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cofactors heparin, vitronectin (VN), and thrombomodulin (TM) modulate the reactivity of alpha-thrombin with plasminogen activator inhibitor (PAI-1). While heparin and VN accelerate the reaction by approximately 2 orders of magnitude, TM protects alpha-thrombin from rapid inactivation by PAI-1 in the presence of VN. To understand how these cofactors function, we studied the kinetics of PAI-1 inactivation of alpha-thrombin, the exosite 1 variant gamma-thrombin, the exosite 2 mutant R93,97,101A thrombin, and recombinant meizothrombin in both the absence and presence of these cofactors. Heparin and VN accelerated the second-order association rate constant [k(2) = (7.9 +/- 0.5) x 10(2) M(-)(1) s(-)(1)] of alpha-thrombin with PAI-1 approximately 200- and approximately 240-fold, respectively. The k(2) value for gamma-thrombin [(7.9 +/- 0.7) x 10(1) M(-)(1) s(-)(1)] was impaired 10-fold, but was enhanced by heparin and VN approximately 280- and approximately 75-fold, respectively. Similar to inactivation of gamma-thrombin, PAI-1 inactivation of alpha-thrombin in complex with the epidermal growth factor-like domains 4-6 of TM (TM4-6) was impaired approximately 10-fold. The exosite 2 mutant R93,97,101A thrombin, which was previously shown not to bind heparin, and meizothrombin, in which exosite 2 is masked, reacted with PAI-1 at similar rates in both the absence and presence of heparin [k(2) = (1.3-1.5) x 10(3) M(-)(1) s(-)(1) for R93,97,101A thrombin and k(2) = (3.6-5.1) x 10(2) M(-)(1) s(-)(1) for meizothrombin]. Unlike heparin, however, VN enhanced the k(2) of R93,97,101A thrombin and meizothrombin inactivation approximately 80- and approximately 30-fold, respectively. Continuous kinetic analysis as well as competition kinetic studies in the presence of S195A thrombin suggested that the accelerating effect of VN or heparin occurs primarily by lowering the dissociation constant (K(d)) for formation of a noncovalent, Michaelis-type complex. Analysis of these results suggest that (1) heparin binds to exosite 2 of alpha-thrombin to accelerate the reaction by a template mechanism, (2) VN accelerates PAI-1 inactivation of alpha-thrombin by lowering the K(d) for initial complex formation by an unknown mechanism that does not require binding to either exosite 1 or exosite 2 of alpha-thrombin, (3) alpha-thrombin may have a binding site for PAI-1 within or near exosite 1, and (4) TM occupancy of exosite 1 partially accounts for the protection of thrombin from rapid inactivation by PAI-1 in the presence of vitronectin.
Collapse
Affiliation(s)
- A R Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
221
|
Abstract
Crystal structures for several hundred protease-inhibitor complexes have been analysed and their superimpositions have been used to demonstrate a universal relationship between inhibitor/substrate conformation and molecular recognition by all aspartic, serine, cysteine and metallo proteases. Proteases universally recognize an extended beta strand conformation in all their peptidic (and non-peptidic) inhibitors and substrate analogues without significant exceptions. This conformational homogeneity is illustrated here for a subset of 180 protease-inhibitor structures which are displayed as (a) structural overlays of multiple inhibitors for each of eight aspartic, eight serine, six metallo and five cysteine proteases; (b) single inhibitors each bound to different proteases; and (c) Ramachandran plots of peptide or pseudo-peptide dihedral angle pairs which demonstrate beta strands (Phi -54 degrees to -173 degrees, Psi 24 degrees to 174 degrees ) like those normally found paired in proteins as beta sheets. However, unlike beta sheets, alpha and 3(10) helices, beta and gamma turns, where the folded main chain amide components are intramolecularly hydrogen bonded and thus unavailable for interaction with proteins, an inhibitor/substrate in an isolated beta strand conformation provides maximum exposure of its hydrogen bonding donors/acceptors and side chain components to a putative protease receptor. This analysis highlights the advantages of a strand conformation over other elements of secondary structure for protease recognition and may lead to generic strategies for inhibitor design.
Collapse
Affiliation(s)
- J D Tyndall
- Centre for Drug Design and Development, University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
222
|
Scozzafava A, Briganti F, Supuran CT. Protease inhibitors - Part 3. Synthesis of non-basic thrombin inhibitors incorporating pyridinium-sulfanilylguanidine moieties at the P1 site. Eur J Med Chem 1999; 34:939-952. [PMID: 10889318 DOI: 10.1016/s0223-5234(99)00115-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using benzamidine and sulfaguanidine as lead molecules, three series of derivatives have been prepared by reaction of sulfaguanidine with pyrylium salts, with the pyridinium derivatives of glycine and with the pyridinium derivatives of beta-alanine, respectively. The new compounds were assayed as inhibitors of two serine proteases, thrombin and trypsin. The study showed that in contrast to the leads, possessing K(I)'s around 100-300 nM against thrombin, and 1200-1500 nM against trypsin, respectively, the new derivatives showed inhibition constants in the range of 15-50 nM against thrombin, whereas their affinity for trypsin remained relatively low. Derivatives of beta-alanine were more active than the corresponding Gly derivatives, which in turn were more inhibitory than the pyridinium derivatives of sulfaguanidine possessing the same substitution pattern at the pyridinium ring. Thus, the present study proposes two novel approaches for the preparation of high affinity, specific thrombin inhibitors: a novel S1 anchoring moiety in the already large family of arginine/amidine-based inhibitors, i.e., the SO(2)N=C(NH(2))(2) group, and novel non-peptidomimetic scaffolds obtained by incorporating alkyl-/aryl-substituted-pyridinium moieties in the hydrophobic binding site(s). The first one is important for obtaining bioavailable thrombin inhibitors, devoid of the high basicity of the commonly used arginine/amidine-based inhibitors, whereas the second one may lead to improved water solubility of such compounds due to facilitated salt formation as well as increased stability at hydrolysis (in vivo).
Collapse
Affiliation(s)
- A Scozzafava
- Università degli Studi, Laboratorio di Chimica Inorganica e Bioinorganica, Via Gino Capponi 7, I-50121, Florence, Italy
| | | | | |
Collapse
|
223
|
Nienaber J, Gaspar AR, Neitz AW. Savignin, a potent thrombin inhibitor isolated from the salivary glands of the tick Ornithodoros savignyi (Acari: Argasidae). Exp Parasitol 1999; 93:82-91. [PMID: 10502470 DOI: 10.1006/expr.1999.4448] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A thrombin (E.C. 3.4.21.5) inhibitor, savignin, was isolated from the salivary glands of Ornithodoros savignyi by a combination of size exclusion, anion-exchange, and reversed-phase chromatography. The inhibitor has a molecular mass of 12,430.4 Da as determined by electrospray mass spectrometry. The behavior of savignin during anion-exchange chromatography indicated that it has an acidic pI. The available N-terminal sequence (residues 1-11) differed from that of ornithodorin with only one residue. Savignin inhibits thrombin-induced platelet aggregation, but has no effect on ADP- or collagen-induced aggregation. Kinetic studies indicated that savignin is a competitive, slow-, tight-binding inhibitor of alpha-thrombin (K(i) = 4.89 +/- 1.39 pM). Tight-binding kinetics showed that the inhibitor has a lower affinity for gamma-thrombin (K(i) = 22.3 +/- 5.9 nM). Plasmin, factor Xa, and trypsin are not inhibited by savignin.
Collapse
Affiliation(s)
- J Nienaber
- Department of Biochemistry, University of Pretoria, Pretoria, 0002, South Africa
| | | | | |
Collapse
|
224
|
Chuang YJ, Gettins PG, Olson ST. Importance of the P2 glycine of antithrombin in target proteinase specificity, heparin activation, and the efficiency of proteinase trapping as revealed by a P2 Gly --> Pro mutation. J Biol Chem 1999; 274:28142-9. [PMID: 10497166 DOI: 10.1074/jbc.274.40.28142] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A sequence-specific heparin pentasaccharide activates the serpin, antithrombin, to inhibit factor Xa through an allosteric mechanism, whereas full-length heparin chains containing this sequence further activate the serpin to inhibit thrombin by an alternative bridging mechanism. To test whether the factor Xa specificity of allosterically activated antithrombin is encoded in the serpin reactive center loop, we mutated the factor Xa-preferred P2 Gly to the thrombin-preferred P2 Pro. Kinetic studies revealed that the mutation maximally enhanced the reactivity of antithrombin with thrombin 15-fold and decreased its reactivity toward factor Xa 2-fold when the serpin was activated by heparin pentasaccharide, thereby transforming antithrombin into an allosterically activated inhibitor of both factor Xa and thrombin. Surprisingly, the enhanced thrombin specificity of the mutant antithrombin was attenuated when a full-length bridging heparin was the activator, due both to a reduced rate of covalent reaction of the mutant serpin and thrombin and preferred reaction of the mutant serpin as a substrate. These results demonstrate that the reactive center loop sequence determines the specificity of allosterically activated antithrombin for factor Xa and that the conformational flexibility of the P2 Gly may be critical for optimal bridging of antithrombin and thrombin by physiologic heparin and for preventing antithrombin from reacting as a substrate in the bridging complex.
Collapse
Affiliation(s)
- Y J Chuang
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
225
|
Tanaka AS, Silva MM, Torquato RJ, Noguti MA, Sampaio CA, Fritz H, Auerswald EA. Functional phage display of leech-derived tryptase inhibitor (LDTI): construction of a library and selection of thrombin inhibitors. FEBS Lett 1999; 458:11-6. [PMID: 10518924 DOI: 10.1016/s0014-5793(99)01106-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The recombinant phage antibody system pCANTAB 5E has been used to display functionally active leech-derived tryptase inhibitor (LDTI) on the tip of the filamentous M13 phage. A limited combinatorial library of 5.2 x 10(4) mutants was created with a synthetic LDTI gene, using a degenerated oligonucleotide and the pCANTAB 5E phagemid. The mutations were restricted to the P1-P4' positions of the reactive site. Fusion phages and appropriate host strains containing the phagemids were selected after binding to thrombin and DNA sequencing. The variants LDTI-2T (K8R, I9V, S10, K11W, P12A), LDTI-5T (K8R, I9V, S10, K11S, P12L) and LDTI-10T (K8R, I9L, S10, K11D, P12I) were produced with a Saccharomyces cerevisiae expression system. The new inhibitors, LDTI-2T and -5T, prolong the blood clotting time, inhibit thrombin (Ki 302 nM and 28 nM) and trypsin (Ki 6.4 nM and 2.1 nM) but not factor Xa, plasma kallikrein or neutrophil elastase. The variant LDTI-10T binds to thrombin but does not inhibit it. The relevant reactive site sequences of the thrombin inhibiting variants showed a strong preference for arginine in position P1 (K8R) and for valine in P1' (I9V). The data indicate further that LDTI-5T might be a model candidate for generation of active-site directed thrombin inhibitors and that LDTI in general may be useful to generate specific inhibitors suitable for a better understanding of enzyme-inhibitor interactions.
Collapse
Affiliation(s)
- A S Tanaka
- Departamento de Bioquímica, UNIFESP-EPM, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
226
|
Coombs GS, Rao MS, Olson AJ, Dawson PE, Madison EL. Revisiting catalysis by chymotrypsin family serine proteases using peptide substrates and inhibitors with unnatural main chains. J Biol Chem 1999; 274:24074-9. [PMID: 10446178 DOI: 10.1074/jbc.274.34.24074] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chymotrypsin family serine proteases play essential roles in key biological and pathological processes and are frequently targets of drug discovery efforts. This large enzyme family is also among the most advanced model systems for detailed studies of enzyme mechanism and structure/function relationships. Productive interactions between these enzymes and their substrates are widely believed to mimic the "canonical" interactions between serine proteases and "standard" inhibitors observed in numerous protease-inhibitor complexes. To test this central hypothesis we have synthesized and characterized a series of peptide analogs, based on model substrates and inhibitors of trypsin, that contain unnatural main chains. These results call into question a long accepted theory regarding the interaction of chymotrypsin family serine proteases with substrates and suggest that the canonical interactions observed between these enzymes and standard inhibitors may represent nonproductive rather than productive, substrate-like interactions.
Collapse
Affiliation(s)
- G S Coombs
- Department of Molecular Biology, Corvas International, San Diego, California 92121, USA
| | | | | | | | | |
Collapse
|
227
|
Arcone R, Pagliuca MG, Chinali A, Grimaldi M, Schettini G, Gast A, Pietropaolo C. Thrombin mutants with altered enzymatic activity have an impaired mitogenic effect on mouse fibroblasts and are inefficient modulators of stellation of rat cortical astrocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1451:173-86. [PMID: 10446399 DOI: 10.1016/s0167-4889(99)00086-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We produced recombinant human thrombin mutants to investigate the correlation between the thrombin enzyme and mitogenic activity. Single amino acid substitutions were introduced in the catalytic triad (H43N, D99N, S205A, S205T), in the oxy-anion binding site (G203A) and in the anion binding exosite-1 region (R73E). Proteins were produced as prethrombin-2 mutants secreted in the culture medium of DXB11-derived cell lines. All mutants were activated by ecarin to the corresponding thrombin mutants; the enzymatic activity was assayed on a chromogenic substrate and on the procoagulant substrate fibrinogen. Mutations S205A and G203A completely abolished the enzyme activity. Mutations H43N, D99N and S205T dramatically impaired the enzyme activity toward both substrates. The R73E mutation dissociated the amidolytic activity and the clotting activity of the protein. The ability of thrombin mutants to induce proliferation was investigated in NIH3T3 mouse fibroblasts and rat cortical astrocytes. The ability of the thrombin mutants to revert astrocyte stellation was also studied. The mitogenic activity and the effect on the astrocyte stellation of the thrombin mutants correlated with their enzymatic activity. Furthermore the receptor occupancy by the inactive S205A mutant prevented the thrombin effects providing strong evidence that a proteolytically activated receptor is involved in cellular responses to thrombin.
Collapse
Affiliation(s)
- R Arcone
- Dipartimento di Biochimica e Biotecnologie Mediche, Università 'Federico II', Via S. Pansini 5, Naples, I-80131, Italy
| | | | | | | | | | | | | |
Collapse
|
228
|
Steinmetzer T, Zhu BY, Konishi Y. Potent bivalent thrombin inhibitors: replacement of the scissile peptide bond at P(1)-P(1)' with arginyl ketomethylene isosteres. J Med Chem 1999; 42:3109-15. [PMID: 10447955 DOI: 10.1021/jm9807297] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have designed highly potent synthetic bivalent thrombin inhibitors, which consist of an active site blocking segment, a fibrinogen recognition exosite blocking segment, and a linker connecting these segments. The bivalent inhibitors bind to the active site and the fibrinogen recognition exosite simultaneously. As a result, the inhibitors showed much higher affinity for thrombin than the individual blocking segments. Various arginyl ketomethylene isosteres ArgPsi[CO-CH(2)-X]P(1)' were incorporated into the bivalent inhibitors as P(1)-P(1)' segment to eliminate the scissile bond. The P(1)' residue is a natural or unnatural amino acid; specifically, the incorporation of mercaptoacetic acid exhibited superiority in synthesis and affinity for thrombin. Inhibitor 16, (D-cyclohexylalanine)-Pro-ArgPsi[CO-CH(2)-S]Gly-(Gly)(4)-Asp-Tyr-G lu- Pro-Ile-Pro-Glu-Glu-Tyr-cyclohexylalanine-(D-Glu)-OH, showed the lowest K(i) value of 3.5 +/- 0.5 x 10(-13) M, which is comparable to that (K(i) = 2.3 x 10(-13) M) of recombinant hirudin. Consequently we successfully reduced the size of the inhibitor from approximately 7 kDa of recombinant hirudin to approximately 2 kDa without losing the affinity.
Collapse
Affiliation(s)
- T Steinmetzer
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, Canada H4P 2R2. H7V 4A7
| | | | | |
Collapse
|
229
|
Dharmawardana KR, Olson ST, Bock PE. Role of regulatory exosite I in binding of thrombin to human factor V, factor Va, factor Va subunits, and activation fragments. J Biol Chem 1999; 274:18635-43. [PMID: 10373475 DOI: 10.1074/jbc.274.26.18635] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The blood coagulation proteinase, thrombin, converts factor V into factor Va through a multistep activation pathway that is regulated by interactions with thrombin exosites. Thrombin exosite interactions with human factor V and its activation products were quantitatively characterized in equilibrium binding studies based on fluorescence changes of thrombin covalently labeled with 2-anilinonaphthalene-6-sulfonic acid (ANS) linked to the catalytic site histidine residue by Nalpha-[(acetylthio)acetyl]-D-Phe-Pro-Arg-CH2Cl ([ANS]FPR-thrombin). Exosite I was shown to play a predominant role in the binding of factor V and factor Va from the effect of the exosite I-specific ligand, hirudin54-65, on the interactions. Factor V and factor Va bound to exosite I of [ANS]FPR-thrombin with similar dissociation constants of 3.4 +/- 1.3 and 1.1 +/- 0.4 microM and fluorescence enhancements of 182 +/- 41 and 127 +/- 17%, respectively. Native thrombin and labeled thrombin bound with similar affinity to factor Va. Among factor V activation products, the factor Va heavy chain was shown to contain the site of exosite I binding, whereas exosite I-independent, lower affinity interactions were observed for activation fragments E and C1, and no detectable binding was observed for the factor Va light chain. The results support the conclusion that the factor V activation pathway is initiated by exosite I-mediated binding of thrombin to a site in the heavy chain region of factor V that facilitates the initial cleavage at Arg709 to generate the heavy chain of factor Va. The results further suggest that binding of thrombin through exosite I to factor V activation intermediates may regulate their conversion to factor Va and that similar binding of thrombin to the factor Va produced may reflect a mode of interaction involved in the regulation of prothrombin activation.
Collapse
Affiliation(s)
- K R Dharmawardana
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
230
|
Jhoti H, Cleasby A, Reid S, Thomas PJ, Weir M, Wonacott A. Crystal structures of thrombin complexed to a novel series of synthetic inhibitors containing a 5,5-trans-lactone template. Biochemistry 1999; 38:7969-77. [PMID: 10387040 DOI: 10.1021/bi9830359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The binding modes of four active site-directed, acylating inhibitors of human alpha-thrombin have been determined using X-ray crystallography. These inhibitors (GR157368, GR166081, GR167088, and GR179849) are representatives of a series utilizing a novel 5, 5-trans-lactone template to specifically acylate Ser195 of thrombin, resulting in an acyl complex. In each case the crystal structure of the complex reveals a binding mode which is consistent with the formation of a covalent bond between the ring-opened lactone of the inhibitor and residue Ser195. Improvements in potency and selectivity of these inhibitors for thrombin are rationalized on the basis of the observed protein/inhibitor interactions identified in these complexes. Occupation of the thrombin S2 and S3 pockets is shown to be directly correlated with improved binding and a degree of selectivity. The binding mode of GR179849 to thrombin is compared with the thrombin/PPACK complex [Bode, W., Turk, D., and Karshikov, A. (1992) Protein Sci. 1, 426-471] as this represents the archetypal binding mode for a thrombin inhibitor. This series of crystal structures is the first to be reported of synthetic, nonpeptidic acylating inhibitors bound to thrombin and provides details of the molecular recognition features that resulted in nanomolar potency.
Collapse
Affiliation(s)
- H Jhoti
- Biomolecular Structure Unit, Glaxo Wellcome Medicines Research Centre, Hertfordshire, U.K
| | | | | | | | | | | |
Collapse
|
231
|
Tideman PA. Antithrombins and the importance of good control. AUSTRALIAN AND NEW ZEALAND JOURNAL OF MEDICINE 1999; 29:444-51. [PMID: 10868518 DOI: 10.1111/j.1445-5994.1999.tb00741.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The generation of thrombin and the formation of platelet rich intra-coronary thrombus in response to atherosclerotic plaque rupture is pathognomonic of acute coronary syndromes. An understanding of the process of thrombin generation and the unique relationship between the structure and function of thrombin is essential to developing more effective anti-thrombotic strategies than the use of standard unfractionated heparin in the acute coronary syndromes. The mechanisms of action of heparin, low molecular weight heparins (LMWHs) and the newer direct anti-thrombins, recombinant hirudin and Hirulog, are reviewed. Evidence from the currently available phase 2 and 3 trials of these drugs regarding their efficacy in the acute coronary syndromes is also reviewed.
Collapse
Affiliation(s)
- P A Tideman
- Cardiovascular Medicine Unit, Flinders Medical Centre, Adelaide, SA
| |
Collapse
|
232
|
St Charles R, Matthews JH, Zhang E, Tulinsky A. Bound structures of novel P3-P1' beta-strand mimetic inhibitors of thrombin. J Med Chem 1999; 42:1376-83. [PMID: 10212123 DOI: 10.1021/jm980052n] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The X-ray crystal structures of four beta-strand-templated active site inhibitors of thrombin containing P1' groups have been determined and refined at about 2.1-A resolution to crystallographic R-values between 0.148 and 0.164. Two of the inhibitors have an alpha-ketoamide functionality at the scissile bond; the other two have a nonhydrolyzable electrophilic group at the P1' position. The binding of lysine is compared with that of arginine at the S1 specificity site, while that of D,L-phenylalanine enantiomorphs is compared in the S3 region of thrombin. Four different P1' moieties bind at the S1' subsite in three different ways. The binding constants vary between 2.0 microM and 70 pM. The bound structures are used to intercorrelate the various binding constants and also lead to insightful inferences concerning binding at the S1' site of thrombin.
Collapse
Affiliation(s)
- R St Charles
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, USA
| | | | | | | |
Collapse
|
233
|
Suk K, Cha S. Thrombin-induced interleukin-8 production and its regulation by interferon-gamma and prostaglandin E2 in human monocytic U937 cells. Immunol Lett 1999; 67:223-7. [PMID: 10369130 DOI: 10.1016/s0165-2478(99)00015-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Blood coagulation and inflammation pathways are linked in many aspects. A number of serum factors involved in coagulation cascades affect directly or indirectly inflammatory responses, whereas proinflammatory cytokines influence blood coagulation pathways. In this work we demonstrated that thrombin is an effective stimulus in inducing interleukin (IL)-8 expression in human monocytic cell line U937. IL-8 induction was found at the mRNA and protein levels. The effect of thrombin on IL-8 production was mimicked by thrombin receptor-activating peptide indicating that thrombin effect was mediated by the specific receptor for thrombin. Moreover, thrombin-induced IL-8 production by U937 cells was differentially regulated by interferon (IFN)-gamma and prostaglandin (PG)E2. While IFN-gamma enhanced thrombin-induced IL-8 production, PGE2 acted as a negative regulator. Taken together, thrombin may play an important role in communication between blood coagulation and inflammation by inducing IL-8 production by monocytes and this role for thrombin may be further regulated by lymphokines and lipid mediators.
Collapse
Affiliation(s)
- K Suk
- Clinical Research Center, Samsung Biomedical Research Institute, Seoul, South Korea.
| | | |
Collapse
|
234
|
Affiliation(s)
- S Narayanan
- Department of Pathology, New York Medical College, Metropolitan Hospital Center, New York City, USA
| | | |
Collapse
|
235
|
Becker DL, Fredenburgh JC, Stafford AR, Weitz JI. Exosites 1 and 2 are essential for protection of fibrin-bound thrombin from heparin-catalyzed inhibition by antithrombin and heparin cofactor II. J Biol Chem 1999; 274:6226-33. [PMID: 10037709 DOI: 10.1074/jbc.274.10.6226] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Assembly of ternary thrombin-heparin-fibrin complexes, formed when fibrin binds to exosite 1 on thrombin and fibrin-bound heparin binds to exosite 2, produces a 58- and 247-fold reduction in the heparin-catalyzed rate of thrombin inhibition by antithrombin and heparin cofactor II, respectively. The greater reduction for heparin cofactor II reflects its requirement for access to exosite 1 during the inhibitory process. Protection from inhibition by antithrombin and heparin cofactor II requires ligation of both exosites 1 and 2 because minimal protection is seen when exosite 1 variants (gamma-thrombin and thrombin Quick 1) or an exosite 2 variant (Arg93 --> Ala, Arg97 --> Ala, and Arg101 --> Ala thrombin) is substituted for thrombin. Likewise, the rate of thrombin inhibition by the heparin-independent inhibitor, alpha1-antitrypsin Met358 --> Arg, is decreased less than 2-fold in the presence of soluble fibrin and heparin. In contrast, thrombin is protected from inhibition by a covalent antithrombin-heparin complex, suggesting that access of heparin to exosite 2 of thrombin is hampered when ternary complex formation occurs. These results reveal the importance of exosites 1 and 2 of thrombin in assembly of the ternary complex and the subsequent protection of thrombin from inhibition by heparin-catalyzed inhibitors.
Collapse
Affiliation(s)
- D L Becker
- Department of Medicine, McMaster University and Hamilton Civic Hospitals Research Centre, Hamilton, Ontario L8V 1C3, Canada
| | | | | | | |
Collapse
|
236
|
Gan Z, Marquardt RR, Xiao H. Protease and protease inhibitor assays using biotinylated casein coated on a solid phase. Anal Biochem 1999; 268:151-6. [PMID: 10036175 DOI: 10.1006/abio.1998.3053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new type of solid-phase assay for proteases and protease inhibitors has been developed using biotinylated casein. The assay involves coating of titer plate wells with biotinylated casein, hydrolysis of this substrate with a protease such as trypsin, reaction of the biotin from the unhydrolyzed substrate with an alkaline phosphatase-streptavidin complex, and finally quantification of the amount of casein remaining on the plate using alkaline phosphatase activity as the indicator. The activity of the bound indicator enzyme is oppositely related to the protease activity of the sample. In addition, the assay can be modified for quantitating the corresponding amount of protease inhibitor in the sample. The assay is simple, sensitive, accurate, inexpensive, and amenable to automation.
Collapse
Affiliation(s)
- Z Gan
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | | | | |
Collapse
|
237
|
Abstract
Thrombin and factor Xa (fXa) are the only serine proteases for which small, potent, selective, noncovalent inhibitors have been developed, which are ultimately intended as drug development candidates (in this case as anticoagulants). Noncovalent inhibitors may be more selective and chemically and metabolically less reactive than covalent inhibitors. In addition, noncovalent inhibitors are more likely to have fast-binding kinetics which is particularly important in the development of thrombin inhibitors. TAME derived noncovalent thrombin inhibitors argatroban, napsagatran, and UK 156,406 have entered clinical trials as anticoagulants, the latter as an orally active agent. Serine trap deletion from substrate-like peptides led to the development of inogatran and melagatran, both of which have entered clinical trials as intravenous agents. The use of 3-aminopyridinone and pyrazinone acetamide peptidomimetic templates has resulted in the development of L-375,378 which has been chosen for clinical development as an orally active anticoagulant. Recently, compounds which do not have the conventional hydrogen bonding capabilities of peptides have begun to appear in the thrombin literature. Publications on noncovalent fXa inhibitors cover this type of peptidomimetic almost exclusively.
Collapse
Affiliation(s)
- P E Sanderson
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, PA 19486, USA
| |
Collapse
|
238
|
Struktur und Funktion des Thrombins. Hamostaseologie 1999. [DOI: 10.1007/978-3-662-07673-6_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
239
|
Maurer MC, Trosset JY, Lester CC, DiBella EE, Scheraga HA. New general approach for determining the solution structure of a ligand bound weakly to a receptor: structure of a fibrinogen Aalpha-like peptide bound to thrombin (S195A) obtained using NOE distance constraints and an ECEPP/3 flexible docking program. Proteins 1999; 34:29-48. [PMID: 10336381 DOI: 10.1002/(sici)1097-0134(19990101)34:1<29::aid-prot4>3.0.co;2-u] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new approach incorporating flexible docking simulations and NMR data is presented for calculating the bound conformation of a ligand that interacts weakly with an enzyme. This approach consists of sampling directly the conformation of a flexible ligand inside a receptor active site containing surrounding flexible loops. To make this sampling efficient, a ligand-growing procedure has been adopted. Optimization of the ECEPP/3-plus-NOE constraint function is carried out by using a collective variable Monte Carlo minimization technique. Numerous energy minimizations are made possible for such a large system by using a Bezier splines energy grid technique. This new flexible docking approach was applied to determine the structure of a fibrinogen Aalpha-like peptide (7DFLAEGGGVRGPRV20) bound to an active site mutant of thrombin [thrombin(S195A)]. Structure calculations of the bound ligand, using 2D-transferred NOESY distance constraints in the DIANA program, showed that the N-terminal portion of the peptide (D7-R16) involves a chain reversal, whereas the C-terminal portion (G17-V20) adopts a fold that exists in several different orientations. In addition, the ECEPP/3 flexible docking package was used to assess the conformational variability of the ligand and surrounding 60D-insertion loop of thrombin. Amino acid residues (17-20) of the peptide interact with a region of the enzyme that exhibits broad specificity, with a preferred direction between the 60D-insertion loop and Pro37 of thrombin.
Collapse
Affiliation(s)
- M C Maurer
- Baker Laboratory of Chemistry, Cornell University, Ithaca, New York 14853-1301, USA
| | | | | | | | | |
Collapse
|
240
|
Lombardi A, De Simone G, Nastri F, Galdiero S, Della Morte R, Staiano N, Pedone C, Bolognesi M, Pavone V. The crystal structure of alpha-thrombin-hirunorm IV complex reveals a novel specificity site recognition mode. Protein Sci 1999; 8:91-5. [PMID: 10210187 PMCID: PMC2144104 DOI: 10.1110/ps.8.1.91] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The X-ray crystal structure of the human alpha-thrombin-hirunorm IV complex has been determined at 2.5 A resolution, and refined to an R-factor of 0.173. The structure reveals an inhibitor binding mode distinctive of a true hirudin mimetic, which justifies the high inhibitory potency and the selectivity of hirunorm IV. This novel inhibitor, composed of 26 amino acids, interacts through the N-terminal end with the alpha-thrombin active site in a nonsubstrate mode, and binds specifically to the fibrinogen recognition exosite through the C-terminal end. The backbone of the N-terminal tripeptide Chg1"-Arg2"-2Na13" (Chg, cyclohexyl-glycine; 2Na1, beta-(2-naphthyl)-alanine) forms a parallel beta-strand to the thrombin main-chain segment Ser214-Gly216. The Chg1" side chain occupies the S2 site, Arg2" penetrates into the S1 specificity site, while the 2Na13" side chain occupies the aryl binding site. The Arg2" side chain enters the S1 specificity pocket from a position quite apart from the canonical P1 site. This notwithstanding, the Arg2" side chain establishes the typical ion pair with the carboxylate group of Asp189.
Collapse
Affiliation(s)
- A Lombardi
- Centro Interuniversitario di Ricerca su Peptidi Bioattivi & Centro di Studio di Biocristallografia-CNR, University of Napoli Federico II, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Byzova TV, Plow EF. Activation of alphaVbeta3 on vascular cells controls recognition of prothrombin. J Cell Biol 1998; 143:2081-92. [PMID: 9864377 PMCID: PMC2175236 DOI: 10.1083/jcb.143.7.2081] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/1998] [Revised: 11/06/1998] [Indexed: 02/02/2023] Open
Abstract
Regulation of vascular homeostasis depends upon collaboration between cells of the vessel wall and blood coagulation system. A direct interaction between integrin alphaVbeta3 on endothelial cells and smooth muscle cells and prothrombin, the pivotal proenzyme of the blood coagulation system, is demonstrated and activation of the integrin is required for receptor engagement. Evidence that prothrombin is a ligand for alphaVbeta3 on these cells include: (a) prothrombin binds to purified alphaVbeta3 via a RGD recognition specificity; (b) prothrombin supports alphaVbeta3-mediated adhesion of stimulated endothelial cells and smooth muscle cells; and (c) endothelial cells, either in suspension and in a monolayer, recognize soluble prothrombin via alphaVbeta3. alphaVbeta3-mediated cell adhesion to prothrombin, but not to fibrinogen, required activation of the receptor. Thus, the functionality of the alphaVbeta3 receptor is ligand defined, and prothrombin and fibrinogen represent activation- dependent and activation-independent ligands. Activation of alphaVbeta3 could be induced not only by model agonists, PMA and Mn2+, but also by a physiologically relevant agonist, ADP. Inhibition of protein kinase C and calpain prevented activation of alphaVbeta3 on vascular cells, suggesting that these molecules are involved in the inside-out signaling events that activate the integrin. The capacity of alphaVbeta3 to interact with prothrombin may play a significant role in the maintenance of hemostasis; and, at a general level, ligand selection by alphaVbeta3 may be controlled by the activation state of this integrin.
Collapse
Affiliation(s)
- T V Byzova
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
242
|
Abstract
Blood coagulation requires the conversion of zymogens to active enzymes. These reactions are facilitated by Ca2+-dependent protein binding to membrane surfaces containing anionic phospholipids. Here it is shown that only in the presence of both Ca2+ and phospholipid vesicles composed of phosphatidylcholine and phosphatidylserine can a prothrombin dimer be chemically cross-linked. A cross-linker containing evenly spaced reactive groups was prepared by activating the carboxy groups of a ten-residue glutamic acid peptide and allowed to react with physiological concentrations of prothrombin. When Ca2+ and anionic phospholipids were both present during exposure to the cross-linker, it was found that more than 50% of the prothrombin was trapped as a chemically defined dimer with reaction times of the order of 1 min. The dimer yield remained high even when reactions were performed at high phospholipid-to-protein ratios at protein concentrations an order of magnitude less than physiological. Amino acid sequencing of a CNBr peptide produced from the purified dimer localized the cross-link to residues Lys341 and Lys427 of prothrombin. The specificity and high yield under mild conditions of the cross-linking suggest that dimeric membrane bound prothrombin might be a physiologically relevant substrate for the formation of thrombin. Prothrombinase converts this modified protein to an enzyme that catalyses the hydrolysis of a thrombin chromogenic substrate as efficiently as thrombin and is inhibited by a thrombin active-site directed inhibitor, but is a thrombin dimer. The thrombin dimer has impaired activity compared with thrombin with respect to physiological functions requiring binding to exosite I. A model based on the known structure of thrombin is presented that can account for the prothrombin dimer and the properties of the dimeric thrombin formed from it.
Collapse
Affiliation(s)
- P J Anderson
- Department of Biochemistry, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5.
| |
Collapse
|
243
|
Shi F, Hogg PJ, Winzor DJ, Jackson CM. Evidence for multiple enzyme site involvement in the modulation of thrombin activity by products of prothrombin proteolysis. Biophys Chem 1998; 75:187-99. [PMID: 9894338 DOI: 10.1016/s0301-4622(98)00205-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kinetic evidence is presented for the interaction of prothrombin with several distinctive topological regions of the thrombin molecule. Modulations of thrombin catalytic activity on the protein substrates prothrombin and prethrombin 1 are demonstrated that involve the fragment 1 and fragment 2 portions. The inhibitory effects are demonstrably non-competitive. In addition to exhibiting non-competitive inhibition, fragment 2 is capable of enhancing proteolysis by thrombin; and therefore to react with a second region of the enzyme. On the basis of the crystallographic studies of the complex between fragment 2 and thrombin (Arni et al., Biochemistry 32 (1992) 4727), this activating site is proposed to be associated with exosite II. The allosteric switch between procoagulant and anticoagulant activities identified from studies by Di Cera (Dang et al., Proc. Natl. Acad. Sci USA 92 (1995) 5977) could be 'thrown' by a macromolecular effector that is generated during thrombin formation--a plausible mechanism for switching that deserves further investigation.
Collapse
Affiliation(s)
- F Shi
- American Red Cross Blood Services, Detroit, MI 48232, USA
| | | | | | | |
Collapse
|
244
|
Colwell NS, Blinder MA, Tsiang M, Gibbs CS, Bock PE, Tollefsen DM. Allosteric effects of a monoclonal antibody against thrombin exosite II. Biochemistry 1998; 37:15057-65. [PMID: 9790668 DOI: 10.1021/bi980925f] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously isolated a monoclonal antithrombin IgG from a patient with multiple myeloma [Colwell et al. (1997) Br. J. Haematol. 97, 219-226]. Using a panel of 55 surface mutants of recombinant thrombin, we now show that the epitope for the IgG most likely includes Arg-101, Arg-233, and Lys-236 in exosite II. The IgG affects the rate at which thrombin cleaves various peptide p-nitroanilide substrates with arginine in the P1 position, increasing the kcat for substrates with a P2 glycine residue but generally decreasing the kcat for substrates with a P2 proline. The allosteric effect of the IgG is altered by deletion of Pro-60b, Pro-60c, and Trp-60d from the 60-loop of thrombin, which lies between exosite II and the catalytic triad. The effect of the IgG, however, does not depend on the presence or absence of sodium ions, a known allosteric regulator of thrombin. The IgG does not affect the conformation of thrombin exosite I as determined by binding of a fluorescent derivative of hirudin54-65. These results provide evidence for a direct allosteric linkage between exosite II and the catalytic site of thrombin.
Collapse
Affiliation(s)
- N S Colwell
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
245
|
Bates SM, Weitz JI. Direct thrombin inhibitors for treatment of arterial thrombosis: potential differences between bivalirudin and hirudin. Am J Cardiol 1998; 82:12P-18P. [PMID: 9809887 DOI: 10.1016/s0002-9149(98)00660-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Given the central role of thrombin in arterial thrombogenesis, most treatment strategies for acute coronary syndromes are aimed at inhibiting its generation or blocking its activity. Although heparin has been widely used, it has limitations in the setting of arterial thrombosis. These limitations reflect the inability of heparin to inactivate thrombin bound to fibrin, a major stimulus for thrombus growth. In addition, the anticoagulant response to heparin varies from patient to patient, and heparin is neutralized by platelet Factor IV, large quantities of which are released from platelets activated at sites of plaque rupture. Consequently, heparin requires careful laboratory monitoring to ensure an adequate anticoagulant effect. Direct thrombin inhibitors, such as hirudin and bivalirudin, overcome the limitations of heparin. These agents inhibit fibrin-bound thrombin, as well as fluid-phase thrombin, and produce a predictable anticoagulant response. Bivalirudin has both safety and potential efficacy advantages over hirudin. Bivalirudin appears to have a wider therapeutic window than hirudin, possibly because bivalirudin only transiently inhibits the active site of thrombin. The better safety profile of bivalirudin permits administration of higher doses, which may give it an efficacy advantage. Hirudin prevents thrombin from activating protein C, thereby suppressing this natural anticoagulant pathway. In contrast, bivalirudin may promote protein C activation by transiently inhibiting thrombin until it can be bound by thrombomodulin. Differences between bivalirudin and hirudin, as well as other direct thrombin inhibitors, highlight the pitfalls of considering all direct thrombin inhibitors to have equivalent risk-benefit profiles.
Collapse
Affiliation(s)
- S M Bates
- McMaster University and Hamilton Civic Hospitals Research Centre, Ontario, Canada
| | | |
Collapse
|
246
|
Dharmawardana KR, Bock PE. Demonstration of exosite I-dependent interactions of thrombin with human factor V and factor Va involving the factor Va heavy chain: analysis by affinity chromatography employing a novel method for active-site-selective immobilization of serine proteinases. Biochemistry 1998; 37:13143-52. [PMID: 9748321 DOI: 10.1021/bi9812165] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In an essential step of blood coagulation, factor V is proteolytically processed by thrombin to generate the activated protein cofactor, factor Va, and to release the activation fragments E and C1. For the identification and characterization of sites of thrombin binding to factor V and its activation products, a new method was developed for immobilizing thrombin and other serine proteinases specifically (>/=92%) through their active sites and used in affinity chromatography studies of the interactions. Interactions of factor V with exosite I of thrombin were shown to regulate the factor V activation pathway from the 93% +/- 12% inhibition of the rate of activation correlated with specific binding of hirudin54-65 to this exosite. Chromatography of factor V on active-site-immobilized thrombin showed only a weak interaction, while the factor Va heterodimer bound specifically and with apparently higher affinity, in an interaction that was prevented by hirudin54-65. The heavy chain of subunit-dissociated factor Va bound to immobilized thrombin, while the light-chain subunit and fragment E had no detectable affinity. These results demonstrate a previously undescribed, exosite I-dependent interaction of thrombin with factor Va that occurs through the factor Va heavy chain. They support the further conclusion that similar exosite I-dependent binding of thrombin to the heavy-chain region of factor V contributes to recognition of factor V as a specific thrombin substrate and thereby regulates proteolytic activation of the protein cofactor.
Collapse
Affiliation(s)
- K R Dharmawardana
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
247
|
Thrombin-Activated Human Endothelial Cells Support Monocyte Adhesion In Vitro Following Expression of Intercellular Adhesion Molecule-1 (ICAM-1; CD54) and Vascular Cell Adhesion Molecule-1 (VCAM-1; CD106). Blood 1998. [DOI: 10.1182/blood.v92.4.1259] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThrombin, a central molecule in coagulation, is also involved in inflammation. Notably, thrombin induces endothelial neutrophil adhesion, P- and E-selectin expression, and chemokine production. We show here that thrombin induces expression of intercellular adhesion molecule-1 (ICAM-1; CD54) and vascular cell adhesion molecule-1 (VCAM-1; CD106) on human umbilical vein endothelial cells (HUVECs) associated with increased adhesion of monocytes. Thrombin increased mRNA steady-state levels and expression of ICAM-1 over 24 hours. Thrombin-induced VCAM-1 expression exhibited unusual kinetics, reaching maximum levels after 6 to 12 hours, but decreasing to near baseline after 24 hours. Thrombin activity on HUVECs was mediated through interaction with its specific receptor, because ICAM-1 and VCAM-1 expression were similarly induced by the 14-amino acid thrombin receptor-activating peptide. Thrombin-induced ICAM-1 and VCAM-1 expression was significantly inhibited by hirudin, but not by interleukin-1 receptor antagonist or anti-tumor necrosis factor monoclonal antibody (MoAb). Thrombin-activated HUVECs significantly increased greater numbers of adhering THP-1 macrophagic cells, peripheral blood mononuclear cells, or purified monocytes than unstimulated HUVECs. This adhesion was inhibited by anti-CD18 and anti-CD49d MoAb, demonstrating that thrombin-induced ICAM-1 and VCAM-1 were functional. These results show that, in addition to selectins, thrombin directly induces a cytokine-independent expression of adhesion molecules of the Ig superfamily on HUVECs that may support firm leukocyte attachment during inflammation.© 1998 by The American Society of Hematology.
Collapse
|
248
|
Thrombin-Activated Human Endothelial Cells Support Monocyte Adhesion In Vitro Following Expression of Intercellular Adhesion Molecule-1 (ICAM-1; CD54) and Vascular Cell Adhesion Molecule-1 (VCAM-1; CD106). Blood 1998. [DOI: 10.1182/blood.v92.4.1259.416k11_1259_1267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thrombin, a central molecule in coagulation, is also involved in inflammation. Notably, thrombin induces endothelial neutrophil adhesion, P- and E-selectin expression, and chemokine production. We show here that thrombin induces expression of intercellular adhesion molecule-1 (ICAM-1; CD54) and vascular cell adhesion molecule-1 (VCAM-1; CD106) on human umbilical vein endothelial cells (HUVECs) associated with increased adhesion of monocytes. Thrombin increased mRNA steady-state levels and expression of ICAM-1 over 24 hours. Thrombin-induced VCAM-1 expression exhibited unusual kinetics, reaching maximum levels after 6 to 12 hours, but decreasing to near baseline after 24 hours. Thrombin activity on HUVECs was mediated through interaction with its specific receptor, because ICAM-1 and VCAM-1 expression were similarly induced by the 14-amino acid thrombin receptor-activating peptide. Thrombin-induced ICAM-1 and VCAM-1 expression was significantly inhibited by hirudin, but not by interleukin-1 receptor antagonist or anti-tumor necrosis factor monoclonal antibody (MoAb). Thrombin-activated HUVECs significantly increased greater numbers of adhering THP-1 macrophagic cells, peripheral blood mononuclear cells, or purified monocytes than unstimulated HUVECs. This adhesion was inhibited by anti-CD18 and anti-CD49d MoAb, demonstrating that thrombin-induced ICAM-1 and VCAM-1 were functional. These results show that, in addition to selectins, thrombin directly induces a cytokine-independent expression of adhesion molecules of the Ig superfamily on HUVECs that may support firm leukocyte attachment during inflammation.© 1998 by The American Society of Hematology.
Collapse
|
249
|
Kobayashi H, Gabazza EC, Taguchi O, Wada H, Takeya H, Nishioka J, Yasui H, Kobayashi T, Hataji O, Suzuki K, Adachi Y. Protein C anticoagulant system in patients with interstitial lung disease. Am J Respir Crit Care Med 1998; 157:1850-4. [PMID: 9620917 DOI: 10.1164/ajrccm.157.6.9709078] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Excessive procoagulant activity in the alveolar space may play a relevant role in the pathogenesis of pulmonary fibrosis. Hypercoagulability results from the disruption of the balance between the procoagulant and anticoagulant factors. The aim of this study was to assess the levels of molecular markers of the anticoagulant protein C (PC) pathway in the bronchoalveolar lavage fluid (BALF) and plasma of 11 patients with idiopathic pulmonary fibrosis (IPF), 14 with sarcoidosis and 16 with collagen vascular disease (CVD)-associated interstitial lung disease (CVD-ILD). Six healthy nonsmoking volunteers served as control subjects. BALF concentrations of the marker of clotting activation, thrombin- antithrombin III complex (TAT), in patients with sarcoidosis and CVD-ILD were significantly greater than those in control subjects. PC levels in BALF were markedly higher in patients with IPF (610 +/- 150 ng/ml), sarcoidosis (680 +/- 170 ng/ml), and CVD-ILD (1,580 +/- 600 ng/ml) than in control subjects (230 +/- 140 ng/ml). BALF concentrations of activated PC-PC inhibitor (APC-PCI) complex were significantly decreased in IPF (0.46 +/- 0.16 ng/ml), sarcoidosis (0. 43 +/- 0.11 ng/ml), and CVD-ILD (0.50 +/- 0.15 ng/ml) patients as compared with control subjects (1.08 +/- 0.23 ng/ml). APC-PCI/PC ratios were significantly lower in patients with IPF (2.70 +/- 1.74 ng/microg), sarcoidosis (1.94 +/- 0.82 ng/microg), and CVD-ILD (1.89 +/- 0.68 ng/microg) than in control subjects (15.91 +/- 8.45 ng/microg). Plasma levels of APC- PCI and the APC-PCI/PC ratio were also significantly decreased in patients with CVD-ILD as compared with control subjects. Overall, these findings suggest that decreased PC activation with increased procoagulant activity occurs in patients with ILD.
Collapse
Affiliation(s)
- H Kobayashi
- Third Department of Internal Medicine, Department of Molecular Pathobiology, and Second Department of Internal Medicine, Mie University School of Medicine, Tsu, Mie, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Weir MP, Bethell SS, Cleasby A, Campbell CJ, Dennis RJ, Dix CJ, Finch H, Jhoti H, Mooney CJ, Patel S, Tang CM, Ward M, Wonacott AJ, Wharton CW. Novel natural product 5,5-trans-lactone inhibitors of human alpha-thrombin: mechanism of action and structural studies. Biochemistry 1998; 37:6645-57. [PMID: 9578548 DOI: 10.1021/bi972499o] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
High-throughput screening of methanolic extracts from the leaves of the plant Lantana camara identified potent inhibitors of human alpha-thrombin, which were shown to be 5,5-trans-fused cyclic lactone euphane triterpenes [O'Neill et al. (1998) J. Nat. Prod. (submitted for publication)]. Proflavin displacement studies showed the inhibitors to bind at the active site of alpha-thrombin and alpha-chymotrypsin. Kinetic analysis of alpha-thrombin showed tight-binding reversible competitive inhibition by both compounds, named GR133487 and GR133686, with respective kon values at pH 8.4 of 1.7 x 10(6) s-1 M-1 and 4.6 x 10(6) s-1 M-1. Electrospray ionization mass spectrometry of thrombin/inhibitor complexes showed the tight-bound species to be covalently attached, suggesting acyl-enzyme formation by reaction of the active-site Ser195 with the trans-lactone carbonyl. X-ray crystal structures of alpha-thrombin/GR133686 (3.0 A resolution) and alpha-thrombin/GR133487 (2.2 A resolution) complexes showed continuous electron density between Ser195 and the ring-opened lactone carbonyl, demonstrating acyl-enzyme formation. Turnover of inhibitor by alpha-thrombin was negligible and mass spectrometry of isolated complexes showed that reversal of inhibition occurs by reformation of the trans-lactone from the acyl-enzyme. The catalytic triad appears undisrupted and the inhibitor carbonyl occupies the oxyanion hole, suggesting the observed lack of turnover is due to exclusion of water for deacylation. The acyl-enzyme inhibitor hydroxyl is properly positioned for nucleophilic attack on the ester carbonyl and therefore relactonization; furthermore, the higher resolution structure of alpha-thrombin/GR133487 shows this hydroxyl to be effectively superimposable with the recently proposed deacylating water for peptide substrate hydrolysis [Wilmouth, R. C., et al. (1997) Nat. Struct.Biol. 4, 456-462], suggesting the alpha-thrombin/GR133487 complex may be a good model for this reaction.
Collapse
Affiliation(s)
- M P Weir
- Glaxo Wellcome Medicines Research Centre, Stevenage, Hertfordshire, U.K
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|