201
|
Rozeboom HJ, Yu S, Madrid S, Kalk KH, Zhang R, Dijkstra BW. Crystal structure of α-1,4-glucan lyase, a unique glycoside hydrolase family member with a novel catalytic mechanism. J Biol Chem 2013; 288:26764-74. [PMID: 23902768 DOI: 10.1074/jbc.m113.485896] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α-1,4-Glucan lyase (EC 4.2.2.13) from the red seaweed Gracilariopsis lemaneiformis cleaves α-1,4-glucosidic linkages in glycogen, starch, and malto-oligosaccharides, yielding the keto-monosaccharide 1,5-anhydro-D-fructose. The enzyme belongs to glycoside hydrolase family 31 (GH31) but degrades starch via an elimination reaction instead of hydrolysis. The crystal structure shows that the enzyme, like GH31 hydrolases, contains a (β/α)8-barrel catalytic domain with B and B' subdomains, an N-terminal domain N, and the C-terminal domains C and D. The N-terminal domain N of the lyase was found to bind a trisaccharide. Complexes of the enzyme with acarbose and 1-dexoynojirimycin and two different covalent glycosyl-enzyme intermediates obtained with fluorinated sugar analogues show that, like GH31 hydrolases, the aspartic acid residues Asp(553) and Asp(665) are the catalytic nucleophile and acid, respectively. However, as a unique feature, the catalytic nucleophile is in a position to act also as a base that abstracts a proton from the C2 carbon atom of the covalently bound subsite -1 glucosyl residue, thus explaining the unique lyase activity of the enzyme. One Glu to Val mutation in the active site of the homologous α-glucosidase from Sulfolobus solfataricus resulted in a shift from hydrolytic to lyase activity, demonstrating that a subtle amino acid difference can promote lyase activity in a GH31 hydrolase.
Collapse
Affiliation(s)
- Henriëtte J Rozeboom
- From the Laboratory of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
202
|
Alvarez TM, Goldbeck R, dos Santos CR, Paixão DAA, Gonçalves TA, Franco Cairo JPL, Almeida RF, de Oliveira Pereira I, Jackson G, Cota J, Büchli F, Citadini AP, Ruller R, Polo CC, de Oliveira Neto M, Murakami MT, Squina FM. Development and biotechnological application of a novel endoxylanase family GH10 identified from sugarcane soil metagenome. PLoS One 2013; 8:e70014. [PMID: 23922891 PMCID: PMC3726488 DOI: 10.1371/journal.pone.0070014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/13/2013] [Indexed: 01/26/2023] Open
Abstract
Metagenomics has been widely employed for discovery of new enzymes and pathways to conversion of lignocellulosic biomass to fuels and chemicals. In this context, the present study reports the isolation, recombinant expression, biochemical and structural characterization of a novel endoxylanase family GH10 (SCXyl) identified from sugarcane soil metagenome. The recombinant SCXyl was highly active against xylan from beechwood and showed optimal enzyme activity at pH 6,0 and 45°C. The crystal structure was solved at 2.75 Å resolution, revealing the classical (β/α)8-barrel fold with a conserved active-site pocket and an inherent flexibility of the Trp281-Arg291 loop that can adopt distinct conformational states depending on substrate binding. The capillary electrophoresis analysis of degradation products evidenced that the enzyme displays unusual capacity to degrade small xylooligosaccharides, such as xylotriose, which is consistent to the hydrophobic contacts at the +1 subsite and low-binding energies of subsites that are distant from the site of hydrolysis. The main reaction products from xylan polymers and phosphoric acid-pretreated sugarcane bagasse (PASB) were xylooligosaccharides, but, after a longer incubation time, xylobiose and xylose were also formed. Moreover, the use of SCXyl as pre-treatment step of PASB, prior to the addition of commercial cellulolytic cocktail, significantly enhanced the saccharification process. All these characteristics demonstrate the advantageous application of this enzyme in several biotechnological processes in food and feed industry and also in the enzymatic pretreatment of biomass for feedstock and ethanol production.
Collapse
Affiliation(s)
- Thabata M. Alvarez
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brasil
- Departamento de Bioquímica, Instituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brasil
| | - Rosana Goldbeck
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brasil
| | - Camila Ramos dos Santos
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brasil
| | - Douglas A. A. Paixão
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brasil
| | - Thiago A. Gonçalves
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brasil
- Departamento de Bioquímica, Instituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brasil
| | - João Paulo L. Franco Cairo
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brasil
- Departamento de Bioquímica, Instituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brasil
| | - Rodrigo Ferreira Almeida
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brasil
| | - Isabela de Oliveira Pereira
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brasil
| | - George Jackson
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brasil
| | - Junio Cota
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brasil
| | - Fernanda Büchli
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brasil
- Departamento de Bioquímica, Instituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brasil
| | - Ana Paula Citadini
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brasil
| | - Roberto Ruller
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brasil
| | - Carla Cristina Polo
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brasil
| | - Mario de Oliveira Neto
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brasil
| | - Mário T. Murakami
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brasil
- * E-mail: (FMS); (MTM)
| | - Fabio M. Squina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brasil
- * E-mail: (FMS); (MTM)
| |
Collapse
|
203
|
Balasubramanian A, Durairajpandian V, Elumalai S, Mathivanan N, Munirajan AK, Ponnuraj K. Structural and functional studies on urease from pigeon pea (Cajanus cajan). Int J Biol Macromol 2013; 58:301-9. [DOI: 10.1016/j.ijbiomac.2013.04.055] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/30/2013] [Accepted: 04/10/2013] [Indexed: 11/27/2022]
|
204
|
Crystal structure of the N-terminal domain of a glycoside hydrolase family 131 protein from Coprinopsis cinerea. FEBS Lett 2013; 587:2193-8. [DOI: 10.1016/j.febslet.2013.05.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 11/22/2022]
|
205
|
Arimori T, Kawamoto N, Shinya S, Okazaki N, Nakazawa M, Miyatake K, Fukamizo T, Ueda M, Tamada T. Crystal structures of the catalytic domain of a novel glycohydrolase family 23 chitinase from Ralstonia sp. A-471 reveals a unique arrangement of the catalytic residues for inverting chitin hydrolysis. J Biol Chem 2013; 288:18696-706. [PMID: 23658014 DOI: 10.1074/jbc.m113.462135] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chitinase C from Ralstonia sp. A-471 (Ra-ChiC) has a catalytic domain sequence similar to goose-type (G-type) lysozymes and, unlike other chitinases, belongs to glycohydrolase (GH) family 23. Using NMR spectroscopy, however, Ra-ChiC was found to interact only with the chitin dimer but not with the peptidoglycan fragment. Here we report the crystal structures of wild-type, E141Q, and E162Q of the catalytic domain of Ra-ChiC with or without chitin oligosaccharides. Ra-ChiC has a substrate-binding site including a tunnel-shaped cavity, which determines the substrate specificity. Mutation analyses based on this structural information indicated that a highly conserved Glu-141 acts as a catalytic acid, and that Asp-226 located at the roof of the tunnel activates a water molecule as a catalytic base. The unique arrangement of the catalytic residues makes a clear contrast to the other GH23 members and also to inverting GH19 chitinases.
Collapse
Affiliation(s)
- Takao Arimori
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Ibaraki 319-1195, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Ratananikom K, Choengpanya K, Tongtubtim N, Charoenrat T, Withers SG, Kongsaeree PT. Mutational analysis in the glycone binding pocket of Dalbergia cochinchinensis β-glucosidase to increase catalytic efficiency toward mannosides. Carbohydr Res 2013; 373:35-41. [DOI: 10.1016/j.carres.2012.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/17/2012] [Accepted: 10/19/2012] [Indexed: 11/29/2022]
|
207
|
Liu TB, Kim JC, Wang Y, Toffaletti DL, Eugenin E, Perfect JR, Kim KJ, Xue C. Brain inositol is a novel stimulator for promoting Cryptococcus penetration of the blood-brain barrier. PLoS Pathog 2013; 9:e1003247. [PMID: 23592982 PMCID: PMC3617100 DOI: 10.1371/journal.ppat.1003247] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 02/01/2013] [Indexed: 11/17/2022] Open
Abstract
Cryptococcus neoformans is the most common cause of fungal meningitis, with high mortality and morbidity. The reason for the frequent occurrence of Cryptococcus infection in the central nervous system (CNS) is poorly understood. The facts that human and animal brains contain abundant inositol and that Cryptococcus has a sophisticated system for the acquisition of inositol from the environment suggests that host inositol utilization may contribute to the development of cryptococcal meningitis. In this study, we found that inositol plays an important role in Cryptococcus traversal across the blood-brain barrier (BBB) both in an in vitro human BBB model and in in vivo animal models. The capacity of inositol to stimulate BBB crossing was dependent upon fungal inositol transporters, indicated by a 70% reduction in transmigration efficiency in mutant strains lacking two major inositol transporters, Itr1a and Itr3c. Upregulation of genes involved in the inositol catabolic pathway was evident in a microarray analysis following inositol treatment. In addition, inositol increased the production of hyaluronic acid in Cryptococcus cells, which is a ligand known to binding host CD44 receptor for their invasion. These studies suggest an inositol-dependent Cryptococcus traversal of the BBB, and support our hypothesis that utilization of host-derived inositol by Cryptococcus contributes to CNS infection. Cryptococcus neoformans is an AIDS-associated human fungal pathogen that annually causes over 1 million cases of meningitis world-wide, and more than 600,000 attributable deaths. Cryptococcus often causes lung and brain infection and is the leading cause of fungal meningitis in immunosuppressed patients. Why Cryptococcus frequently infects the central nervous system to cause fatal meningitis is an unanswered critical question. Our previous studies revealed a sophisticated inositol acquisition system in Cryptococcus that plays a central role in utilizing environmental inositol to complete its sexual cycle. Here we further demonstrate that inositol acquisition is also important for fungal infection in the brain, where abundant inositol is available. We found that inositol promotes the traversal of Cryptococcus across the blood-brain barrier (BBB), and such stimulation is fungal inositol transporter dependent. We also identified the effects of host inositol on fungal cellular functions that contribute to the stimulation of fungal penetration of the BBB. We propose that inositol utilization is a novel virulence factor for CNS cryptococcosis. Our work lays an important foundation for understanding how fungi respond to available host inositol and indicates the impact of host inositol acquisition on the development of cryptococcal meningitis.
Collapse
Affiliation(s)
- Tong-Bao Liu
- Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
208
|
New insights on nucleoside 2'-deoxyribosyltransferases: a versatile biocatalyst for one-pot one-step synthesis of nucleoside analogs. Appl Microbiol Biotechnol 2013; 97:3773-85. [PMID: 23529679 DOI: 10.1007/s00253-013-4816-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/24/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
Abstract
In recent years, glycosiltransferases have arisen as standard biocatalysts for the enzymatic synthesis of a wide variety of natural and non-natural nucleosides. Such enzymatic synthesis of nucleoside analogs catalyzed by nucleoside phosphorylases and 2'-deoxyribosyltransferases (NDTs) has demonstrated to be an efficient alternative to the traditional multistep chemical methods, since chemical glycosylation reactions include several protection-deprotection steps. This minireview exhaustively covers literature reports on this topic with the final aim of presenting NDTs as an efficient option to nucleoside phosphorylases for the synthesis of natural and non-natural nucleosides. Detailed comments about structure and catalytic mechanism of described NDTs, as well as their possible biological role, substrate specificity, and advances in detection of new enzyme specificities towards different non-natural nucleoside synthesis are included. In addition, optimization of enzymatic transglycosylation reactions and their application in the synthesis of natural and non-natural nucleosides have been described. Finally, immobilization of NDTs is shown as a practical procedure which leads to the preparation of very interesting biocatalysts applicable to industrial nucleoside synthesis.
Collapse
|
209
|
Thermostable and Alkalistable Endoxylanase of the Extremely Thermophilic Bacterium Geobacillus thermodenitrificans TSAA1: Cloning, Expression, Characteristics and Its Applicability in Generating Xylooligosaccharides and Fermentable Sugars. Appl Biochem Biotechnol 2013; 170:119-30. [DOI: 10.1007/s12010-013-0174-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 03/01/2013] [Indexed: 10/27/2022]
|
210
|
Vaaje-Kolstad G, Horn SJ, Sørlie M, Eijsink VGH. The chitinolytic machinery ofSerratia marcescens- a model system for enzymatic degradation of recalcitrant polysaccharides. FEBS J 2013; 280:3028-49. [DOI: 10.1111/febs.12181] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 01/30/2013] [Accepted: 02/05/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Gustav Vaaje-Kolstad
- Department of Chemistry; Biotechnology and Food Science; Norwegian University of Life Sciences; Ås; Norway
| | - Svein J. Horn
- Department of Chemistry; Biotechnology and Food Science; Norwegian University of Life Sciences; Ås; Norway
| | - Morten Sørlie
- Department of Chemistry; Biotechnology and Food Science; Norwegian University of Life Sciences; Ås; Norway
| | - Vincent G. H. Eijsink
- Department of Chemistry; Biotechnology and Food Science; Norwegian University of Life Sciences; Ås; Norway
| |
Collapse
|
211
|
Jun SY, Kim JS, Choi KH, Cha J, Ha NC. Structure of a novel α-amylase AmyB fromThermotoga neapolitanathat produces maltose from the nonreducing end of polysaccharides. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:442-50. [DOI: 10.1107/s0907444912049219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/30/2012] [Indexed: 11/11/2022]
|
212
|
A novel thermophilic β-glucosidase from Caldicellulosiruptor bescii: Characterization and its synergistic catalysis with other cellulases. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
213
|
Rather M, Mishra S. β-Glycosidases: An alternative enzyme based method for synthesis of alkyl-glycosides. ACTA ACUST UNITED AC 2013. [DOI: 10.1186/2043-7129-1-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
214
|
Hattori T, Kato Y, Uno S, Usui T. Mode of action of a β-(1→6)-glucanase from Penicillium multicolor. Carbohydr Res 2013; 366:6-16. [DOI: 10.1016/j.carres.2012.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 11/30/2022]
|
215
|
Structure-based engineering of histidine residues in the catalytic domain of α-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions. J Biotechnol 2012; 164:59-66. [PMID: 23262127 DOI: 10.1016/j.jbiotec.2012.12.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 12/04/2012] [Accepted: 12/10/2012] [Indexed: 11/23/2022]
Abstract
This work aims to improve the protein stability and catalytic efficiency of α-amylase from Bacillus subtilis under acidic conditions by site-directed mutagenesis. Based on the analysis of a three dimensional structure model, four basic histidine (His) residues His(222), His(275), His(293), and His(310) in the catalytic domain were selected as the mutation sites and were further replaced with acidic aspartic acid (Asp), respectively, yielding four mutants H222D, H275D, H293D, H310D. The mutant H222D was inactive. Double and triple mutations were further conducted and four mutants H275/293D, H275/310D, H293/310D, and H275/293/310D were obtained. The acidic stability of enzyme was significantly enhanced after mutation, and 45-92% of initial activity of mutants was retained after incubation at pH 4.5 and 25°C for 24h, while that for wild-type was only 39.5%. At pH 4.5, the specific activity of wild-type and mutants H275D, H293D, H310D, H275/293D, H275/310D, H293/310D, and H275/293/310D were 108.2, 131.8, 138.9, 196.6, 156.3, 204.6, and 216.2U/mg, respectively. The catalytic efficiency for each active mutant was much higher than that of wild-type at low pH. The kcat/Km values of the mutants H275D, H293D, H310D, H275/293D, H275/310D, H293/310D, and H275/293/310D at pH 4.5 were 3.3-, 4.3-, 6.5-, 4.5-, 11.0-, 14.5-, and 16.7-fold higher, respectively, than that of the wild-type. As revealed by the structure models of the wild-type and mutant enzymes, the hydrogen bonds and salt bridges were increased after mutation, and an obvious shift of the basic limb toward acidity was observed for mutants. These changes around the catalytic domain contributed to the significantly improved protein stability and catalytic efficiency at low pH. This work provides an effective strategy to improve the catalytic activity and stability of α-amylase under acidic conditions, and the results obtained here may be useful for the improvement of acid-resistant ability of other enzymes.
Collapse
|
216
|
Abstract
From a generated PES, one can determine the relative energies of species involved, the sequence in which they occur, and the activation barrier(s) associated with individual steps or the overall mechanism. Furthermore, they can provide more insights than a simple indication of a path of sequential mechanistic structures and their energetic relationships. The investigation into the activation of O2 by alpha-ketoglutarate-dependent dioxygenase (AlkB) clearly shows the opportunity for spin inversion, where one can see that the lowest energy product may be formed via several possible routes. In the investigation of uroporphyrinogen decarboxylase III (UROD), the use of QM/MM methods allowed for the inclusion of the anisotropic protein environment providing greater insight into the rate-limiting barrier. Lastly, the mechanism of 6-phospho-α-glucosidase (GlvA) was discussed using different active site models. In particular, a continuum model PES was compared to the gas-phase PES.
Collapse
|
217
|
Structural basis of heparan sulfate-specific degradation by heparinase III. Protein Cell 2012; 3:950-61. [PMID: 23011846 PMCID: PMC4875378 DOI: 10.1007/s13238-012-2056-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 06/17/2012] [Indexed: 01/07/2023] Open
Abstract
Heparinase III (HepIII) is a 73-kDa polysaccharide lyase (PL) that degrades the heparan sulfate (HS) polysaccharides at sulfate-rare regions, which are important co-factors for a vast array of functional distinct proteins including the well-characterized antithrombin and the FGF/FGFR signal transduction system. It functions in cleaving metazoan heparan sulfate (HS) and providing carbon, nitrogen and sulfate sources for host microorganisms. It has long been used to deduce the structure of HS and heparin motifs; however, the structure of its own is unknown. Here we report the crystal structure of the HepIII from Bacteroides thetaiotaomicron at a resolution of 1.6 Å. The overall architecture of HepIII belongs to the (α/α)₅ toroid subclass with an N-terminal toroid-like domain and a C-terminal β-sandwich domain. Analysis of this high-resolution structure allows us to identify a potential HS substrate binding site in a tunnel between the two domains. A tetrasaccharide substrate bound model suggests an elimination mechanism in the HS degradation. Asn260 and His464 neutralize the carboxylic group, whereas Tyr314 serves both as a general base in C-5 proton abstraction, and a general acid in a proton donation to reconstitute the terminal hydroxyl group, respectively. The structure of HepIII and the proposed reaction model provide a molecular basis for its potential practical utilization and the mechanism of its eliminative degradation for HS polysaccarides.
Collapse
|
218
|
Pouyez J, Mayard A, Vandamme AM, Roussel G, Perpète EA, Wouters J, Housen I, Michaux C. First crystal structure of an endo-inulinase, INU2, from Aspergillus ficuum: Discovery of an extra-pocket in the catalytic domain responsible for its endo-activity. Biochimie 2012; 94:2423-30. [DOI: 10.1016/j.biochi.2012.06.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
|
219
|
Bhardwaj A, Mahanta P, Ramakumar S, Ghosh A, Leelavathi S, Reddy VS. Emerging role of N- and C-terminal interactions in stabilizing (β/α)8 fold with special emphasis on Family 10 xylanases. Comput Struct Biotechnol J 2012; 2:e201209014. [PMID: 24688655 PMCID: PMC3962208 DOI: 10.5936/csbj.201209014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/24/2012] [Accepted: 10/24/2012] [Indexed: 11/22/2022] Open
Abstract
Xylanases belong to an important class of industrial enzymes. Various xylanases have been purified and characterized from a plethora of organisms including bacteria, marine algae, plants, protozoans, insects, snails and crustaceans. Depending on the source, the enzymatic activity of xylanases varies considerably under various physico-chemical conditions such as temperature, pH, high salt and in the presence of proteases. Family 10 or glycosyl hydrolase 10 (GH10) xylanases are one of the well characterized and thoroughly studied classes of industrial enzymes. The TIM-barrel fold structure which is ubiquitous in nature is one of the characteristics of family 10 xylanases. Family 10 xylanases have been used as a “model system” due to their TIM-barrel fold to dissect and understand protein stability under various conditions. A better understanding of structure-stability-function relationships of family 10 xylanases allows one to apply these governing molecular rules to engineer other TIM-barrel fold proteins to improve their stability and retain function(s) under adverse conditions. In this review, we discuss the implications of N-and C-terminal interactions, observed in family 10 xylanases on protein stability under extreme conditions. The role of metal binding and aromatic clusters in protein stability is also discussed. Studying and understanding family 10 xylanase structure and function, can contribute to our protein engineering knowledge.
Collapse
Affiliation(s)
- Amit Bhardwaj
- Molecular Pathology Lab, International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, 34149, Trieste, Italy
| | - Pranjal Mahanta
- Department of Physics, Indian Institute of Science, Bangalore, India
| | | | - Amit Ghosh
- National Institute of Cholera and Enteric diseases, Kolkata, India
| | - Sadhu Leelavathi
- Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi - 110067, India
| | - Vanga Siva Reddy
- Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi - 110067, India
| |
Collapse
|
220
|
Novel structural features of xylanase A1 from Paenibacillus sp. JDR-2. J Struct Biol 2012; 180:303-11. [PMID: 23000703 DOI: 10.1016/j.jsb.2012.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 08/28/2012] [Accepted: 09/03/2012] [Indexed: 11/24/2022]
Abstract
The Gram-positive bacterium Paenibacillus sp. JDR-2 (PbJDR2) has been shown to have novel properties in the utilization of the abundant but chemically complex hemicellulosic sugar glucuronoxylan. Xylanase A1 of PbJDR2 (PbXynA1) has been implicated in an efficient process in which extracellular depolymerization of this polysaccharide is coupled to assimilation and intracellular metabolism. PbXynA1is a 154kDa cell wall anchored multimodular glycosyl hydrolase family 10 (GH10) xylanase. In this work, the 38kDa catalytic module of PbXynA1 has been structurally characterized revealing several new features not previously observed in structures of GH10 xylanases. These features are thought to facilitate hydrolysis of highly substituted, chemically complex xylans that may be the form found in close proximity to the cell wall of PbJDR2, an organism shown to have a preference for growth on polymeric glucuronoxylan.
Collapse
|
221
|
Sørensen A, Ahring BK, Lübeck M, Ubhayasekera W, Bruno KS, Culley DE, Lübeck PS. Identifying and characterizing the most significant β-glucosidase of the novel species Aspergillus saccharolyticus. Can J Microbiol 2012; 58:1035-46. [DOI: 10.1139/w2012-076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the main β-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high β-glucosidase activity and only 1 visible band on an SDS–PAGE gel. Mass spectrometry analysis of this band gave peptide matches to β-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger , respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested β-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other β-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-β-d-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50 °C, and at 60 °C it had a half-life of approximately 6 h.
Collapse
Affiliation(s)
- Annette Sørensen
- Section for Sustainable Biotechnology, Aalborg University Copenhagen, A.C. Meyers Vænge 15, 2450 København SV, Denmark
- Center for Bioproducts and Bioenergy, Washington State University TriCities, 2710 Crimson Way, Richland, WA 99354, USA
| | - Birgitte K. Ahring
- Section for Sustainable Biotechnology, Aalborg University Copenhagen, A.C. Meyers Vænge 15, 2450 København SV, Denmark
- Center for Bioproducts and Bioenergy, Washington State University TriCities, 2710 Crimson Way, Richland, WA 99354, USA
| | - Mette Lübeck
- Section for Sustainable Biotechnology, Aalborg University Copenhagen, A.C. Meyers Vænge 15, 2450 København SV, Denmark
| | - Wimal Ubhayasekera
- MAX-lab, Lund University, Box 118, S-221 00 Lund, Sweden
- Institute of Medicinal Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100 København Ø, Denmark
| | - Kenneth S. Bruno
- Chemical and Biological Process Development Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - David E. Culley
- Chemical and Biological Process Development Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Peter S. Lübeck
- Section for Sustainable Biotechnology, Aalborg University Copenhagen, A.C. Meyers Vænge 15, 2450 København SV, Denmark
| |
Collapse
|
222
|
Senger MR, Gomes LDCA, Ferreira SB, Kaiser CR, Ferreira VF, Silva FP. Kinetics studies on the inhibition mechanism of pancreatic α-amylase by glycoconjugated 1H-1,2,3-triazoles: a new class of inhibitors with hypoglycemiant activity. Chembiochem 2012; 13:1584-1593. [PMID: 22753086 DOI: 10.1002/cbic.201200272] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Indexed: 01/04/2025]
Abstract
Glycoconjugated 1H-1,2,3-triazoles (GCTs) comprise a new class of glycosidase inhibitors that are under investigation as promising therapeutic agents for a variety of diseases, including type 2 diabetes mellitus. However, few kinetics studies have been performed to clarify the mode of inhibition of GCTs with their target glycosidases. Our group has previously shown that some methyl-β-D-ribofuranosyl-1H-1,2,3-triazoles that inhibit baker's yeast maltase were also able to reduce post-prandial glucose levels in normal rats. We hypothesized that this hypoglycemiant activity was attributable to inhibition of mammalian α-glucosidases involved in sugar metabolism, such as pancreatic α-amylase. Hence, the aim of this work was to test a series of 26 GCTs on porcine pancreatic α-amylase (PPA) and to characterize their inhibition mechanisms. Six GCTs, all ribofuranosyl-derived GCTs, significantly inhibited PPA, with IC(50) values in the middle to high micromolar range. Our results also demonstrated that ribofuranosyl-derived GCTs are reversible, noncompetitive inhibitors when using 2-chloro-4-nitrophenyl-α-D-maltotrioside as a substrate. E/ES affinity ratios (α) ranged from 0.3 to 1.1, with the majority of ribofuranosyl-derived GCTs preferentially forming stable ternary ESI complexes. Competition assays with acarbose showed that ribofuranosyl-derived GCTs bind to PPA in a mutually exclusive fashion. The data presented here show that pancreatic α-amylase is one of the possible molecular targets in the pharmacological activity of ribofuranosyl-derived GCTs. Our results also provide important mechanistic insight that can be of major help to develop this new class of synthetic small molecules into more potent compounds with anti-diabetic activity through rational drug design.
Collapse
Affiliation(s)
- Mario Roberto Senger
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Proteínas e Peptídeos, 21040-360, Brazil
| | | | | | | | | | | |
Collapse
|
223
|
Examining the role of phosphate in glycosyl transfer reactions of Cellulomonas uda cellobiose phosphorylase using d-glucal as donor substrate. Carbohydr Res 2012; 356:224-32. [DOI: 10.1016/j.carres.2012.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 11/24/2022]
|
224
|
Ojima T, Aizawa K, Saburi W, Yamamoto T. α-Glucosylated 6-gingerol: chemoenzymatic synthesis using α-glucosidase from Halomonas sp. H11, and its physical properties. Carbohydr Res 2012; 354:59-64. [DOI: 10.1016/j.carres.2012.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/09/2012] [Accepted: 03/10/2012] [Indexed: 11/27/2022]
|
225
|
Sakurama H, Fushinobu S, Hidaka M, Yoshida E, Honda Y, Ashida H, Kitaoka M, Kumagai H, Yamamoto K, Katayama T. 1,3-1,4-α-L-fucosynthase that specifically introduces Lewis a/x antigens into type-1/2 chains. J Biol Chem 2012; 287:16709-19. [PMID: 22451675 DOI: 10.1074/jbc.m111.333781] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α-L-fucosyl residues attached at the non-reducing ends of glycoconjugates constitute histo-blood group antigens Lewis (Le) and ABO and play fundamental roles in various biological processes. Therefore, establishing a method for synthesizing the antigens is important for functional glycomics studies. However, regiospecific synthesis of glycosyl linkages, especially α-L-fucosyl linkages, is quite difficult to control both by chemists and enzymologists. Here, we generated an α-L-fucosynthase that specifically introduces Le(a) and Le(x) antigens into the type-1 and type-2 chains, respectively; i.e. the enzyme specifically accepts the disaccharide structures (Galβ1-3/4GlcNAc) at the non-reducing ends and attaches a Fuc residue via an α-(1,4/3)-linkage to the GlcNAc. X-ray crystallographic studies revealed the structural basis of this strict regio- and acceptor specificity, which includes the induced fit movement of the catalytically important residues, and the difference between the active site structures of 1,3-1,4-α-L-fucosidase (EC 3.2.1.111) and α-L-fucosidase (EC 3.2.1.51) in glycoside hydrolase family 29. The glycosynthase developed in this study should serve as a potentially powerful tool to specifically introduce the Le(a/x) epitopes onto labile glycoconjugates including glycoproteins. Mining glycosidases with strict specificity may represent the most efficient route to the specific synthesis of glycosidic bonds.
Collapse
Affiliation(s)
- Haruko Sakurama
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
May JF, Levengood MR, Splain RA, Brown CD, Kiessling LL. A processive carbohydrate polymerase that mediates bifunctional catalysis using a single active site. Biochemistry 2012; 51:1148-59. [PMID: 22217153 DOI: 10.1021/bi201820p] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Even in the absence of a template, glycosyltransferases can catalyze the synthesis of carbohydrate polymers of specific sequence. The paradigm has been that one enzyme catalyzes the formation of one type of glycosidic linkage, yet certain glycosyltransferases generate polysaccharide sequences composed of two distinct linkage types. In principle, bifunctional glycosyltransferases can possess separate active sites for each catalytic activity or one active site with dual activities. We encountered the fundamental question of one or two distinct active sites in our investigation of the galactosyltransferase GlfT2. GlfT2 catalyzes the formation of mycobacterial galactan, a critical cell-wall polymer composed of galactofuranose residues connected with alternating, regioisomeric linkages. We found that GlfT2 mediates galactan polymerization using only one active site that manifests dual regioselectivity. Structural modeling of the bifunctional glycosyltransferases hyaluronan synthase and cellulose synthase suggests that these enzymes also generate multiple glycosidic linkages using a single active site. These results highlight the versatility of glycosyltransferases for generating polysaccharides of specific sequence. We postulate that a hallmark of processive elongation of a carbohydrate polymer by a bifunctional enzyme is that one active site can give rise to two separate types of glycosidic bonds.
Collapse
Affiliation(s)
- John F May
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, United States
| | | | | | | | | |
Collapse
|
227
|
Panjikar S, Stoeckigt J, O'Connor S, Warzecha H. The impact of structural biology on alkaloid biosynthesis research. Nat Prod Rep 2012; 29:1176-200. [DOI: 10.1039/c2np20057k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
228
|
Cobucci-Ponzano B, Moracci M. Glycosynthases as tools for the production of glycan analogs of natural products. Nat Prod Rep 2012; 29:697-709. [DOI: 10.1039/c2np20032e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
229
|
Mathew S, Adlercreutz P. Cyclodextrin glucanotransferase (CGTase) catalyzed synthesis of dodecyl glucooligosides by transglycosylation using α-cyclodextrin or starch. Carbohydr Polym 2012; 87:574-580. [DOI: 10.1016/j.carbpol.2011.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/26/2011] [Accepted: 08/10/2011] [Indexed: 11/15/2022]
|
230
|
Synthesis, crystal structure and β-glucuronidase inhibition activity of some new hydrazinecarboxamides and their 1,2,4-triazole derivatives. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9929-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
231
|
Weakly hydrated surfaces and the binding interactions of small biological solutes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 41:369-77. [DOI: 10.1007/s00249-011-0776-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 11/01/2011] [Accepted: 11/08/2011] [Indexed: 10/15/2022]
|
232
|
Zheng B, Yang W, Zhao X, Wang Y, Lou Z, Rao Z, Feng Y. Crystal structure of hyperthermophilic endo-β-1,4-glucanase: implications for catalytic mechanism and thermostability. J Biol Chem 2011; 287:8336-46. [PMID: 22128157 DOI: 10.1074/jbc.m111.266346] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endo-β-1,4-glucanase from thermophilic Fervidobacterium nodosum Rt17-B1 (FnCel5A), a new member of glycosyl hydrolase family 5, is highly thermostable and exhibits the highest activity on carboxymethylcellulose among the reported homologues. To understand the structural basis for the thermostability and catalytic mechanism, we report here the crystal structures of FnCel5A and the complex with glucose at atomic resolution. FnCel5A exhibited a (β/α)(8)-barrel structure typical of clan GH-A of the glycoside hydrolase families with a large and deep catalytic pocket located in the C-terminal end of the β-strands that may permit substrate access. A comparison of the structure of FnCel5A with related structures from thermopile Clostridium thermocellum, mesophile Clostridium cellulolyticum, and psychrophile Pseudoalteromonas haloplanktis showed significant differences in intramolecular interactions (salt bridges and hydrogen bonds) that may account for the difference in their thermostabilities. The substrate complex structure in combination with a mutagenesis analysis of the catalytic residues implicates a distinctive catalytic module Glu(167)-His(226)-Glu(283), which suggests that the histidine may function as an intermediate for the electron transfer network between the typical Glu-Glu catalytic module. Further investigation suggested that the aromatic residues Trp(61), Trp(204), Phe(231), and Trp(240) as well as polar residues Asn(51), His(127), Tyr(228), and His(235) in the active site not only participated in substrate binding but also provided a unique microenvironment suitable for catalysis. These results provide substantial insight into the unique characteristics of FnCel5A for catalysis and adaptation to extreme temperature.
Collapse
Affiliation(s)
- Baisong Zheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130023, China
| | | | | | | | | | | | | |
Collapse
|
233
|
Five hepatopancreatic and one epidermal chitinases from a pandalid shrimp (Pandalopsis japonica): cloning and effects of eyestalk ablation on gene expression. Comp Biochem Physiol B Biochem Mol Biol 2011; 161:197-207. [PMID: 22138334 DOI: 10.1016/j.cbpb.2011.11.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/14/2011] [Accepted: 11/15/2011] [Indexed: 11/21/2022]
Abstract
Six cDNAs encoding chitinase proteins in Pandalopsis japonica were isolated by using polymerase chain reaction (PCR) cloning methods and bioinformatic analysis of expressed sequence tags (ESTs). The cDNAs, designated Pj-Cht1, 2, 3A, 3B, 3C, and 4, encoded proteins ranging from 388 to 607 amino acid residues in length (43.61-67.62kDa) and displayed a common structural organization: an N-terminal catalytic domain, a Thr/Pro-rich linker region, and either 0 (Pj-Cht2, 3A), 1 (Pj-Cht1, 3B, and 3C), or 2 (Pj-Cht4) C-terminal chitin-binding domain(s) (CBD). Pj-Cht1 and 2 lacked the 5' end of the open reading frame (ORF); the other Pj-Chts contained the complete ORF. All known decapod crustacean chitinases were segregated into at least four groups based on phylogenetic analysis and domain organization. Group 1 chitinases, represented by Pj-Cht1, were most closely related to insect group I chitinases and may function in the digestion of the peritrophic membrane. Group 2 chitinases including Pj-Cht2 show different domain organizations and pI value from other chitinases and appear to function in degradation of the old exoskeleton during the premolt period. Group 3 chitinases, represented by Pj-Cht3A, 3B, and 3C, may function in digestion of chitin-containing food and defense against pathogens. Group 4 chitinases, represented by Pj-Cht4, have two CBDs and their functions are unknown. Five Pj-Chts (Pj-Cht1, 3A, 3B, 3C, and 4) are expressed in the hepatopancreas and intestine, whereas Pj-Cht2 is expressed in epidermis and SG/XO complex suggesting crustacean chitinases can be classified into two groups (hepatopancreatic and epidermal) based on the expression profile. Eyestalk ablation (ESA) down-regulated the hepatopancreatic chitinase expression (Pj-Cht1, 3A, and 3C); Pj-Cht3B expression was not significantly affected by ESA. By contrast, mRNA levels of Pj-Cht2 were significantly upregulated in 7days post-ESA. Pj-Cht4 mRNA levels were too low for measurement with quantitative polymerase chain reaction. ESA had no significant effect on chitinase expression in the intestine. These data indicate that Pj-Cht1, 3A, 3B, 3C, and 4 are hepatopancreatic chitinases that may function in the digestion of ingested chitin and the modification of peritrophic membrane in the intestine. By contrast, epidermal chitinase, Pj-Cht2 may play a role in chitin metabolism during molt cycle as shown in other crustacean group 2 chitinases.
Collapse
|
234
|
Ohto U, Usui K, Ochi T, Yuki K, Satow Y, Shimizu T. Crystal structure of human β-galactosidase: structural basis of Gm1 gangliosidosis and morquio B diseases. J Biol Chem 2011; 287:1801-12. [PMID: 22128166 DOI: 10.1074/jbc.m111.293795] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G(M1) gangliosidosis and Morquio B are autosomal recessive lysosomal storage diseases associated with a neurodegenerative disorder or dwarfism and skeletal abnormalities, respectively. These diseases are caused by deficiencies in the lysosomal enzyme β-d-galactosidase (β-Gal), which lead to accumulations of the β-Gal substrates, G(M1) ganglioside, and keratan sulfate. β-Gal is an exoglycosidase that catalyzes the hydrolysis of terminal β-linked galactose residues. This study shows the crystal structures of human β-Gal in complex with its catalytic product galactose or with its inhibitor 1-deoxygalactonojirimycin. Human β-Gal is composed of a catalytic TIM barrel domain followed by β-domain 1 and β-domain 2. To gain structural insight into the molecular defects of β-Gal in the above diseases, the disease-causing mutations were mapped onto the three-dimensional structure. Finally, the possible causes of the diseases are discussed.
Collapse
Affiliation(s)
- Umeharu Ohto
- From the Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
235
|
Virtual ligand screening of α-glucosidase: Identification of a novel potent noncarbohydrate mimetic inhibitor. Bioorg Med Chem Lett 2011; 22:62-4. [PMID: 22154663 DOI: 10.1016/j.bmcl.2011.11.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/17/2011] [Accepted: 11/19/2011] [Indexed: 11/22/2022]
Abstract
5-Thiazoleacetamide derivatives of AR122 and AR125 were screened as α-glucosidase inhibitors by in silico high-throughput screening from commercial drug-like small compound libraries. Inhibition of α-glucosidase with AR122 and AR125 is time dependent: with no preincubation, AR122 and AR125 are relatively moderate inhibitors, but interestingly, after a 120 min incubation, they were 50-fold more potent (AR122: IC(50)=2.47 μM and AR125: IC(50)=27.1 μM). Plots of ln [residual α-glucosidase activity %] versus preincubation time show a pseudo-first order kinetics for both inhibitors. Through dialysis of enzyme-inhibitor complexes, no activity recovery was shown. These results suggest that AR122 and AR125 constitute a new class of noncarbohydrate mimetic inhibitor with an irreversible mechanism.
Collapse
|
236
|
Updates on naringinase: structural and biotechnological aspects. Appl Microbiol Biotechnol 2011; 93:49-60. [PMID: 22080346 DOI: 10.1007/s00253-011-3679-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/11/2011] [Accepted: 10/27/2011] [Indexed: 10/15/2022]
Abstract
Naringinases has attracted a great deal of attention in recent years due to its hydrolytic activities which include the production of rhamnose, and prunin and debittering of citrus fruit juices. While this enzyme is widely distributed in fungi, its production from bacterial sources is less commonly known. Fungal naringinase are very important as they are used industrially in large amounts and have been extensively studied during the past decade. In this article, production of bacterial naringinase and potential biotechnological applications are discussed. Bacterial rhamnosidases are exotype enzymes that hydrolyse terminal non-reducing α-L-rhamnosyl groups from α-L-rhamnose containing polysaccharides and glycosides. Structurally, they are classified into family 78 of glycoside hydrolases and characterized by the presence of Asp567 and Glu841 in their active site. Optimization of fermentation conditions and enzyme engineering will allow the development of improved rhamnosidases for advancing suggested industrial applications.
Collapse
|
237
|
Sugiarto G, Lau K, Li Y, Khedri Z, Yu H, Le DT, Chen X. Decreasing the sialidase activity of multifunctional Pasteurella multocida α2-3-sialyltransferase 1 (PmST1) by site-directed mutagenesis. MOLECULAR BIOSYSTEMS 2011; 7:3021-7. [PMID: 21858283 PMCID: PMC11314589 DOI: 10.1039/c1mb05182b] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Pasteurella multocida α2-3-sialyltransferase 1 (PmST1) is a multifunctional enzyme which has α2-6-sialyltransferase, α2-3-sialidase, and α2-3-trans-sialidase activities in addition to its major α2-3-sialyltransferase activity. The presence of the α2-3-sialidase activity of PmST1 complicates its application in enzymatic synthesis of α2-3-linked sialosides as the product formed can be hydrolyzed by the enzyme. Herein we show that the α2-3-sialidase activity of PmST1 can be significantly decreased by protein crystal structure-based site-directed mutagenesis. A PmST1 double mutant E271F/R313Y showed a significantly (6333-fold) decreased sialidase activity without affecting its α2-3-sialyltransferase activity. The double mutant E271F/R313Y, therefore, is a superior enzyme for enzymatic synthesis of α2-3-linked sialosides.
Collapse
Affiliation(s)
- Go Sugiarto
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kam Lau
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Yanhong Li
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Zahra Khedri
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Diem-Thuy Le
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
238
|
Paës G, Berrin JG, Beaugrand J. GH11 xylanases: Structure/function/properties relationships and applications. Biotechnol Adv 2011; 30:564-92. [PMID: 22067746 DOI: 10.1016/j.biotechadv.2011.10.003] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/06/2011] [Accepted: 10/13/2011] [Indexed: 01/02/2023]
Abstract
For technical, environmental and economical reasons, industrial demands for process-fitted enzymes have evolved drastically in the last decade. Therefore, continuous efforts are made in order to get insights into enzyme structure/function relationships to create improved biocatalysts. Xylanases are hemicellulolytic enzymes, which are responsible for the degradation of the heteroxylans constituting the lignocellulosic plant cell wall. Due to their variety, xylanases have been classified in glycoside hydrolase families GH5, GH8, GH10, GH11, GH30 and GH43 in the CAZy database. In this review, we focus on GH11 family, which is one of the best characterized GH families with bacterial and fungal members considered as true xylanases compared to the other families because of their high substrate specificity. Based on an exhaustive analysis of the sequences and 3D structures available so far, in relation with biochemical properties, we assess biochemical aspects of GH11 xylanases: structure, catalytic machinery, focus on their "thumb" loop of major importance in catalytic efficiency and substrate selectivity, inhibition, stability to pH and temperature. GH11 xylanases have for a long time been used as biotechnological tools in various industrial applications and represent in addition promising candidates for future other uses.
Collapse
Affiliation(s)
- Gabriel Paës
- INRA, UMR614 FARE, 2 esplanade Roland-Garros, F-51686 Reims, France.
| | | | | |
Collapse
|
239
|
Naumoff DG. Hierarchical classification of glycoside hydrolases. BIOCHEMISTRY (MOSCOW) 2011; 76:622-35. [PMID: 21639842 DOI: 10.1134/s0006297911060022] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review deals with structural and functional features of glycoside hydrolases, a widespread group of enzymes present in almost all living organisms. Their catalytic domains are grouped into 120 amino acid sequence-based families in the international classification of the carbohydrate-active enzymes (CAZy database). At a higher hierarchical level some of these families are combined in 14 clans. Enzymes of the same clan have common evolutionary origin of their genes and share the most important functional characteristics such as composition of the active center, anomeric configuration of cleaved glycosidic bonds, and molecular mechanism of the catalyzed reaction (either inverting, or retaining). There are now extensive data in the literature concerning the relationship between glycoside hydrolase families belonging to different clans and/or included in none of them, as well as information on phylogenetic protein relationship within particular families. Summarizing these data allows us to propose a multilevel hierarchical classification of glycoside hydrolases and their homologs. It is shown that almost the whole variety of the enzyme catalytic domains can be brought into six main folds, large groups of proteins having the same three-dimensional structure and the supposed common evolutionary origin.
Collapse
Affiliation(s)
- D G Naumoff
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, 117312, Russia.
| |
Collapse
|
240
|
Syson K, Stevenson CEM, Rejzek M, Fairhurst SA, Nair A, Bruton CJ, Field RA, Chater KF, Lawson DM, Bornemann S. Structure of Streptomyces maltosyltransferase GlgE, a homologue of a genetically validated anti-tuberculosis target. J Biol Chem 2011; 286:38298-38310. [PMID: 21914799 DOI: 10.1074/jbc.m111.279315] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
GlgE is a recently identified (1→4)-α-d-glucan:phosphate α-d-maltosyltransferase involved in α-glucan biosynthesis in bacteria and is a genetically validated anti-tuberculosis drug target. It is a member of the GH13_3 CAZy subfamily for which no structures were previously known. We have solved the structure of GlgE isoform I from Streptomyces coelicolor and shown that this enzyme has the same catalytic and very similar kinetic properties to GlgE from Mycobacterium tuberculosis. The S. coelicolor enzyme forms a homodimer with each subunit comprising five domains, including a core catalytic α-amylase-type domain A with a (β/α)(8) fold. This domain is elaborated with domain B and two inserts that are specifically configured to define a well conserved donor pocket capable of binding maltose. Domain A, together with domain N from the neighboring subunit, forms a hydrophobic patch that is close to the maltose-binding site and capable of binding cyclodextrins. Cyclodextrins competitively inhibit the binding of maltooligosaccharides to the S. coelicolor enzyme, showing that the hydrophobic patch overlaps with the acceptor binding site. This patch is incompletely conserved in the M. tuberculosis enzyme such that cyclodextrins do not inhibit this enzyme, despite acceptor length specificity being conserved. The crystal structure reveals two further domains, C and S, the latter being a helix bundle not previously reported in GH13 members. The structure provides a framework for understanding how GlgE functions and will help guide the development of inhibitors with therapeutic potential.
Collapse
Affiliation(s)
- Karl Syson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Clare E M Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Shirley A Fairhurst
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Alap Nair
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Celia J Bruton
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Keith F Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Stephen Bornemann
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom.
| |
Collapse
|
241
|
|
242
|
Crystal structure of a key enzyme in the agarolytic pathway, α-neoagarobiose hydrolase from Saccharophagus degradans 2-40. Biochem Biophys Res Commun 2011; 412:238-44. [PMID: 21810409 DOI: 10.1016/j.bbrc.2011.07.073] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 07/19/2011] [Indexed: 11/21/2022]
Abstract
In agarolytic microorganisms, α-neoagarobiose hydrolase (NABH) is an essential enzyme to metabolize agar because it converts α-neoagarobiose (O-3,6-anhydro-alpha-l-galactopyranosyl-(1,3)-d-galactose) into fermentable monosaccharides (d-galactose and 3,6-anhydro-l-galactose) in the agarolytic pathway. NABH can be divided into two biological classes by its cellular location. Here, we describe a structure and function of cytosolic NABH from Saccharophagus degradans 2-40 in a native protein and d-galactose complex determined at 2.0 and 1.55 Å, respectively. The overall fold is organized in an N-terminal helical extension and a C-terminal five-bladed β-propeller catalytic domain. The structure of the enzyme-ligand (d-galactose) complex predicts a +1 subsite in the substrate binding pocket. The structural features may provide insights for the evolution and classification of NABH in agarolytic pathways.
Collapse
|
243
|
Shrestha KL, Liu SW, Huang CP, Wu HM, Wang WC, Li YK. Characterization and identification of essential residues of the glycoside hydrolase family 64 laminaripentaose-producing- -1, 3-glucanase. Protein Eng Des Sel 2011; 24:617-25. [DOI: 10.1093/protein/gzr031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
244
|
El-Beshbishy HA, Bahashwan SA. Hypoglycemic effect of basil (Ocimum basilicum) aqueous extract is mediated through inhibition of α-glucosidase and α-amylase activities. Toxicol Ind Health 2011; 28:42-50. [DOI: 10.1177/0748233711403193] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study investigated the in vitro hypoglycemic activity of basil ( Ocimum basilicum) aqueous extract. Preliminary phytochemical screening of the extract revealed the presence of reducing sugars, cardiac glycosides, tannins, saponins, glycosides, flavonoids and steroids. The total polyphenols content (TPC), flavonoids content (FC), percentage diphenylpicrylhydrazyl (DPPH·) radical inhibition and total antioxidant status (TAS) were estimated. The FC was 41 ± 2.2 rutin/g dry extract, the TPC was 146 ± 5.26 mg catechin/g dry extract and the TAS was 5.12 ± 0.7 mmol/L. The %DPPH· free radical inhibition was 60%, 54%, 49% and 43%, respectively, for different extract concentrations; 20, 18.2, 16.3 and 14.5 mg/ml, respectively. The extract elicited significant dose-dependent pattern against rat intestinal sucrase (RIS; IC50 = 36.72 mg/ml), rat intestinal maltase (RIM; IC50 = 21.31 mg/ml) and porcine pancreatic α-amylase (PPA; IC50 = 42.50 mg/ml) inhibitory activities. The inhibition was greater against maltase compared with sucrase. These effects may be attributed to the high TPC and FC levels. The linear regression analysis revealed strong significant positive correlations between %DPPH· radical inhibition and each of %RIS, %RIM and %PPA inhibiting activity. Also, strong significant positive correlations between %RIS and either %RIM or %PPA inhibition activity were observed. We concluded therefore that basil aqueous extract via antioxidant and possibly α-glucosidase and α-amylase inhibiting activities, offered positive benefits to control diabetes.
Collapse
Affiliation(s)
- HA El-Beshbishy
- Medical Laboratories Technology Department, Faculty of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
- Biochemistry Department, Faculty of Pharmacy, Nasr City, Cairo, Egypt
| | - SA Bahashwan
- Pharmacy Section, College of Health Sciences, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
245
|
Strohmeier GA, Pichler H, May O, Gruber-Khadjawi M. Application of Designed Enzymes in Organic Synthesis. Chem Rev 2011; 111:4141-64. [DOI: 10.1021/cr100386u] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Gernot A. Strohmeier
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, A-8010 Graz, Austria
| | - Oliver May
- DSM—Innovative Synthesis BV, Geleen, P.O. Box 18, 6160 MD Geleen, The Netherlands
| | | |
Collapse
|
246
|
Doddapaneni K, Zahurancik W, Haushalter A, Yuan C, Jackman J, Wu Z. RCL hydrolyzes 2'-deoxyribonucleoside 5'-monophosphate via formation of a reaction intermediate. Biochemistry 2011; 50:4712-9. [PMID: 21510673 DOI: 10.1021/bi101742z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RCL is an enzyme that catalyzes the N-glycosidic bond cleavage of purine 2'-deoxyribonucleoside 5'-monophosphates. Recently, the structures of both free wild type and GMP-bound mutant complex have been determined by multidimensional NMR, revealing a doubly wound α/β protein existing in a symmetric homodimer. In this work, we investigated the catalytic mechanism by rational site-directed mutagenesis, steady-state and pre-steady-state kinetics, ITC binding analysis, methanolysis, and NMR study. First, we provide kinetic evidence in support of the structural studies that RCL functions in a dimeric form, with an apparent dissociation constant around 0.5 μM in the presence of substrate dGMP. Second, among the eight residues under investigation, the highly conserved Glu93 is absolutely critical and Tyr13 is also important likely contributing to the chemical step, whereas Ser117 from the neighboring subunit and Ser87 could be the key residues for the phosphate group recognition. Lastly, we demonstrate by methanolysis study that the catalytic reaction proceeds via the formation of a reaction intermediate, which is subsequently hydrolyzed by solvent nucleophile resulting in the formation of normal product deoxyribose monophosphate (dR5P) or methoylated-dR5P. In conclusion, the current study provides mechanistic insights into a new class of nucleotide hydrolase, which resembles nucleoside 2'-deoxyribosyltransferases structurally and functionally but also possesses clear distinction.
Collapse
Affiliation(s)
- Kiran Doddapaneni
- Biochemistry Department, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
247
|
Zhang H, Wang L, Shen Q, Wu B, Gao P. A novel approach for estimating the relationship between the kinetics and thermodynamics of glycoside hydrolases. Acta Biochim Biophys Sin (Shanghai) 2011; 43:409-17. [PMID: 21460363 DOI: 10.1093/abbs/gmr014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A series of experiments were performed, in which p-nitrophenyl-β-D-cellobioside (PNPC) was hydrolyzed by 1, 4-β-D-glucan-cellobiohydrolase (CBHI: EC 3.2.1.91), and O-nitrophenyl-β-D-galactoside (ONPG) was hydrolyzed by β-galactosidase (EC 3.2.1.23) under different combinations of temperature and time period. The combined effects of temperature and time on p-nitrophenyl and O-nitrophenyl formation were characterized as the change of the instantaneous reaction velocity occurrence per temperature range termed as v(inst)· T(-1). This parameter was used as a stable index to evaluate the apparent activation energy (E(a)) based on the Arrhenius approach, instead of the reaction velocity constant, k. It was found that E(a) for PNPC hydrolysis by CBHI first decreased with temperature increase and then slightly increased at higher temperature, and its minimum value was obtained just at the maximum point of v(inst). In addition, E(a) for PNPC hydrolysis by dilute sulfuric acid was not a constant, but was continuously increased with temperature. The present studies demonstrated that E(a) obtained by Arrhenius approach for the hydrolysis reaction of β-hydrolases appears to be only an empirical kinetic parameter for the dependence of the reaction velocity on temperature and time, and has no meaning in the sense of thermodynamic energy.
Collapse
Affiliation(s)
- Huaiqiang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Ji'nan 250100, China
| | | | | | | | | |
Collapse
|
248
|
Kwan DH, Withers SG. Toward Efficient Enzymatic Glycan Synthesis: Directed Evolution and Enzyme Engineering. J Carbohydr Chem 2011. [DOI: 10.1080/07328303.2011.604457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
249
|
Li J, Wang L. Why substituting the asparagine at position 35 in Bacillus circulans xylanase with an aspartic acid remarkably improves the enzymatic catalytic activity? A quantum chemistry-based calculation study. Polym Degrad Stab 2011. [DOI: 10.1016/j.polymdegradstab.2011.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
250
|
Yan S, Li T, Yao L. Mutational Effects on the Catalytic Mechanism of Cellobiohydrolase I from Trichoderma reesei. J Phys Chem B 2011; 115:4982-9. [DOI: 10.1021/jp200384m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shihai Yan
- Key Lab of Biofuels, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Tong Li
- Key Lab of Biofuels, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Lishan Yao
- Key Lab of Biofuels, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| |
Collapse
|