201
|
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathway is activated in response to a variety of extracellular stimuli such as growth factor stimulation. The best-characterized MAPK pathway involves the sequential activation of Raf, MEK and ERK proteins, capable of regulating the gene expression required for cell proliferation. Binding to specific lipids can regulate both the subcellular localization of these MAPK signaling proteins as well as their kinase activities. More recently it has become increasingly clear that the majority of MAPK signaling takes place intracellularly on endosomes and that the perturbation of endocytic pathways has dramatic effects on the MAPK pathway. This review highlights the direct effects of lipids on the localization and regulation of MAPK pathway proteins. In addition, the indirect effects lipids have on MAPK signaling via their regulation of endocytosis and the biophysical properties of different membrane lipids as a result of growth factor stimulation are discussed. The ability of a protein to bind to both lipids and proteins at the same time may act like a "ZIP code" to target that protein to a highly specific microlocation and could also allow a protein to be "handed off" to maintain tight control over its binding partners and location.
Collapse
Affiliation(s)
- Deborah H Anderson
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, 20 Campus Drive, Saskatoon, Sask., Canada S7N 4H4.
| |
Collapse
|
202
|
Michelsen K, Yuan H, Schwappach B. Hide and run. Arginine-based endoplasmic-reticulum-sorting motifs in the assembly of heteromultimeric membrane proteins. EMBO Rep 2006; 6:717-22. [PMID: 16065065 PMCID: PMC1369147 DOI: 10.1038/sj.embor.7400480] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 06/17/2005] [Indexed: 11/09/2022] Open
Abstract
Arginine-based endoplasmic reticulum (ER)-localization signals are sorting motifs that are involved in the biosynthetic transport of multimeric membrane proteins. After their discovery in the invariant chain of the major histocompatibility complex class II, several hallmarks of these signals have emerged. They occur in polytopic membrane proteins that are subunits of membrane protein complexes; the presence of the signal maintains improperly assembled subunits in the ER by retention or retrieval until it is masked as a result of heteromultimeric assembly. A distinct consensus sequence and their position independence with respect to the distal termini of the protein distinguish them from other ER-sorting motifs. Recognition by the coatomer (COPI) vesicle coat explains ER retrieval. Often, di-leucine endocytic signals occur close to arginine-based signals. Recruitment of 14-3-3 family or PDZ-domain proteins can counteract ER-localization activity, as can phosphorylation. This, and the occurrence of arginine-based signals in alternatively spliced regions, implicates them in the regulated surface expression of multimeric membrane proteins in addition to their function in quality control.
Collapse
Affiliation(s)
- Kai Michelsen
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Hebao Yuan
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Blanche Schwappach
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
- Tel: +49 (0) 6221 54 6898; Fax: +49 (0) 6221 54 5894;
| |
Collapse
|
203
|
Edeling MA, Smith C, Owen D. Life of a clathrin coat: insights from clathrin and AP structures. Nat Rev Mol Cell Biol 2006; 7:32-44. [PMID: 16493411 DOI: 10.1038/nrm1786] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Membrane sorting between secretory and endocytic organelles is predominantly controlled by small carrier vesicles or tubules that have specific protein coats on their cytoplasmic surfaces. Clathrin-clathrin-adaptor coats function in many steps of intracellular transport and are the most extensively studied of all transport-vesicle coats. In recent years, the determination of structures of clathrin assemblies by electron microscopy, of domains of clathrin and of its adaptors has improved our understanding of the molecular mechanisms of clathrin-coated-vesicle assembly and disassembly.
Collapse
Affiliation(s)
- Melissa A Edeling
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Hills Road, Cambridge, CB2 2XY, UK
| | | | | |
Collapse
|
204
|
Abstract
Relatively small genomes and high replication rates allow viruses and bacteria to accumulate mutations. This continuously presents the host immune system with new challenges. On the other side of the trenches, an increasingly well-adjusted host immune response, shaped by coevolutionary history, makes a pathogen's life a rather complicated endeavor. It is, therefore, no surprise that pathogens either escape detection or modulate the host immune response, often by redirecting normal cellular pathways to their advantage. For the purpose of this chapter, we focus mainly on the manipulation of the class I and class II major histocompatibility complex (MHC) antigen presentation pathways and the ubiquitin (Ub)-proteasome system by both viral and bacterial pathogens. First, we describe the general features of antigen presentation pathways and the Ub-proteasome system and then address how they are manipulated by pathogens. We discuss the many human cytomegalovirus (HCMV)-encoded immunomodulatory genes that interfere with antigen presentation (immunoevasins) and focus on the HCMV immunoevasins US2 and US11, which induce the degradation of class I MHC heavy chains by the proteasome by catalyzing their export from the endoplasmic reticulum (ER)-membrane into the cytosol, a process termed ER dislocation. US2- and US11-mediated subversion of ER dislocation ensures proteasomal degradation of class I MHC molecules and presumably allows HCMV to avoid recognition by cytotoxic T cells, whilst providing insight into general aspects of ER-associated degradation (ERAD) which is used by eukaryotic cells to purge their ER of defective proteins. We discuss the similarities and differences between the distinct pathways co-opted by US2 and US11 for dislocation and degradation of human class I MHC molecules and also a putatively distinct pathway utilized by the murine herpes virus (MHV)-68 mK3 immunoevasin for ER dislocation of murine class I MHC. We speculate on the implications of the three pathogen-exploited dislocation pathways to cellular ER quality control. Moreover, we discuss the ubiquitin (Ub)-proteasome system and its position at the core of antigen presentation as proteolysis and intracellular trafficking rely heavily on Ub-dependent processes. We add a few examples of manipulation of the Ub-proteasome system by pathogens in the context of the immune system and such diverse aspects of the host-pathogen relationship as virus budding, bacterial chromosome integration, and programmed cell death, to name a few. Finally, we speculate on newly found pathogen-encoded deubiquitinating enzymes (DUBs) and their putative roles in modulation of host-pathogen interactions.
Collapse
Affiliation(s)
- Joana Loureiro
- Whitehead Institute, 9 Cambridge Center, Cambridge, Massachusetts, USA
| | | |
Collapse
|
205
|
Nie Z, Fei J, Premont RT, Randazzo PA. The Arf GAPs AGAP1 and AGAP2 distinguish between the adaptor protein complexes AP-1 and AP-3. J Cell Sci 2005; 118:3555-66. [PMID: 16079295 DOI: 10.1242/jcs.02486] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ADP ribosylation factors (Arf) regulate membrane trafficking at multiple intracellular sites by recruiting coat proteins to membranes. The site-specific regulation of Arf is thought to be mediated by regulatory proteins including the guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Here, we test this hypothesis by comparing the site of action of the Arf GAP AGAP2 to the closely related AGAP1. AGAP1 has previously been found to associate with the adaptor protein complex AP-3 and regulate the function of AP-3 endosomes. We found that AGAP2 directly interacted with AP-1. AGAP2 colocalized with AP-1, transferrin receptor and Rab4 on endosomes. Overexpression of AGAP2 changed the intracellular distribution of AP-1 and promoted Rab4-dependent fast recycling of transferrin. Based on these results, we concluded that the closely related Arf GAPs, AGAP1 and AGAP2, distinguish between these related heterotetrameric adaptor protein complexes to specifically regulate AP-3 endosomes and AP-1 recycling endosomes.
Collapse
Affiliation(s)
- Zhongzhen Nie
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
206
|
Grieder NC, Kloter U, Gehring WJ. Expression of COPI components during development of Drosophila melanogaster. Gene Expr Patterns 2005; 6:11-21. [PMID: 16169286 DOI: 10.1016/j.modgep.2005.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2005] [Revised: 05/29/2005] [Accepted: 06/04/2005] [Indexed: 01/02/2023]
Abstract
In a P{lArB} enhancer detector collection, a line was found that showed upregulated expression within centrally to posteriorly located germarial cysts. It was inserted in the gammaCOP locus on chromosome 3R. GammaCOP is a component of the COPI coatomer involved in membrane traffic. Most of the other known components of the COPI coatomer also showed higher expression in the posterior half of the germarium. Not only meiotic germline cysts but also migrating follicle cells upregulate the COPI subunits. During embryonic and larval development, the COPI subunits are expressed ubiquitously as expected for genes required for cell viability. In addition, they are strongly expressed in the salivary glands and the proventriculus. Whether tissue-specific transcriptional upregulation of COPI subunits is required for the reorganization of membranous compartments that are needed for the developmental processes that confer cyst polarity and follicle maturation will have to be addressed in a genetic study.
Collapse
Affiliation(s)
- Nicole C Grieder
- Biozentrum der Universität Basel, Abteilung Zellbiologie, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.
| | | | | |
Collapse
|
207
|
Parnis A, Rawet M, Regev L, Barkan B, Rotman M, Gaitner M, Cassel D. Golgi localization determinants in ArfGAP1 and in new tissue-specific ArfGAP1 isoforms. J Biol Chem 2005; 281:3785-92. [PMID: 16316994 DOI: 10.1074/jbc.m508959200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Arf1-directed GTPase-activating protein ArfGAP1 is a Golgi-localized protein that controls the dynamics of the COPI coat of carriers that mediate transport in the endoplasmic reticulum-Golgi shuttle. Previously the interaction of ArfGAP1 with the Golgi was allocated to a portion of the non-catalytic, carboxyl part of the protein, but the mechanism of this interaction has not been established. In this study we identify a short stretch in the non-catalytic part of ArfGAP1 (residues 204-214) in which several hydrophobic residues contribute to Golgi localization. Even single alanine replacement of two of these residues (Leu-207 and Trp-211) strongly diminished Golgi localization. Mutations in the hydrophobic residues also diminished the in vitro activity of ArfGAP1 on Arf1 bound to Golgi membranes. The stretch containing the hydrophobic residues was recently shown to mediate the binding of ArfGAP1 to loosely packed lipids of highly curved liposomes (Bigay, J., Casella, J. F., Drin, G., Mesmin, B., and Antonny, B. (2005) EMBO J. 24, 2244-2253). Whereas short fragments containing the hydrophobic stretch were not Golgi-localized, a proximal 10-residue in-frame insertion that is present in new ArfGAP1 isoforms that we identified in brain and heart tissues could confer Golgi localization on these fragments. This localization was abrogated by alanine replacement of residues Phe-240 or Trp-241 of the insertion sequence but not by their replacement with leucines. Our findings indicate that ArfGAP1 interacts with the Golgi through multiple hydrophobic motifs and that alternative modes of interaction may exist in tissue-specific ArfGAP1 isoforms.
Collapse
Affiliation(s)
- Anna Parnis
- Department of Biology, Technion-Israel Institute of Technology, Haifa
| | | | | | | | | | | | | |
Collapse
|
208
|
|
209
|
Kawasaki M, Nakayama K, Wakatsuki S. Membrane recruitment of effector proteins by Arf and Rab GTPases. Curr Opin Struct Biol 2005; 15:681-9. [PMID: 16289847 DOI: 10.1016/j.sbi.2005.10.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 09/28/2005] [Accepted: 10/21/2005] [Indexed: 01/05/2023]
Abstract
In their GTP-bound form, Arf and Rab family GTPases associate with distinct organelle membranes, to which they recruit specific sets of effector proteins that regulate vesicular transport. The Arf GTPases are involved in the formation of coated carrier vesicles by recruiting coat proteins. On the other hand, the Rab GTPases are involved in the tethering, docking and fusion of transport vesicles with target organelles, acting in concert with the tethering and fusion machineries. Recent structural studies of the Arf1-GGA and Rab5-Rabaptin-5 complexes, as well as other effector structures in complex with the Arf and Rab GTPases, have shed light on the mechanisms underlying the GTP-dependent membrane recruitment of these effector proteins.
Collapse
Affiliation(s)
- Masato Kawasaki
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | | | | |
Collapse
|
210
|
Palmer CL, Lim W, Hastie PG, Toward M, Korolchuk VI, Burbidge SA, Banting G, Collingridge GL, Isaac JT, Henley JM. Hippocalcin functions as a calcium sensor in hippocampal LTD. Neuron 2005; 47:487-94. [PMID: 16102532 PMCID: PMC1563146 DOI: 10.1016/j.neuron.2005.06.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 04/11/2005] [Accepted: 06/10/2005] [Indexed: 11/30/2022]
Abstract
It is not fully understood how NMDAR-dependent LTD causes Ca(2+)-dependent endocytosis of AMPARs. Here we show that the neuronal Ca(2+) sensor hippocalcin binds the beta2-adaptin subunit of the AP2 adaptor complex and that along with GluR2 these coimmunoprecipitate in a Ca(2+)-sensitive manner. Infusion of a truncated mutant of hippocalcin (HIP(2-72)) that lacks the Ca(2+) binding domains prevents synaptically evoked LTD but has no effect on LTP. These data indicate that the AP2-hippocalcin complex acts as a Ca(2+) sensor that couples NMDAR-dependent activation to regulated endocytosis of AMPARs during LTD.
Collapse
Affiliation(s)
- Claire L. Palmer
- MRC Centre for Synaptic PlasticityDepartment of AnatomySchool of Medical SciencesUniversity of BristolBristol, BS8 1 TDUnited Kingdom
| | - Wonil Lim
- MRC Centre for Synaptic PlasticityDepartment of AnatomySchool of Medical SciencesUniversity of BristolBristol, BS8 1 TDUnited Kingdom
| | - Peter G.R. Hastie
- MRC Centre for Synaptic PlasticityDepartment of AnatomySchool of Medical SciencesUniversity of BristolBristol, BS8 1 TDUnited Kingdom
| | - Marie Toward
- MRC Centre for Synaptic PlasticityDepartment of AnatomySchool of Medical SciencesUniversity of BristolBristol, BS8 1 TDUnited Kingdom
| | - Viktor I. Korolchuk
- Department of BiochemistrySchool of Medical SciencesUniversity of BristolBristol, BS8 1 TDUnited Kingdom
| | - Stephen A. Burbidge
- Neurology Centre of Excellence for Drug Discovery GlaxoSmithKlineNew Frontiers Science Park, Third AvenueHarlow, Essex, CM19 5AWUnited Kingdom
| | - George Banting
- Department of BiochemistrySchool of Medical SciencesUniversity of BristolBristol, BS8 1 TDUnited Kingdom
| | - Graham L. Collingridge
- MRC Centre for Synaptic PlasticityDepartment of AnatomySchool of Medical SciencesUniversity of BristolBristol, BS8 1 TDUnited Kingdom
| | - John. T.R. Isaac
- MRC Centre for Synaptic PlasticityDepartment of AnatomySchool of Medical SciencesUniversity of BristolBristol, BS8 1 TDUnited Kingdom
- National Institute of Neurological Disorders and StrokeNational Institutes of Health35 Convent DriveBethesda, Maryland 20892
| | - Jeremy M. Henley
- MRC Centre for Synaptic PlasticityDepartment of AnatomySchool of Medical SciencesUniversity of BristolBristol, BS8 1 TDUnited Kingdom
- Correspondence:
| |
Collapse
|
211
|
Ratts R, Trujillo C, Bharti A, vanderSpek J, Harrison R, Murphy JR. A conserved motif in transmembrane helix 1 of diphtheria toxin mediates catalytic domain delivery to the cytosol. Proc Natl Acad Sci U S A 2005; 102:15635-40. [PMID: 16230620 PMCID: PMC1257389 DOI: 10.1073/pnas.0504937102] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Indexed: 11/18/2022] Open
Abstract
A 10-aa motif in transmembrane helix 1 of diphtheria toxin that is conserved in anthrax edema factor, anthrax lethal factor, and botulinum neurotoxin serotypes A, C, and D was identified by blast, clustal w, and meme computational analysis. Using the diphtheria toxin-related fusion protein toxin DAB(389)IL-2, we demonstrate that introduction of the L221E mutation into a highly conserved residue within this motif results in a nontoxic catalytic domain translocation deficient phenotype. To further probe the function of this motif in the process by which the catalytic domain is delivered from the lumen of early endosomes to the cytosol, we constructed a gene encoding a portion of diphtheria toxin transmembrane helix 1, T1, which carries the motif and is expressed from a CMV promoter. We then isolated stable transfectants of Hut102/6TG cells that express the T1 peptide, Hut102/6TG-T1. In contrast to the parental cell line, Hut102/6TG-T1 cells are ca. 10(4)-fold more resistant to the fusion protein toxin. This resistance is completely reversed by coexpression of small interfering RNA directed against the gene encoding the T1 peptide in Hut102/6TG-T1 cells. We further demonstrate by GST-DT140-271 pull-down experiments in the presence and absence of synthetic T1 peptides the specific binding of coatomer protein complex subunit beta to this region of the diphtheria toxin transmembrane domain.
Collapse
Affiliation(s)
- Ryan Ratts
- Department of Medicine, Section of Molecular Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
212
|
Lee MCS, Orci L, Hamamoto S, Futai E, Ravazzola M, Schekman R. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 2005; 122:605-17. [PMID: 16122427 DOI: 10.1016/j.cell.2005.07.025] [Citation(s) in RCA: 381] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 07/17/2005] [Accepted: 07/29/2005] [Indexed: 10/25/2022]
Abstract
Secretory proteins traffic from the ER to the Golgi via COPII-coated transport vesicles. The five core COPII proteins (Sar1p, Sec23/24p, and Sec13/31p) act in concert to capture cargo proteins and sculpt the ER membrane into vesicles of defined geometry. The molecular details of how the coat proteins deform the lipid bilayer into vesicles are not known. Here we show that the small GTPase Sar1p directly initiates membrane curvature during vesicle biogenesis. Upon GTP binding by Sar1p, membrane insertion of the N-terminal amphipathic alpha helix deforms synthetic liposomes into narrow tubules. Replacement of bulky hydrophobic residues in the alpha helix with alanine yields Sar1p mutants that are unable to generate highly curved membranes and are defective in vesicle formation from native ER membranes despite normal recruitment of coat and cargo proteins. Thus, the initiation of vesicle budding by Sar1p couples the generation of membrane curvature with coat-protein assembly and cargo capture.
Collapse
Affiliation(s)
- Marcus C S Lee
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California 94702, USA
| | | | | | | | | | | |
Collapse
|
213
|
Traub LM. Common principles in clathrin-mediated sorting at the Golgi and the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:415-37. [PMID: 15922462 DOI: 10.1016/j.bbamcr.2005.04.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 04/17/2005] [Accepted: 04/19/2005] [Indexed: 12/12/2022]
Abstract
Clathrin-mediated vesicular trafficking events underpin the vectorial transfer of macromolecules between several eukaryotic membrane-bound compartments. Classical models for coat operation, focused principally on interactions between clathrin, the heterotetrameric adaptor complexes, and cargo molecules, fail to account for the full complexity of the coat assembly and sorting process. New data reveal that targeting of clathrin adaptor complexes is generally supported by phosphoinositides, that cargo recognition by heterotetrameric adaptors depends on phosphorylation-driven conformational alterations, and that dedicated clathrin-associated sorting proteins (CLASPs) exist to promote the selective trafficking of specific categories of cargo. A host of accessory factors also participate in coat polymerization events, and the independently folded appendage domains that project off the heterotetrameric adaptor core function as recruitment platforms that appear to oversee assembly operations. It is also now clear that focal polymerization of branched actin microfilaments contributes to clathrin-coated vesicle assembly and movement at both plasma membrane and Golgi sites. This improved appreciation of the complex mechanisms governing clathrin-dependent sorting events reveals several common principles of clathrin operation at the Golgi and the plasma membrane.
Collapse
Affiliation(s)
- Linton M Traub
- Department of Cell Biology and Physiology University of Pittsburgh School of Medicine 3500 Terrace Street, S325BST Pittsburgh, PA 15206, USA.
| |
Collapse
|
214
|
Tomás M, Marín P, Megías L, Egea G, Renau-Piqueras J. Ethanol perturbs the secretory pathway in astrocytes. Neurobiol Dis 2005; 20:773-84. [PMID: 15953732 DOI: 10.1016/j.nbd.2005.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 05/04/2005] [Accepted: 05/10/2005] [Indexed: 10/25/2022] Open
Abstract
Ethanol exposure induces retention of glycoproteins in growing astrocytes. We examined the intracellular sites at which this retention occurs and investigated whether this effect is accompanied by alterations in the Golgi complex and microtubular system. We studied the effects of ethanol on the Golgi complex structure, as well as on the secretory pathway functionality by monitoring both the transport of the VSV-G protein and the protein levels of several molecules involved in the regulation of this pathway. Ethanol was found to delay VSV-G transport, modify Golgi complex morphology, and reduce the number of secretory vesicles. Moreover, ethanol affected the levels of mannosidase II, p58, betaCOP, rbet1, and several Rab GTPases. It also affected microtubule organization and polymerization and the levels of the motor proteins kinesin and dynein. Most of these effects were dose-dependent. These alterations, together with those previously reported concerning biosynthesis of glycoconjugates, provide novel insights into how ethanol impairs brain development.
Collapse
Affiliation(s)
- Mónica Tomás
- Sección de Biología y Patología Celular, Centro de Investigación, Hospital Universitario La Fe, Av. Campanar 21, E-46009 Valencia, Spain
| | | | | | | | | |
Collapse
|
215
|
Bigay J, Casella JF, Drin G, Mesmin B, Antonny B. ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J 2005; 24:2244-53. [PMID: 15944734 PMCID: PMC1173154 DOI: 10.1038/sj.emboj.7600714] [Citation(s) in RCA: 300] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 05/23/2005] [Indexed: 11/08/2022] Open
Abstract
ArfGAP1 promotes GTP hydrolysis in Arf1, a small G protein that interacts with lipid membranes and drives the assembly of the COPI coat in a GTP-dependent manner. The activity of ArfGAP1 increases with membrane curvature, suggesting a negative feedback loop in which COPI-induced membrane deformation determines the timing and location of GTP hydrolysis within a coated bud. Here we show that a central sequence of about 40 amino acids in ArfGAP1 acts as a lipid-packing sensor. This ALPS motif (ArfGAP1 Lipid Packing Sensor) is also found in the yeast homologue Gcs1p and is necessary for coupling ArfGAP1 activity with membrane curvature. The ALPS motif binds avidly to small liposomes and shows the same hypersensitivity on liposome radius as full-length ArfGAP1. Site-directed mutagenesis, limited proteolysis and circular dichroism experiments suggest that the ALPS motif, which is unstructured in solution, inserts bulky hydrophobic residues between loosely packed lipids and forms an amphipathic helix on highly curved membranes. This helix differs from classical amphipathic helices by the abundance of serine and threonine residues on its polar face.
Collapse
Affiliation(s)
- Joëlle Bigay
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, France
| | | | - Guillaume Drin
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, France
| | - Bruno Mesmin
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, France
| | - Bruno Antonny
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, France
- CNRS, Institut de Pharmacologie, Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne-Sophia Antipolis, France. Tel.: +33 4 93 95 77 75; Fax: +33 4 93 95 77 10; E-mail:
| |
Collapse
|
216
|
Paleotti O, Macia E, Luton F, Klein S, Partisani M, Chardin P, Kirchhausen T, Franco M. The small G-protein Arf6GTP recruits the AP-2 adaptor complex to membranes. J Biol Chem 2005; 280:21661-6. [PMID: 15802264 DOI: 10.1074/jbc.m503099200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTP-binding protein ADP-ribosylation factor 6 (Arf6) is involved in plasma membrane/endosomes trafficking. However, precisely how the activation of Arf6 regulates vesicular transport is still unclear. Here, we show that, in vitro, recombinant Arf6GTP recruits purified clathrin-adaptor complex AP-2 (but not AP-1) onto phospholipid liposomes in the absence of phosphoinositides. We also show that phosphoinositides and Arf6 tightly cooperate to translocate AP-2 to the membrane. In vivo, Arf6GTP (but not Arf6GDP) was found associated to AP-2. The expression of the GTP-locked mutant of Arf6 leads to the plasma membrane redistribution of AP-2 in Arf6GTP-enriched areas. Finally, we demonstrated that the expression of the GTP-locked mutant of Arf6 inhibits transferrin receptor internalization without affecting its recycling. Altogether, our results demonstrated that Arf6GTP interacts specifically with AP-2 and promotes its membrane recruitment. These findings strongly suggest that Arf6 plays a major role in clathrin-mediated endocytosis by directly controlling the assembly of the AP-2/clathrin coat.
Collapse
Affiliation(s)
- Olivia Paleotti
- Institut de Pharmacologie Moleculaire et Cellulaire, CNRS-Unité Mixte de Recherche 6097, 660 Route des Lucioles, 06560 Valbonne Sophia-Antipolis, France
| | | | | | | | | | | | | | | |
Collapse
|
217
|
Mishra SK, Keyel PA, Edeling MA, Dupin AL, Owen DJ, Traub LM. Functional dissection of an AP-2 beta2 appendage-binding sequence within the autosomal recessive hypercholesterolemia protein. J Biol Chem 2005; 280:19270-80. [PMID: 15728179 DOI: 10.1074/jbc.m501029200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The autosomal recessive hypercholesterolemia (ARH) protein plays a critical role in regulating plasma low density lipoprotein (LDL) levels. Inherited defects in ARH lead to a hypercholesterolemia that closely phenocopies that caused by a defective LDL receptor. The elevated serum LDL-cholesterol levels typical of ARH patients and the pronounced accumulation of the LDL receptor at the cell surface of hepatocytes in ARH-null mice argue that ARH operates by promoting the internalization of the LDL receptor within clathrin-coated vesicles. ARH contains an amino-terminal phosphotyrosine-binding domain that associates physically with the LDL receptor internalization sequence and with phosphoinositides. The carboxyl-terminal half of ARH contains a clathrin-binding sequence and a separate AP-2 adaptor binding region providing a plausible mechanism for how ARH can act as an endocytic adaptor or CLASP (clathrin-associated sorting protein) to couple LDL receptors with the clathrin machinery. Because the interaction with AP-2 is highly selective for the independently folded appendage domain of the beta2 subunit, we have characterized the ARH beta2 appendage-binding sequence in detail. Unlike the known alpha appendage-binding motifs, ARH requires an extensive sequence tract to bind the beta appendage with comparably high affinity. A minimal 16-residue sequence functions autonomously and depends upon ARH residues Asp253, Phe259, Leu262, and Arg266. We suggested that biased beta subunit engagement by ARH and the only other beta2 appendage selective adaptor, beta-arrestin, promotes efficient incorporation of this mechanistically distinct subset of CLASPs into clathrin-coated buds.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Alanine/chemistry
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Arginine/chemistry
- Arrestins/metabolism
- Calorimetry
- Carbocyanines/pharmacology
- Cholesterol, LDL/blood
- Clathrin/metabolism
- Cytosol/metabolism
- DNA/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/physiology
- Endocytosis
- Fluorescent Dyes/pharmacology
- Genes, Recessive
- Glutathione Transferase/metabolism
- Green Fluorescent Proteins/chemistry
- Green Fluorescent Proteins/metabolism
- Humans
- Hypercholesterolemia/genetics
- Kinetics
- Lipoproteins, LDL/metabolism
- Mice
- Microtubule-Associated Proteins/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis
- Peptides/chemistry
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, LDL
- Sequence Homology, Amino Acid
- Transcription Factor AP-2
- Transcription Factors/chemistry
- Transcription Factors/physiology
- Two-Hybrid System Techniques
- beta-Arrestins
Collapse
Affiliation(s)
- Sanjay K Mishra
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
218
|
Chen CY, Brodsky FM. Huntingtin-interacting Protein 1 (Hip1) and Hip1-related Protein (Hip1R) Bind the Conserved Sequence of Clathrin Light Chains and Thereby Influence Clathrin Assembly in Vitro and Actin Distribution in Vivo. J Biol Chem 2005; 280:6109-17. [PMID: 15533940 DOI: 10.1074/jbc.m408454200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clathrin heavy and light chains form triskelia, which assemble into polyhedral coats of membrane vesicles that mediate transport for endocytosis and organelle biogenesis. Light chain subunits regulate clathrin assembly in vitro by suppressing spontaneous self-assembly of the heavy chains. The residues that play this regulatory role are at the N terminus of a conserved 22-amino acid sequence that is shared by all vertebrate light chains. Here we show that these regulatory residues and others in the conserved sequence mediate light chain interaction with Hip1 and Hip1R. These related proteins were previously found to be enriched in clathrin-coated vesicles and to promote clathrin assembly in vitro. We demonstrate Hip1R binding preference for light chains associated with clathrin heavy chain and show that Hip1R stimulation of clathrin assembly in vitro is blocked by mutations in the conserved sequence of light chains that abolish interaction with Hip1 and Hip1R. In vivo overexpression of a fragment of clathrin light chain comprising the Hip1R-binding region affected cellular actin distribution. Together these results suggest that the roles of Hip1 and Hip1R in affecting clathrin assembly and actin distribution are mediated by their interaction with the conserved sequence of clathrin light chains.
Collapse
Affiliation(s)
- Chih-Ying Chen
- G. W. Hooper Foundation, Department of Biopharmaceutical Sciences, University of California, San Francisco, CA 94143-0552, USA
| | | |
Collapse
|
219
|
|
220
|
Abstract
The endocytic trafficking of caveolae has been the subject of some controversy for many years. A new study (Pelkmans et al.) shows that budded caveolae can interact with both the caveosome and the early endosome and that caveolin-enriched regions of the early endosomal membrane form unusually stable domains that can incorporate cargo in a regulated manner.
Collapse
Affiliation(s)
- Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland, Queensland 4072, Australia
| |
Collapse
|
221
|
Abstract
Endocytic clathrin-coated vesicles are short-lived transport intermediates that ferry cargo macromolecules rapidly into the cell interior. Recent work from the Kirchhausen laboratory indicates that the lifetime of a coated vesicle is extremely short, and assembly of nascent coats aborts abruptly unless reinforced by additional regulatory inputs, most likely cargo capture.
Collapse
Affiliation(s)
- Peter A Keyel
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, PA 15261, USA
| | | |
Collapse
|