201
|
Long noncoding RNAs: an emerging link between gene regulation and nuclear organization. Trends Cell Biol 2014; 24:651-63. [PMID: 25441720 DOI: 10.1016/j.tcb.2014.08.009] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/18/2014] [Accepted: 08/28/2014] [Indexed: 02/07/2023]
Abstract
Mammalian genomes encode thousands of long noncoding RNAs (lncRNAs) that play important roles in diverse biological processes. As a class, lncRNAs are generally enriched in the nucleus and, specifically, within the chromatin-associated fraction. Consistent with their localization, many lncRNAs have been implicated in the regulation of gene expression and in shaping 3D nuclear organization. In this review, we discuss the evidence that many nuclear-retained lncRNAs can interact with various chromatin regulatory proteins and recruit them to specific sites on DNA to regulate gene expression. Furthermore, we discuss the role of specific lncRNAs in shaping nuclear organization and their emerging mechanisms. Based on these examples, we propose a model that explains how lncRNAs may shape aspects of nuclear organization to regulate gene expression.
Collapse
|
202
|
Singh NP, Mishra RK. Role of abd-A and Abd-B in development of abdominal epithelia breaks posterior prevalence rule. PLoS Genet 2014; 10:e1004717. [PMID: 25340649 PMCID: PMC4207640 DOI: 10.1371/journal.pgen.1004717] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 08/28/2014] [Indexed: 11/19/2022] Open
Abstract
Hox genes that determine anteroposterior body axis formation in all bilaterians are often found to have partially overlapping expression pattern. Since posterior genes dominate over anterior Hox genes in the region of co-expression, the anterior Hox genes are thought to have no function in such regions. In this study we show that two Hox genes have distinct and essential functions in the same cell. In Drosophila, the three Hox genes of the bithorax complex, Ubx, abd-A and Abd-B, show coexpression during embryonic development. Here, we show that in early pupal abdominal epithelia, Ubx does not coexpress with abd-A and Abd-B, while abd-A and Abd-B continue to coexpress in the same nuclei. The abd-A and Abd-B are expressed in both histoblast nest cells and larval epithelial cells of early pupal abdominal epithelia. Further functional studies demonstrate that abd-A is required in histoblast nest cells for their proliferation and suppression of Ubx to prevent first abdominal segment like features in posterior segments while in larval epithelial cells it is required for their elimination. We also observed that these functions of abd-A are required in its exclusive as well as the coexpression domain with that of Abd-B. The expression of Abd-B is required in histoblast nest cells for their identity while it is dispensable in the larval epithelial cells. The higher level of Abd-B in the seventh abdominal segment, that down-regulates abd-A expression, leads this segment to be absent in males or of smaller size in females. We also show that abd-A in histoblast nest cells positively regulates expression of wingless for the formation of the abdominal epithelia. Our study reveals an exception to the rule of posterior prevalence and shows that two different Hox genes have distinct functions in the same cell, which is essential for the development of abdominal epithelia. The spatially non-overlapping function of Hox genes is known to determine Antero-posterior body axis in all the bilaterians. The expression of Hox genes is found to be overlapping in several cases. According to the posterior prevalence rule, posterior Hox genes suppress the function of anterior Hox genes in the overlapping expression domains. Our findings show an exception to the rule of posterior prevalence. We show that in the overlapping expression domains of abd-A and Abd-B in early pupal abdominal epithelia, both the genes have essential roles. While abd-A is required for cell proliferation, Abd-B determines the segmental identity.
Collapse
Affiliation(s)
- Narendra Pratap Singh
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | - Rakesh Kumar Mishra
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
- * E-mail:
| |
Collapse
|
203
|
Schuettengruber B, Oded Elkayam N, Sexton T, Entrevan M, Stern S, Thomas A, Yaffe E, Parrinello H, Tanay A, Cavalli G. Cooperativity, specificity, and evolutionary stability of Polycomb targeting in Drosophila. Cell Rep 2014; 9:219-233. [PMID: 25284790 DOI: 10.1016/j.celrep.2014.08.072] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/08/2014] [Accepted: 08/27/2014] [Indexed: 12/21/2022] Open
Abstract
Metazoan genomes are partitioned into modular chromosomal domains containing active or repressive chromatin. In flies, Polycomb group (PcG) response elements (PREs) recruit PHO and other DNA-binding factors and act as nucleation sites for the formation of Polycomb repressive domains. The sequence specificity of PREs is not well understood. Here, we use comparative epigenomics and transgenic assays to show that Drosophila domain organization and PRE specification are evolutionarily conserved despite significant cis-element divergence within Polycomb domains, whereas cis-element evolution is strongly correlated with transcription factor binding divergence outside of Polycomb domains. Cooperative interactions of PcG complexes and their recruiting factor PHO stabilize PHO recruitment to low-specificity sequences. Consistently, PHO recruitment to sites within Polycomb domains is stabilized by PRC1. These data suggest that cooperative rather than hierarchical interactions among low-affinity sequences, DNA-binding factors, and the Polycomb machinery are giving rise to specific and strongly conserved 3D structures in Drosophila.
Collapse
Affiliation(s)
- Bernd Schuettengruber
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Noa Oded Elkayam
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tom Sexton
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Marianne Entrevan
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Shani Stern
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aubin Thomas
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Eitan Yaffe
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hugues Parrinello
- Montpellier GenomiX IBiSA, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Giacomo Cavalli
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| |
Collapse
|
204
|
Gjerstorff MF, Relster MM, Greve KBV, Moeller JB, Elias D, Lindgreen JN, Schmidt S, Mollenhauer J, Voldborg B, Pedersen CB, Brückmann NH, Møllegaard NE, Ditzel HJ. SSX2 is a novel DNA-binding protein that antagonizes polycomb group body formation and gene repression. Nucleic Acids Res 2014; 42:11433-46. [PMID: 25249625 PMCID: PMC4191419 DOI: 10.1093/nar/gku852] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Polycomb group (PcG) complexes regulate cellular identity through epigenetic programming of chromatin. Here, we show that SSX2, a germline-specific protein ectopically expressed in melanoma and other types of human cancers, is a chromatin-associated protein that antagonizes BMI1 and EZH2 PcG body formation and derepresses PcG target genes. SSX2 further negatively regulates the level of the PcG-associated histone mark H3K27me3 in melanoma cells, and there is a clear inverse correlation between SSX2/3 expression and H3K27me3 in spermatogenesis. However, SSX2 does not affect the overall composition and stability of PcG complexes, and there is no direct concordance between SSX2 and BMI1/H3K27me3 presence at regulated genes. This suggests that SSX2 antagonizes PcG function through an indirect mechanism, such as modulation of chromatin structure. SSX2 binds double-stranded DNA in a sequence non-specific manner in agreement with the observed widespread association with chromatin. Our results implicate SSX2 in regulation of chromatin structure and function.
Collapse
Affiliation(s)
- Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Mette Marie Relster
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Katrine Buch Viden Greve
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Jesper Bonnet Moeller
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Daniel Elias
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Jonas Nørrelund Lindgreen
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Steffen Schmidt
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, DK-5000, Denmark The Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Jan Mollenhauer
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, DK-5000, Denmark The Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Bjørn Voldborg
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Christina Bøg Pedersen
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Nadine Heidi Brückmann
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Niels Erik Møllegaard
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Denmark
| | - Henrik Jørn Ditzel
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, DK-5000, Denmark The Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, Odense, DK-5000, Denmark Department of Oncology, Odense University Hospital, Odense, DK-5000, Denmark
| |
Collapse
|
205
|
Transvection-based gene regulation in Drosophila is a complex and plastic trait. G3-GENES GENOMES GENETICS 2014; 4:2175-87. [PMID: 25213691 PMCID: PMC4232543 DOI: 10.1534/g3.114.012484] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transvection, a chromosome pairing-dependent form of trans-based gene regulation, is potentially widespread in the Drosophila melanogaster genome and varies across cell types and within tissues in D. melanogaster, characteristics of a complex trait. Here, we demonstrate that the trans-interactions at the Malic enzyme (Men) locus are, in fact, transvection as classically defined and are plastic with respect to both genetic background and environment. Using chromosomal inversions, we show that trans-interactions at the Men locus are eliminated by changes in chromosomal architecture that presumably disrupt somatic pairing. We further show that the magnitude of transvection at the Men locus is modified by both genetic background and environment (temperature), demonstrating that transvection is a plastic phenotype. Our results suggest that transvection effects in D. melanogaster are shaped by a dynamic interplay between environment and genetic background. Interestingly, we find that cis-based regulation of the Men gene is more robust to genetic background and environment than trans-based. Finally, we begin to uncover the nonlocal factors that may contribute to variation in transvection overall, implicating Abd-B in the regulation of Men in cis and in trans in an allele-specific and tissue-specific manner, driven by differences in expression of the two genes across genetic backgrounds and environmental conditions.
Collapse
|
206
|
Zhu D, Rosa S, Dean C. Nuclear organization changes and the epigenetic silencing of FLC during vernalization. J Mol Biol 2014; 427:659-69. [PMID: 25180639 DOI: 10.1016/j.jmb.2014.08.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/26/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
Abstract
Changes in nuclear organization are considered an important complement to trans-acting factors, histone modifications and non-coding RNAs in robust and stable epigenetic silencing. However, how these multiple layers interconnect mechanistically to reinforce each other's activity is still unclear. A system providing long timescales facilitating analysis of these interconnections is vernalization. This involves the Polycomb-mediated epigenetic silencing of flowering locus C (FLC) that occurs as Arabidopsis plants are exposed to prolonged cold. Analysis of changes in nuclear organization during vernalization has revealed that disruption of a gene loop and physical clustering of FLC loci are part of the vernalization mechanism. These events occur at different times and thus contribute to distinct aspects of the silencing mechanism. The physical clustering of FLC loci is tightly correlated with the accumulation of specific Polycomb complexes/H3K27me3 at a localized intragenic site during the cold. Since the quantitative nature of vernalization is a reflection of a bistable cell autonomous switch in an increasing number of cells, this correlation suggests a tight connection between the switching mechanism and changes in nuclear organization. This integrated picture is likely to be informative for many epigenetic mechanisms.
Collapse
Affiliation(s)
- Danling Zhu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Stefanie Rosa
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
207
|
Herzog VA, Lempradl A, Trupke J, Okulski H, Altmutter C, Ruge F, Boidol B, Kubicek S, Schmauss G, Aumayr K, Ruf M, Pospisilik A, Dimond A, Senergin HB, Vargas ML, Simon JA, Ringrose L. A strand-specific switch in noncoding transcription switches the function of a Polycomb/Trithorax response element. Nat Genet 2014; 46:973-981. [PMID: 25108384 DOI: 10.1038/ng.3058] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 07/14/2014] [Indexed: 12/14/2022]
Abstract
Polycomb/Trithorax response elements (PRE/TREs) can switch their function reversibly between silencing and activation by mechanisms that are poorly understood. Here we show that a switch in forward and reverse noncoding transcription from the Drosophila melanogaster vestigial (vg) PRE/TRE switches the status of the element between silencing (induced by the forward strand) and activation (induced by the reverse strand). In vitro, both noncoding RNAs inhibit PRC2 histone methyltransferase activity, but, in vivo, only the reverse strand binds PRC2. Overexpression of the reverse strand evicts PRC2 from chromatin and inhibits its enzymatic activity. We propose that the interaction of RNAs with PRC2 is differentially regulated in vivo, allowing regulated inhibition of local PRC2 activity. Genome-wide analysis shows that strand switching of noncoding RNAs occurs at several hundred Polycomb-binding sites in fly and vertebrate genomes. This work identifies a previously unreported and potentially widespread class of PRE/TREs that switch function by switching the direction of noncoding RNA transcription.
Collapse
Affiliation(s)
- Veronika A Herzog
- IMBA, Institute of Molecular Biotechnology GmBH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Adelheid Lempradl
- IMBA, Institute of Molecular Biotechnology GmBH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.,Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Johanna Trupke
- IMBA, Institute of Molecular Biotechnology GmBH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Helena Okulski
- IMBA, Institute of Molecular Biotechnology GmBH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Christina Altmutter
- IMBA, Institute of Molecular Biotechnology GmBH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Frank Ruge
- IMBA, Institute of Molecular Biotechnology GmBH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Bernd Boidol
- CeMM, Research Center for Molecular Medicine, Lazarettgasse 14, 1090 Vienna, Austria
| | - Stefan Kubicek
- CeMM, Research Center for Molecular Medicine, Lazarettgasse 14, 1090 Vienna, Austria
| | - Gerald Schmauss
- IMP, Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Karin Aumayr
- IMP, Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Marius Ruf
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Andrew Pospisilik
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Andrew Dimond
- IMBA, Institute of Molecular Biotechnology GmBH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.,The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - Hasene Basak Senergin
- IMBA, Institute of Molecular Biotechnology GmBH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Marcus L Vargas
- Department of Genetics, Cell Biology and Development, University of Minnesota. Minneapolis, Minnesota, USA
| | - Jeffrey A Simon
- Department of Genetics, Cell Biology and Development, University of Minnesota. Minneapolis, Minnesota, USA
| | - Leonie Ringrose
- IMBA, Institute of Molecular Biotechnology GmBH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
208
|
Bonora G, Plath K, Denholtz M. A mechanistic link between gene regulation and genome architecture in mammalian development. Curr Opin Genet Dev 2014; 27:92-101. [PMID: 24998386 DOI: 10.1016/j.gde.2014.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/15/2014] [Accepted: 05/10/2014] [Indexed: 11/19/2022]
Abstract
The organization of chromatin within the nucleus and the regulation of transcription are tightly linked. Recently, mechanisms underlying this relationship have been uncovered. By defining the organizational hierarchy of the genome, determining changes in chromatin organization associated with changes in cell identity, and describing chromatin organization within the context of linear genomic features (such as chromatin modifications and transcription factor binding) and architectural proteins (including Cohesin, CTCF, and Mediator), a new paradigm in genome biology was established wherein genomes are organized around gene regulatory factors that govern cell identity. As such, chromatin organization plays a central role in establishing and maintaining cell state during development, with gene regulation and genome organization being mutually dependent effectors of cell identity.
Collapse
Affiliation(s)
- Giancarlo Bonora
- David Geffen School of Medicine, Department of Biological Chemistry, Jonsson Comprehensive Cancer Center, and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, CA 90095, USA
| | - Kathrin Plath
- David Geffen School of Medicine, Department of Biological Chemistry, Jonsson Comprehensive Cancer Center, and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, CA 90095, USA.
| | - Matthew Denholtz
- David Geffen School of Medicine, Department of Biological Chemistry, Jonsson Comprehensive Cancer Center, and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, CA 90095, USA.
| |
Collapse
|
209
|
Enhancer loops appear stable during development and are associated with paused polymerase. Nature 2014; 512:96-100. [PMID: 25043061 DOI: 10.1038/nature13417] [Citation(s) in RCA: 372] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/29/2014] [Indexed: 12/11/2022]
Abstract
Developmental enhancers initiate transcription and are fundamental to our understanding of developmental networks, evolution and disease. Despite their importance, the properties governing enhancer-promoter interactions and their dynamics during embryogenesis remain unclear. At the β-globin locus, enhancer-promoter interactions appear dynamic and cell-type specific, whereas at the HoxD locus they are stable and ubiquitous, being present in tissues where the target genes are not expressed. The extent to which preformed enhancer-promoter conformations exist at other, more typical, loci and how transcription is eventually triggered is unclear. Here we generated a high-resolution map of enhancer three-dimensional contacts during Drosophila embryogenesis, covering two developmental stages and tissue contexts, at unprecedented resolution. Although local regulatory interactions are common, long-range interactions are highly prevalent within the compact Drosophila genome. Each enhancer contacts multiple enhancers, and promoters with similar expression, suggesting a role in their co-regulation. Notably, most interactions appear unchanged between tissue context and across development, arising before gene activation, and are frequently associated with paused RNA polymerase. Our results indicate that the general topology governing enhancer contacts is conserved from flies to humans and suggest that transcription initiates from preformed enhancer-promoter loops through release of paused polymerase.
Collapse
|
210
|
Del Prete S, Arpón J, Sakai K, Andrey P, Gaudin V. Nuclear architecture and chromatin dynamics in interphase nuclei of Arabidopsis thaliana. Cytogenet Genome Res 2014; 143:28-50. [PMID: 24992956 DOI: 10.1159/000363724] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The interphase cell nucleus is extraordinarily complex, ordered, and dynamic. In the last decade, remarkable progress has been made in deciphering the functional organisation of the cell nucleus, and intricate relationships between genome functions (transcription, DNA repair, or replication) and various nuclear compartments have been revealed. In this review, we describe the architecture of the Arabidopsis thaliana interphase cell nucleus and discuss the dynamic nature of its organisation. We underline the need for further developments in quantitative and modelling approaches to nuclear organization.
Collapse
Affiliation(s)
- Stefania Del Prete
- INRA, UMR1318-AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), INRA-Centre de Versailles-Grignon, Versailles, France
| | | | | | | | | |
Collapse
|
211
|
Hox gene regulation and timing in embryogenesis. Semin Cell Dev Biol 2014; 34:76-84. [PMID: 24930771 DOI: 10.1016/j.semcdb.2014.06.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/15/2014] [Accepted: 06/05/2014] [Indexed: 11/22/2022]
Abstract
Hox genes are critical regulators of embryonic development in bilaterian animals. They exhibit a unique mode of transcriptional regulation where the position of the genes along the chromosome corresponds to the time and place of their expression during development. The sequential temporal activation of these genes in the primitive streak helps determining their subsequent pattern of expression along the anterior-posterior axis of the embryo, yet the precise correspondence between these two collinear processes is not fully understood. In addition, vertebrate Hox genes evolved similar modes of regulation along secondary body axes, such as the developing limbs. We review the current understanding of the mechanisms operating during activation, maintenance and silencing of Hox gene expression in these various contexts, and discuss the evolutionary significance of their genomic organization.
Collapse
|
212
|
Identification of Regulators of the Three-Dimensional Polycomb Organization by a Microscopy-Based Genome-wide RNAi Screen. Mol Cell 2014; 54:485-99. [DOI: 10.1016/j.molcel.2014.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/11/2014] [Accepted: 02/24/2014] [Indexed: 11/17/2022]
|
213
|
Alexander JM, Lomvardas S. Nuclear architecture as an epigenetic regulator of neural development and function. Neuroscience 2014; 264:39-50. [PMID: 24486963 PMCID: PMC4006947 DOI: 10.1016/j.neuroscience.2014.01.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/11/2014] [Accepted: 01/22/2014] [Indexed: 12/23/2022]
Abstract
The nervous system of higher organisms is characterized by an enormous diversity of cell types that function in concert to carry out a myriad of neuronal functions. Differences in connectivity, and subsequent physiology of the connected neurons, are a result of differences in transcriptional programs. The extraordinary complexity of the nervous system requires an equally complex regulatory system. It is well established that transcription factor combinations and the organization of cis-regulatory sequences control commitment to differentiation programs and preserve a nuclear plasticity required for neuronal functions. However, an additional level of regulation is provided by epigenetic controls. Among various epigenetic processes, nuclear organization and the control of genome architecture emerge as an efficient and powerful form of gene regulation that meets the unique needs of the post-mitotic neuron. Here, we present an outline of how nuclear architecture affects transcription and provide examples from the recent literature where these principles are used by the nervous system.
Collapse
Affiliation(s)
- J M Alexander
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - S Lomvardas
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
214
|
McElroy KA, Kang H, Kuroda MI. Are we there yet? Initial targeting of the Male-Specific Lethal and Polycomb group chromatin complexes in Drosophila. Open Biol 2014; 4:140006. [PMID: 24671948 PMCID: PMC3971409 DOI: 10.1098/rsob.140006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chromatin-binding proteins must navigate the complex nuclear milieu to find their sites of action, and a constellation of protein factors and other properties are likely to influence targeting specificity. Despite considerable progress, the precise rules by which binding specificity is achieved have remained elusive. Here, we consider early targeting events for two groups of chromatin-binding complexes in Drosophila: the Male-Specific Lethal (MSL) and the Polycomb group (PcG) complexes. These two serve as models for understanding targeting, because they have been extensively studied and play vital roles in Drosophila, and their targets have been documented at high resolution. Furthermore, the proteins and biochemical properties of both complexes are largely conserved in multicellular organisms, including humans. While the MSL complex increases gene expression and PcG members repress genes, the two groups share many similarities such as the ability to modify their chromatin environment to create active or repressive domains, respectively. With legacies of in-depth genetic, biochemical and now genomic approaches, the MSL and PcG complexes will continue to provide tractable systems for understanding the recruitment of multiprotein chromatin complexes to their target loci.
Collapse
Affiliation(s)
- Kyle A McElroy
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
215
|
Abstract
Heterochromatin imparts regional, promoter-independent repression of genes and is epigenetically heritable. Understanding how silencing achieves this regional repression is a fundamental problem in genetics and development. Current models of yeast silencing posit that Sir proteins, recruited by transcription factors bound to the silencers, spread throughout the silenced region. To test this model directly at high resolution, we probed the silenced chromatin architecture by chromatin immunoprecipitation (ChIP) followed by next-generation sequencing (ChIP-seq) of Sir proteins, histones, and a key histone modification, H4K16-acetyl. These analyses revealed that Sir proteins are strikingly concentrated at and immediately adjacent to the silencers, with lower levels of enrichment over the promoters at HML and HMR, the critical targets for transcriptional repression. The telomeres also showed discrete peaks of Sir enrichment yet a continuous domain of hypoacetylated histone H4K16. Surprisingly, ChIP-seq of cross-linked chromatin revealed a distribution of nucleosomes at silenced loci that was similar to Sir proteins, whereas native nucleosome maps showed a regular distribution throughout silenced loci, indicating that cross-linking captured a specialized chromatin organization imposed by Sir proteins. This specialized chromatin architecture observed in yeast informs the importance of a steric contribution to regional repression in other organisms.
Collapse
Affiliation(s)
- Deborah M Thurtle
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
216
|
Abstract
Polycomb proteins are known for silencing their target genes during development and cell differentiation. Reporting in Developmental Cell, Kondo et al. (2014) now show that Polycomb factors can also participate in gene activation by orchestrating the 3D chromatin structure changes involved in transcriptional activation of their target genes.
Collapse
Affiliation(s)
- Giacomo Cavalli
- Institute of Human Genetics, UPR 1142 CNRS, 141 rue de la Cardonille, Montpellier, France.
| |
Collapse
|
217
|
Chaumeil J, Micsinai M, Ntziachristos P, Roth DB, Aifantis I, Kluger Y, Deriano L, Skok JA. The RAG2 C-terminus and ATM protect genome integrity by controlling antigen receptor gene cleavage. Nat Commun 2014; 4:2231. [PMID: 23900513 PMCID: PMC3903180 DOI: 10.1038/ncomms3231] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 07/02/2013] [Indexed: 01/16/2023] Open
Abstract
Tight control of antigen-receptor gene rearrangement is required to preserve genome integrity and prevent the occurrence of leukemia and lymphoma. Nonetheless, mistakes can happen, leading to the generation of aberrant rearrangements, such as Tcra/d-Igh inter-locus translocations that are a hallmark of ATM deficiency. Current evidence indicates that these translocations arise from the persistence of unrepaired breaks converging at different stages of thymocyte differentiation. Here we show that a defect in feedback control of RAG2 activity gives rise to bi-locus breaks and damage on Tcra/d and Igh in the same T cell at the same developmental stage, which provides a direct mechanism for generating these inter-locus rearrangements. Both the RAG2 C-terminus and ATM prevent bi-locus RAG-mediated cleavage through modulation of 3D conformation (higher order loops) and nuclear organization of the two loci. This limits the number of potential substrates for translocation and provides an important mechanism for protecting genome stability.
Collapse
Affiliation(s)
- Julie Chaumeil
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Homeotic gene regulation: a paradigm for epigenetic mechanisms underlying organismal development. Subcell Biochem 2014; 61:177-207. [PMID: 23150252 DOI: 10.1007/978-94-007-4525-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The organization of eukaryotic genome into chromatin within the nucleus eventually dictates the cell type specific expression pattern of genes. This higher order of chromatin organization is established during development and dynamically maintained throughout the life span. Developmental mechanisms are conserved in bilaterians and hence they have body plan in common, which is achieved by regulatory networks controlling cell type specific gene expression. Homeotic genes are conserved in metazoans and are crucial for animal development as they specify cell type identity along the anterior-posterior body axis. Hox genes are the best studied in the context of epigenetic regulation that has led to significant understanding of the organismal development. Epigenome specific regulation is brought about by conserved chromatin modulating factors like PcG/trxG proteins during development and differentiation. Here we discuss the conserved epigenetic mechanisms relevant to homeotic gene regulation in metazoans.
Collapse
|
219
|
Cheutin T, Cavalli G. Polycomb silencing: from linear chromatin domains to 3D chromosome folding. Curr Opin Genet Dev 2014; 25:30-7. [PMID: 24434548 DOI: 10.1016/j.gde.2013.11.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/29/2013] [Indexed: 12/22/2022]
Abstract
Polycomb group (PcG) proteins are conserved chromatin factors that regulate key developmental genes. Genome wide studies have shown that PcG proteins and their associated H3K27me3 histone mark cover long genomic domains. PcG proteins and H3K27me3 accumulate in Pc nuclear foci, which are the cellular counterparts of genomic domains silenced by PcG proteins. One explanation for how large genomic domains form nuclear foci may rely on loops occurring between specific elements located within domains. However, recent improvement of the chromosome conformation capture (3C) technology, which allowed monitoring genome wide contacts depicts a more complex picture in which chromosomes are composed of many topologically associating domains (TADs). Chromatin regions marked with H3K27me3 correspond to one class of TADs and PcG proteins participate in long-range interactions of H3K27me3 TADs, whereas insulator proteins seem to be important for separating TADs and may also participate in the regulation of intra TAD architecture. Recent data converge to suggest that this hierarchical organization of chromosome domains plays an important role in genome function during cell proliferation and differentiation.
Collapse
Affiliation(s)
- Thierry Cheutin
- Institute of Human Genetics, CNRS UPR 1142, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS UPR 1142, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| |
Collapse
|
220
|
Link N, Kurtz P, O'Neal M, Garcia-Hughes G, Abrams JM. A p53 enhancer region regulates target genes through chromatin conformations in cis and in trans. Genes Dev 2014; 27:2433-8. [PMID: 24240233 PMCID: PMC3841732 DOI: 10.1101/gad.225565.113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We examined how a p53 enhancer transmits regulatory information in vivo. Using genetic ablation together with digital chromosome conformation capture and fluorescent in situ hybridization, we found that a Drosophila p53 enhancer region (referred to as the p53 response element [p53RE]) physically contacts targets in cis and across the centromere to control stress-responsive transcription at these sites. Furthermore, when placed at ectopic genomic positions, fragments spanning this element re-established chromatin contacts and partially restored target gene regulation to mutants lacking the native p53RE. Therefore, a defined p53 enhancer region is sufficient for long-range chromatin interactions that enable multigenic regulation.
Collapse
Affiliation(s)
- Nichole Link
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
221
|
Kondo T, Isono K, Kondo K, Endo T, Itohara S, Vidal M, Koseki H. Polycomb Potentiates Meis2 Activation in Midbrain by Mediating Interaction of the Promoter with a Tissue-Specific Enhancer. Dev Cell 2014; 28:94-101. [DOI: 10.1016/j.devcel.2013.11.021] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 09/04/2013] [Accepted: 11/22/2013] [Indexed: 12/21/2022]
|
222
|
Bantignies F, Cavalli G. Topological organization of Drosophila Hox genes using DNA fluorescent in situ hybridization. Methods Mol Biol 2014; 1196:103-20. [PMID: 25151160 DOI: 10.1007/978-1-4939-1242-1_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
DNA fluorescent in situ hybridization (FISH) is the method of choice to study genomic organization at the single-cell level. It has been recently used to study the topological organization of the homeotic bithorax complex (BX-C) in Drosophila as well as to describe long-range genomic interactions between the BX-C and the Antennapedia complex (ANT-C), in addition to other genomic loci. Coupled with immunofluorescence, FISH can be used to study the relative positioning of homeotic genes with nuclear subcompartments, such as Polycomb-group (PcG) bodies, transcription factories, or the nuclear lamina. Here, we describe two multicolor 3D-FISH protocols; one for whole mount Drosophila embryos or larval discs and one for Drosophila-cultured cells. Both methods can be applied to any single copy locus of interest and are compatible with immunostaining (FISH-I).
Collapse
Affiliation(s)
- Frédéric Bantignies
- Institut de Génétique Humaine, CNRS UPR-1142, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France,
| | | |
Collapse
|
223
|
Li HY, Grifone R, Saquet A, Carron C, Shi DL. The Xenopus homologue of Down syndrome critical region protein 6 drives dorsoanterior gene expression and embryonic axis formation by antagonising polycomb group proteins. Development 2013; 140:4903-13. [DOI: 10.1242/dev.098319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mesoderm and embryonic axis formation in vertebrates is mediated by maternal and zygotic factors that activate the expression of target genes. Transcriptional derepression plays an important role in the regulation of expression in different contexts; however, its involvement and possible mechanism in mesoderm and embryonic axis formation are largely unknown. Here we demonstrate that XDSCR6, a Xenopus homologue of human Down syndrome critical region protein 6 (DSCR6, or RIPPLY3), regulates mesoderm and embryonic axis formation through derepression of polycomb group (PcG) proteins. Xdscr6 maternal mRNA is enriched in the endoderm of the early gastrula and potently triggers the formation of dorsal mesoderm and neural tissues in ectoderm explants; it also dorsalises ventral mesoderm during gastrulation and induces a secondary embryonic axis. A WRPW motif, which is present in all DSCR6 homologues, is necessary and sufficient for the dorsal mesoderm- and axis-inducing activity. Knockdown of Xdscr6 inhibits dorsal mesoderm gene expression and results in head deficiency. We further show that XDSCR6 physically interacts with PcG proteins through the WRPW motif, preventing the formation of PcG bodies and antagonising their repressor activity in embryonic axis formation. By chromatin immunoprecipitation, we demonstrate that XDSCR6 releases PcG proteins from chromatin and allows dorsal mesoderm gene transcription. Our studies suggest that XDSCR6 might function to sequester PcG proteins and identify a novel derepression mechanism implicated in embryonic induction and axis formation.
Collapse
Affiliation(s)
- Hong-Yan Li
- Laboratory of Developmental Biology, CNRS UMR 7622, University Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
- Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Raphaëlle Grifone
- Laboratory of Developmental Biology, CNRS UMR 7622, University Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| | - Audrey Saquet
- Laboratory of Developmental Biology, CNRS UMR 7622, University Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| | - Clémence Carron
- Laboratory of Developmental Biology, CNRS UMR 7622, University Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| | - De-Li Shi
- Laboratory of Developmental Biology, CNRS UMR 7622, University Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| |
Collapse
|
224
|
Takebayashi SI, Lei I, Ryba T, Sasaki T, Dileep V, Battaglia D, Gao X, Fang P, Fan Y, Esteban MA, Tang J, Crabtree GR, Wang Z, Gilbert DM. Murine esBAF chromatin remodeling complex subunits BAF250a and Brg1 are necessary to maintain and reprogram pluripotency-specific replication timing of select replication domains. Epigenetics Chromatin 2013; 6:42. [PMID: 24330833 PMCID: PMC3895691 DOI: 10.1186/1756-8935-6-42] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/02/2013] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Cellular differentiation and reprogramming are accompanied by changes in replication timing and 3D organization of large-scale (400 to 800 Kb) chromosomal domains ('replication domains'), but few gene products have been identified whose disruption affects these properties. RESULTS Here we show that deletion of esBAF chromatin-remodeling complex components BAF250a and Brg1, but not BAF53a, disrupts replication timing at specific replication domains. Also, BAF250a-deficient fibroblasts reprogrammed to a pluripotency-like state failed to reprogram replication timing in many of these same domains. About half of the replication domains affected by Brg1 loss were also affected by BAF250a loss, but a much larger set of domains was affected by BAF250a loss. esBAF binding in the affected replication domains was dependent upon BAF250a but, most affected domains did not contain genes whose transcription was affected by loss of esBAF. CONCLUSIONS Loss of specific esBAF complex subunits alters replication timing of select replication domains in pluripotent cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - David M Gilbert
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA.
| |
Collapse
|
225
|
Isono K, Endo TA, Ku M, Yamada D, Suzuki R, Sharif J, Ishikura T, Toyoda T, Bernstein BE, Koseki H. SAM domain polymerization links subnuclear clustering of PRC1 to gene silencing. Dev Cell 2013; 26:565-77. [PMID: 24091011 DOI: 10.1016/j.devcel.2013.08.016] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/29/2013] [Accepted: 08/19/2013] [Indexed: 01/01/2023]
Abstract
The Polycomb-group (PcG) repressive complex-1 (PRC1) forms microscopically visible clusters in nuclei; however, the impact of this cluster formation on transcriptional regulation and the underlying mechanisms that regulate this process remain obscure. Here, we report that the sterile alpha motif (SAM) domain of a PRC1 core component Phc2 plays an essential role for PRC1 clustering through head-to-tail macromolecular polymerization, which is associated with stable target binding of PRC1/PRC2 and robust gene silencing activity. We propose a role for SAM domain polymerization in this repression by two distinct mechanisms: first, through capturing and/or retaining PRC1 at the PcG targets, and second, by strengthening the interactions between PRC1 and PRC2 to stabilize transcriptional repression. Our findings reveal a regulatory mechanism mediated by SAM domain polymerization for PcG-mediated repression of developmental loci that enables a robust yet reversible gene repression program during development.
Collapse
Affiliation(s)
- Kyoichi Isono
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), 1-7-22 Suehiro, Tsurumi-ku, Yokohama 230-0045, Japan; CREST, Japan Science and Technology Agency, 1-7-22 Suehiro, Tsurumi-ku, Yokohama 230-0045, Japan; PREST, Japan Science and Technology Agency, 1-7-22 Suehiro, Tsurumi-ku, Yokohama 230-0045, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol 2013; 20:1147-55. [PMID: 24096405 DOI: 10.1038/nsmb.2669] [Citation(s) in RCA: 672] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/12/2013] [Indexed: 12/12/2022]
Abstract
Polycomb group (PcG) proteins are epigenetic regulators of transcription that have key roles in stem-cell identity, differentiation and disease. Mechanistically, they function within multiprotein complexes, called Polycomb repressive complexes (PRCs), which modify histones (and other proteins) and silence target genes. The dynamics of PRC1 and PRC2 components has been the focus of recent research. Here we discuss our current knowledge of the PRC complexes, how they are targeted to chromatin and how the high diversity of the PcG proteins allows these complexes to influence cell identity.
Collapse
|
227
|
Basu A, Wilkinson FH, Colavita K, Fennelly C, Atchison ML. YY1 DNA binding and interaction with YAF2 is essential for Polycomb recruitment. Nucleic Acids Res 2013; 42:2208-23. [PMID: 24285299 PMCID: PMC3936737 DOI: 10.1093/nar/gkt1187] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Polycomb Group (PcG) proteins are crucial for epigenetic inheritance of cell identity and are functionally conserved from Drosophila to humans. PcG proteins regulate expression of homeotic genes and are essential for axial body patterning during development. Earlier we showed that transcription factor YY1 functions as a PcG protein. YY1 also physically interacts with YAF2, a homolog of RYBP. Here we characterize the mechanism and physiologic relevance of this interaction. We found phenotypic and biochemical correction of dRYBP mutant flies by mouse YAF2 demonstrating functional conservation across species. Further biochemical analysis revealed that YAF2 bridges interaction between YY1 and the PRC1 complex. ChIP assays in HeLa cells showed that YAF2 is responsible for PcG recruitment to DNA, which is mediated by YY1 DNA binding. Knock-down of YY1 abrogated PcG recruitment, which was not compensated by exogenous YAF2 demonstrating that YY1 DNA binding is a priori necessary for Polycomb assembly on chromatin. Finally, we found that although YAF2 and RYBP regulate a similar number of Polycomb target genes, there are very few genes that are regulated by both implying functional distinction between the two proteins. We present a model of YAF2-dependent and independent PcG DNA recruitment by YY1.
Collapse
Affiliation(s)
- Arindam Basu
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA and College of Science Health and Liberal Arts, Philadelphia University, 4201 Henry Avenue, Philadelphia, PA 19144, USA
| | | | | | | | | |
Collapse
|
228
|
Mallo M, Alonso CR. The regulation of Hox gene expression during animal development. Development 2013; 140:3951-63. [PMID: 24046316 DOI: 10.1242/dev.068346] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hox genes encode a family of transcriptional regulators that elicit distinct developmental programmes along the head-to-tail axis of animals. The specific regional functions of individual Hox genes largely reflect their restricted expression patterns, the disruption of which can lead to developmental defects and disease. Here, we examine the spectrum of molecular mechanisms controlling Hox gene expression in model vertebrates and invertebrates and find that a diverse range of mechanisms, including nuclear dynamics, RNA processing, microRNA and translational regulation, all concur to control Hox gene outputs. We propose that this complex multi-tiered regulation might contribute to the robustness of Hox expression during development.
Collapse
Affiliation(s)
- Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | | |
Collapse
|
229
|
Schorderet P, Lonfat N, Darbellay F, Tschopp P, Gitto S, Soshnikova N, Duboule D. A genetic approach to the recruitment of PRC2 at the HoxD locus. PLoS Genet 2013; 9:e1003951. [PMID: 24244202 PMCID: PMC3820793 DOI: 10.1371/journal.pgen.1003951] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/27/2013] [Indexed: 01/01/2023] Open
Abstract
Polycomb group (PcG) proteins are essential for the repression of key factors during early development. In Drosophila, the polycomb repressive complexes (PRC) associate with defined polycomb response DNA elements (PREs). In mammals, however, the mechanisms underlying polycomb recruitment at targeted loci are poorly understood. We have used an in vivo approach to identify DNA sequences of importance for the proper recruitment of polycomb proteins at the HoxD locus. We report that various genomic re-arrangements of the gene cluster do not strongly affect PRC2 recruitment and that relatively small polycomb interacting sequences appear necessary and sufficient to confer polycomb recognition and targeting to ectopic loci. In addition, a high GC content, while not sufficient to recruit PRC2, may help its local spreading. We discuss the importance of PRC2 recruitment over Hox gene clusters in embryonic stem cells, for their subsequent coordinated transcriptional activation during development. Hox genes are essential for the proper organization of structures along the developing vertebrate body axis. These genes must be activated at a precise time and their premature transcription is deleterious to the organism. Early on, Hox gene clusters are covered by Polycomb Repressive protein Complexes (PRCs), which help keep these genes silent. However, the mechanism(s) that selectively recruit PRCs to these particular genomic loci remains elusive. We have used a collection of mutant mice carrying a set of deletions inside and outside the HoxD cluster to try and detect the presence of any DNA sequence of particular importance in this mechanism. We conclude that a range of low affinity sequences synergize to recruit PRCs over the gene cluster, which makes this process very robust and resistant to genetic perturbations.
Collapse
Affiliation(s)
- Patrick Schorderet
- National Research Center ‘Frontiers in Genetics’, Geneva, Switzerland
- School of Life Sciences, Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Nicolas Lonfat
- School of Life Sciences, Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Fabrice Darbellay
- National Research Center ‘Frontiers in Genetics’, Geneva, Switzerland
- School of Life Sciences, Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Patrick Tschopp
- National Research Center ‘Frontiers in Genetics’, Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, Sciences III, Geneva, Switzerland
| | - Sandra Gitto
- National Research Center ‘Frontiers in Genetics’, Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, Sciences III, Geneva, Switzerland
| | - Natalia Soshnikova
- National Research Center ‘Frontiers in Genetics’, Geneva, Switzerland
- School of Life Sciences, Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Denis Duboule
- National Research Center ‘Frontiers in Genetics’, Geneva, Switzerland
- School of Life Sciences, Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Genetics and Evolution, University of Geneva, Sciences III, Geneva, Switzerland
- * E-mail: ,
| |
Collapse
|
230
|
Acloque H, Bonnet-Garnier A, Mompart F, Pinton A, Yerle-Bouissou M. Sperm nuclear architecture is locally modified in presence of a Robertsonian translocation t(13;17). PLoS One 2013; 8:e78005. [PMID: 24205066 PMCID: PMC3815027 DOI: 10.1371/journal.pone.0078005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/17/2013] [Indexed: 11/19/2022] Open
Abstract
In mammals, the non-random organization of the sperm nucleus supports an early function during embryonic development. Altering this organization may interfere with the zygote development and reduce fertility or prolificity. Thus, rare studies on sperm cells from infertile patients described an altered nuclear organization that may be a cause or a consequence of their respective pathologies. Thereby, chromosomal rearrangements and aneuploidy can be studied not only for their adverse effects on production of normal/balanced gametes at meiosis but also for their possible impact on sperm nuclear architecture and the epigenetic consequences of altered chromosome positioning. We decided to compare the global architecture of sperm nuclei from boars, either with a normal chromosome composition or with a Robertsonian translocation involving chromosomes 13 and 17. We hypothesized that the fusion between these chromosomes may change their spatial organization and we examined to what extend it could also modify the global sperm nuclear architecture. Analysis of telomeres, centromeres and gonosomes repartition does not support a global nuclear disorganization. But specific analysis of chromosomes 13 and 17 territories highlights an influence of chromosome 17 for the positioning of the fused chromosomes within the nucleus. We also observed a specific clustering of centromeres depending of the chromosome subtypes. Altogether our results showed that chromosome fusion does not significantly alter sperm nucleus architecture but suggest that centromere remodelling after chromosome fusion locally impacts chromosome positioning.
Collapse
Affiliation(s)
- Hervé Acloque
- INRA, UMR444 Génétique Cellulaire, Castanet Tolosan, France
- Université de Toulouse, INP, ENVT, UMR444 Génétique Cellulaire, Toulouse, France
- * E-mail:
| | - Amélie Bonnet-Garnier
- INRA, UMR444 Génétique Cellulaire, Castanet Tolosan, France
- Université de Toulouse, INP, ENVT, UMR444 Génétique Cellulaire, Toulouse, France
| | - Florence Mompart
- INRA, UMR444 Génétique Cellulaire, Castanet Tolosan, France
- Université de Toulouse, INP, ENVT, UMR444 Génétique Cellulaire, Toulouse, France
| | - Alain Pinton
- INRA, UMR444 Génétique Cellulaire, Castanet Tolosan, France
- Université de Toulouse, INP, ENVT, UMR444 Génétique Cellulaire, Toulouse, France
| | - Martine Yerle-Bouissou
- INRA, UMR444 Génétique Cellulaire, Castanet Tolosan, France
- Université de Toulouse, INP, ENVT, UMR444 Génétique Cellulaire, Toulouse, France
| |
Collapse
|
231
|
Abstract
Polycomb group (PcG) proteins regulate gene expression by modifying chemical and structural properties of chromatin. Isono et al. (2013) now report in Developmental Cell a polymerization-dependent mechanism used by PcG proteins to form higher-order chromatin structures, referred to as Polycomb bodies, and demonstrate its necessity for gene silencing.
Collapse
Affiliation(s)
- Cem Sievers
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | | |
Collapse
|
232
|
Schoborg T, Rickels R, Barrios J, Labrador M. Chromatin insulator bodies are nuclear structures that form in response to osmotic stress and cell death. ACTA ACUST UNITED AC 2013; 202:261-76. [PMID: 23878275 PMCID: PMC3718971 DOI: 10.1083/jcb.201304181] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Insulator bodies are novel nuclear stress foci that can be used as a proxy to monitor the chromatin-bound state of insulator proteins. Chromatin insulators assist in the formation of higher-order chromatin structures by mediating long-range contacts between distant genomic sites. It has been suggested that insulators accomplish this task by forming dense nuclear foci termed insulator bodies that result from the coalescence of multiple protein-bound insulators. However, these structures remain poorly understood, particularly the mechanisms triggering body formation and their role in nuclear function. In this paper, we show that insulator proteins undergo a dramatic and dynamic spatial reorganization into insulator bodies during osmostress and cell death in a high osmolarity glycerol–p38 mitogen-activated protein kinase–independent manner, leading to a large reduction in DNA-bound insulator proteins that rapidly repopulate chromatin as the bodies disassemble upon return to isotonicity. These bodies occupy distinct nuclear territories and contain a defined structural arrangement of insulator proteins. Our findings suggest insulator bodies are novel nuclear stress foci that can be used as a proxy to monitor the chromatin-bound state of insulator proteins and provide new insights into the effects of osmostress on nuclear and genome organization.
Collapse
Affiliation(s)
- Todd Schoborg
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
233
|
Šmigová J, Juda P, Bártová E, Raška I. Dynamics of Polycomb chromatin domains under conditions of increased molecular crowding. Biol Cell 2013; 105:519-34. [DOI: 10.1111/boc.201300022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 08/07/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Jana Šmigová
- Charles University in Prague; First Faculty of Medicine; Institute of Cellular Biology and Pathology; Czech Republic
| | - Pavel Juda
- Charles University in Prague; First Faculty of Medicine; Institute of Cellular Biology and Pathology; Czech Republic
| | - Eva Bártová
- Institute of Biophysics; Academy of Sciences of the Czech Republic, v.v.i; Brno Czech Republic
| | - Ivan Raška
- Charles University in Prague; First Faculty of Medicine; Institute of Cellular Biology and Pathology; Czech Republic
| |
Collapse
|
234
|
Soshnikova N. Hox genes regulation in vertebrates. Dev Dyn 2013; 243:49-58. [PMID: 23832853 DOI: 10.1002/dvdy.24014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/30/2013] [Accepted: 07/01/2013] [Indexed: 12/16/2022] Open
Abstract
Hox genes encode transcription factors defining cellular identities along the major and secondary body axes. Their coordinated expression in both space and time is critical for embryonic patterning. Accordingly, Hox genes transcription is tightly controlled at multiple levels, and involves an intricate combination of local and long-range cis-regulatory elements. Recent studies revealed that in addition to transcription factors, dynamic patterns of histone marks and higher-order chromatin structure are important determinants of Hox gene regulation. Furthermore, the emerging picture suggests an involvement of various species of non-coding RNA in targeting activating and repressive complexes to Hox clusters. I review these recent developments and discuss their relevance to the control of Hox gene expression in vivo, as well as to our understanding of transcriptional regulatory mechanisms.
Collapse
|
235
|
Ritland Politz JC, Scalzo D, Groudine M. Something silent this way forms: the functional organization of the repressive nuclear compartment. Annu Rev Cell Dev Biol 2013; 29:241-70. [PMID: 23834025 PMCID: PMC3999972 DOI: 10.1146/annurev-cellbio-101512-122317] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The repressive compartment of the nucleus is comprised primarily of telomeric and centromeric regions, the silent portion of ribosomal RNA genes, the majority of transposable element repeats, and facultatively repressed genes specific to different cell types. This compartment localizes into three main regions: the peripheral heterochromatin, perinucleolar heterochromatin, and pericentromeric heterochromatin. Both chromatin remodeling proteins and transcription of noncoding RNAs are involved in maintenance of repression in these compartments. Global reorganization of the repressive compartment occurs at each cell division, during early development, and during terminal differentiation. Differential action of chromatin remodeling complexes and boundary element looping activities are involved in mediating these organizational changes. We discuss the evidence that heterochromatin formation and compartmentalization may drive nuclear organization.
Collapse
Affiliation(s)
| | - David Scalzo
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Mark Groudine
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
236
|
Harmston N, Lenhard B. Chromatin and epigenetic features of long-range gene regulation. Nucleic Acids Res 2013; 41:7185-99. [PMID: 23766291 PMCID: PMC3753629 DOI: 10.1093/nar/gkt499] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The precise regulation of gene transcription during metazoan development is controlled by a complex system of interactions between transcription factors, histone modifications and modifying enzymes and chromatin conformation. Developments in chromosome conformation capture technologies have revealed that interactions between regions of chromatin are pervasive and highly cell-type specific. The movement of enhancers and promoters in and out of higher-order chromatin structures within the nucleus are associated with changes in expression and histone modifications. However, the factors responsible for mediating these changes and determining enhancer:promoter specificity are still not completely known. In this review, we summarize what is known about the patterns of epigenetic and chromatin features characteristic of elements involved in long-range interactions. In addition, we review the insights into both local and global patterns of chromatin interactions that have been revealed by the latest experimental and computational methods.
Collapse
Affiliation(s)
- Nathan Harmston
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, London W12 0NN, UK, Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London W12 0NN, UK and Department of Informatics, University of Bergen, Thromøhlensgate 55, N-5008 Bergen, Norway
| | | |
Collapse
|
237
|
RNA-interference components are dispensable for transcriptional silencing of the drosophila bithorax-complex. PLoS One 2013; 8:e65740. [PMID: 23785447 PMCID: PMC3681981 DOI: 10.1371/journal.pone.0065740] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 04/26/2013] [Indexed: 02/02/2023] Open
Abstract
Background Beyond their role in post-transcriptional gene silencing, Dicer and Argonaute, two components of the RNA interference (RNAi) machinery, were shown to be involved in epigenetic regulation of centromeric heterochromatin and transcriptional gene silencing. In particular, RNAi mechanisms appear to play a role in repeat induced silencing and some aspects of Polycomb-mediated gene silencing. However, the functional interplay of RNAi mechanisms and Polycomb group (PcG) pathways at endogenous loci remains to be elucidated. Principal Findings Here we show that the endogenous Dicer-2/Argonaute-2 RNAi pathway is dispensable for the PcG mediated silencing of the homeotic Bithorax Complex (BX-C). Although Dicer-2 depletion triggers mild transcriptional activation at Polycomb Response Elements (PREs), this does not induce transcriptional changes at PcG-repressed genes. Moreover, Dicer-2 is not needed to maintain global levels of methylation of lysine 27 of histone H3 and does not affect PRE-mediated higher order chromatin structures within the BX-C. Finally bioinformatic analysis, comparing published data sets of PcG targets with Argonaute-2-bound small RNAs reveals no enrichment of these small RNAs at promoter regions associated with PcG proteins. Conclusions We conclude that the Dicer-2/Argonaute-2 RNAi pathway, despite its role in pairing sensitive gene silencing of transgenes, does not have a role in PcG dependent silencing of major homeotic gene cluster loci in Drosophila.
Collapse
|
238
|
Smallwood A, Ren B. Genome organization and long-range regulation of gene expression by enhancers. Curr Opin Cell Biol 2013; 25:387-94. [PMID: 23465541 PMCID: PMC4180870 DOI: 10.1016/j.ceb.2013.02.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/05/2013] [Indexed: 12/26/2022]
Abstract
It is now well accepted that cell-type specific gene regulation is under the purview of enhancers. Great strides have been made recently to characterize and identify enhancers both genetically and epigenetically for multiple cell types and species, but efforts have just begun to link enhancers to their target promoters. Mapping these interactions and understanding how the 3D landscape of the genome constrains such interactions is fundamental to our understanding of mammalian gene regulation. Here, we review recent progress in mapping long-range regulatory interactions in mammalian genomes, focusing on transcriptional enhancers and chromatin organization principles.
Collapse
|
239
|
Golbabapour S, Majid NA, Hassandarvish P, Hajrezaie M, Abdulla MA, Hadi AHA. Gene silencing and Polycomb group proteins: an overview of their structure, mechanisms and phylogenetics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:283-96. [PMID: 23692361 PMCID: PMC3662373 DOI: 10.1089/omi.2012.0105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
DNA methylation, histone modifications, and chromatin configuration are crucially important in the regulation of gene expression. Among these epigenetic mechanisms, silencing the expression of certain genes depending on developmental stage and tissue specificity is a key repressive system in genome programming. Polycomb (Pc) proteins play roles in gene silencing through different mechanisms. These proteins act in complexes and govern the histone methylation profiles of a large number of genes that regulate various cellular pathways. This review focuses on two main Pc complexes, Pc repressive complexes 1 and 2, and their phylogenetic relationship, structures, and function. The dynamic roles of these complexes in silencing will be discussed herein, with a focus on the recruitment of Pc complexes to target genes and the key factors involved in their recruitment.
Collapse
Affiliation(s)
- Shahram Golbabapour
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | | | | | |
Collapse
|
240
|
Kenigsberg E, Tanay A. Drosophila functional elements are embedded in structurally constrained sequences. PLoS Genet 2013; 9:e1003512. [PMID: 23750124 PMCID: PMC3671938 DOI: 10.1371/journal.pgen.1003512] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 03/04/2013] [Indexed: 12/22/2022] Open
Abstract
Modern functional genomics uncovered numerous functional elements in metazoan genomes. Nevertheless, only a small fraction of the typical non-exonic genome contains elements that code for function directly. On the other hand, a much larger fraction of the genome is associated with significant evolutionary constraints, suggesting that much of the non-exonic genome is weakly functional. Here we show that in flies, local (30–70 bp) conserved sequence elements that are associated with multiple regulatory functions serve as focal points to a pattern of punctuated regional increase in G/C nucleotide frequencies. We show that this pattern, which covers a region tenfold larger than the conserved elements themselves, is an evolutionary consequence of a shift in the balance between gain and loss of G/C nucleotides and that it is correlated with nucleosome occupancy across multiple classes of epigenetic state. Evidence for compensatory evolution and analysis of SNP allele frequencies show that the evolutionary regime underlying this balance shift is likely to be non-neutral. These data suggest that current gaps in our understanding of genome function and evolutionary dynamics are explicable by a model of sparse sequence elements directly encoding for function, embedded into structural sequences that help to define the local and global epigenomic context of such functional elements. A key challenge in functional genomics is to predict evolutionary dynamics from functional annotation of the genome and vice versa. Modern epigenomic studies helped assign function to numerous new sequence elements, but left most of the genome essentially uncharacterized. Evolutionary genomics, on the other hand, consistently suggests that a much larger fraction of the un-annotated genome evolves under selective pressure. We hypothesize that this function-selection gap can be attributed to sequences that facilitate the physical organization of functional elements, such as transcription factor binding sites, within chromosomes. We exemplify this by studying in detail the sequences embedding small conserved elements (CEs) in Drosophila. We show that, while CEs have typically high AT content, high GC content levels around them are maintained by a non-neutral evolutionary balance between gain and loss of GC nucleotides. This non-uniform pattern is highly correlated with nucleosome organization around CEs, potentially imposing an evolutionary constraint on as much as one quarter of the genome. We suggest this can at least partly explain the above function-selection gap. Weak evolutionary constraints on “structural” sequences (at scales ranging from one nucleosome to recently described multi-megabase topological domains) may affect genome evolution just like structural motifs shape protein evolution.
Collapse
Affiliation(s)
- Ephraim Kenigsberg
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
- * E-mail:
| |
Collapse
|
241
|
Qi L, Cao JL, Hu Y, Yang JG, Ji Y, Huang J, Zhang Y, Sun DG, Xia HF, Ma X. The dynamics of polycomb group proteins in early embryonic nervous system in mouse and human. Int J Dev Neurosci 2013; 31:487-95. [PMID: 23727134 DOI: 10.1016/j.ijdevneu.2013.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 05/12/2013] [Indexed: 10/26/2022] Open
Abstract
Polycomb group (PcG) proteins are transcription regulatory proteins that control the expression of a variety of genes and the antero-posterior neural patterning from early embryogenesis. Although expression of PcG genes in the nervous system has been noticed, but the expression pattern of PcG proteins in early embryonic nervous system is still unclear. In this study, we analyzed the expression pattern of PRC1 complex members (BMI-1 and RING1B) and PRC2 complex members (EED, SUZ12 and EZH2) in early embryonic nervous system in mouse and human by Western blot and Immunohistochemistry. The results of Western blot showed that EED protein was significantly up-regulated with the increase of the day of pregnancy during the early embryogenesis in mouse. BMI-1 protein level was significantly increased from the day 10 of pregnancy, when compared with the day 9 of pregnancy. But the SUZ12, EZH2 and RING1B protein level did not change significantly. From the results of Immunohistochemistry, we found that the four PcG proteins were all expressed in the fetal brain and fetal spinal cord in mouse. In human, the expression of EED, SUZ12, and EZH2 was not significantly different in cerebral cortex and sacral spinal cord, but BMI-1 and RING1B expression was enhanced with the development of embryos in early pregnancy. Collectively, our findings showed that PRC1 and PRC2 were spatiotemporally expressed in brain and spinal cord of early embryos.
Collapse
Affiliation(s)
- Lu Qi
- Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing, China; Graduate Schools, Peking Union Medical College, Beijing, China; Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Bantignies F. [Three-dimensional genome organization: a lesson from the Polycomb-Group proteins]. Biol Aujourdhui 2013; 207:19-31. [PMID: 23694722 DOI: 10.1051/jbio/2013002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Indexed: 11/14/2022]
Abstract
As more and more genomes are being explored and annotated, important features of three-dimensional (3D) genome organization are just being uncovered. In the light of what we know about Polycomb group (PcG) proteins, we will present the latest findings on this topic. The PcG proteins are well-conserved chromatin factors that repress transcription of numerous target genes. They bind the genome at specific sites, forming chromatin domains of associated histone modifications as well as higher-order chromatin structures. These 3D chromatin structures involve the interactions between PcG-bound regulatory regions at short- and long-range distances, and may significantly contribute to PcG function. Recent high throughput "Chromosome Conformation Capture" (3C) analyses have revealed many other higher order structures along the chromatin fiber, partitioning the genomes into well demarcated topological domains. This revealed an unprecedented link between linear epigenetic domains and chromosome architecture, which might be intimately connected to genome function.
Collapse
Affiliation(s)
- Frédéric Bantignies
- Institut de Génétique Humaine, CNRS UPR-1142, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| |
Collapse
|
243
|
Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 2013; 14:390-403. [PMID: 23657480 DOI: 10.1038/nrg3454] [Citation(s) in RCA: 766] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
How DNA is organized in three dimensions inside the cell nucleus and how this affects the ways in which cells access, read and interpret genetic information are among the longest standing questions in cell biology. Using newly developed molecular, genomic and computational approaches based on the chromosome conformation capture technology (such as 3C, 4C, 5C and Hi-C), the spatial organization of genomes is being explored at unprecedented resolution. Interpreting the increasingly large chromatin interaction data sets is now posing novel challenges. Here we describe several types of statistical and computational approaches that have recently been developed to analyse chromatin interaction data.
Collapse
|
244
|
Apostolou E, Ferrari F, Walsh RM, Bar-Nur O, Stadtfeld M, Cheloufi S, Stuart HT, Polo JM, Ohsumi TK, Borowsky ML, Kharchenko PV, Park PJ, Hochedlinger K. Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming. Cell Stem Cell 2013; 12:699-712. [PMID: 23665121 DOI: 10.1016/j.stem.2013.04.013] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 03/27/2013] [Accepted: 04/16/2013] [Indexed: 12/14/2022]
Abstract
The chromatin state of pluripotency genes has been studied extensively in embryonic stem cells (ESCs) and differentiated cells, but their potential interactions with other parts of the genome remain largely unexplored. Here, we identified a genome-wide, pluripotency-specific interaction network around the Nanog promoter by adapting circular chromosome conformation capture sequencing. This network was rearranged during differentiation and restored in induced pluripotent stem cells. A large fraction of Nanog-interacting loci were bound by Mediator or cohesin in pluripotent cells. Depletion of these proteins from ESCs resulted in a disruption of contacts and the acquisition of a differentiation-specific interaction pattern prior to obvious transcriptional and phenotypic changes. Similarly, the establishment of Nanog interactions during reprogramming often preceded transcriptional upregulation of associated genes, suggesting a causative link. Our results document a complex, pluripotency-specific chromatin "interactome" for Nanog and suggest a functional role for long-range genomic interactions in the maintenance and induction of pluripotency.
Collapse
Affiliation(s)
- Effie Apostolou
- Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, 185 Cambridge Street, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Montavon T, Duboule D. Chromatin organization and global regulation of Hox gene clusters. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120367. [PMID: 23650639 PMCID: PMC3682730 DOI: 10.1098/rstb.2012.0367] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During development, a properly coordinated expression of Hox genes, within their different genomic clusters is critical for patterning the body plans of many animals with a bilateral symmetry. The fascinating correspondence between the topological organization of Hox clusters and their transcriptional activation in space and time has served as a paradigm for understanding the relationships between genome structure and function. Here, we review some recent observations, which revealed highly dynamic changes in the structure of chromatin at Hox clusters, in parallel with their activation during embryonic development. We discuss the relevance of these findings for our understanding of large-scale gene regulation.
Collapse
Affiliation(s)
- Thomas Montavon
- National Research Centre 'Frontiers in Genetics', School of Life Sciences, Ecole Polytechnique Fédérale, Lausanne, Switzerland
| | | |
Collapse
|
246
|
Gibcus JH, Dekker J. The hierarchy of the 3D genome. Mol Cell 2013; 49:773-82. [PMID: 23473598 DOI: 10.1016/j.molcel.2013.02.011] [Citation(s) in RCA: 529] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/17/2012] [Accepted: 02/06/2013] [Indexed: 12/21/2022]
Abstract
Mammalian genomes encode genetic information in their linear sequence, but appropriate expression of their genes requires chromosomes to fold into complex three-dimensional structures. Transcriptional control involves the establishment of physical connections among genes and regulatory elements, both along and between chromosomes. Recent technological innovations in probing the folding of chromosomes are providing new insights into the spatial organization of genomes and its role in gene regulation. It is emerging that folding of large complex chromosomes involves a hierarchy of structures, from chromatin loops that connect genes and enhancers to larger chromosomal domains and nuclear compartments. The larger these structures are along this hierarchy, the more stable they are within cells, while becoming more stochastic between cells. Here, we review the experimental and theoretical data on this hierarchy of structures and propose a key role for the recently discovered topologically associating domains.
Collapse
Affiliation(s)
- Johan H Gibcus
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-0103, USA
| | | |
Collapse
|
247
|
Abstract
The architecture of interphase chromosomes is important for the regulation of gene expression and genome maintenance. Chromosomes are linearly segmented into hundreds of domains with different protein compositions. Furthermore, the spatial organization of chromosomes is nonrandom and is characterized by many local and long-range contacts among genes and other sequence elements. A variety of genome-wide mapping techniques have made it possible to chart these properties at high resolution. Combined with microscopy and computational modeling, the results begin to yield a more coherent picture that integrates linear and three-dimensional (3D) views of chromosome organization in relation to gene regulation and other nuclear functions.
Collapse
|
248
|
Gagniuc P, Ionescu-Tirgoviste C. Gene promoters show chromosome-specificity and reveal chromosome territories in humans. BMC Genomics 2013; 14:278. [PMID: 23617842 PMCID: PMC3668249 DOI: 10.1186/1471-2164-14-278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 02/26/2013] [Indexed: 11/10/2022] Open
Abstract
Background Gene promoters have guided evolution processes for millions of years. It seems that they were the main engine responsible for the integration of different mutations favorable for the environmental conditions. In cooperation with different transcription factors and other biochemical components, these regulatory regions dictate the synthesis frequency of RNA molecules. Predominantly in the last decade, it has become clear that nuclear organization impacts upon gene regulation. To fully understand the connections between Homo sapiens chromosomes and their gene promoters, we analyzed 1200 promoter sequences using our Kappa Index of Coincidence method. Results In order to measure the structural similarity of gene promoters, we used two-dimensional image-based patterns obtained through Kappa Index of Coincidence (Kappa IC) and (C+G)% values. The center of weight of each promoter pattern indicated a structure similarity between promoters of each chromosome. Furthermore, the proximity of chromosomes seems to be in accordance to the structural similarity of their gene promoters. The arrangement of chromosomes according to Kappa IC values of promoters, shows a striking symmetry between the chromosome length and the structure of promoters located on them. High Kappa IC and (C+G)% values of gene promoters were also directly associated with the most frequent genetic diseases. Taking into consideration these observations, a general hypothesis for the evolutionary dynamics of the genome has been proposed. In this hypothesis, heterochromatin and euchromatin domains exchange DNA sequences according to a difference in the rate of Slipped Strand Mispairing and point mutations. Conclusions In this paper we showed that gene promoters appear to be specific to each chromosome. Furthermore, the proximity between chromosomes seems to be in accordance to the structural similarity of their gene promoters. Our findings are based on comprehensive data from Transcriptional Regulatory Element Database and a new computer model whose core is using Kappa index of coincidence.
Collapse
Affiliation(s)
- Paul Gagniuc
- Institute of Genetics, University of Bucharest, Bucharest, Romania.
| | | |
Collapse
|
249
|
Li HB, Ohno K, Gui H, Pirrotta V. Insulators target active genes to transcription factories and polycomb-repressed genes to polycomb bodies. PLoS Genet 2013; 9:e1003436. [PMID: 23637616 PMCID: PMC3630138 DOI: 10.1371/journal.pgen.1003436] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 02/21/2013] [Indexed: 01/14/2023] Open
Abstract
Polycomb bodies are foci of Polycomb proteins in which different Polycomb target genes are thought to co-localize in the nucleus, looping out from their chromosomal context. We have shown previously that insulators, not Polycomb response elements (PREs), mediate associations among Polycomb Group (PcG) targets to form Polycomb bodies. Here we use live imaging and 3C interactions to show that transgenes containing PREs and endogenous PcG-regulated genes are targeted by insulator proteins to different nuclear structures depending on their state of activity. When two genes are repressed, they co-localize in Polycomb bodies. When both are active, they are targeted to transcription factories in a fashion dependent on Trithorax and enhancer specificity as well as the insulator protein CTCF. In the absence of CTCF, assembly of Polycomb bodies is essentially reduced to those representing genomic clusters of Polycomb target genes. The critical role of Trithorax suggests that stable association with a specialized transcription factory underlies the cellular memory of the active state. We have studied the nuclear localization of genes that are regulated by Polycomb mechanisms. The genomes of higher eukaryotes contain hundreds of genes that are regulated by Polycomb mechanisms. Once repressed by Polycomb complexes, they tend to stay repressed; but, when activated, they bind Trithorax protein and tend to maintain the active state epigenetically. Polycomb repression has been reported to make these genes associate in the nucleus to form “Polycomb bodies.” We find that this association is not caused by Polycomb complexes but by insulator elements accompanying the genes. We show that, when these genes are in the active state, the binding of Trithorax targets them to other nuclear regions where transcription occurs, so-called transcription factories. In these nuclear re-positionings the insulator provides the associative power while the state of activity determines whether a gene goes to a Polycomb body or to a transcription factory. The strong effect of Trithorax suggests the possibility that the stable association with a transcription factory it produces may account for the epigenetic memory of the active state.
Collapse
Affiliation(s)
- Hua-Bing Li
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Katsuhito Ohno
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Hongxing Gui
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Vincenzo Pirrotta
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
250
|
Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila. Cell 2013; 152:97-108. [PMID: 23332748 DOI: 10.1016/j.cell.2012.11.049] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/17/2012] [Accepted: 11/26/2012] [Indexed: 11/22/2022]
Abstract
Stem and/or progenitor cells often generate distinct cell types in a stereotyped birth order and over time lose competence to specify earlier-born fates by unknown mechanisms. In Drosophila, the Hunchback transcription factor acts in neural progenitors (neuroblasts) to specify early-born neurons, in part by indirectly inducing the neuronal transcription of its target genes, including the hunchback gene. We used in vivo immuno-DNA FISH and found that the hunchback gene moves to the neuroblast nuclear periphery, a repressive subnuclear compartment, precisely when competence to specify early-born fate is lost and several hours and cell divisions after termination of its transcription. hunchback movement to the lamina correlated with downregulation of the neuroblast nuclear protein, Distal antenna (Dan). Either prolonging Dan expression or disrupting lamina interfered with hunchback repositioning and extended neuroblast competence. We propose that neuroblasts undergo a developmentally regulated subnuclear genome reorganization to permanently silence Hunchback target genes that results in loss of progenitor competence.
Collapse
|