201
|
Hu H, Kahrizi K, Musante L, Fattahi Z, Herwig R, Hosseini M, Oppitz C, Abedini SS, Suckow V, Larti F, Beheshtian M, Lipkowitz B, Akhtarkhavari T, Mehvari S, Otto S, Mohseni M, Arzhangi S, Jamali P, Mojahedi F, Taghdiri M, Papari E, Soltani Banavandi MJ, Akbari S, Tonekaboni SH, Dehghani H, Ebrahimpour MR, Bader I, Davarnia B, Cohen M, Khodaei H, Albrecht B, Azimi S, Zirn B, Bastami M, Wieczorek D, Bahrami G, Keleman K, Vahid LN, Tzschach A, Gärtner J, Gillessen-Kaesbach G, Varaghchi JR, Timmermann B, Pourfatemi F, Jankhah A, Chen W, Nikuei P, Kalscheuer VM, Oladnabi M, Wienker TF, Ropers HH, Najmabadi H. Genetics of intellectual disability in consanguineous families. Mol Psychiatry 2019; 24:1027-1039. [PMID: 29302074 DOI: 10.1038/s41380-017-0012-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 01/17/2023]
Abstract
Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian families with two or more affected offspring. In 219 of these, we found likely causative variants, involving 77 known and 77 novel AR-ID (candidate) genes, 21 X-linked genes, as well as 9 genes previously implicated in diseases other than ID. This study, the largest of its kind published to date, illustrates that high-throughput DNA sequencing in consanguineous families is a superior strategy for elucidating the thousands of hitherto unknown gene defects underlying AR-ID, and it sheds light on their prevalence.
Collapse
Affiliation(s)
- Hao Hu
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany.,Guangzhou Women and Children's Medical Center, 510623, Guangzhou, China
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Luciana Musante
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Ralf Herwig
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Masoumeh Hosseini
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Cornelia Oppitz
- IMP-Research Institute of Molecular Pathology, 1030, Vienna, Austria
| | - Seyedeh Sedigheh Abedini
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Vanessa Suckow
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Farzaneh Larti
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | | | - Tara Akhtarkhavari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Sepideh Mehvari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Sabine Otto
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Payman Jamali
- Shahrood Genetic Counseling Center, Welfare Office, Semnan, 36156, Iran
| | - Faezeh Mojahedi
- Mashhad Medical Genetic Counseling Center, Mashhad, 91767, Iran
| | - Maryam Taghdiri
- Shiraz Genetic Counseling Center, Welfare Office, Shiraz, Iran
| | - Elaheh Papari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | | | - Saeide Akbari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Seyed Hassan Tonekaboni
- Pediatric Neurology Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, 15468, Iran
| | - Hossein Dehghani
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Mohammad Reza Ebrahimpour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Ingrid Bader
- Kinderzentrum München, Technische Universität München, 81377, München, Germany
| | - Behzad Davarnia
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Monika Cohen
- Children's Center Munich, 81377, Munich, Germany
| | - Hossein Khodaei
- Meybod Genetics Research Center, Welfare Organization, Yazd, 89651, Iran
| | - Beate Albrecht
- Institute of Human Genetics, University Hospital Essen, 45122, Essen, Germany
| | - Sarah Azimi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Birgit Zirn
- Genetikum Counseling Center, 70173, Stuttgart, Germany
| | - Milad Bastami
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Dagmar Wieczorek
- Institute of Human Genetics and Anthropology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Gholamreza Bahrami
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Krystyna Keleman
- IMP-Research Institute of Molecular Pathology, 1030, Vienna, Austria.,Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Leila Nouri Vahid
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Andreas Tzschach
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany.,Institute of Clinical Genetics, Technische Universität Dresden, Dresden, Germany
| | - Jutta Gärtner
- University Medical Center, Georg August University Göttingen, 37075, Göttingen, Germany
| | | | | | - Bernd Timmermann
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | | | - Aria Jankhah
- Shiraz Genetic Counseling Center, Shiraz, 71346, Iran
| | - Wei Chen
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, 13125, Berlin, Germany
| | - Pooneh Nikuei
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Morteza Oladnabi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Thomas F Wienker
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Hans-Hilger Ropers
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany. .,Institute of Human Genetics, University Medicine, Mainz, Germany.
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran. .,Kariminejad - Najmabadi Pathology & Genetics Centre, Tehran, 14667-13713, Iran.
| |
Collapse
|
202
|
Teng X, Aouacheria A, Lionnard L, Metz KA, Soane L, Kamiya A, Hardwick JM. KCTD: A new gene family involved in neurodevelopmental and neuropsychiatric disorders. CNS Neurosci Ther 2019; 25:887-902. [PMID: 31197948 PMCID: PMC6566181 DOI: 10.1111/cns.13156] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
The underlying molecular basis for neurodevelopmental or neuropsychiatric disorders is not known. In contrast, mechanistic understanding of other brain disorders including neurodegeneration has advanced considerably. Yet, these do not approach the knowledge accrued for many cancers with precision therapeutics acting on well-characterized targets. Although the identification of genes responsible for neurodevelopmental and neuropsychiatric disorders remains a major obstacle, the few causally associated genes are ripe for discovery by focusing efforts to dissect their mechanisms. Here, we make a case for delving into mechanisms of the poorly characterized human KCTD gene family. Varying levels of evidence support their roles in neurocognitive disorders (KCTD3), neurodevelopmental disease (KCTD7), bipolar disorder (KCTD12), autism and schizophrenia (KCTD13), movement disorders (KCTD17), cancer (KCTD11), and obesity (KCTD15). Collective knowledge about these genes adds enhanced value, and critical insights into potential disease mechanisms have come from unexpected sources. Translation of basic research on the KCTD-related yeast protein Whi2 has revealed roles in nutrient signaling to mTORC1 (KCTD11) and an autophagy-lysosome pathway affecting mitochondria (KCTD7). Recent biochemical and structure-based studies (KCTD12, KCTD13, KCTD16) reveal mechanisms of regulating membrane channel activities through modulation of distinct GTPases. We explore how these seemingly varied functions may be disease related.
Collapse
Affiliation(s)
- Xinchen Teng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| | - Abdel Aouacheria
- ISEM, Institut des Sciences de l'Evolution de Montpellier, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Loïc Lionnard
- ISEM, Institut des Sciences de l'Evolution de Montpellier, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Kyle A. Metz
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
- Present address:
Feinberg School of MedicineNorthwestern UniversityChicagoUSA
| | - Lucian Soane
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral SciencesJohns Hopkins School of MedicineBaltimoreMaryland
| | - J. Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| |
Collapse
|
203
|
Infantile-Onset Multisystem Neurologic, Endocrine, and Pancreatic Disease: Case and Review. Neurol Sci 2019; 46:459-463. [PMID: 31057140 DOI: 10.1017/cjn.2019.35] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report three brothers born to consanguineous parents of Syrian descent, with a homozygous novel c.324G>A (p.W108*) mutation in PTRH2 that encodes peptidyl-tRNA hydrolase 2, causing infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD). We describe the core clinical features of postnatal microcephaly, motor and language delay with regression, ataxia, and hearing loss. Additional features include epileptic seizures, pancreatic insufficiency, and peripheral neuropathy. Clinical phenotyping enabled a targeted approach to the investigation and identification of a novel homozygous nonsense mutation in PTRH2, c.324G>A (p.W108*). We compare our patients with those recently described and review the current literature for IMNEPD.
Collapse
|
204
|
Deelen P, van Dam S, Herkert JC, Karjalainen JM, Brugge H, Abbott KM, van Diemen CC, van der Zwaag PA, Gerkes EH, Zonneveld-Huijssoon E, Boer-Bergsma JJ, Folkertsma P, Gillett T, van der Velde KJ, Kanninga R, van den Akker PC, Jan SZ, Hoorntje ET, Te Rijdt WP, Vos YJ, Jongbloed JDH, van Ravenswaaij-Arts CMA, Sinke R, Sikkema-Raddatz B, Kerstjens-Frederikse WS, Swertz MA, Franke L. Improving the diagnostic yield of exome- sequencing by predicting gene-phenotype associations using large-scale gene expression analysis. Nat Commun 2019; 10:2837. [PMID: 31253775 PMCID: PMC6599066 DOI: 10.1038/s41467-019-10649-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
The diagnostic yield of exome and genome sequencing remains low (8-70%), due to incomplete knowledge on the genes that cause disease. To improve this, we use RNA-seq data from 31,499 samples to predict which genes cause specific disease phenotypes, and develop GeneNetwork Assisted Diagnostic Optimization (GADO). We show that this unbiased method, which does not rely upon specific knowledge on individual genes, is effective in both identifying previously unknown disease gene associations, and flagging genes that have previously been incorrectly implicated in disease. GADO can be run on www.genenetwork.nl by supplying HPO-terms and a list of genes that contain candidate variants. Finally, applying GADO to a cohort of 61 patients for whom exome-sequencing analysis had not resulted in a genetic diagnosis, yields likely causative genes for ten cases.
Collapse
Affiliation(s)
- Patrick Deelen
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Genomics Coordination Center, 9700 VB, Groningen, The Netherlands
| | - Sipko van Dam
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Johanna C Herkert
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Juha M Karjalainen
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Harm Brugge
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Kristin M Abbott
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Cleo C van Diemen
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Paul A van der Zwaag
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Erica H Gerkes
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Evelien Zonneveld-Huijssoon
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Jelkje J Boer-Bergsma
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Pytrik Folkertsma
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Tessa Gillett
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - K Joeri van der Velde
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Genomics Coordination Center, 9700 VB, Groningen, The Netherlands
| | - Roan Kanninga
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Genomics Coordination Center, 9700 VB, Groningen, The Netherlands
| | - Peter C van den Akker
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Sabrina Z Jan
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Edgar T Hoorntje
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands.,Netherlands Heart Institute, 3511 EP, Utrecht, The Netherlands
| | - Wouter P Te Rijdt
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands.,Netherlands Heart Institute, 3511 EP, Utrecht, The Netherlands
| | - Yvonne J Vos
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Jan D H Jongbloed
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Conny M A van Ravenswaaij-Arts
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Richard Sinke
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | - Birgit Sikkema-Raddatz
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands
| | | | - Morris A Swertz
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Genomics Coordination Center, 9700 VB, Groningen, The Netherlands
| | - Lude Franke
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 VB, Groningen, The Netherlands.
| |
Collapse
|
205
|
Monies D, Abouelhoda M, Assoum M, Moghrabi N, Rafiullah R, Almontashiri N, Alowain M, Alzaidan H, Alsayed M, Subhani S, Cupler E, Faden M, Alhashem A, Qari A, Chedrawi A, Aldhalaan H, Kurdi W, Khan S, Rahbeeni Z, Alotaibi M, Goljan E, Elbardisy H, ElKalioby M, Shah Z, Alruwaili H, Jaafar A, Albar R, Akilan A, Tayeb H, Tahir A, Fawzy M, Nasr M, Makki S, Alfaifi A, Akleh H, Yamani S, Bubshait D, Mahnashi M, Basha T, Alsagheir A, Abu Khaled M, Alsaleem K, Almugbel M, Badawi M, Bashiri F, Bohlega S, Sulaiman R, Tous E, Ahmed S, Algoufi T, Al-Mousa H, Alaki E, Alhumaidi S, Alghamdi H, Alghamdi M, Sahly A, Nahrir S, Al-Ahmari A, Alkuraya H, Almehaidib A, Abanemai M, Alsohaibaini F, Alsaud B, Arnaout R, Abdel-Salam GMH, Aldhekri H, AlKhater S, Alqadi K, Alsabban E, Alshareef T, Awartani K, Banjar H, Alsahan N, Abosoudah I, Alashwal A, Aldekhail W, Alhajjar S, Al-Mayouf S, Alsemari A, Alshuaibi W, Altala S, Altalhi A, Baz S, Hamad M, Abalkhail T, Alenazi B, Alkaff A, Almohareb F, Al Mutairi F, Alsaleh M, Alsonbul A, Alzelaye S, Bahzad S, Manee AB, Jarrad O, Meriki N, Albeirouti B, Alqasmi A, AlBalwi M, Makhseed N, et alMonies D, Abouelhoda M, Assoum M, Moghrabi N, Rafiullah R, Almontashiri N, Alowain M, Alzaidan H, Alsayed M, Subhani S, Cupler E, Faden M, Alhashem A, Qari A, Chedrawi A, Aldhalaan H, Kurdi W, Khan S, Rahbeeni Z, Alotaibi M, Goljan E, Elbardisy H, ElKalioby M, Shah Z, Alruwaili H, Jaafar A, Albar R, Akilan A, Tayeb H, Tahir A, Fawzy M, Nasr M, Makki S, Alfaifi A, Akleh H, Yamani S, Bubshait D, Mahnashi M, Basha T, Alsagheir A, Abu Khaled M, Alsaleem K, Almugbel M, Badawi M, Bashiri F, Bohlega S, Sulaiman R, Tous E, Ahmed S, Algoufi T, Al-Mousa H, Alaki E, Alhumaidi S, Alghamdi H, Alghamdi M, Sahly A, Nahrir S, Al-Ahmari A, Alkuraya H, Almehaidib A, Abanemai M, Alsohaibaini F, Alsaud B, Arnaout R, Abdel-Salam GMH, Aldhekri H, AlKhater S, Alqadi K, Alsabban E, Alshareef T, Awartani K, Banjar H, Alsahan N, Abosoudah I, Alashwal A, Aldekhail W, Alhajjar S, Al-Mayouf S, Alsemari A, Alshuaibi W, Altala S, Altalhi A, Baz S, Hamad M, Abalkhail T, Alenazi B, Alkaff A, Almohareb F, Al Mutairi F, Alsaleh M, Alsonbul A, Alzelaye S, Bahzad S, Manee AB, Jarrad O, Meriki N, Albeirouti B, Alqasmi A, AlBalwi M, Makhseed N, Hassan S, Salih I, Salih MA, Shaheen M, Sermin S, Shahrukh S, Hashmi S, Shawli A, Tajuddin A, Tamim A, Alnahari A, Ghemlas I, Hussein M, Wali S, Murad H, Meyer BF, Alkuraya FS. Lessons Learned from Large-Scale, First-Tier Clinical Exome Sequencing in a Highly Consanguineous Population. Am J Hum Genet 2019; 104:1182-1201. [PMID: 31130284 DOI: 10.1016/j.ajhg.2019.04.011] [Show More Authors] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/11/2019] [Indexed: 12/16/2022] Open
Abstract
We report the results of clinical exome sequencing (CES) on >2,200 previously unpublished Saudi families as a first-tier test. The predominance of autosomal-recessive causes allowed us to make several key observations. We highlight 155 genes that we propose to be recessive, disease-related candidates. We report additional mutational events in 64 previously reported candidates (40 recessive), and these events support their candidacy. We report recessive forms of genes that were previously associated only with dominant disorders and that have phenotypes ranging from consistent with to conspicuously distinct from the known dominant phenotypes. We also report homozygous loss-of-function events that can inform the genetics of complex diseases. We were also able to deduce the likely causal variant in most couples who presented after the loss of one or more children, but we lack samples from those children. Although a similar pattern of mostly recessive causes was observed in the prenatal setting, the higher proportion of loss-of-function events in these cases was notable. The allelic series presented by the wealth of recessive variants greatly expanded the phenotypic expression of the respective genes. We also make important observations about dominant disorders; these observations include the pattern of de novo variants, the identification of 74 candidate dominant, disease-related genes, and the potential confirmation of 21 previously reported candidates. Finally, we describe the influence of a predominantly autosomal-recessive landscape on the clinical utility of rapid sequencing (Flash Exome). Our cohort's genotypic and phenotypic data represent a unique resource that can contribute to improved variant interpretation through data sharing.
Collapse
Affiliation(s)
- Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mohammed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mirna Assoum
- Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Nabil Moghrabi
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Rafiullah Rafiullah
- Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Naif Almontashiri
- Clinical Molecular and Biochemical Genetics, Taibah University, Madinah 42353, Saudi Arabia
| | - Mohammed Alowain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Hamad Alzaidan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Moeen Alsayed
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Shazia Subhani
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Edward Cupler
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Jeddah 23433, Saudi Arabia
| | - Maha Faden
- Genetics and Metabolism, King Saud Medical Complex, Riyadh 12746, Saudi Arabia
| | - Amal Alhashem
- Pediatrics Department, Prince Sultan Military Medical Complex, Riyadh 12233, Saudi Arabia
| | - Alya Qari
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Aziza Chedrawi
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Hisham Aldhalaan
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Wesam Kurdi
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Sameena Khan
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Maha Alotaibi
- Genetics and Metabolism, King Saud Medical Complex, Riyadh 12746, Saudi Arabia
| | - Ewa Goljan
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Hadeel Elbardisy
- Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mohamed ElKalioby
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Zeeshan Shah
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Hibah Alruwaili
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Amal Jaafar
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ranad Albar
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia
| | - Asma Akilan
- Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Hamsa Tayeb
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Asma Tahir
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mohammed Fawzy
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mohammed Nasr
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Shaza Makki
- Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Abdullah Alfaifi
- Pediatrics Department, Security Forces Hospital, Riyadh 11481, Saudi Arabia
| | - Hanna Akleh
- Academic and Training Affairs, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Suad Yamani
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Dalal Bubshait
- Pediatrics Department, King Fahad Hospital of the University, Al-Khobar 31952, Saudi Arabia
| | - Mohammed Mahnashi
- Genetics and Medicine, King Fahd Central Hospital, Gizan 82666, Saudi Arabia
| | - Talal Basha
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Jeddah 23433, Saudi Arabia
| | - Afaf Alsagheir
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Musad Abu Khaled
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Khalid Alsaleem
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Maisoon Almugbel
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Manal Badawi
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Fahad Bashiri
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Riyadh 11461, Saudi Arabia
| | - Saeed Bohlega
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Raashida Sulaiman
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ehab Tous
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Syed Ahmed
- Pediatric Hematology and Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Talal Algoufi
- Pediatric Hematology and Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Hamoud Al-Mousa
- Allergy - Immunology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Emadia Alaki
- Allergy - Immunology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Susan Alhumaidi
- Pediatrics Department, King Saud Medical City, Riyadh 12746, Saudi Arabia
| | - Hadeel Alghamdi
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Jeddah 23433, Saudi Arabia
| | - Malak Alghamdi
- Pediatrics Department, King Saud Medical City, Riyadh 12746, Saudi Arabia
| | - Ahmed Sahly
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Shapar Nahrir
- Pediatrics Department, King Saud Medical City, Riyadh 12746, Saudi Arabia
| | - Ali Al-Ahmari
- Pediatric Hematology and Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Hisham Alkuraya
- Vitreoretinal Surgery, Specialized Medical Centre, Riyadh 11564, Saudi Arabia
| | - Ali Almehaidib
- Gastroenterology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mohammed Abanemai
- Gastroenterology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Fahad Alsohaibaini
- Gastroenterology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Bandar Alsaud
- Allergy - Immunology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Rand Arnaout
- Allergy - Immunology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | | | - Hasan Aldhekri
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Suzan AlKhater
- Pediatrics Department, King Fahad Hospital of the University, Al-Khobar 31952, Saudi Arabia; Department of Pediatrics, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34221, Saudi Arabia
| | - Khalid Alqadi
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Essam Alsabban
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Turki Alshareef
- Pediatric Nephrology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Khalid Awartani
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Hanaa Banjar
- Pediatric Pulmonology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Nada Alsahan
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ibraheem Abosoudah
- Pediatric Hematology and Oncology, King Faisal Specialist Hospital and Research Centre, Jeddah 23433, Saudi Arabia
| | - Abdullah Alashwal
- Pediatric Endocrine and Metabolism, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Wajeeh Aldekhail
- Gastroenterology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Sami Alhajjar
- Pediatric Infectious Diseases, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Sulaiman Al-Mayouf
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Abdulaziz Alsemari
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Walaa Alshuaibi
- Pediatrics Department, King Khalid University Hospital, Riyadh 12372, Saudi Arabia
| | - Saeed Altala
- Pediatrics Department, Armed Forces Hospital, Khamis Mushait 62451, Saudi Arabia
| | - Abdulhadi Altalhi
- Pediatric Nephrology, King Saud Medical City, Riyadh 12746, Saudi Arabia
| | - Salah Baz
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Muddathir Hamad
- Pediatrics Department, King Khalid University Hospital, Riyadh 12372, Saudi Arabia
| | - Tariq Abalkhail
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Badi Alenazi
- Pediatrics Department, Alyamama Hospital, Riyadh 14222, Saudi Arabia
| | - Alya Alkaff
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Fahad Almohareb
- Oncology Center, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Fuad Al Mutairi
- King Abdullah International Medical Research Centre, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11564, Saudi Arabia; Medical Genetic Division, Department of Pediatrics, King Abdulaziz Medical City, Riyadh 14611, Saudi Arabia
| | - Mona Alsaleh
- Pediatric Hematology and Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Abdullah Alsonbul
- Pediatric Rheumatology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Somaya Alzelaye
- Pediatric Endocrine and Diabetes, Al Qunfudah General Hospital, Al Qunfudhah 28821, Saudi Arabia
| | - Shakir Bahzad
- Kuwait Medical Genetics Center, Kuwait City 65000, Kuwait
| | - Abdulaziz Bin Manee
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ola Jarrad
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Neama Meriki
- Maternal and Fetal Medicine, King Khalid University Hospital, Riyadh 12372, Saudi Arabia
| | - Bassem Albeirouti
- Hematology and Oncology, King Faisal Specialist Hospital and Research Centre, Jeddah 23433, Saudi Arabia
| | - Amal Alqasmi
- Pediatrics Department, King Saud Medical City, Riyadh 12746, Saudi Arabia
| | - Mohammed AlBalwi
- Department of Pathology and Laboratory Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh 11426, Saudi Arabia
| | - Nawal Makhseed
- Pediatrics Department, Alsoor Clinic, Kuwait City 65000, Kuwait
| | - Saeed Hassan
- Pediatrics Department, King Khalid University Hospital, Riyadh 12372, Saudi Arabia
| | - Isam Salih
- Hepatic-Pancreatic Surgery, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mustafa A Salih
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Riyadh 11461, Saudi Arabia
| | - Marwan Shaheen
- Hematology and Bone Marrow Transplant, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Saadeh Sermin
- Pediatric Nephrology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Shamsad Shahrukh
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Jeddah 23433, Saudi Arabia
| | - Shahrukh Hashmi
- Hematology and Bone Marrow Transplant, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ayman Shawli
- Department of Pediatrics, King Abdulaziz Medical City, Jeddah 9515, Saudi Arabia
| | - Ameen Tajuddin
- Neurology, King Fahad Hospital, Medina 59046, Saudi Arabia
| | - Abdullah Tamim
- Pediatrics Neurology, King Faisal Specialist Hospital and Research Centre, Jeddah 23433, Saudi Arabia
| | - Ahmed Alnahari
- Pediatric Department, King Fahad Central Hospital, Gizan, 82666, Saudi Arabia
| | - Ibrahim Ghemlas
- Pediatric Hematology and Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Maged Hussein
- Nephrology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Sami Wali
- Pediatrics Department, Prince Sultan Military Medical Complex, Riyadh 12233, Saudi Arabia
| | - Hatem Murad
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Brian F Meyer
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia.
| |
Collapse
|
206
|
Starr LJ, Spranger JW, Rao VK, Lutz R, Yetman AT. PIGQ glycosylphosphatidylinositol-anchored protein deficiency: Characterizing the phenotype. Am J Med Genet A 2019; 179:1270-1275. [PMID: 31148362 DOI: 10.1002/ajmg.a.61185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/04/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022]
Abstract
PIGQ (OMIM *605754) encodes phosphatidylinositol glycan biosynthesis class Q (PIGQ) and is required for proper functioning of an N-acetylglucosamine transferase complex in a similar manner to the more established PIGA, PIGC, and PIGH. There are two previous patients reported with homozygous and apparently deleterious PIGQ mutations. Here, we provide the first detailed clinical report of a patient with heterozygous deleterious mutations associated with glycosylphosphatidylinositol-anchored protein (GPI-AP) biosynthesis deficiency. Our patient died at 10 months of age. The rare skeletal findings in this disorder expand the differential diagnosis of long bone radiolucent lesions and sphenoid wing dysplasia. This clinical report describes a new and rare disorder-PIGQ GPI-AP biosynthesis deficiency syndrome.
Collapse
Affiliation(s)
- Lois J Starr
- Department of Pediatrics, Children's Hospital and Medical Center, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Vamshi K Rao
- Division of Neurology, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard Lutz
- Department of Pediatrics, Children's Hospital and Medical Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Anji T Yetman
- Department of Pediatrics, Children's Hospital and Medical Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
207
|
Cappuccio G, Pinelli M, Torella A, Vitiello G, D'Amico A, Alagia M, Del Giudice E, Nigro V, Brunetti-Pierri N. An extremely severe phenotype attributed to WDR81 nonsense mutations. Ann Neurol 2019; 82:650-651. [PMID: 28972664 DOI: 10.1002/ana.25058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Gerarda Cappuccio
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Michele Pinelli
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.,Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Giuseppina Vitiello
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy
| | - Alessandra D'Amico
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Marianna Alagia
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Ennio Del Giudice
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.,Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | -
- Telethon Undiagnosed Diseases Program
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| |
Collapse
|
208
|
Schaffer AE, Pinkard O, Coller JM. tRNA Metabolism and Neurodevelopmental Disorders. Annu Rev Genomics Hum Genet 2019; 20:359-387. [PMID: 31082281 DOI: 10.1146/annurev-genom-083118-015334] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
tRNAs are short noncoding RNAs required for protein translation. The human genome includes more than 600 putative tRNA genes, many of which are considered redundant. tRNA transcripts are subject to tightly controlled, multistep maturation processes that lead to the removal of flanking sequences and the addition of nontemplated nucleotides. Furthermore, tRNAs are highly structured and posttranscriptionally modified. Together, these unique features have impeded the adoption of modern genomics and transcriptomics technologies for tRNA studies. Nevertheless, it has become apparent from human neurogenetic research that many tRNA biogenesis proteins cause brain abnormalities and other neurological disorders when mutated. The cerebral cortex, cerebellum, and peripheral nervous system show defects, impairment, and degeneration upon tRNA misregulation, suggesting that they are particularly sensitive to changes in tRNA expression or function. An integrated approach to identify tRNA species and contextually characterize tRNA function will be imperative to drive future tool development and novel therapeutic design for tRNA-associated disorders.
Collapse
Affiliation(s)
- Ashleigh E Schaffer
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| | - Otis Pinkard
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| | - Jeffery M Coller
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| |
Collapse
|
209
|
Alfadhel M. Multiple Mitochondrial Dysfunctions Syndrome 4 Due to ISCA2 Gene Defects: A Review. Child Neurol Open 2019; 6:2329048X19847377. [PMID: 31106229 PMCID: PMC6506909 DOI: 10.1177/2329048x19847377] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/15/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Multiple mitochondrial dysfunctions syndrome 4, caused by ISCA2 gene
defects (OMIM #616370), was first described by Al-Hassnan et al in 2015. To date, 20 cases
have been reported: 13 females and 7 males from 18 different families. All cases are from
Saudi Arabia except those from one Italian family. Typically, the patients have normal
antenatal and birth history and attain normal development initially. Rapid deterioration
occurs between 2 and 7 months of age, with the triad of neurodevelopmental regression,
optic atrophy with nystagmus, and diffuse white matter disease. Magnetic resonance imaging
findings include 75% of patients have cerebellar white matter abnormalities, and the
spinal cord was affected in 55%. Magnetic resonance spectroscopy showed elevated glycine
peaks in 2 (10%) cases and elevated lactate peaks in 5 (25%) cases. Biochemical
abnormalities include high cerebrospinal fluid glycine and lactate and high plasma glycine
and lactate, but these findings were not consistent. Diagnosis is based on the detection
of biallelic mutations in the ISCA2 gene. To date, no curative treatment
has been discovered, and disease management is exclusively supportive. In this report, the
authors review the published cases of ISCA2 gene defects and
retrospectively characterize disease phenotypes, the affected biochemical pathways,
neuroradiological abnormalities, diagnosis, genetics, and treatment.
Collapse
Affiliation(s)
- Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
210
|
MiR-195 modulates oxidative stress-induced apoptosis and mitochondrial energy production in human trophoblasts via flavin adenine dinucleotide-dependent oxidoreductase domain-containing protein 1 and pyruvate dehydrogenase phosphatase regulatory subunit. J Hypertens 2019; 36:306-318. [PMID: 28858979 DOI: 10.1097/hjh.0000000000001529] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Preeclampsia is a severe pregnancy-specific syndrome defined as newly onset hypertension and proteinuria. Abnormal placental development has been generally accepted as the initial cause of the disorder. Recently, miR-195 was identified as one of the downregulated small RNAs in preeclamptic placentas. METHODS The potential targets of miR-195 in human trophoblast cells were screened by isobaric tags for relative and absolute quantification-based mass spectrum analysis. Localization of miR-195 and its targets was examined by in-situ hybridization and immunohistochemistry in human placenta. Real-time PCR, western blotting and luciferase assay were used for target validation. Apoptosis was accessed by Annexin V/PI costaining, whereas mitochondrial function by ATP measurement and tetramethylrhodamine ethyl ester fluorescence. RESULTS Two mitochondria-associated proteins, flavin adenine dinucleotide-dependent oxidoreductase domain-containing protein 1 (FOXRED1) and pyruvate dehydrogenase phosphatase regulatory subunit (PDPR), were identified as targets of miR-195. Overexpression of miR-195 in HTR8/SVneo cells resulted in enhanced apoptosis, decreased mitochondrial membrane potential and cellular ATP content upon hydrogen peroxide stimulation. The effects could be partially rescued by FOXRED1 or PDPR. In preeclamptic patients, lowered circulating level of miR-195 were found at early-to-mid gestation and term pregnancy, and marked increase in FOXRED1 and PDPR expression were observed in the placenta when compared with gestational week-matched controls. In addition, chronic hydrogen peroxide stimuli suppressed miR-195 expression in trophoblast cells. CONCLUSION MiR-195 could suppress mitochondrial energy production via targeting FOXRED1 and PDPR, and lead to trophoblast cell apoptosis under oxidative stress. In preeclamptic placenta, lowered level of miR-195 might be induced by chorionic oxidative stress and subsequently form a compensation mechanism to defend the disturbed energy production and cell apoptosis upon oxidative stress.
Collapse
|
211
|
Dudkiewicz M, Pawłowski K. A novel conserved family of Macro-like domains-putative new players in ADP-ribosylation signaling. PeerJ 2019; 7:e6863. [PMID: 31106069 PMCID: PMC6500376 DOI: 10.7717/peerj.6863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/28/2019] [Indexed: 12/30/2022] Open
Abstract
The presence of many completely uncharacterized proteins, even in well-studied organisms such as humans, seriously hampers a full understanding of the functioning of living cells. One such example is the human protein C12ORF4, which belongs to the DUF2362 family, present in many eukaryotic lineages and conserved in metazoans. The only functional information available on C12ORF4 (Chromosome 12 Open Reading Frame 4) is its involvement in mast cell degranulation and its being a genetic cause of autosomal intellectual disability. Bioinformatics analysis of the DUF2362 family provides strong evidence that it is a novel member of the Macro clan/superfamily. Sequence similarity analysis versus other representatives of the Macro superfamily of ADP-ribose-binding proteins and mapping sequence conservation on predicted three-dimensional structure provides hypotheses regarding the molecular function for members of the DUF2362 family. For example, the available functional data suggest a possible role for C12ORF4 in ADP-ribosylation signaling in asthma and related inflammatory diseases. This novel family appears to be a likely novel ADP-ribosylation “reader” and “eraser,” a previously unnoticed putative new player in cell signaling by this emerging post-translational modification.
Collapse
Affiliation(s)
- Małgorzata Dudkiewicz
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland
| | - Krzysztof Pawłowski
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland.,Department of Translational Mecicine, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
212
|
Weisz-Hubshman M, Meirson H, Michaelson-Cohen R, Beeri R, Tzur S, Bormans C, Modai S, Shomron N, Shilon Y, Banne E, Orenstein N, Konen O, Marek-Yagel D, Veber A, Shalva N, Imagawa E, Matsumoto N, Lev D, Lerman Sagie T, Raas-Rothschild A, Ben-Zeev B, Basel-Salmon L, Behar DM, Heimer G. Novel WWOX deleterious variants cause early infantile epileptic encephalopathy, severe developmental delay and dysmorphism among Yemenite Jews. Eur J Paediatr Neurol 2019; 23:418-426. [PMID: 30853297 DOI: 10.1016/j.ejpn.2019.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 12/17/2022]
Abstract
The human WW Domain Containing Oxidoreductase (WWOX) gene was originally described as a tumor suppressor gene. However, recent reports have demonstrated its cardinal role in the pathogenesis of central nervous systems disorders such as epileptic encephalopathy, intellectual disability, and spinocerebellar ataxia. We report on six patients from three unrelated families of full or partial Yemenite Jewish ancestry exhibiting early infantile epileptic encephalopathy and profound developmental delay. Importantly, four patients demonstrated facial dysmorphism. Exome sequencing revealed that four of the patients were homozygous for a novel WWOX c.517-2A > G splice-site variant and two were compound heterozygous for this variant and a novel c.689A > C, p.Gln230Pro missense variant. Complementary DNA sequencing demonstrated that the WWOX c.517-2A > G splice-site variant causes skipping of exon six. A carrier rate of 1:177 was found among Yemenite Jews. We provide the first detailed description of patients harboring a splice-site variant in the WWOX gene and propose that the clinical synopsis of WWOX related epileptic encephalopathy should be broadened to include facial dysmorphism. The increased frequency of the c.517-2A > G splice-site variant among Yemenite Jews coupled with the severity of the phenotype makes it a candidate for inclusion in expanded preconception screening programs.
Collapse
Affiliation(s)
- M Weisz-Hubshman
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Raphael Recanati Genetic Institute, Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - H Meirson
- Pediatric Neurology Unit, Kaplan Medical Center Rehovot, Israel
| | - R Michaelson-Cohen
- Shaare Zedek Medical Center, Hebrew University School of Medicine, Jerusalem, Israel
| | - R Beeri
- Laboratory of Molecular Medicine, Rambam Health Care Campus, Haifa, Israel
| | - S Tzur
- Laboratory of Molecular Medicine, Rambam Health Care Campus, Haifa, Israel; Genomic Research Department, Emedgene Technologies, Tel-Aviv, Israel
| | - C Bormans
- Gene by Gene, Genomic Research Center, Houston, TX, USA
| | - S Modai
- Variantyx, Inc, Framingham, MA, USA
| | - N Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Variantyx, Inc, Framingham, MA, USA
| | - Y Shilon
- Pediatric Neurology Unit, Kaplan Medical Center Rehovot, Israel
| | - E Banne
- Institute of Medical Genetics, Kaplan Medical Center, Rehovot, Israel
| | - N Orenstein
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Raphael Recanati Genetic Institute, Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - O Konen
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Radiology Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - D Marek-Yagel
- Metabolic Diseases Unit, Safra Children Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - A Veber
- Metabolic Diseases Unit, Safra Children Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - N Shalva
- Metabolic Diseases Unit, Safra Children Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - E Imagawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - N Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - D Lev
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Metabolic Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel; Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
| | - T Lerman Sagie
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Metabolic Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
| | - A Raas-Rothschild
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Institute of Rare Diseases, The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | - B Ben-Zeev
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Neurology Unit, Safra Children Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - L Basel-Salmon
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Raphael Recanati Genetic Institute, Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Felsenstein Medical Research Center, Petach Tikva, Israel
| | - D M Behar
- Gene by Gene, Genomic Research Center, Houston, TX, USA
| | - G Heimer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Neurology Unit, Safra Children Hospital, Sheba Medical Center, Tel Hashomer, Israel; The Pinchas Borenstein Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, 52621, Ramat Gan, Israel
| |
Collapse
|
213
|
Nashabat M, Al Qahtani XS, Almakdob S, Altwaijri W, Ba-Armah DM, Hundallah K, Al Hashem A, Al Tala S, Maddirevula S, Alkuraya FS, Tabarki B, Alfadhel M. The landscape of early infantile epileptic encephalopathy in a consanguineous population. Seizure 2019; 69:154-172. [PMID: 31054490 DOI: 10.1016/j.seizure.2019.04.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Epileptic encephalopathies (EE), are a group of age-related disorders characterized by intractable seizures and electroencephalogram (EEG) abnormalities that may result in cognitive and motor delay. Early infantile epileptic encephalopathies (EIEE) manifest in the first year of life. EIEE are highly heterogeneous genetically but a genetic etiology is only identified in half of the cases, typically in the form of de novo dominant mutations. METHOD This is a descriptive retrospective study of a consecutive series of patients diagnosed with EIEE from the participating hospitals. A chart review was performed for all patients. The diagnosis of epileptic encephalopathy was confirmed by molecular investigations in commercial labs. In silico study was done for all novel mutations. A systematic search was done for all the types of EIEE and their correlated genes in the literature using the Online Mendelian Inheritance In Man and PubMed databases. RESULTS In this case series, we report 72 molecularly characterized EIEE from a highly consanguineous population, and review their clinical course. We identified 50 variants, 26 of which are novel, causing 26 different types of EIEE. Unlike outbred populations, autosomal recessive EIEE accounted for half the cases. The phenotypes ranged from self-limiting and drug-responsive to severe refractory seizures or even death. CONCLUSIONS We reported the largest EIEE case series in the region with confirmed molecular testing and detailed clinical phenotyping. The number autosomal recessive predominance could be explained by the society's high consanguinity. We reviewed all the EIEE registered causative genes in the literature and proposed a functional classification.
Collapse
Affiliation(s)
- Marwan Nashabat
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Xena S Al Qahtani
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Salwa Almakdob
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Waleed Altwaijri
- Division of Pediatric Neurology, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Duaa M Ba-Armah
- Division of Pediatric Neurology, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Khalid Hundallah
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Amal Al Hashem
- Division of Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Saeed Al Tala
- Division of Genetics, Department of Pediatrics, Armed Forces Hospital, Khamis Mushayt, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.
| |
Collapse
|
214
|
Cianciolo Cosentino C, Berto A, Pelletier S, Hari M, Loffing J, Neuhauss SCF, Doye V. Moderate Nucleoporin 133 deficiency leads to glomerular damage in zebrafish. Sci Rep 2019; 9:4750. [PMID: 30894603 PMCID: PMC6426968 DOI: 10.1038/s41598-019-41202-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/26/2019] [Indexed: 01/13/2023] Open
Abstract
Although structural nuclear pore proteins (nucleoporins) are seemingly required in every cell type to assemble a functional nuclear transport machinery, mutations or deregulation of a subset of them have been associated with specific human hereditary diseases. In particular, previous genetic studies of patients with nephrotic syndrome identified mutations in Nup107 that impaired the expression or the localization of its direct partner at nuclear pores, Nup133. In the present study, we characterized the zebrafish nup133 orthologous gene and its expression pattern during larval development. Using a morpholino-mediated gene knockdown, we show that partial depletion of Nup133 in zebrafish larvae leads to the formation of kidney cysts, a phenotype that can be rescued by co-injection of wild type mRNA. Analysis of different markers for tubular and glomerular development shows that the overall kidney development is not affected by nup133 knockdown. Likewise, no gross defect in nuclear pore complex assembly was observed in these nup133 morphants. On the other hand, nup133 downregulation results in proteinuria and moderate foot process effacement, mimicking some of the abnormalities typically featured by patients with nephrotic syndrome. These data indicate that nup133 is a new gene required for proper glomerular structure and function in zebrafish.
Collapse
Affiliation(s)
- Chiara Cianciolo Cosentino
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Fondazione RiMED, Palermo, Italy
| | - Alessandro Berto
- Institut Jacques Monod, UMR7592 CNRS-Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France.,Ecole Doctorale SDSV, Université Paris Sud, F-91405, Orsay, France
| | - Stéphane Pelletier
- Institut Jacques Monod, UMR7592 CNRS-Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - Michelle Hari
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | | | - Valérie Doye
- Institut Jacques Monod, UMR7592 CNRS-Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France.
| |
Collapse
|
215
|
Lipska-Ziętkiewicz BS, Schaefer F. NUP Nephropathy: When Defective Pores Cause Leaky Glomeruli. Am J Kidney Dis 2019; 73:890-892. [PMID: 30876747 DOI: 10.1053/j.ajkd.2019.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/14/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Beata S Lipska-Ziętkiewicz
- Clinical Genetics Unit, Department of Biology and Medical Genetics, Medical University of Gdańsk, Poland.
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany.
| |
Collapse
|
216
|
Urreizti R, Mayer K, Evrony GD, Said E, Castilla-Vallmanya L, Cody NAL, Plasencia G, Gelb BD, Grinberg D, Brinkmann U, Webb BD, Balcells S. DPH1 syndrome: two novel variants and structural and functional analyses of seven missense variants identified in syndromic patients. Eur J Hum Genet 2019; 28:64-75. [PMID: 30877278 DOI: 10.1038/s41431-019-0374-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 11/09/2022] Open
Abstract
DPH1 variants have been associated with an ultra-rare and severe neurodevelopmental disorder, mainly characterized by variable developmental delay, short stature, dysmorphic features, and sparse hair. We have identified four new patients (from two different families) carrying novel variants in DPH1, enriching the clinical delineation of the DPH1 syndrome. Using a diphtheria toxin ADP-ribosylation assay, we have analyzed the activity of seven identified variants and demonstrated compromised function for five of them [p.(Leu234Pro); p.(Ala411Argfs*91); p.(Leu164Pro); p.(Leu125Pro); and p.(Tyr112Cys)]. We have built a homology model of the human DPH1-DPH2 heterodimer and have performed molecular dynamics simulations to study the effect of these variants on the catalytic sites as well as on the interactions between subunits of the heterodimer. The results show correlation between loss of activity, reduced size of the opening to the catalytic site, and changes in the size of the catalytic site with clinical severity. This is the first report of functional tests of DPH1 variants associated with the DPH1 syndrome. We demonstrate that the in vitro assay for DPH1 protein activity, together with structural modeling, are useful tools for assessing the effect of the variants on DPH1 function and may be used for predicting patient outcomes and prognoses.
Collapse
Affiliation(s)
- Roser Urreizti
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, CIBERER, Barcelona, Spain.
| | - Klaus Mayer
- Roche Pharma Research and Early Development. Large Molecule Research, Roche Innovation Center, Munich, Nonnenwald 2, 82377, Penzberg, Germany
| | - Gilad D Evrony
- Center for Human Genetics & Genomics, New York University Langone Health, New York, NY, USA
| | - Edith Said
- Section of Medical Genetics, Mater dei Hospital, Msida, Malta.,Department of Anatomy and Cell Biology, University of Malta, Msida, Malta
| | - Laura Castilla-Vallmanya
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, CIBERER, Barcelona, Spain
| | - Neal A L Cody
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Sema4, Stamford, CT, USA
| | | | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, CIBERER, Barcelona, Spain
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development. Large Molecule Research, Roche Innovation Center, Munich, Nonnenwald 2, 82377, Penzberg, Germany
| | - Bryn D Webb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, CIBERER, Barcelona, Spain
| |
Collapse
|
217
|
Drange OK, Smeland OB, Shadrin AA, Finseth PI, Witoelar A, Frei O, Wang Y, Hassani S, Djurovic S, Dale AM, Andreassen OA. Genetic Overlap Between Alzheimer's Disease and Bipolar Disorder Implicates the MARK2 and VAC14 Genes. Front Neurosci 2019; 13:220. [PMID: 30930738 PMCID: PMC6425305 DOI: 10.3389/fnins.2019.00220] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/26/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Alzheimer's disease (AD) and bipolar disorder (BIP) are complex traits influenced by numerous common genetic variants, most of which remain to be detected. Clinical and epidemiological evidence suggest that AD and BIP are related. However, it is not established if this relation is of genetic origin. Here, we applied statistical methods based on the conditional false discovery rate (FDR) framework to detect genetic overlap between AD and BIP and utilized this overlap to increase the power to identify common genetic variants associated with either or both traits. Methods: We obtained genome wide association studies data from the International Genomics of Alzheimer's Project part 1 (17,008 AD cases and 37,154 controls) and the Psychiatric Genetic Consortium Bipolar Disorder Working Group (20,352 BIP cases and 31,358 controls). We used conditional QQ-plots to assess overlap in common genetic variants between AD and BIP. We exploited the genetic overlap to re-rank test-statistics for AD and BIP and improve detection of genetic variants using the conditional FDR framework. Results: Conditional QQ-plots demonstrated a polygenic overlap between AD and BIP. Using conditional FDR, we identified one novel genomic locus associated with AD, and nine novel loci associated with BIP. Further, we identified two novel loci jointly associated with AD and BIP implicating the MARK2 gene (lead SNP rs10792421, conjunctional FDR = 0.030, same direction of effect) and the VAC14 gene (lead SNP rs11649476, conjunctional FDR = 0.022, opposite direction of effect). Conclusion: We found polygenic overlap between AD and BIP and identified novel loci for each trait and two jointly associated loci. Further studies should examine if the shared loci implicating the MARK2 and VAC14 genes could explain parts of the shared and distinct features of AD and BIP.
Collapse
Affiliation(s)
- Ole Kristian Drange
- Department of Research and Development, Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Østmarka, Division of Mental Health Care, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Olav Bjerkehagen Smeland
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Alexey A. Shadrin
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Per Ivar Finseth
- Department of Brøset, Division of Mental Health Care, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Aree Witoelar
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Yunpeng Wang
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sahar Hassani
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anders M. Dale
- Center for Multimodal Imaging and Genetics, Department of Radiology, University of California, San Diego, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
218
|
Understanding the basis of Ehlers-Danlos syndrome in the era of the next-generation sequencing. Arch Dermatol Res 2019; 311:265-275. [PMID: 30826961 DOI: 10.1007/s00403-019-01894-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/26/2018] [Accepted: 02/12/2019] [Indexed: 01/08/2023]
Abstract
Ehlers-Danlos syndrome (EDS) is a clinically and genetically heterogeneous group of heritable connective tissue disorders (HCTDs) defined by joint laxity, skin alterations, and joint hypermobility. The latest EDS classification recognized 13 subtypes in which the clinical and genetic phenotypes are often overlapping, making the diagnosis rather difficult and strengthening the importance of the molecular diagnostic confirmation. New genetic techniques such as next-generation sequencing (NGS) gave the opportunity to identify the genetic bases of unresolved EDS types and support clinical counseling. To date, the molecular defects have been identified in 19 genes, mainly in those encoding collagen, its modifying enzymes or other constituents of the extracellular matrix (ECM). In this review we summarize the contribution of NGS technologies to the current knowledge of the genetic background in different EDS subtypes.
Collapse
|
219
|
Shamseldin HE, Makhseed N, Ibrahim N, Al-Sheddi T, Alobeid E, Abdulwahab F, Alkuraya FS. NUP214 deficiency causes severe encephalopathy and microcephaly in humans. Hum Genet 2019; 138:221-229. [PMID: 30758658 DOI: 10.1007/s00439-019-01979-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
Nuclear pore complex (NPC) is a fundamental component of the nuclear envelope and is key to the nucleocytoplasmic transport. Mutations in several NUP genes that encode individual components of NPC known as nucleoporins have been identified in recent years among patients with static encephalopathies characterized by developmental delay and microcephaly. We describe a multiplex consanguineous family in which four affected members presented with severe neonatal hypotonia, profound global developmental delay, progressive microcephaly and early death. Autozygome and linkage analysis revealed that this phenotype is linked to a founder disease haplotype (chr9:127,113,732-135,288,807) in which whole exome sequencing revealed the presence of a novel homozygous missense variant in NUP214. Functional analysis of patient-derived fibroblasts recapitulated the dysmorphic phenotype of nuclei that was previously described in NUP214 knockdown cells. In addition, the typical rim staining of NUP214 is largely displaced, further supporting the deleterious effect of the variant. Our data expand the list of NUP genes that are mutated in encephalopathy disorders in humans.
Collapse
Affiliation(s)
- Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nawal Makhseed
- Department of Pediatrics, Al-Jahra Hospital, Kuwait City, Kuwait
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tarfa Al-Sheddi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eman Alobeid
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
220
|
Friedman J, Smith DE, Issa MY, Stanley V, Wang R, Mendes MI, Wright MS, Wigby K, Hildreth A, Crawford JR, Koehler AE, Chowdhury S, Nahas S, Zhai L, Xu Z, Lo WS, James KN, Musaev D, Accogli A, Guerrero K, Tran LT, Omar TEI, Ben-Omran T, Dimmock D, Kingsmore SF, Salomons GS, Zaki MS, Bernard G, Gleeson JG. Biallelic mutations in valyl-tRNA synthetase gene VARS are associated with a progressive neurodevelopmental epileptic encephalopathy. Nat Commun 2019; 10:707. [PMID: 30755602 PMCID: PMC6372641 DOI: 10.1038/s41467-018-07067-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 10/03/2018] [Indexed: 12/27/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) function to transfer amino acids to cognate tRNA molecules, which are required for protein translation. To date, biallelic mutations in 31 ARS genes are known to cause recessive, early-onset severe multi-organ diseases. VARS encodes the only known valine cytoplasmic-localized aminoacyl-tRNA synthetase. Here, we report seven patients from five unrelated families with five different biallelic missense variants in VARS. Subjects present with a range of global developmental delay, epileptic encephalopathy and primary or progressive microcephaly. Longitudinal assessment demonstrates progressive cortical atrophy and white matter volume loss. Variants map to the VARS tRNA binding domain and adjacent to the anticodon domain, and disrupt highly conserved residues. Patient primary cells show intact VARS protein but reduced enzymatic activity, suggesting partial loss of function. The implication of VARS in pediatric neurodegeneration broadens the spectrum of human diseases due to mutations in tRNA synthetase genes.
Collapse
Affiliation(s)
- Jennifer Friedman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
- Division of Child Neurology, Rady Children's Hospital, San Diego, CA, 92123, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Desiree E Smith
- Department of Clinical Chemistry, Metabolic Unit, Amsterdam UMC (University Medical Centers), Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Gastroenterology & Metabolism Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Mahmoud Y Issa
- Department of Clinical Genetics, National Research Centre, Cairo, 12311, Egypt
| | - Valentina Stanley
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rengang Wang
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Marisa I Mendes
- Department of Clinical Chemistry, Metabolic Unit, Amsterdam UMC (University Medical Centers), Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Gastroenterology & Metabolism Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Meredith S Wright
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Kristen Wigby
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Amber Hildreth
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - John R Crawford
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
- Division of Child Neurology, Rady Children's Hospital, San Diego, CA, 92123, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alanna E Koehler
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shimul Chowdhury
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Shareef Nahas
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Liting Zhai
- IAS HKUST-Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhiwen Xu
- IAS HKUST-Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Pangu Biopharma, Edinburgh Tower, The Landmark, 15 Queen's Road Central, Hong Kong, China
| | - Wing-Sze Lo
- IAS HKUST-Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Pangu Biopharma, Edinburgh Tower, The Landmark, 15 Queen's Road Central, Hong Kong, China
| | - Kiely N James
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Damir Musaev
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Andrea Accogli
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, H3A 0G4, Canada
- IRCCS Istituto Giannina Gaslini, Genova, 16147, Italy
| | - Kether Guerrero
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, H3A 0G4, Canada
- Division of Medical Genetics, Montreal Children's Hospital, McGill University Health Center, Montreal, H4A 3J1, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, H4A 3J1, Canada
| | - Luan T Tran
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, H3A 0G4, Canada
- Division of Medical Genetics, Montreal Children's Hospital, McGill University Health Center, Montreal, H4A 3J1, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, H4A 3J1, Canada
| | - Tarek E I Omar
- Department of Pediatrics, Alexandria University, Alexandria, 21526, Egypt
| | - Tawfeg Ben-Omran
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, 3050, Doha, Qatar
| | - David Dimmock
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Stephen F Kingsmore
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Gajja S Salomons
- Department of Clinical Chemistry, Metabolic Unit, Amsterdam UMC (University Medical Centers), Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Gastroenterology & Metabolism Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Maha S Zaki
- Department of Clinical Genetics, National Research Centre, Cairo, 12311, Egypt
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, H3A 0G4, Canada
- Division of Medical Genetics, Montreal Children's Hospital, McGill University Health Center, Montreal, H4A 3J1, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, H4A 3J1, Canada
| | - Joseph G Gleeson
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA.
- Division of Child Neurology, Rady Children's Hospital, San Diego, CA, 92123, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA.
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
221
|
Colson V, Cousture M, Damasceno D, Valotaire C, Nguyen T, Le Cam A, Bobe J. Maternal temperature exposure impairs emotional and cognitive responses and triggers dysregulation of neurodevelopment genes in fish. PeerJ 2019; 7:e6338. [PMID: 30723624 PMCID: PMC6360074 DOI: 10.7717/peerj.6338] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 12/21/2018] [Indexed: 01/29/2023] Open
Abstract
Fish are sensitive to temperature, but the intergenerational consequences of maternal exposure to high temperature on offspring behavioural plasticity and underlying mechanisms are unknown. Here we show that a thermal maternal stress induces impaired emotional and cognitive responses in offspring rainbow trout (Oncorhynchus mykiss). Thermal stress in mothers triggered the inhibition of locomotor fear-related responses upon exposure to a novel environment and decreased spatial learning abilities in progeny. Impaired behavioural phenotypes were associated with the dysregulation of several genes known to play major roles in neurodevelopment, including auts2 (autism susceptibility candidate 2), a key gene for neurodevelopment, more specifically neuronal migration and neurite extension, and critical for the acquisition of neurocognitive function. In addition, our analysis revealed the dysregulation of another neurodevelopment gene (dpysl5) as well as genes associated with human cognitive disorders (arv1, plp2). We observed major differences in maternal mRNA abundance in the eggs following maternal exposure to high temperature indicating that some of the observed intergenerational effects are mediated by maternally-inherited mRNAs accumulated in the egg. Together, our observations shed new light on the intergenerational determinism of fish behaviour and associated underlying mechanisms. They also stress the importance of maternal history on fish behavioural plasticity.
Collapse
Affiliation(s)
- Violaine Colson
- Fish Physiology and Genomics, INRA LPGP UR1037, Rennes, France
| | | | | | | | - Thaovi Nguyen
- Fish Physiology and Genomics, INRA LPGP UR1037, Rennes, France
| | - Aurélie Le Cam
- Fish Physiology and Genomics, INRA LPGP UR1037, Rennes, France
| | - Julien Bobe
- Fish Physiology and Genomics, INRA LPGP UR1037, Rennes, France
| |
Collapse
|
222
|
Ortiz-González XR, Tintos-Hernández JA, Keller K, Li X, Foley AR, Bharucha-Goebel DX, Kessler SK, Yum SW, Crino PB, He M, Wallace DC, Bönnemann CG. Homozygous boricua TBCK mutation causes neurodegeneration and aberrant autophagy. Ann Neurol 2019; 83:153-165. [PMID: 29283439 DOI: 10.1002/ana.25130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 12/26/2017] [Accepted: 12/26/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Autosomal-recessive mutations in TBCK cause intellectual disability of variable severity. Although the physiological function of TBCK remains unclear, loss-of-function mutations are associated with inhibition of mechanistic target of rapamycin complex 1 (mTORC1) signaling. Given that mTORC1 signaling is known to regulate autophagy, we hypothesized that TBCK-encephalopathy patients with a neurodegenerative course have defects in autophagic-lysosomal dysfunction. METHODS Children (n = 8) of Puerto Rican (Boricua) descent affected with homozygous TBCK p.R126X mutations underwent extensive neurological phenotyping and neurophysiological studies. We quantified autophagosome content in TBCK-/- patient-derived fibroblasts by immunostaining and assayed autophagic markers by western assay. Free sialylated oligosaccharide profiles were assayed in patient's urine and fibroblasts. RESULTS The neurological phenotype of children with TBCK p.R126X mutations, which we call TBCK-encephaloneuronopathy (TBCKE), include congenital hypotonia, progressive motor neuronopathy, leukoencephalopathy, and epilepsy. Systemic features include coarse facies, dyslipidemia, and osteoporosis. TBCK-/- fibroblasts in vitro exhibit increased numbers of LC3+ autophagosomes and increased autophagic flux by immunoblots. Free oligosaccharide profiles in fibroblasts and urine of TBCKE patients differ from control fibroblasts and are ameliorated by treatment with the mTORC1 activator leucine. INTERPRETATION TBCKE is a clinically distinguishable syndrome with progressive central and peripheral nervous system dysfunction, consistently observed in patients with the p.R126X mutation. We provide evidence that inappropriate autophagy in the absence of cellular stressors may play a role in this disorder, and that mTORC1 activation may ameliorate the autophagic-lysosomal system dysfunction. Free oligosaccharide profiles could serve as a novel biomarker for this disorder as well as a tool to evaluate potential therapeutic interventions. Ann Neurol 2018;83:153-165.
Collapse
Affiliation(s)
- Xilma R Ortiz-González
- Department of Pediatrics, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jesus A Tintos-Hernández
- Department of Pediatrics, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA.,Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kierstin Keller
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Xueli Li
- Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Diana X Bharucha-Goebel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD.,Division of Neurology, Children's National Health System, Washington, DC
| | - Sudha K Kessler
- Department of Pediatrics, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sabrina W Yum
- Department of Pediatrics, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD
| | - Miao He
- Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
223
|
Deal SL, Yamamoto S. Unraveling Novel Mechanisms of Neurodegeneration Through a Large-Scale Forward Genetic Screen in Drosophila. Front Genet 2019; 9:700. [PMID: 30693015 PMCID: PMC6339878 DOI: 10.3389/fgene.2018.00700] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/13/2018] [Indexed: 01/04/2023] Open
Abstract
Neurodegeneration is characterized by progressive loss of neurons. Genetic and environmental factors both contribute to demise of neurons, leading to diverse devastating cognitive and motor disorders, including Alzheimer's and Parkinson's diseases in humans. Over the past few decades, the fruit fly, Drosophila melanogaster, has become an integral tool to understand the molecular, cellular and genetic mechanisms underlying neurodegeneration. Extensive tools and sophisticated technologies allow Drosophila geneticists to identify and study evolutionarily conserved genes that are essential for neural maintenance. In this review, we will focus on a large-scale mosaic forward genetic screen on the fly X-chromosome that led to the identification of a number of essential genes that exhibit neurodegenerative phenotypes when mutated. Most genes identified from this screen are evolutionarily conserved and many have been linked to human diseases with neurological presentations. Systematic electrophysiological and ultrastructural characterization of mutant tissue in the context of the Drosophila visual system, followed by a series of experiments to understand the mechanism of neurodegeneration in each mutant led to the discovery of novel molecular pathways that are required for neuronal integrity. Defects in mitochondrial function, lipid and iron metabolism, protein trafficking and autophagy are recurrent themes, suggesting that insults that eventually lead to neurodegeneration may converge on a set of evolutionarily conserved cellular processes. Insights from these studies have contributed to our understanding of known neurodegenerative diseases such as Leigh syndrome and Friedreich's ataxia and have also led to the identification of new human diseases. By discovering new genes required for neural maintenance in flies and working with clinicians to identify patients with deleterious variants in the orthologous human genes, Drosophila biologists can play an active role in personalized medicine.
Collapse
Affiliation(s)
- Samantha L Deal
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
224
|
Mayer K, Mundigl O, Kettenberger H, Birzele F, Stahl S, Pastan I, Brinkmann U. Diphthamide affects selenoprotein expression: Diphthamide deficiency reduces selenocysteine incorporation, decreases selenite sensitivity and pre-disposes to oxidative stress. Redox Biol 2019; 20:146-156. [PMID: 30312900 PMCID: PMC6180344 DOI: 10.1016/j.redox.2018.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 12/31/2022] Open
Abstract
The diphthamide modification of translation elongation factor 2 is highly conserved in eukaryotes and archaebacteria. Nevertheless, cells lacking diphthamide can carry out protein synthesis and are viable. We have analyzed the phenotypes of diphthamide deficient cells and found that diphthamide deficiency reduces selenocysteine incorporation into selenoproteins. Additional phenotypes resulting from diphthamide deficiency include altered tRNA-synthetase and selenoprotein transcript levels, hypersensitivity to oxidative stress and increased selenite tolerance. Diphthamide-eEF2 occupies the aminoacyl-tRNA translocation site at which UGA either stalls translation or decodes selenocysteine. Its position is in close proximity and mutually exclusive to the ribosomal binding site of release/recycling factor ABCE1, which harbors a redox-sensitive Fe-S cluster and, like diphthamide, is present in eukaryotes and archaea but not in eubacteria. Involvement of diphthamide in UGA-SECIS decoding may explain deregulated selenoprotein expression and as a consequence oxidative stress, NFkB activation and selenite tolerance in diphthamide deficient cells.
Collapse
Affiliation(s)
- Klaus Mayer
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Olaf Mundigl
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Hubert Kettenberger
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Sebastian Stahl
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ulrich Brinkmann
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany.
| |
Collapse
|
225
|
Salih MAM, Swar MO. The odyssey of diagnosing genetic disorders in evolving health services. Sudan J Paediatr 2019; 19:2-5. [PMID: 31384081 PMCID: PMC6589806 DOI: 10.24911/sjp.106-1557046594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 05/05/2019] [Indexed: 11/11/2022]
|
226
|
Beck-Wödl S, Harzer K, Sturm M, Buchert R, Rieß O, Mennel HD, Latta E, Pagenstecher A, Keber U. Homozygous TBC1 domain-containing kinase (TBCK) mutation causes a novel lysosomal storage disease - a new type of neuronal ceroid lipofuscinosis (CLN15)? Acta Neuropathol Commun 2018; 6:145. [PMID: 30591081 PMCID: PMC6307319 DOI: 10.1186/s40478-018-0646-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Homozygous mutation of TBC1 domain-containing kinase (TBCK) is the cause of a very recently defined severe childhood disorder, which is characterized by severe hypotonia, global developmental delay, intellectual disability, epilepsy, characteristic facies and premature death. The link between TBCK loss of function and symptoms in patients with TBCK deficiency disorder (TBCK-DD) remains elusive. Here we demonstrate for the first time the histopathological characteristics of TBCK deficiency consisting of 1) a widespread and massive accumulation of lipofuscin storage material in neurons of the central nervous system without notable neuronal degeneration, 2) storage deposits in few astrocytes, 3) carbohydrate-rich deposits in brain, spleen and liver and 4) vacuolated lymphocytes. Biochemical examinations ruled out more than 20 known lysosomal storage diseases. These investigations strikingly uncover TBCK-DD as a novel type of lysosomal storage disease which is characterized by different storage products rather than one specific type of accumulated material. Due to the clear predominance of intraneuronal lipofuscin storage material and the characteristic clinical presentation we propose to classify this disease as a new subtype of neuronal ceroid lipofuscinosis (CLN15). Our results and previous reports suggest an autophagosomal-lysosomal dysfunction caused by enhanced mTORC1-mediated autophagosome formation and reduced Rab-mediated autophagosome-lysosome fusion, thus disclosing potential novel targets for therapeutic approaches in TBCK-DD.
Collapse
|
227
|
MTSS1/Src family kinase dysregulation underlies multiple inherited ataxias. Proc Natl Acad Sci U S A 2018; 115:E12407-E12416. [PMID: 30530649 DOI: 10.1073/pnas.1816177115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The genetically heterogeneous spinocerebellar ataxias (SCAs) are caused by Purkinje neuron dysfunction and degeneration, but their underlying pathological mechanisms remain elusive. The Src family of nonreceptor tyrosine kinases (SFK) are essential for nervous system homeostasis and are increasingly implicated in degenerative disease. Here we reveal that the SFK suppressor Missing-in-metastasis (MTSS1) is an ataxia locus that links multiple SCAs. MTSS1 loss results in increased SFK activity, reduced Purkinje neuron arborization, and low basal firing rates, followed by cell death. Surprisingly, mouse models for SCA1, SCA2, and SCA5 show elevated SFK activity, with SCA1 and SCA2 displaying dramatically reduced MTSS1 protein levels through reduced gene expression and protein translation, respectively. Treatment of each SCA model with a clinically approved Src inhibitor corrects Purkinje neuron basal firing and delays ataxia progression in MTSS1 mutants. Our results identify a common SCA therapeutic target and demonstrate a key role for MTSS1/SFK in Purkinje neuron survival and ataxia progression.
Collapse
|
228
|
Identification of candidate gene FAM183A and novel pathogenic variants in known genes: High genetic heterogeneity for autosomal recessive intellectual disability. PLoS One 2018; 13:e0208324. [PMID: 30500859 PMCID: PMC6267965 DOI: 10.1371/journal.pone.0208324] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/15/2018] [Indexed: 11/19/2022] Open
Abstract
The etiology of intellectual disability (ID) is heterogeneous including a variety of genetic and environmental causes. Historically, most research has not focused on autosomal recessive ID (ARID), which is a significant cause of ID, particularly in areas where parental consanguinity is common. Identification of genetic causes allows for precision diagnosis and improved genetic counseling. We performed whole exome sequencing to 21 Turkish families, seven multiplex and 14 simplex, with nonsyndromic ID. Based on the presence of multiple affected siblings born to unaffected parents and/or shared ancestry, we consider all families as ARID. We revealed the underlying causative variants in seven families in MCPH1 (c.427dupA, p.T143Nfs*5), WDR62 (c.3406C>T, p.R1136*), ASPM (c.5219_5225delGAGGATA, p.R1740Tfs*7), RARS (c.1588A>G, p.T530A), CC2D1A (c.811delG, p.A271Pfs*30), TUSC3 (c.793C>T, p.Q265*) and ZNF335 (c.808C>T, p.R270C and c.3715C>A, p.Q1239K) previously linked with ARID. Besides ARID genes, in one family, affected male siblings were hemizygous for PQBP1 (c.459_462delAGAG, p.R153Sfs*41) and in one family the proband was female and heterozygous for X-chromosomal SLC9A6 (c.1631+1G>A) variant. Each of these variants, except for those in MCPH1 and PQBP1, have not been previously published. Additionally in one family, two affected children were homozygous for the c.377G>A (p.W126*) variant in the FAM183A, a gene not previously associated with ARID. No causative variants were found in the remaining 11 families. A wide variety of variants explain half of families with ARID. FAM183A is a promising novel candidate gene for ARID.
Collapse
|
229
|
Filatova A, Freire V, Lozier E, Konovalov F, Bessonova L, Iudina E, Gnetetskaya V, Kanivets I, Korostelev S, Skoblov M. Novel KIAA1109 variants affecting splicing in a Russian family with ALKURAYA‐KUČINSKAS syndrome. Clin Genet 2018; 95:440-441. [DOI: 10.1111/cge.13472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 11/27/2022]
Affiliation(s)
| | | | | | | | | | - Elena Iudina
- MD Medical Group “Mother and Child” Moscow Russia
| | | | | | - Sergey Korostelev
- Genomed Ltd. Moscow Russia
- Institute of Professional EducationI. M. Sechenov First Moscow State Medical University Moscow Russia
| | - Mikhail Skoblov
- Research Centre for Medical Genetics Moscow Russia
- School of BiomedicineFar Eastern Federal University Vladivostok Russia
| |
Collapse
|
230
|
Fradejas-Villar N. Consequences of mutations and inborn errors of selenoprotein biosynthesis and functions. Free Radic Biol Med 2018; 127:206-214. [PMID: 29709707 DOI: 10.1016/j.freeradbiomed.2018.04.572] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/20/2018] [Accepted: 04/22/2018] [Indexed: 12/23/2022]
Abstract
In its 200 years of history, selenium has been defined first as a toxic element and finally as a micronutrient. Selenium is incorporated into selenoproteins as selenocysteine (Sec), the 21st proteinogenic amino acid codified by a stop codon. Specific biosynthetic factors recode UGA stop codon as Sec. The significance of selenoproteins in human health is manifested through the identification of patients with inborn errors in selenoproteins or their biosynthetic factors. Selenoprotein N-related myopathy was the first disease identified due to mutations in a selenoprotein gene. Mutations in GPX4 were linked to Sedaghatian disease, characterized by bone and brain anomalies and cardiorespiratory failure. Mutations in TXNRD2 produced familial glucocorticoid deficiency (FGD) and dilated cardiomyopathy (DCM). Genetic generalized epilepsy was associated with mutations in TXNRD1 gene. Mutations in biosynthetic factors as SEPSECS, SECISBP2 and even tRNA[Ser]Sec, have been also related to diseases. Thus, SEPSECS mutations produce a neurodegenerative disease called now pontocerebellar hypoplasia type 2D (PCH2D). SECISBP2 syndrome, caused by SECISBP2 mutations, is a multifactorial disease affecting mainly thyroid metabolism, bone, inner ear and muscle. Similar symptoms were reproduced in a patient carrying a mutation in tRNA[Ser]Sec gene, TRU-TCA1-1. This review describes human genetic disorders caused by selenoprotein deficiency. Human phenotypes will be compared with mouse models to explain the pathologic mechanisms of lack of selenoproteins.
Collapse
Affiliation(s)
- Noelia Fradejas-Villar
- Institut für Biochemie und Molekularbiologie, Rheinischen Friedrich-Wilhelms-Universität, Nussallee 11, 53115 Bonn Germany.
| |
Collapse
|
231
|
Leung GKC, Mak CCY, Fung JLF, Wong WHS, Tsang MHY, Yu MHC, Pei SLC, Yeung KS, Mok GTK, Lee CP, Hui APW, Tang MHY, Chan KYK, Liu APY, Yang W, Sham PC, Kan ASY, Chung BHY. Identifying the genetic causes for prenatally diagnosed structural congenital anomalies (SCAs) by whole-exome sequencing (WES). BMC Med Genomics 2018; 11:93. [PMID: 30359267 PMCID: PMC6202811 DOI: 10.1186/s12920-018-0409-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/01/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Whole-exome sequencing (WES) has become an invaluable tool for genetic diagnosis in paediatrics. However, it has not been widely adopted in the prenatal setting. This study evaluated the use of WES in prenatal genetic diagnosis in fetuses with structural congenital anomalies (SCAs) detected on prenatal ultrasound. METHOD Thirty-three families with fetal SCAs on prenatal ultrasonography and normal chromosomal microarray results were recruited. Genomic DNA was extracted from various fetal samples including amniotic fluid, chorionic villi, and placental tissue. Parental DNA was extracted from peripheral blood when available. We used WES to sequence the coding regions of parental-fetal trios and to identify the causal variants based on the ultrasonographic features of the fetus. RESULTS Pathogenic mutations were identified in three families (n = 3/33, 9.1%), including mutations in DNAH11, RAF1 and CHD7, which were associated with primary ciliary dyskinesia, Noonan syndrome, and CHARGE syndrome, respectively. In addition, variants of unknown significance (VUSs) were detected in six families (18.2%), in which genetic changes only partly explained prenatal features. CONCLUSION WES identified pathogenic mutations in 9.1% of fetuses with SCAs and normal chromosomal microarray results. Databases for fetal genotype-phenotype correlations and standardized guidelines for variant interpretation in prenatal diagnosis need to be established to facilitate the use of WES for routine testing in prenatal diagnosis.
Collapse
Affiliation(s)
- Gordon K C Leung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room 103, 1/F, New Clinical Building, Hong Kong, Hong Kong Special Administrative Region, China
| | - Christopher C Y Mak
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room 103, 1/F, New Clinical Building, Hong Kong, Hong Kong Special Administrative Region, China
| | - Jasmine L F Fung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room 103, 1/F, New Clinical Building, Hong Kong, Hong Kong Special Administrative Region, China
| | - Wilfred H S Wong
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room 103, 1/F, New Clinical Building, Hong Kong, Hong Kong Special Administrative Region, China
| | - Mandy H Y Tsang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room 103, 1/F, New Clinical Building, Hong Kong, Hong Kong Special Administrative Region, China
| | - Mullin H C Yu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room 103, 1/F, New Clinical Building, Hong Kong, Hong Kong Special Administrative Region, China
| | - Steven L C Pei
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room 103, 1/F, New Clinical Building, Hong Kong, Hong Kong Special Administrative Region, China
| | - K S Yeung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room 103, 1/F, New Clinical Building, Hong Kong, Hong Kong Special Administrative Region, China
| | - Gary T K Mok
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room 103, 1/F, New Clinical Building, Hong Kong, Hong Kong Special Administrative Region, China
| | - C P Lee
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
| | - Amelia P W Hui
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
| | - Mary H Y Tang
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China.,Prenatal Diagnostic Laboratory, Department of Obstetrics and Gynaecology, Tsan Yuk Hospital, Hong Kong, HKSAR, China
| | - Kelvin Y K Chan
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China.,Prenatal Diagnostic Laboratory, Department of Obstetrics and Gynaecology, Tsan Yuk Hospital, Hong Kong, HKSAR, China
| | - Anthony P Y Liu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room 103, 1/F, New Clinical Building, Hong Kong, Hong Kong Special Administrative Region, China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room 103, 1/F, New Clinical Building, Hong Kong, Hong Kong Special Administrative Region, China
| | - P C Sham
- Department of Psychiatry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, HKSAR, China
| | - Anita S Y Kan
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China. .,Prenatal Diagnostic Laboratory, Department of Obstetrics and Gynaecology, Tsan Yuk Hospital, Hong Kong, HKSAR, China.
| | - Brian H Y Chung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room 103, 1/F, New Clinical Building, Hong Kong, Hong Kong Special Administrative Region, China. .,Department of Obstetrics and Gynaecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China. .,Prenatal Diagnostic Laboratory, Department of Obstetrics and Gynaecology, Tsan Yuk Hospital, Hong Kong, HKSAR, China.
| |
Collapse
|
232
|
Moonlighting nuclear pore proteins: tissue-specific nucleoporin function in health and disease. Histochem Cell Biol 2018; 150:593-605. [PMID: 30361777 DOI: 10.1007/s00418-018-1748-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2018] [Indexed: 12/14/2022]
Abstract
The nuclear pore complex is the main transportation hub for exchange between the cytoplasm and the nucleus. It is built from nucleoporins that form distinct subcomplexes to establish this huge protein complex in the nuclear envelope. Malfunctioning of nucleoporins is well known in human malignancies, such as gene fusions of NUP214 and NUP98 in hematological neoplasms and overexpression of NUP88 in a variety of human cancers. In the past decade, the incremental utilization of next-generation sequencing has unraveled mutations in nucleoporin genes in the context of an increasing number of hereditary diseases, often in a tissue-specific manner. It emerges that, on one hand, the central nervous system and the heart are particularly sensitive to mutations in nucleoporin genes. On the other hand, nucleoporins forming the scaffold structure of the nuclear pore complex are eminently mutation-prone. These novel and exciting associations between nucleoporins and human diseases emphasize the need to shed light on these unanticipated tissue-specific roles of nucleoporins that may go well beyond their role in nucleocytoplasmic transport. In this review, the current insights into altered nucleoporin function associated with human hereditary disorders will be discussed.
Collapse
|
233
|
Hebbar M, Shukla A, Nampoothiri S, Bielas S, Girisha KM. Locus and allelic heterogeneity in five families with hereditary spastic paraplegia. J Hum Genet 2018; 64:17-21. [PMID: 30337681 PMCID: PMC6344291 DOI: 10.1038/s10038-018-0523-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/12/2018] [Accepted: 10/08/2018] [Indexed: 01/29/2023]
Abstract
Hereditary spastic paraplegias are a group of genetically heterogeneous neurological disorders characterized by progressive weakness and spasticity of lower limbs. We ascertained five families with eight individuals with hereditary spastic paraplegia. Pathogenic variants were identified by exome sequencing of index cases. The cohort consists of three families with spastic paraplegia type 47 (AP4B1) with a common mutation in two families, a family with spastic paraplegia type 50 (AP4M1), and two male siblings with X-linked spastic paraplegia 2 (PLP1). This work illustrates locus and allelic heterogeneity in five families with hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Malavika Hebbar
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Ponekkara, Cochin, Kerala, India
| | - Stephanie Bielas
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
234
|
Kvarnung M, Taylan F, Nilsson D, Anderlid BM, Malmgren H, Lagerstedt-Robinson K, Holmberg E, Burstedt M, Nordenskjöld M, Nordgren A, Lundberg ES. Genomic screening in rare disorders: New mutations and phenotypes, highlighting ALG14 as a novel cause of severe intellectual disability. Clin Genet 2018; 94:528-537. [PMID: 30221345 DOI: 10.1111/cge.13448] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 01/20/2023]
Abstract
We have investigated 20 consanguineous families with multiple children affected by rare disorders. Detailed clinical examinations, exome sequencing of affected as well as unaffected family members and further validation of likely pathogenic variants were performed. In 16/20 families, we identified pathogenic variants in autosomal recessive disease genes (ALMS1, PIGT, FLVCR2, TFG, CYP7B1, ALG14, EXOSC3, MEGF10, ASAH1, WDR62, ASPM, PNPO, ERCC5, KIAA1109, RIPK4, MAN1B1). A number of these genes have only rarely been reported previously and our findings thus confirm them as disease genes, further delineate the associated phenotypes and expand the mutation spectrum with reports of novel variants. We highlight the findings in two affected siblings with splice altering variants in ALG14 and propose a new clinical entity, which includes severe intellectual disability, epilepsy, behavioral problems and mild dysmorphic features, caused by biallelic variants in ALG14.
Collapse
Affiliation(s)
- Malin Kvarnung
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Helena Malmgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Lagerstedt-Robinson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Holmberg
- Department of Medical Bioscience, Medical and Clinical Genetics, Umeå University, Umeå, Sweden
| | - Magnus Burstedt
- Department of Medical Bioscience, Medical and Clinical Genetics, Umeå University, Umeå, Sweden
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabeth S Lundberg
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
235
|
Braun DA, Lovric S, Schapiro D, Schneider R, Marquez J, Asif M, Hussain MS, Daga A, Widmeier E, Rao J, Ashraf S, Tan W, Lusk CP, Kolb A, Jobst-Schwan T, Schmidt JM, Hoogstraten CA, Eddy K, Kitzler TM, Shril S, Moawia A, Schrage K, Khayyat AIA, Lawson JA, Gee HY, Warejko JK, Hermle T, Majmundar AJ, Hugo H, Budde B, Motameny S, Altmüller J, Noegel AA, Fathy HM, Gale DP, Waseem SS, Khan A, Kerecuk L, Hashmi S, Mohebbi N, Ettenger R, Serdaroğlu E, Alhasan KA, Hashem M, Goncalves S, Ariceta G, Ubetagoyena M, Antonin W, Baig SM, Alkuraya FS, Shen Q, Xu H, Antignac C, Lifton RP, Mane S, Nürnberg P, Khokha MK, Hildebrandt F. Mutations in multiple components of the nuclear pore complex cause nephrotic syndrome. J Clin Invest 2018; 128:4313-4328. [PMID: 30179222 PMCID: PMC6159964 DOI: 10.1172/jci98688] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 07/24/2018] [Indexed: 01/08/2023] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) almost invariably progresses to end-stage renal disease. Although more than 50 monogenic causes of SRNS have been described, a large proportion of SRNS remains unexplained. Recently, it was discovered that mutations of NUP93 and NUP205, encoding 2 proteins of the inner ring subunit of the nuclear pore complex (NPC), cause SRNS. Here, we describe mutations in genes encoding 4 components of the outer rings of the NPC, namely NUP107, NUP85, NUP133, and NUP160, in 13 families with SRNS. Using coimmunoprecipitation experiments, we showed that certain pathogenic alleles weakened the interaction between neighboring NPC subunits. We demonstrated that morpholino knockdown of nup107, nup85, or nup133 in Xenopus disrupted glomerulogenesis. Re-expression of WT mRNA, but not of mRNA reflecting mutations from SRNS patients, mitigated this phenotype. We furthermore found that CRISPR/Cas9 knockout of NUP107, NUP85, or NUP133 in podocytes activated Cdc42, an important effector of SRNS pathogenesis. CRISPR/Cas9 knockout of nup107 or nup85 in zebrafish caused developmental anomalies and early lethality. In contrast, an in-frame mutation of nup107 did not affect survival, thus mimicking the allelic effects seen in humans. In conclusion, we discovered here that mutations in 4 genes encoding components of the outer ring subunits of the NPC cause SRNS and thereby provide further evidence that specific hypomorphic mutations in these essential genes cause a distinct, organ-specific phenotype.
Collapse
Affiliation(s)
- Daniela A. Braun
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Internal Medicine D, University Hospital of Münster, Münster, Germany
| | - Svjetlana Lovric
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David Schapiro
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ronen Schneider
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Marquez
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Maria Asif
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Muhammad Sajid Hussain
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Ankana Daga
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eugen Widmeier
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jia Rao
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Shazia Ashraf
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Weizhen Tan
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - C. Patrick Lusk
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Amy Kolb
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tilman Jobst-Schwan
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Johanna Magdalena Schmidt
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Charlotte A. Hoogstraten
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kaitlyn Eddy
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas M. Kitzler
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Abubakar Moawia
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Kathrin Schrage
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Arwa Ishaq A. Khayyat
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- Biochemistry Department, King Saud University, Riyadh, Saudi Arabia
| | - Jennifer A. Lawson
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Heon Yung Gee
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jillian K. Warejko
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias Hermle
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amar J. Majmundar
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hannah Hugo
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Birgit Budde
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Susanne Motameny
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| | - Angelika Anna Noegel
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Hanan M. Fathy
- Pediatric Nephrology Unit, Alexandria Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Daniel P. Gale
- Centre for Nephrology, University College London, Royal Free Hospital, London, United Kingdom
| | - Syeda Seema Waseem
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Ayaz Khan
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Larissa Kerecuk
- Birmingham Children’s Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Seema Hashmi
- Department of Pediatric Nephrology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Nilufar Mohebbi
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Robert Ettenger
- Department of Pediatrics, University of California, Los Angeles, California
| | - Erkin Serdaroğlu
- Department of Pediatric Nephrology, Dr. Behçet Uz Children’s Hospital, Izmir, Turkey
| | - Khalid A. Alhasan
- Pediatric Department, College of Medicine, King Saud University and King Khalid University Hospital, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sara Goncalves
- Laboratory of Hereditary Kidney Diseases, INSERM UMR1163, Imagine Institute, Paris, France
- Université Paris Descartes–Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Gema Ariceta
- Universitat Autonoma de Barcelona, Hospital Universitari Vall d’Hebron, Pediatric Nephrology, Barcelona, Spain
| | - Mercedes Ubetagoyena
- Hospital Universitario Donostia, Pediatric Nephrology, Donostia–San Sebastian, Spain
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074 Aachen, Germany
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Fowzan S. Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Qian Shen
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Corinne Antignac
- Laboratory of Hereditary Kidney Diseases, INSERM UMR1163, Imagine Institute, Paris, France
- Université Paris Descartes–Sorbonne Paris Cité, Imagine Institute, Paris, France
- Department of Genetics, Necker Hospital, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Richard P. Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York, USA
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Mustafa K. Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
236
|
Maddirevula S, Alzahrani F, Al-Owain M, Al Muhaizea MA, Kayyali HR, AlHashem A, Rahbeeni Z, Al-Otaibi M, Alzaidan HI, Balobaid A, El Khashab HY, Bubshait DK, Faden M, Yamani SA, Dabbagh O, Al-Mureikhi M, Jasser AA, Alsaif HS, Alluhaydan I, Seidahmed MZ, Alabbasi BH, Almogarri I, Kurdi W, Akleh H, Qari A, Al Tala SM, Alhomaidi S, Kentab AY, Salih MA, Chedrawi A, Alameer S, Tabarki B, Shamseldin HE, Patel N, Ibrahim N, Abdulwahab F, Samira M, Goljan E, Abouelhoda M, Meyer BF, Hashem M, Shaheen R, AlShahwan S, Alfadhel M, Ben-Omran T, Al-Qattan MM, Monies D, Alkuraya FS. Autozygome and high throughput confirmation of disease genes candidacy. Genet Med 2018; 21:736-742. [PMID: 30237576 PMCID: PMC6752307 DOI: 10.1038/s41436-018-0138-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023] Open
Abstract
Purpose Establishing links between Mendelian phenotypes and genes enables the proper interpretation of variants therein. Autozygome, a rich source of homozygous variants, has been successfully utilized for the high throughput identification of novel autosomal recessive disease genes. Here, we highlight the utility of the autozygome for the high throughput confirmation of previously published tentative links to diseases. Methods Autozygome and exome analysis of patients with suspected Mendelian phenotypes. All variants were classified according to the American College of Medical Genetics and Genomics guidelines. Results We highlight 30 published candidate genes (ACTL6B, ADAM22, AGTPBP1, APC, C12orf4, C3orf17 (NEPRO), CENPF, CNPY3, COL27A1, DMBX1, FUT8, GOLGA2, KIAA0556, LENG8, MCIDAS, MTMR9, MYH11, QRSL1, RUBCN, SLC25A42, SLC9A1, TBXT, TFG, THUMPD1, TRAF3IP2, UFC1, UFM1, WDR81, XRCC2, ZAK) in which we identified homozygous likely deleterious variants in patients with compatible phenotypes. We also identified homozygous likely deleterious variants in 18 published candidate genes (ABCA2, ARL6IP1, ATP8A2, CDK9, CNKSR1, DGAT1, DMXL2, GEMIN4, HCN2, HCRT, MYO9A, PARS2, PLOD3, PREPL, SCLT1, STX3, TXNRD2, WIPI2) although the associated phenotypes are sufficiently different from the original reports that they represent phenotypic expansion or potentially distinct allelic disorders. Conclusions Our results should facilitate the timely relabeling of these candidate disease genes in relevant databases to improve the yield of clinical genomic sequencing.
Collapse
Affiliation(s)
- Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fatema Alzahrani
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed Al-Owain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohammad A Al Muhaizea
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Husam R Kayyali
- Department of Pediatrics, King Faisal Specialist hospital and Research Center, Jeddah, Saudi Arabia
| | - Amal AlHashem
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maha Al-Otaibi
- Genetic Unit, Children's Hospital, King Saud Medical City, Riyadh, Saudi Arabia
| | - Hamad I Alzaidan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ameera Balobaid
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Heba Y El Khashab
- Department of Pediatrics, Children's Hospital, Ain Shams University, Cairo, Egypt.,Department of Pediatrics, Dr. Suliman Al Habib Medical Group, Riyadh, Saudi Arabia
| | - Dalal K Bubshait
- Department of Pediatrics, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Maha Faden
- Genetic Unit, Children's Hospital, King Saud Medical City, Riyadh, Saudi Arabia
| | - Suad Al Yamani
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Omar Dabbagh
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mariam Al-Mureikhi
- Section of Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Doha, Qatar
| | - Abdulla Al Jasser
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Hessa S Alsaif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Iram Alluhaydan
- Genetics Division, Department of Pediatrics, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | | | | | - Ibrahim Almogarri
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Wesam Kurdi
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hana Akleh
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Alya Qari
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saeed M Al Tala
- Department of Pediatrics, Armed Forces Hospital SR, Khamis Mushayt, Saudi Arabia
| | - Suzan Alhomaidi
- Genetic Unit, Children's Hospital, King Saud Medical City, Riyadh, Saudi Arabia
| | - Amal Y Kentab
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mustafa A Salih
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Aziza Chedrawi
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Seham Alameer
- Department of pediatrics, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Brahim Tabarki
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nisha Patel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Menasria Samira
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ewa Goljan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Brian F Meyer
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saad AlShahwan
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Medical Genetic Division, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Tawfeg Ben-Omran
- Section of Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Doha, Qatar
| | - Mohammad M Al-Qattan
- Department of Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia. .,Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia. .,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.
| |
Collapse
|
237
|
Al-Nabhani M, Al-Rashdi S, Al-Murshedi F, Al-Kindi A, Al-Thihli K, Al-Saegh A, Al-Futaisi A, Al-Mamari W, Zadjali F, Al-Maawali A. Reanalysis of exome sequencing data of intellectual disability samples: Yields and benefits. Clin Genet 2018; 94:495-501. [PMID: 30125339 DOI: 10.1111/cge.13438] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/08/2018] [Accepted: 08/15/2018] [Indexed: 01/07/2023]
Abstract
Recently, with the advancement in next generation sequencing (NGS) along with the improvement of bioinformatics tools, whole exome sequencing (WES) has become the most efficient diagnostic test for patients with intellectual disability (ID). This study aims to estimate the yield of a reanalysis of ID negative exome cases after data reannotation. Total of 50 data files of exome sequencing, representing 50 samples were collected. The inclusion criteria include ID phenotype, and previous analysis indicated a negative result (no abnormality detected). These files were pre-processed and reannotated using ANNOVAR tool. Prioritized variants in the 50 cases studied were classified into three groups, (1) disease-causative variants (2) possible disease-causing variants and (3) variants in novel genes. Reanalysis resulted in the identification of pathogenic/likely pathogenic variants in six cases (12%). Thirteen cases (26%) were classified as having possible disease-causing variants. Candidate genes requiring future functional studies were detected in seven cases (14%). Improvement in bioinformatics tools, update in the genetic databases and literature, and patients' clinical phenotype update were the main reasons for identification of these variants in this study.
Collapse
Affiliation(s)
- Maryam Al-Nabhani
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Samiya Al-Rashdi
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Fathiya Al-Murshedi
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Adila Al-Kindi
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Khalid Al-Thihli
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Abeer Al-Saegh
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Amna Al-Futaisi
- Department of Child Health, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Watfa Al-Mamari
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman.,Department of Child Health, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Fahad Zadjali
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Almundher Al-Maawali
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
238
|
Abstract
In 1993, Jabs et al. were the first to describe a genetic origin of craniosynostosis. Since this discovery, the genetic causes of the most common syndromes have been described. In 2015, a total of 57 human genes were reported for which there had been evidence that mutations were causally related to craniosynostosis. Facilitated by rapid technological developments, many others have been identified since then. Reviewing the literature, we characterize the most common craniosynostosis syndromes followed by a description of the novel causes that were identified between January 2015 and December 2017.
Collapse
Affiliation(s)
- Jacqueline A C Goos
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irene M J Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
239
|
Further delineation of TBCK - Infantile hypotonia with psychomotor retardation and characteristic facies type 3. Eur J Med Genet 2018; 62:273-277. [PMID: 30103036 DOI: 10.1016/j.ejmg.2018.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 07/23/2018] [Accepted: 08/09/2018] [Indexed: 01/19/2023]
Abstract
Deleterious homozygous or compound heterozygous mutations in the TBCK (TBC1-domain-containing kinase) gene (implicated in the MTOR pathway) produce profound hypotonia, global developmental delay, facial dysmorphic features, and brain abnormalities. The disorder has been named "infantile hypotonia with psychomotor retardation and characteristic facies-3" (IHPRF3). Here we present two sisters with a novel mutation in TBCK (NM_001163435.2: c.753dup; p.(Lys252*)) who have this ultrarare disorder. We have reviewed the literature on the 33 previously reported cases to provide a characterization of this emerging phenotype. Pathogenic mutations in TBCK have a predominant involvement of the Central Nervous System with a progressive pattern, leading to the conclusion where pathogenic mutations of the said gene lead to a progressive neurodegenerative disease. This report adds novel mutation and features to this complex phenotype. Further investigation is required to understand the pathogenesis of TBCK.
Collapse
|
240
|
Braun DA, Shril S, Sinha A, Schneider R, Tan W, Ashraf S, Hermle T, Jobst-Schwan T, Widmeier E, Majmundar AJ, Daga A, Warejko JK, Nakayama M, Schapiro D, Chen J, Airik M, Rao J, Schmidt JM, Hoogstraten CA, Hugo H, Meena J, Lek M, Laricchia KM, Bagga A, Hildebrandt F. Mutations in WDR4 as a new cause of Galloway-Mowat syndrome. Am J Med Genet A 2018; 176:2460-2465. [PMID: 30079490 DOI: 10.1002/ajmg.a.40489] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/19/2018] [Accepted: 07/09/2018] [Indexed: 11/05/2022]
Abstract
Galloway-Mowat syndrome (GAMOS) is a phenotypically heterogeneous disorder characterized by neurodevelopmental defects combined with renal-glomerular disease, manifesting with proteinuria. To identify additional monogenic disease causes, we here performed whole exome sequencing (WES), linkage analysis, and homozygosity mapping in three affected siblings of an Indian family with GAMOS. Applying established criteria for variant filtering, we identify a novel homozygous splice site mutation in the gene WDR4 as the likely disease-causing mutation in this family. In line with previous reports, we observe growth deficiency, microcephaly, developmental delay, and intellectual disability as phenotypic features resulting from WDR4 mutations. However, the newly identified allele additionally gives rise to proteinuria and nephrotic syndrome, a phenotype that was never reported in patients with WDR4 mutations. Our data thus expand the phenotypic spectrum of WDR4 mutations by demonstrating that, depending on the specific mutated allele, a renal phenotype may be present. This finding suggests that GAMOS may occupy a phenotypic spectrum with other microcephalic diseases. Furthermore, WDR4 is an additional example of a gene that encodes a tRNA modifying enzyme and gives rise to GAMOS, if mutated. Our findings thereby support the recent observation that, like neurons, podocytes of the renal glomerulus are particularly vulnerable to cellular defects resulting from altered tRNA modifications.
Collapse
Affiliation(s)
- Daniela A Braun
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aditi Sinha
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Ronen Schneider
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Weizhen Tan
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shazia Ashraf
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tobias Hermle
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tilman Jobst-Schwan
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eugen Widmeier
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amar J Majmundar
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ankana Daga
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jillian K Warejko
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Makiko Nakayama
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - David Schapiro
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jing Chen
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Merlin Airik
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jia Rao
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Charlotte A Hoogstraten
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hannah Hugo
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jitendra Meena
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Kristen M Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Arvind Bagga
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
241
|
Leonard D, Svenungsson E, Dahlqvist J, Alexsson A, Ärlestig L, Taylor KE, Sandling JK, Bengtsson C, Frodlund M, Jönsen A, Eketjäll S, Jensen-Urstad K, Gunnarsson I, Sjöwall C, Bengtsson AA, Eloranta ML, Syvänen AC, Rantapää-Dahlqvist S, Criswell LA, Rönnblom L. Novel gene variants associated with cardiovascular disease in systemic lupus erythematosus and rheumatoid arthritis. Ann Rheum Dis 2018; 77:1063-1069. [PMID: 29514802 PMCID: PMC6029634 DOI: 10.1136/annrheumdis-2017-212614] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) have increased risk of cardiovascular disease (CVD). We investigated whether single nucleotide polymorphisms (SNPs) at autoimmunity risk loci were associated with CVD in SLE and RA. METHODS Patients with SLE (n=1045) were genotyped using the 200K Immunochip SNP array (Illumina). The allele frequency was compared between patients with and without different manifestations of CVD. Results were replicated in a second SLE cohort (n=1043) and in an RA cohort (n=824). We analysed publicly available genetic data from general population, performed electrophoretic mobility shift assays and measured cytokine levels and occurrence of antiphospholipid antibodies (aPLs). RESULTS We identified two new putative risk loci associated with increased risk for CVD in two SLE populations, which remained after adjustment for traditional CVD risk factors. An IL19 risk allele, rs17581834(T) was associated with stroke/myocardial infarction (MI) in SLE (OR 2.3 (1.5 to 3.4), P=8.5×10-5) and RA (OR 2.8 (1.4 to 5.6), P=3.8×10-3), meta-analysis (OR 2.5 (2.0 to 2.9), P=3.5×10-7), but not in population controls. The IL19 risk allele affected protein binding, and SLE patients with the risk allele had increased levels of plasma-IL10 (P=0.004) and aPL (P=0.01). An SRP54-AS1 risk allele, rs799454(G) was associated with stroke/transient ischaemic attack in SLE (OR 1.7 (1.3 to 2.2), P=2.5×10-5) but not in RA. The SRP54-AS1 risk allele is an expression quantitative trait locus for four genes. CONCLUSIONS The IL19 risk allele was associated with stroke/MI in SLE and RA, but not in the general population, indicating that shared immune pathways may be involved in the CVD pathogenesis in inflammatory rheumatic diseases.
Collapse
Affiliation(s)
- Dag Leonard
- Department of Medical Sciences, Science for Life Laboratory, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Elisabet Svenungsson
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Dahlqvist
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Andrei Alexsson
- Department of Medical Sciences, Science for Life Laboratory, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Lisbeth Ärlestig
- Department of Public Health and Clinical Medicine/Rheumatology, Umeå University, Umeå, Sweden
| | - Kimberly E Taylor
- University of California, San Francisco, Rosalind Russell/Ephraim P. Engleman Rheumatology Research Center, San Francisco, California, USA
| | - Johanna K Sandling
- Department of Medical Sciences, Science for Life Laboratory, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Christine Bengtsson
- Department of Public Health and Clinical Medicine/Rheumatology, Umeå University, Umeå, Sweden
| | - Martina Frodlund
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Andreas Jönsen
- Department of Rheumatology, Skåne University Hospital, Lund, Sweden
| | - Susanna Eketjäll
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Integrated Cardio Metabolic Centre, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Jensen-Urstad
- Department of Clinical Physiology, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Iva Gunnarsson
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sjöwall
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | - Maija-Leena Eloranta
- Department of Medical Sciences, Science for Life Laboratory, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Science for Life Laboratory, Molecular Medicine, Uppsala University, Uppsala, Sweden
| | | | - Lindsey A Criswell
- University of California, San Francisco, Rosalind Russell/Ephraim P. Engleman Rheumatology Research Center, San Francisco, California, USA
| | - Lars Rönnblom
- Department of Medical Sciences, Science for Life Laboratory, Rheumatology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
242
|
Nahorski MS, Maddirevula S, Ishimura R, Alsahli S, Brady AF, Begemann A, Mizushima T, Guzmán-Vega FJ, Obata M, Ichimura Y, Alsaif HS, Anazi S, Ibrahim N, Abdulwahab F, Hashem M, Monies D, Abouelhoda M, Meyer BF, Alfadhel M, Eyaid W, Zweier M, Steindl K, Rauch A, Arold ST, Woods CG, Komatsu M, Alkuraya FS. Biallelic UFM1 and UFC1 mutations expand the essential role of ufmylation in brain development. Brain 2018; 141:1934-1945. [PMID: 29868776 PMCID: PMC6022668 DOI: 10.1093/brain/awy135] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/03/2018] [Accepted: 03/23/2018] [Indexed: 12/31/2022] Open
Abstract
The post-translational modification of proteins through the addition of UFM1, also known as ufmylation, plays a critical developmental role as revealed by studies in animal models. The recent finding that biallelic mutations in UBA5 (the E1-like enzyme for ufmylation) cause severe early-onset encephalopathy with progressive microcephaly implicates ufmylation in human brain development. More recently, a homozygous UFM1 variant was proposed as a candidate aetiology of severe early-onset encephalopathy with progressive microcephaly. Here, we establish a locus for severe early-onset encephalopathy with progressive microcephaly based on two families, and map the phenotype to a novel homozygous UFM1 mutation. This mutation has a significantly diminished capacity to form thioester intermediates with UBA5 and with UFC1 (the E2-like enzyme for ufmylation), with resulting impaired ufmylation of cellular proteins. Remarkably, in four additional families where eight children have severe early-onset encephalopathy with progressive microcephaly, we identified two biallelic UFC1 mutations, which impair UFM1-UFC1 intermediate formation with resulting widespread reduction of cellular ufmylation, a pattern similar to that observed with UFM1 mutation. The striking resemblance between UFM1- and UFC1-related clinical phenotype and biochemical derangements strongly argues for an essential role for ufmylation in human brain development. The hypomorphic nature of UFM1 and UFC1 mutations and the conspicuous depletion of biallelic null mutations in the components of this pathway in human genome databases suggest that it is necessary for embryonic survival, which is consistent with the embryonic lethal nature of knockout models for the orthologous genes.
Collapse
Affiliation(s)
- Michael S Nahorski
- Cambridge Institute for Medical Research, Wellcome Trust MRC Building Addenbrookes Hospital, Hills Rd, Cambridge, UK
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ryosuke Ishimura
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Saud Alsahli
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Angela F Brady
- North West Thames Genetics Service, Level 8V, St Mark’s Hospital, Northwick Park Hospital Watford Road, Harrow, UK
| | - Anaïs Begemann
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren-Zurich, Switzerland
| | - Tsunehiro Mizushima
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan
| | - Francisco J Guzmán-Vega
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Division of Biological and Environmental Sciences and Engineering, Thuwal, Saudi Arabia
| | - Miki Obata
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Yoshinobu Ichimura
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Hessa S Alsaif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Shams Anazi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Brian F Meyer
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Wafa Eyaid
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren-Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren-Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren-Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Stefan T Arold
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Division of Biological and Environmental Sciences and Engineering, Thuwal, Saudi Arabia
| | - C Geoffrey Woods
- Cambridge Institute for Medical Research, Wellcome Trust MRC Building Addenbrookes Hospital, Hills Rd, Cambridge, UK
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
243
|
El-Saafin F, Curry C, Ye T, Garnier JM, Kolb-Cheynel I, Stierle M, Downer NL, Dixon MP, Negroni L, Berger I, Thomas T, Voss AK, Dobyns W, Devys D, Tora L. Homozygous TAF8 mutation in a patient with intellectual disability results in undetectable TAF8 protein, but preserved RNA polymerase II transcription. Hum Mol Genet 2018; 27:2171-2186. [PMID: 29648665 PMCID: PMC5985725 DOI: 10.1093/hmg/ddy126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 01/21/2023] Open
Abstract
The human general transcription factor TFIID is composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). In eukaryotic cells, TFIID is thought to nucleate RNA polymerase II (Pol II) preinitiation complex formation on all protein coding gene promoters and thus, be crucial for Pol II transcription. In a child with intellectual disability, mild microcephaly, corpus callosum agenesis and poor growth, we identified a homozygous splice-site mutation in TAF8 (NM_138572.2: c.781-1G > A). Our data indicate that the patient's mutation generates a frame shift and an unstable TAF8 mutant protein with an unrelated C-terminus. The mutant TAF8 protein could not be detected in extracts from the patient's fibroblasts, indicating a loss of TAF8 function and that the mutation is most likely causative. Moreover, our immunoprecipitation and proteomic analyses show that in patient cells only partial TAF complexes exist and that the formation of the canonical TFIID is impaired. In contrast, loss of TAF8 in mouse embryonic stem cells and blastocysts leads to cell death and to a global decrease in Pol II transcription. Astonishingly however, in human TAF8 patient cells, we could not detect any cellular phenotype, significant changes in genome-wide Pol II occupancy and pre-mRNA transcription. Thus, the disorganization of the essential holo-TFIID complex did not affect global Pol II transcription in the patient's fibroblasts. Our observations further suggest that partial TAF complexes, and/or an altered TFIID containing a mutated TAF8, could support human development and thus, the absence of holo-TFIID is less deleterious for transcription than originally predicted.
Collapse
Affiliation(s)
- Farrah El-Saafin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Cynthia Curry
- University of California, San Francisco, San Francisco, CA, USA
- Genetic Medicine, University Pediatric Specialists, Fresno, CA 93701, USA
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Jean-Marie Garnier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Isabelle Kolb-Cheynel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Matthieu Stierle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Natalie L Downer
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Mathew P Dixon
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Luc Negroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Imre Berger
- School of Biochemistry and Bristol Research Centre for Synthetic Biology BrisSynBio, University of Bristol, Bristol BS8 1TD, UK
| | - Tim Thomas
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Anne K Voss
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - William Dobyns
- Departments of Pediatrics and Neurology, University of Washington, Seattle, WA 98101, USA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Laszlo Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
244
|
Smigiel R, Landsberg G, Schilling M, Rydzanicz M, Pollak A, Walczak A, Stodolak A, Stawinski P, Mierzewska H, Sasiadek MM, Gruss OJ, Ploski R. Developmental epileptic encephalopathy with hypomyelination and brain atrophy associated with PTPN23 variants affecting the assembly of UsnRNPs. Eur J Hum Genet 2018; 26:1502-1511. [PMID: 29899372 DOI: 10.1038/s41431-018-0179-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023] Open
Abstract
PTPN23 encodes a ubiquitously expressed non-receptor type, catalytically inactive protein-tyrosine phosphatase found in all cells including neurons. Recently, we have identified PTPN23 in a cellular screen for the systematic identification of novel regulators of survival motor neuron (SMN) function in the assembly of splicing factors (Uridine-rich small nuclear ribonucleoproteins, UsnRNPs). Based on three families, recessive PTPN23 variants have been associated with human disease tentatively, without functional studies. Here, we describe a pediatric proband with severe developmental delay, epilepsy, cortical blindness, hypomyelination and brain atrophy on MRI. Whole exome sequencing and family study showed two novel PTPN23 variants, c.1902C>G (p.(Asn634Lys)) and c.2974delC (p.(Leu992Tyrfs*168)), in compound heterozygous state, which are predicted in silico to be damaging. When studying patient's fibroblasts we found similar expression of SMN but a dramatic reduction of cells displaying SMN accumulation in Cajal bodies (CB). SMN strongly accumulated in CB in more than 50% of unrelated control cell fibroblasts as well as in fibroblasts from the parent carrying only the c.2974delC (p.(Leu992Tyrfs*168)) variant (predicted to cause loss-of-function). In contrast, only 22% of cells showed respective SMN accumulations in patient fibroblasts (p = 1.9-2.5 × 10-7) while showing a higher level of nucleoplasmic SMN. Furthermore, the remaining accumulations in patient cells displayed weaker SMN signals than control or heterozygous wt/c.2974delC (p.(Leu992Tyrfs*168)) fibroblasts. Our report provides the first description of the clinical phenotype of recessive PTPN23 variants with pathogenicity substantiated by a functional study.
Collapse
Affiliation(s)
- Robert Smigiel
- Department of Paediatrics and Rare Disorders, Wroclaw Medical University, Wroclaw, Poland
| | - Gerd Landsberg
- Institute of Genetics, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Maximilian Schilling
- Institute of Genetics, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Agnieszka Pollak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Anna Walczak
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | - Anna Stodolak
- Department of Paediatrics and Rare Disorders, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Stawinski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland.,Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Hanna Mierzewska
- Department of Child and Adolescent Neurology, Institute of Mother and Child, Warsaw, Poland
| | - Maria M Sasiadek
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| | - Oliver J Gruss
- Institute of Genetics, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| | - Rafal Ploski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland.
| |
Collapse
|
245
|
Derar N, Al-Hassnan ZN, Al-Owain M, Monies D, Abouelhoda M, Meyer BF, Moghrabi N, Alkuraya FS. De novo truncating variants in WHSC1 recapitulate the Wolf–Hirschhorn (4p16.3 microdeletion) syndrome phenotype. Genet Med 2018; 21:185-188. [DOI: 10.1038/s41436-018-0014-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/20/2018] [Indexed: 11/09/2022] Open
|
246
|
Translation regulation of mammalian selenoproteins. Biochim Biophys Acta Gen Subj 2018; 1862:2480-2492. [PMID: 29751099 DOI: 10.1016/j.bbagen.2018.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/28/2018] [Accepted: 05/04/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Interest in selenium research has considerably grown over the last decades owing to the association of selenium deficiencies with an increased risk of several human diseases, including cancers, cardiovascular disorders and infectious diseases. The discovery of a genetically encoded 21st amino acid, selenocysteine, is a fascinating breakthrough in molecular biology as it is the first addition to the genetic code deciphered in the 1960s. Selenocysteine is a structural and functional analog of cysteine, where selenium replaces sulfur, and its presence is critical for the catalytic activity of selenoproteins. SCOPE OF REVIEW The insertion of selenocysteine is a non-canonical translational event, based on the recoding of a UGA codon in selenoprotein mRNAs, normally used as a stop codon in other cellular mRNAs. Two RNA molecules and associated partners are crucial components of the selenocysteine insertion machinery, the Sec-tRNA[Ser]Sec devoted to UGA codon recognition and the SECIS elements located in the 3'UTR of selenoprotein mRNAs. MAJOR CONCLUSIONS The translational UGA recoding event is a limiting stage of selenoprotein expression and its efficiency is regulated by several factors. GENERAL SIGNIFICANCE The control of selenoproteome expression is crucial for redox homeostasis and antioxidant defense of mammalian organisms. In this review, we summarize current knowledge on the co-translational insertion of selenocysteine into selenoproteins, and its layers of regulation.
Collapse
|
247
|
Witting N, Laforêt P, Voermans NC, Roux-Buisson N, Bompaire F, Rendu J, Duno M, Feillet F, Kamsteeg EJ, Poulsen NS, Dahlqvist JR, Romero NB, Fauré J, Vissing J, Behin A. Phenotype and genotype of muscle ryanodine receptor rhabdomyolysis-myalgia syndrome. Acta Neurol Scand 2018; 137:452-461. [PMID: 29635721 DOI: 10.1111/ane.12885] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Rhabdomyolysis and myalgia are common conditions, and mutation in the ryanodine receptor 1 gene (RYR1) is suggested to be a common cause. Due to the large size of RYR1, however, sequencing has not been widely accessible before the recent advent of next-generation sequencing technology and limited phenotypic descriptions are therefore available. MATERIAL & METHODS We present the medical history, clinical and ancillary findings of patients with RYR1 mutations and rhabdomyolysis and myalgia identified in Denmark, France and The Netherlands. RESULTS Twenty-two patients with recurrent rhabdomyolysis (CK > 10 000) or myalgia with hyperCKemia (>1.5 × ULN) and a RYR1 mutation were identified. One had mild wasting of the quadriceps muscle, but none had fixed weakness. Symptoms varied from being restricted to intense exercise to limiting ADL function. One patient developed transient kidney failure during rhabdomyolysis. Two received immunosuppressants on suspicion of myositis. None had episodes of malignant hyperthermia. Muscle biopsies were normal, but CT/MRI showed muscle hypertrophy in most. Delay from first symptom to diagnosis was 12 years on average. Fifteen different dominantly inherited mutations were identified. Ten were previously described as pathogenic and 5 were novel, but rare/absent from the background population, and predicted to be pathogenic by in silico analyses. Ten of the mutations were reported to give malignant hyperthermia susceptibility. CONCLUSION Mutations in RYR1 should be considered as a significant cause of rhabdomyolysis and myalgia syndrome in patients with the characteristic combination of rhabdomyolysis, myalgia and cramps, creatine kinase elevation, no weakness and often muscle hypertrophy.
Collapse
Affiliation(s)
- N. Witting
- Department of Neurology; Copenhagen Neuromuscular Centre; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - P. Laforêt
- Centre de Référence de Pathologie Neuromusculaire Paris-Est; Groupe Hospitalier Pitié-Salpêtrière; Institut de Myologie; AP-HP; Paris Cedex France
| | - N. C. Voermans
- Department of Human Genetics; Radboud University Medical Centre; Nijmegen The Netherlands
| | - N. Roux-Buisson
- INSERM U121; Equipe CMyPath; Institut des Neurosciences; Grenoble France
- Biochimie Génétique et Moléculaire; Institut de Biologie et Pathologie; CHU; Grenoble France
| | - F. Bompaire
- Neurologie; Hopital d'instruction des Armées Percy; Clamart France
| | - J. Rendu
- INSERM U121; Equipe CMyPath; Institut des Neurosciences; Grenoble France
- Biochimie Génétique et Moléculaire; Institut de Biologie et Pathologie; CHU; Grenoble France
| | - M. Duno
- Department of Clinical Genetics; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - F. Feillet
- Service de Médecine Infantile 1; Centre de Référence des Maladies Héréditaires du Métabolisme; Centre Hospitalier Universitaire Brabois-Enfants; Vandœuvre-lès-Nancy France
| | - E.-J. Kamsteeg
- Department of Human Genetics; Radboud University Medical Centre; Nijmegen The Netherlands
| | - N. S. Poulsen
- Department of Neurology; Copenhagen Neuromuscular Centre; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - J. R. Dahlqvist
- Department of Neurology; Copenhagen Neuromuscular Centre; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - N. B. Romero
- Laboratoire de Pathologie Musculaire Risler; Groupe Hospitalier Pitié-Salpêtrière; Paris France
| | - J. Fauré
- INSERM U121; Equipe CMyPath; Institut des Neurosciences; Grenoble France
- Biochimie Génétique et Moléculaire; Institut de Biologie et Pathologie; CHU; Grenoble France
| | - J. Vissing
- Department of Neurology; Copenhagen Neuromuscular Centre; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - A. Behin
- Centre de Référence de Pathologie Neuromusculaire Paris-Est; Groupe Hospitalier Pitié-Salpêtrière; Institut de Myologie; AP-HP; Paris Cedex France
| |
Collapse
|
248
|
Gallo-Ebert C, Francisco J, Liu HY, Draper R, Modi K, Hayward MD, Jones BK, Buiakova O, McDonough V, Nickels JT. Mice lacking ARV1 have reduced signs of metabolic syndrome and non-alcoholic fatty liver disease. J Biol Chem 2018; 293:5956-5974. [PMID: 29491146 DOI: 10.1074/jbc.ra117.000800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/27/2018] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome (MetS) is a term used to characterize individuals having at least three of the following diseases: obesity, dyslipidemia, hyperglycemia, insulin resistance, hypertension, and nonalcoholic fatty liver disease (NAFLD). It is widespread, and the number of individuals with MetS is increasing. However, the events leading to the manifestation of MetS are not well-understood. Here, we show that loss of murine ARV1 (mARV1) results in resistance to acquiring diseases associated with MetS. Arv1-/- animals fed a high-fat diet were resistant to diet-induced obesity, had lower blood cholesterol and triglyceride levels, and retained glucose tolerance and insulin sensitivity. Livers showed no gross morphological changes, contained lower levels of cholesterol, triglycerides, and fatty acids, and showed fewer signs of NAFLD. Knockout animals had elevated levels of liver farnesol X receptor (FXR) protein and its target, small heterodimer protein (SHP). They also had decreased levels of CYP7α1, CYP8β1, and mature SREBP1 protein, evidence suggesting that liver FXR signaling was activated. Strengthening this hypothesis was the fact that peroxisome proliferator-activating receptor α (PPARα) protein was elevated, along with its target, fibroblast growth factor 21 (FGF21). Arv1-/- animals excreted more fecal cholesterol, free fatty acids, and bile acids. Their small intestines had 1) changes in bile acid composition, 2) an increase in the level of the intestinal FXR antagonist, tauromuricholic acid, and 3) showed signs of attenuated FXR signaling. Overall, we believe that ARV1 function is deleterious when consuming a high-fat diet. We further hypothesize that ARV1 is critical for initiating events required for the progression of diseases associated with MetS and NAFLD.
Collapse
Affiliation(s)
- Christina Gallo-Ebert
- From the Institute of Metabolic Disorders, Genesis Biotechnology Group, Hamilton, New Jersey 08691
| | - Jamie Francisco
- From the Institute of Metabolic Disorders, Genesis Biotechnology Group, Hamilton, New Jersey 08691
| | - Hsing-Yin Liu
- From the Institute of Metabolic Disorders, Genesis Biotechnology Group, Hamilton, New Jersey 08691
| | | | - Kinnari Modi
- From the Institute of Metabolic Disorders, Genesis Biotechnology Group, Hamilton, New Jersey 08691
| | - Michael D Hayward
- Invivotek, Genesis Biotechnology Group, Hamilton, New Jersey 08691, and
| | - Beverly K Jones
- Invivotek, Genesis Biotechnology Group, Hamilton, New Jersey 08691, and
| | - Olesia Buiakova
- Invivotek, Genesis Biotechnology Group, Hamilton, New Jersey 08691, and
| | | | - Joseph T Nickels
- From the Institute of Metabolic Disorders, Genesis Biotechnology Group, Hamilton, New Jersey 08691, .,the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901
| |
Collapse
|
249
|
Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families. Mol Psychiatry 2018; 23:973-984. [PMID: 28397838 DOI: 10.1038/mp.2017.60] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 12/14/2022]
Abstract
Approximately 1% of the global population is affected by intellectual disability (ID), and the majority receive no molecular diagnosis. Previous studies have indicated high levels of genetic heterogeneity, with estimates of more than 2500 autosomal ID genes, the majority of which are autosomal recessive (AR). Here, we combined microarray genotyping, homozygosity-by-descent (HBD) mapping, copy number variation (CNV) analysis, and whole exome sequencing (WES) to identify disease genes/mutations in 192 multiplex Pakistani and Iranian consanguineous families with non-syndromic ID. We identified definite or candidate mutations (or CNVs) in 51% of families in 72 different genes, including 26 not previously reported for ARID. The new ARID genes include nine with loss-of-function mutations (ABI2, MAPK8, MPDZ, PIDD1, SLAIN1, TBC1D23, TRAPPC6B, UBA7 and USP44), and missense mutations include the first reports of variants in BDNF or TET1 associated with ID. The genes identified also showed overlap with de novo gene sets for other neuropsychiatric disorders. Transcriptional studies showed prominent expression in the prenatal brain. The high yield of AR mutations for ID indicated that this approach has excellent clinical potential and should inform clinical diagnostics, including clinical whole exome and genome sequencing, for populations in which consanguinity is common. As with other AR disorders, the relevance will also apply to outbred populations.
Collapse
|
250
|
Pagnamenta AT, Murakami Y, Anzilotti C, Titheradge H, Oates AJ, Morton J, Kinoshita T, Kini U, Taylor JC. A homozygous variant disrupting the PIGH start-codon is associated with developmental delay, epilepsy, and microcephaly. Hum Mutat 2018; 39:822-826. [PMID: 29573052 PMCID: PMC6001798 DOI: 10.1002/humu.23420] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/09/2018] [Accepted: 03/02/2018] [Indexed: 01/12/2023]
Abstract
Defective glycosylphosphatidylinositol (GPI)‐anchor biogenesis can cause a spectrum of predominantly neurological problems. For eight genes critical to this biological process, disease associations are not yet reported. Scanning exomes from 7,833 parent–child trios and 1,792 singletons from the DDD study for biallelic variants in this gene‐set uncovered a rare PIGH variant in a boy with epilepsy, microcephaly, and behavioral difficulties. Although only 2/2 reads harbored this c.1A > T transversion, the presence of ∼25 Mb autozygosity at this locus implied homozygosity, which was confirmed using Sanger sequencing. A similarly‐affected sister was also homozygous. FACS analysis of PIGH‐deficient CHO cells indicated that cDNAs with c.1A > T could not efficiently restore expression of GPI‐APs. Truncation of PIGH protein was consistent with the utilization of an in‐frame start‐site at codon 63. In summary, we describe siblings harboring a homozygous c.1A > T variant resulting in defective GPI‐anchor biogenesis and highlight the importance of exploring low‐coverage variants within autozygous regions.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- National Institute for Health Research Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, UK
| | - Yoshiko Murakami
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Consuelo Anzilotti
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hannah Titheradge
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's NHS Foundation Trust, Birmingham Women's Hospital, Mindelsohn Way, Edgbaston, Birmingham, UK
| | - Adam J Oates
- Radiology Department, Birmingham Children's Hospital, Birmingham, UK
| | - Jenny Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's NHS Foundation Trust, Birmingham Women's Hospital, Mindelsohn Way, Edgbaston, Birmingham, UK
| | -
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Taroh Kinoshita
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jenny C Taylor
- National Institute for Health Research Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|