201
|
Pongrácz P, Sztruhala SS. Forgotten, But Not Lost-Alloparental Behavior and Pup-Adult Interactions in Companion Dogs. Animals (Basel) 2019; 9:E1011. [PMID: 31766377 PMCID: PMC6941127 DOI: 10.3390/ani9121011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/17/2022] Open
Abstract
Socialization with humans is known to be a pivotal factor in the development of appropriate adult dog behavior, but the role and extent of dog-dog interactions in the first two months of life is rarely studied. Although various forms of alloparental behaviors are described in the case of wild-living canids, the social network of companion dogs around home-raised puppies is almost unknown. An international online survey of companion dog breeders was conducted, asking about the interactions of other dogs in the household with the puppies and the pups' mother. Based on the observations of these breeders, our study showed an intricate network of interactions among adult dogs and puppies below the age of weaning. Alloparental behaviors (including suckling and feeding by regurgitation) were reportedly common. Independent of their sex, other household dogs mostly behaved in an amicable way with the puppies, and in the case of unseparated housing, the puppies reacted with lower fear to the barks of the others. Parousness, sexual status, and age of the adult dogs had an association with how interested the dogs were in interacting with the puppies, and also with how the mother reacted to the other dogs. Our study highlights the possible importance of dog-dog interactions during the early life of puppies in forming stable and low-stress interactions with other dogs later in life.
Collapse
Affiliation(s)
- Péter Pongrácz
- Department of Ethology, Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary;
| | | |
Collapse
|
202
|
Yang Q, Chen H, Ye J, Liu C, Wei R, Chen C, Huang L. Genetic Diversity and Signatures of Selection in 15 Chinese Indigenous Dog Breeds Revealed by Genome-Wide SNPs. Front Genet 2019; 10:1174. [PMID: 31803243 PMCID: PMC6872681 DOI: 10.3389/fgene.2019.01174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/24/2019] [Indexed: 01/01/2023] Open
Abstract
There are dozens of recognized indigenous dog breeds in China. However, these breeds have not had extensive studies to describe their population structure, genomic linkage disequilibrium (LD) patterns, and selection signatures. Here, we systematically surveyed the genomes of 157 unrelated dogs that were from 15 diverse Chinese dog breeds. Canine 170K SNP chips were used to compare the genomic structures of Chinese and Western dogs. The genotyping data of 170K SNP chips in Western dogs were downloaded from the LUPA (a European initiative of canine genome project) database. Chinese indigenous dogs had lower LD and shorter accumulative runs of homozygosity (ROH) in the genome. The genetic distances between individuals within each Chinese breed were larger than those within Western breeds. Chinese indigenous and Western dog breeds were clearly differentiated into two separate clades revealed by the PCA and NJ-tree. We found evidence for historical introgression of Western dogs into Chinese Kazakhstan shepherd and Mongolia Xi dogs. We suggested that Greenland sledge dog, Papillon, and European Eurasier have Chinese dog lineages. Selection sweep analysis identified genome-wide selection signatures of each Chinese breed and three breed groups. We highlighted several genes including EPAS1 and DNAH9 that show signatures of natural selection in Qinghai-Tibetan plateau dogs and are likely important for genetic adaptation to high altitude. Comparison of our findings with previous reports suggested RBP7, NMNAT1, SLC2A5, and H6PD that exhibit signatures of natural selection in Chinese mountain hounds as promising candidate genes for the traits of endurance and night vision, and NOL8, KRT9, RORB, and CAMTA1 that show signals of selection in Xi dogs might be candidate genes influencing dog running speed. The results about genomic and population structures, and selection signatures of Chinese dog breeds reinforce the conclusion that Chinese indigenous dogs with great variations of phenotypes are important resources for identifying genes responsible for complex traits.
Collapse
Affiliation(s)
- Qianyong Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Provincial Key Laboratory for Police Dog Breeding and Behavioral Science, Nanchang Police Dog Base, Nanchang, China
| | - Hao Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Junhua Ye
- Jiangxi Provincial Key Laboratory for Police Dog Breeding and Behavioral Science, Nanchang Police Dog Base, Nanchang, China
| | - Chenlong Liu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Rongxing Wei
- Jiangxi Provincial Key Laboratory for Police Dog Breeding and Behavioral Science, Nanchang Police Dog Base, Nanchang, China
| | - Congying Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
203
|
Oberbauer AM, Belanger JM, Famula TR. A Review of the Impact of Neuter Status on Expression of Inherited Conditions in Dogs. Front Vet Sci 2019; 6:397. [PMID: 31799281 PMCID: PMC6863800 DOI: 10.3389/fvets.2019.00397] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Gonadectomy is an important reproductive management tool employed in many countries, and is highly prevalent in the US with an estimated 85% of dogs being neutered. Despite the societal benefits in pet population control, negative associations between neuter status, and health conditions have been reported in recent years. Most particularly observed are the consequences of early age neutering. Knowing that different physiological systems rely upon gonadal steroids during development and physiological maintenance, studies have been undertaken to assess the impact of neuter status on multiple body and organ systems. For some inherited conditions, neutering is associated with an increased risk of expression. Neutering has also been associated with altered metabolism and a predisposition for weight gain in dogs, which may confound the detected risk association between neutering and disease expression. This review summarizes the effects of neutering on cancer, orthopedic, and immune disorders in the dog and also explores the potentially exacerbating factor of body weight.
Collapse
Affiliation(s)
- Anita M Oberbauer
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Janelle M Belanger
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Thomas R Famula
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
204
|
Garamszegi LZ, Temrin H, Kubinyi E, Miklósi Á, Kolm N. The role of common ancestry and gene flow in the evolution of human-directed play behaviour in dogs. J Evol Biol 2019; 33:318-328. [PMID: 31705702 DOI: 10.1111/jeb.13567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/04/2019] [Indexed: 11/29/2022]
Abstract
Among-population variance of phenotypic traits is of high relevance for understanding evolutionary mechanisms that operate in relatively short timescales, but various sources of nonindependence, such as common ancestry and gene flow, can hamper the interpretations. In this comparative analysis of 138 dog breeds, we demonstrate how such confounders can independently shape the evolution of a behavioural trait (human-directed play behaviour from the Dog Mentality Assessment project). We combined information on genetic relatedness and haplotype sharing to reflect common ancestry and gene flow, respectively, and entered these into a phylogenetic mixed model to partition the among-breed variance of human-directed play behaviour while also accounting for within-breed variance. We found that 75% of the among-breed variance was explained by overall genetic relatedness among breeds, whereas 15% could be attributed to haplotype sharing that arises from gene flow. Therefore, most of the differences in human-directed play behaviour among breeds have likely been caused by constraints of common ancestry as a likely consequence of past selection regimes. On the other hand, gene flow caused by crosses among breeds has played a minor, but not negligible role. Our study serves as an example of an analytical approach that can be applied to comparative situations where the effects of shared origin and gene flow require quantification and appropriate statistical control in a within-species/among-population framework. Altogether, our results suggest that the evolutionary history of dog breeds has left remarkable signatures on the among-breed variation of a behavioural phenotype.
Collapse
Affiliation(s)
- László Zsolt Garamszegi
- Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary.,MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary.,Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, Seville, Spain
| | - Hans Temrin
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Enikő Kubinyi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Ádám Miklósi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
205
|
Martinez SE, Shi J, Zhu HJ, Perez Jimenez TE, Zhu Z, Court MH. Absolute Quantitation of Drug-Metabolizing Cytochrome P450 Enzymes and Accessory Proteins in Dog Liver Microsomes Using Label-Free Standard-Free Analysis Reveals Interbreed Variability. Drug Metab Dispos 2019; 47:1314-1324. [PMID: 31427433 PMCID: PMC6800445 DOI: 10.1124/dmd.119.088070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022] Open
Abstract
Dogs are commonly used in human and veterinary pharmaceutical development. Physiologically based pharmacokinetic modeling using recombinant cytochrome P450 (CYP) enzymes requires accurate estimates of CYP abundance, particularly in liver. However, such estimates are currently available for only seven CYPs, which were determined in a limited number of livers from one dog breed (beagle). In this study, we used a label-free shotgun proteomics method to quantitate 11 CYPs (including four CYPs not previously measured), cytochrome P450 oxidoreductase, and cytochrome b5 in liver microsomes from 59 dogs representing four different breeds and mixed-breed dogs. Validation included showing correlation with CYP marker activities, immunoquantified protein, as well as CYP1A2 and CYP2C41 null allele genotypes. Abundance values largely agreed with those previously published. Average CYP abundance was highest (>120 pmol/mg protein) for CYP2D15 and CYP3A12; intermediate (40-89 pmol/mg) for CYP1A2, CYP2B11, CYP2E1, and CYP2C21; and lowest (<12 pmol/mg) for CYP2A13, CYP2A25, CYP2C41, CYP3A26, and CYP1A1. The CYP2C41 gene was detected in 12 of 58 (21%) livers. CYP2C41 protein abundance averaged 8.2 pmol/mg in those livers, and was highest (19 pmol/mg) in the only liver with two CYP2C41 gene copies. CYP1A2 protein was not detected in the only liver homozygous for the CYP1A2 stop codon mutation. Large breed-associated differences were observed for CYP2B11 (P < 0.0001; ANOVA) but not for other CYPs. Research hounds and Beagles had the highest CYP2B11 abundance; mixed-breed dogs and Chihuahua were intermediate; whereas greyhounds had the lowest abundance. These results provide the most comprehensive estimates to date of CYP abundance and variability in canine liver. SIGNIFICANCE STATEMENT: This work provides the most comprehensive quantitative analysis to date of the drug-metabolizing cytochrome P450 proteome in dogs that will serve as a valuable reference for physiologically based scaling and modeling used in drug development and research. This study also revealed high interindividual variation and dog breed-associated differences in drug-metabolizing cytochrome P450 expression that may be important for predicting drug disposition variability among a genetically diverse canine population.
Collapse
Affiliation(s)
- Stephanie E Martinez
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Jian Shi
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Hao-Jie Zhu
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Tania E Perez Jimenez
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Zhaohui Zhu
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Michael H Court
- Comparative Pharmacogenomics Laboratory, Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington (S.E.M., T.E.P.J., Z.Z., M.H.C.); and Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.S., H.-J.Z.)
| |
Collapse
|
206
|
Dreger DL, Hooser BN, Hughes AM, Ganesan B, Donner J, Anderson H, Holtvoigt L, Ekenstedt KJ. True Colors: Commercially-acquired morphological genotypes reveal hidden allele variation among dog breeds, informing both trait ancestry and breed potential. PLoS One 2019; 14:e0223995. [PMID: 31658272 PMCID: PMC6816562 DOI: 10.1371/journal.pone.0223995] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/02/2019] [Indexed: 01/15/2023] Open
Abstract
Direct-to-consumer canine genetic testing is becoming increasingly popular among dog owners. The data collected therein provides intriguing insight into the current status of morphological variation present within purebred populations. Mars WISDOM PANELTM data from 11,790 anonymized dogs, representing 212 breeds and 4 wild canine species, were evaluated at genes associated with 7 coat color traits and 5 physical characteristics. Frequencies for all tested alleles at these 12 genes were determined by breed and by phylogenetic grouping. A sub-set of the data, consisting of 30 breeds, was divided into separate same-breed populations based on country of collection, body size, coat variation, or lineages selected for working or conformation traits. Significantly different (p ≤ 0.00167) allele frequencies were observed between populations for at least one of the tested genes in 26 of the 30 breeds. Next, standard breed descriptions from major American and international registries were used to determine colors and tail lengths (e.g. genetic bobtail) accepted within each breed. Alleles capable of producing traits incongruous with breed descriptions were observed in 143 breeds, such that random mating within breeds has probabilities of between 4.9e-7 and 0.25 of creating undesirable phenotypes. Finally, the presence of rare alleles within breeds, such as those for the recessive black coloration and natural bobtail, was combined with previously published identity-by-decent haplotype sharing levels to propose pathways by which the alleles may have spread throughout dog breeds. Taken together, this work demonstrates that: 1) the occurrence of low frequency alleles within breeds can reveal the influence of regional or functional selection practices; 2) it is possible to visualize the potential historic connections between breeds that share rare alleles; and 3) the necessity of addressing conflicting ideals in breed descriptions relative to actual genetic potential is crucial.
Collapse
Affiliation(s)
- Dayna L. Dreger
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States of America
| | - Blair N. Hooser
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States of America
| | | | | | | | | | | | - Kari J. Ekenstedt
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
207
|
Sándor S, Kubinyi E. Genetic Pathways of Aging and Their Relevance in the Dog as a Natural Model of Human Aging. Front Genet 2019; 10:948. [PMID: 31681409 PMCID: PMC6813227 DOI: 10.3389/fgene.2019.00948] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Aging research has experienced a burst of scientific efforts in the last decades as the growing ratio of elderly people has begun to pose an increased burden on the healthcare and pension systems of developed countries. Although many breakthroughs have been reported in understanding the cellular mechanisms of aging, the intrinsic and extrinsic factors that contribute to senescence on higher biological levels are still barely understood. The dog, Canis familiaris, has already served as a valuable model of human physiology and disease. The possible role the dog could play in aging research is still an open question, although utilization of dogs may hold great promises as they naturally develop age-related cognitive decline, with behavioral and histological characteristics very similar to those of humans. In this regard, family dogs may possess unmatched potentials as models for investigations on the complex interactions between environmental, behavioral, and genetic factors that determine the course of aging. In this review, we summarize the known genetic pathways in aging and their relevance in dogs, putting emphasis on the yet barely described nature of certain aging pathways in canines. Reasons for highlighting the dog as a future aging and gerontology model are also discussed, ranging from its unique evolutionary path shared with humans, its social skills, and the fact that family dogs live together with their owners, and are being exposed to the same environmental effects.
Collapse
Affiliation(s)
- Sára Sándor
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | | |
Collapse
|
208
|
Koehler JW, Miller AD, Miller CR, Porter B, Aldape K, Beck J, Brat D, Cornax I, Corps K, Frank C, Giannini C, Horbinski C, Huse JT, O'Sullivan MG, Rissi DR, Mark Simpson R, Woolard K, Shih JH, Mazcko C, Gilbert MR, LeBlanc AK. A Revised Diagnostic Classification of Canine Glioma: Towards Validation of the Canine Glioma Patient as a Naturally Occurring Preclinical Model for Human Glioma. J Neuropathol Exp Neurol 2019; 77:1039-1054. [PMID: 30239918 DOI: 10.1093/jnen/nly085] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The National Cancer Institute-led multidisciplinary Comparative Brain Tumor Consortium (CBTC) convened a glioma pathology board, comprising both veterinarian and physician neuropathologists, and conducted a comprehensive review of 193 cases of canine glioma. The immediate goal was to improve existing glioma classification methods through creation of a histologic atlas of features, thus yielding greater harmonization of phenotypic characterization. The long-term goal was to support future incorporation of clinical outcomes and genomic data into proposed simplified diagnostic schema, so as to further bridge the worlds of veterinary and physician neuropathology and strengthen validity of the dog as a naturally occurring, translationally relevant animal model of human glioma. All cases were morphologically reclassified according to a new schema devised by the entire board, yielding a majority opinion diagnosis of astrocytoma (43, 22.3%), 19 of which were low-grade and 24 high-grade, and oligodendroglioma (134, 69.4%), 35 of which were low-grade and 99 were high-grade. Sixteen cases (8.3%) could not be classified as oligodendroglioma or astrocytoma based on morphology alone and were designated as undefined gliomas. The simplified classification scheme proposed herein provides a tractable means for future addition of molecular data, and also serves to highlight histologic similarities and differences between human and canine glioma.
Collapse
Affiliation(s)
- Jennifer W Koehler
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Andrew D Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - C Ryan Miller
- Department of Pathology and Laboratory Medicine.,Department of Neurology.,Department of Pharmacology, Lineberger Comprehensive Cancer Center and Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Brian Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jessica Beck
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel Brat
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ingrid Cornax
- Department of Pediatrics, University of California-San Diego, San Diego California
| | - Kara Corps
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Viral Immunology and Intravital Imaging Section, Bethesda, Maryland
| | - Chad Frank
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado
| | - Caterina Giannini
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Craig Horbinski
- Department of Pathology.,Department of Neurosurgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - M Gerard O'Sullivan
- Masonic Cancer Center Comparative Pathology Shared Resource and Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - Daniel R Rissi
- Department of Pathology and Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - R Mark Simpson
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Molecular Pathology Unit, Laboratory of Cancer Biology and Genetics, Bethesda, Maryland
| | - Kevin Woolard
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Joanna H Shih
- Biometrics Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Christina Mazcko
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark R Gilbert
- National Institute of Neurological Disorders and Stroke and the Center for Cancer Research, National Cancer Institute, National Institutes of Health, NeuroOncology Branch, Bethesda, Maryland
| | - Amy K LeBlanc
- National Cancer Institute, National Institutes of Health, Comparative Oncology Program, Center for Cancer Research, Bethesda, Maryland
| |
Collapse
|
209
|
MacLean EL, Snyder-Mackler N, vonHoldt BM, Serpell JA. Highly heritable and functionally relevant breed differences in dog behaviour. Proc Biol Sci 2019; 286:20190716. [PMID: 31575369 DOI: 10.1098/rspb.2019.0716] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Variation across dog breeds presents a unique opportunity to investigate the evolution and biological basis of complex behavioural traits. We integrated behavioural data from more than 14 000 dogs from 101 breeds with breed-averaged genotypic data (n = 5697 dogs) from over 100 000 loci in the dog genome. We found high levels of among-breed heritability for 14 behavioural traits (the proportion of trait variance attributable to genetic similarity among breeds). We next identified 131 single nucleotide polymorphisms associated with breed differences in behaviour, which were found in genes that are highly expressed in the brain and enriched for neurobiological functions and developmental processes, suggesting that they may be functionally associated with behavioural differences. Our results shed light on the heritability and genetic architecture of complex behavioural traits and identify dogs as a powerful model in which to address these questions.
Collapse
Affiliation(s)
- Evan L MacLean
- School of Anthropology, University of Arizona, Tucson, AZ, USA.,Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Noah Snyder-Mackler
- Department of Psychology, University of Washington, Seattle, WA, USA.,Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, USA.,Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - James A Serpell
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
210
|
Hecht EE, Smaers JB, Dunn WD, Kent M, Preuss TM, Gutman DA. Significant Neuroanatomical Variation Among Domestic Dog Breeds. J Neurosci 2019; 39:7748-7758. [PMID: 31477568 PMCID: PMC6764193 DOI: 10.1523/jneurosci.0303-19.2019] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Humans have bred different lineages of domestic dogs for different tasks such as hunting, herding, guarding, or companionship. These behavioral differences must be the result of underlying neural differences, but surprisingly, this topic has gone largely unexplored. The current study examined whether and how selective breeding by humans has altered the gross organization of the brain in dogs. We assessed regional volumetric variation in MRI studies of 62 male and female dogs of 33 breeds. Neuroanatomical variation is plainly visible across breeds. This variation is distributed nonrandomly across the brain. A whole-brain, data-driven independent components analysis established that specific regional subnetworks covary significantly with each other. Variation in these networks is not simply the result of variation in total brain size, total body size, or skull shape. Furthermore, the anatomy of these networks correlates significantly with different behavioral specialization(s) such as sight hunting, scent hunting, guarding, and companionship. Importantly, a phylogenetic analysis revealed that most change has occurred in the terminal branches of the dog phylogenetic tree, indicating strong, recent selection in individual breeds. Together, these results establish that brain anatomy varies significantly in dogs, likely due to human-applied selection for behavior.SIGNIFICANCE STATEMENT Dog breeds are known to vary in cognition, temperament, and behavior, but the neural origins of this variation are unknown. In an MRI-based analysis, we found that brain anatomy covaries significantly with behavioral specializations such as sight hunting, scent hunting, guarding, and companionship. Neuroanatomical variation is not simply driven by brain size, body size, or skull shape, and is focused in specific networks of regions. Nearly all of the identified variation occurs in the terminal branches of the dog phylogenetic tree, indicating strong, recent selection in individual breeds. These results indicate that through selective breeding, humans have significantly altered the brains of different lineages of domestic dogs in different ways.
Collapse
Affiliation(s)
- Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138,
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, New York 11794
| | - William D Dunn
- Departmentt of Neurology, School of Medicine, Emory University, Atlanta, Georgia 30329
| | - Marc Kent
- Department of Small Animal Medicine and Surgery, The University of Georgia at Athens, Athens, Georgia 30602
| | - Todd M Preuss
- Division of Neuropharmacology and Neurologic Diseases and Center for Translational Social Neuroscience, Yerkes National Primate Research Institute, Emory University, Atlanta, Georgia 30329
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia 30329, and
| | - David A Gutman
- Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia 30329
| |
Collapse
|
211
|
Cai SV, Famula TR, Oberbauer AM, Hess RS. Heritability and complex segregation analysis of diabetes mellitus in American Eskimo Dogs. J Vet Intern Med 2019; 33:1926-1934. [PMID: 31318104 PMCID: PMC6766479 DOI: 10.1111/jvim.15570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/08/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Heritability and mode of inheritance of spontaneous diabetes mellitus (DM) in American Eskimo Dogs (AED) are unknown. OBJECTIVE Investigate the heritability and mode of inheritance of DM in AED. ANIMALS An extended family of AED including 71 AED without DM, 47 AED with an unknown phenotype, and 38 AED with spontaneous DM. METHODS Retrospective evaluation of inheritance. A logistic regression model was formulated to evaluate the heritability of DM, including effects of sex and neuter status. Subsequently, complex segregation analysis was employed to investigate the inheritance pattern of DM in AED. Six plausible models were considered, and the Akaike Information Criterion was used to determine the best of the biologically feasible models of inheritance of DM in AED. RESULTS Heritability of DM in AED is estimated at 0.62 (95% posterior interval 0.01-0.99). Predicted DM probabilities for neutered females (NF), intact females (IF), neutered males (NM), and intact males (IM) were 0.76, 0.11, 0.63, and 0.12, respectively. There was no overlap between the 95% posterior intervals of disease probabilities in NF and IF or in NF and IM. Complex segregation analysis suggested that the mode of inheritance of DM in AED is polygenic, with no evidence for a single gene of large effect. CONCLUSIONS AND CLINICAL IMPORTANCE The estimated heritability of DM in AED is high but has low precision. Diabetes mellitus transmission in AED appears to follow a polygenic inheritance. Breeders could successfully implement a breeding program to decrease the incidence of DM in AED.
Collapse
Affiliation(s)
- Stephen V. Cai
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Thomas R. Famula
- Department of Animal ScienceUniversity of CaliforniaDavisCalifornia
| | | | - Rebecka S. Hess
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| |
Collapse
|
212
|
Network analysis of canine brain morphometry links tumour risk to oestrogen deficiency and accelerated brain ageing. Sci Rep 2019; 9:12506. [PMID: 31467332 PMCID: PMC6715702 DOI: 10.1038/s41598-019-48446-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/02/2019] [Indexed: 12/24/2022] Open
Abstract
Structural ‘brain age’ is a valuable but complex biomarker for several brain disorders. The dog is an unrivalled comparator for neurological disease modeling, however canine brain morphometric diversity creates computational and statistical challenges. Using a data-driven approach, we explored complex interactions between patient metadata, brain morphometry, and neurological disease. Twenty-four morphometric parameters measured from 286 canine brain magnetic resonance imaging scans were combined with clinical parameters to generate 9,438 data points. Network analysis was used to cluster patients according to their brain morphometry profiles. An ‘aged-brain’ profile, defined by a small brain width and volume combined with ventriculomegaly, was revealed in the Boxer breed. Key features of this profile were paralleled in neutered female dogs which, relative to un-neutered females, had an 11-fold greater risk of developing brain tumours. Boxer dog and geriatric dog groups were both enriched for brain tumour diagnoses, despite a lack of geriatric Boxers within the cohort. Our findings suggest that advanced brain ageing enhances brain tumour risk in dogs and may be influenced by oestrogen deficiency—a risk factor for dementia and brain tumours in humans. Morphometric features of brain ageing in dogs, like humans, might better predict neurological disease risk than patient chronological age.
Collapse
|
213
|
Gajaweera C, Kang JM, Lee DH, Lee SH, Kim YK, Wijayananda HI, Kim JJ, Ha JH, Choi BH, Lee SH. Genetic diversity and population structure of the Sapsaree, a native Korean dog breed. BMC Genet 2019; 20:66. [PMID: 31382890 PMCID: PMC6683530 DOI: 10.1186/s12863-019-0757-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 06/20/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The Sapsaree is a breed of dog (Canis familiaris) native to Korea, which became perilously close to extinction in the mid-1980s. However, with systematic genetic conservation and restoration efforts, this breed was rescued from extinction and population sizes have been gradually increasing over the past few decades. The aim of this study was to ascertain novel information about the genetic diversity, population structure, and demographic history of the Sapsaree breed using genome-wide single nucleotide polymorphism data. We characterized the genetic profile of the Sapsaree breed by comparison with seven foreign dog breeds with similar morphologies to estimate genetic differentiation within and among these breeds. RESULTS The results suggest that Sapsarees have higher genetic variance compared with the other breeds analyzed. The majority of the Sapsarees in this study share a discrete genetic pattern, although some individuals were slightly different, possibly as a consequence of the recent restoration process. Concordant results from analyses of linkage disequilibrium, effective population size, genetic diversity, and population structural analyses illustrate a relationship among the Sapsaree and the Tibetan breeds Tibetan terrier and Lhasa Apso, and a small genetic introgression from European breeds. The effective population size of the Sapsaree has contracted dramatically over the past generations, and is currently insufficient to maintain long-term viability of the breed's genetic diversity. CONCLUSIONS This study provides novel insights regarding the genetic diversity and population structure of the native Korean dog breed Sapsaree. Our results suggest the importance of a strategic and systematic approach to ensure the genetic diversity and the authenticity of the Sapsaree breed.
Collapse
Affiliation(s)
- Chandima Gajaweera
- Division of Animal & Dairy Science, Chungnam National University, Daejeon, 34134 Republic of Korea
- Department of Animal Science, Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka
| | - Ji Min Kang
- Division of Animal & Dairy Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Doo Ho Lee
- Division of Animal & Dairy Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Soo Hyun Lee
- Division of Animal & Dairy Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Yeong Kuk Kim
- Division of Animal & Dairy Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Hasini I. Wijayananda
- Division of Animal & Dairy Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Jong Joo Kim
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| | - Ji Hong Ha
- School of Life Science, Kyungpook National University, Daegu, 41940 Republic of Korea
| | - Bong Hwan Choi
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365 Republic of Korea
| | - Seung Hwan Lee
- Division of Animal & Dairy Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| |
Collapse
|
214
|
Katayama M, Kubo T, Yamakawa T, Fujiwara K, Nomoto K, Ikeda K, Mogi K, Nagasawa M, Kikusui T. Emotional Contagion From Humans to Dogs Is Facilitated by Duration of Ownership. Front Psychol 2019; 10:1678. [PMID: 31379690 PMCID: PMC6658615 DOI: 10.3389/fpsyg.2019.01678] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/03/2019] [Indexed: 11/13/2022] Open
Abstract
Emotional contagion is a primitive form of empathy that does not need higher psychological functions. Recent studies reported that emotional contagion exists not only between humans but also among various animal species. The dog (Canis familiaris) is a unique animal and the oldest domesticated species. Dogs have coexisted with humans for more than 30,000 years and are woven into human society as partners bonding with humans. Dogs have acquired human-like communication skills and, likely as a result of the domestication process, the ability to read human emotions; therefore, it is feasible that there may be emotional contagion between human and dogs. However, the higher time-resolution of measurement of emotional contagion between them is yet to be conducted. We assessed the emotional reactions of dogs and humans by heart rate variability (HRV), which reflects emotion, under a psychological stress condition on the owners. The correlation coefficients of heart beat (R-R) intervals (RRI), the standard deviations of all RR intervals (SDNN), and the square root of the mean of the sum of the square of differences between adjacent RR intervals (RMSSD) between dogs and owners were positively correlated with the duration of dog ownership. Dogs’ sex also influenced the correlation coefficients of the RRI, SDNN, and RMSSD in the control condition; female showed stronger values. These results suggest that emotional contagion from owner to dog can occur especially in females and the time sharing the same environment is the key factor in inducing the efficacy of emotional contagion.
Collapse
Affiliation(s)
- Maki Katayama
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Japan
| | - Takatomi Kubo
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Toshitaka Yamakawa
- Research Promotion Division, Department of Computer Science and Electrical Engineering, Faculty of Engineering, Kumamoto University, Kumamoto, Japan
| | - Koichi Fujiwara
- Human Systems Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Kensaku Nomoto
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Japan
| | - Kazushi Ikeda
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Kazutaka Mogi
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Japan
| | - Miho Nagasawa
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Japan
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Japan
| |
Collapse
|
215
|
Ostrander EA, Wang GD, Larson G, vonHoldt BM, Davis BW, Jagannathan V, Hitte C, Wayne RK, Zhang YP. Dog10K: an international sequencing effort to advance studies of canine domestication, phenotypes and health. Natl Sci Rev 2019; 6:810-824. [PMID: 31598383 PMCID: PMC6776107 DOI: 10.1093/nsr/nwz049] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/14/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
Dogs are the most phenotypically diverse mammalian species, and they possess more known heritable disorders than any other non-human mammal. Efforts to catalog and characterize genetic variation across well-chosen populations of canines are necessary to advance our understanding of their evolutionary history and genetic architecture. To date, no organized effort has been undertaken to sequence the world's canid populations. The Dog10K Consortium (http://www.dog10kgenomes.org) is an international collaboration of researchers from across the globe who will generate 20× whole genomes from 10 000 canids in 5 years. This effort will capture the genetic diversity that underlies the phenotypic and geographical variability of modern canids worldwide. Breeds, village dogs, niche populations and extended pedigrees are currently being sequenced, and de novo assemblies of multiple canids are being constructed. This unprecedented dataset will address the genetic underpinnings of domestication, breed formation, aging, behavior and morphological variation. More generally, this effort will advance our understanding of human and canine health.
Collapse
Affiliation(s)
- Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford OX1 3TG, UK
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Brian W Davis
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77840, USA
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern CH-3001, Switzerland
| | | | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
216
|
Wang GD, Larson G, Kidd JM, vonHoldt BM, Ostrander EA, Zhang YP. Dog10K: the International Consortium of Canine Genome Sequencing. Natl Sci Rev 2019; 6:611-613. [PMID: 31598382 PMCID: PMC6776106 DOI: 10.1093/nsr/nwz068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, China
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, UK
| | - Jeffrey M Kidd
- Department of Human Genetics and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, USA
| | | | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, USA
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, China
| |
Collapse
|
217
|
Berger B, Heinrich J, Niederstätter H, Hecht W, Morf N, Hellmann A, Rohleder U, Schleenbecker U, Berger C, Parson W. Forensic characterization and statistical considerations of the CaDNAP 13-STR panel in 1,184 domestic dogs from Germany, Austria, and Switzerland. Forensic Sci Int Genet 2019; 42:90-98. [PMID: 31277051 DOI: 10.1016/j.fsigen.2019.06.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 12/13/2022]
Abstract
Crime scene samples originating from domestic dogs such as hair, blood, or saliva can be probative as possible transfer evidence in human crime and in dog attack cases. In the majority of such cases canine DNA identification using short tandem repeat (STR) analysis is the method of choice, which demands, among others, a systematic survey of allele frequency data in the relevant dog populations. A set of 13 highly polymorphic canine STR markers was used to analyze samples of 1,184 dogs (including 967 purebred dogs) from the so-called DACH countries (Germany, Austria, Switzerland). This CaDNAP 13-STR panel has previously been validated for canine identification in a forensic context. Here, we present robust estimates of allele frequencies, which are essential to assess the weight of the evidence by estimating the probability of a matching DNA profile within the dog population under question, e.g. in the form of a random match probability (RMP). The geographical provenance of the tested dogs showed a negligible influence on the observed genotype variation. Therefore, we combined the STR data from all three countries into a single dog population sample (DPS). In contrast, pronounced genetic differentiation between dog breeds was found by principal component analysis and sub-structure analysis with the STRUCTURE software. These findings entailed the need to account for the effects of DPS breed composition on allele frequency estimates. A possible strategy, which was favored here, relies on collecting a DPS that is guided by the breed composition of the relevant dog population. In total, dogs from 166 different breeds were included in our DPS, 64 of them including at least 5 individuals (n = 771 dogs). Sampling reflected the abundance of breeds in the DACH countries with the following being the most common ones: German Shepherds (population frequency: 14.3%), Dachshunds (5.9%), Labrador Retrievers (3.9%), and Golden Retrievers (3.2%). The pedigree listing of the purebred dogs in our DPS ranked German Shepherds (DPS frequency 8.5%) first, followed by Labrador Retrievers (3.9%), Golden Retrievers (3%), and Dachshunds (2.5%). RMP values based on overall allele frequencies and accounting for substructure using FST between breeds ranged between 10-13 and 10-14 and represent a conservative approach of RMP assessment.
Collapse
Affiliation(s)
- Burkhard Berger
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria.
| | - Josephin Heinrich
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Harald Niederstätter
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Werner Hecht
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Nadja Morf
- Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Andreas Hellmann
- Bundeskriminalamt, Kriminaltechnisches Institut, Wiesbaden, Germany
| | - Udo Rohleder
- Bundeskriminalamt, Kriminaltechnisches Institut, Wiesbaden, Germany
| | | | - Cordula Berger
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
218
|
Tandon D, Ressler K, Petticord D, Papa A, Jiranek J, Wilkinson R, Kartzinel RY, Ostrander EA, Burney N, Borden C, Udell MAR, VonHoldt BM. Homozygosity for Mobile Element Insertions Associated with WBSCR17 Could Predict Success in Assistance Dog Training Programs. Genes (Basel) 2019; 10:genes10060439. [PMID: 31181852 PMCID: PMC6627829 DOI: 10.3390/genes10060439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/20/2022] Open
Abstract
Assistance dog training programs can see as many as 60% of their trainees dismissed. Many training programs utilize behavioral assays prior to admittance to identify likely successful candidates, yet such assays can be insconsistent. Recently, four canine retrotransposon mobile element insertions (MEIs) in or near genes WBSCR17 (Cfa6.6 and Cfa6.7), GTF2I (Cfa6.66) and POM121 (Cfa6.83) were identified in domestic dogs and gray wolves. Variations in these MEIs were significantly associated with a heightened propensity to initiate prolonged social contact or hypersociability. Using our dataset of 837 dogs, 228 of which had paired survey-based behavioral data, we discovered that one of the insertions in WBSCR17 is the most important predictor of dog sociable behaviors related to human proximity, measured by the Canine Behavioral Assessment Research Questionnaire (C-BARQ©). We found a positive correlation between insertions at Cfa6.6 and dog separation distress in the form of restlessness when about to be left alone by the owner. Lastly, assistance dogs showed significant heterozygosity deficiency at locus Cfa6.6 and higher frequency of insertions at Cfa6.6 and Cfa6.7. We suggest that training programs could utilize this genetic survey to screen for MEIs at WBSCR17 to identify dogs with sociable traits compatible with successful assistance dog performance.
Collapse
Affiliation(s)
- Dhriti Tandon
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Kyra Ressler
- Mercer County Community College, West Windsor, NJ 08550, USA.
| | - Daniel Petticord
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Andrea Papa
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Juliana Jiranek
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Riley Wilkinson
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Rebecca Y Kartzinel
- Department of Ecology & Evolutionary Biology, Brown University, Providence, RI 02912, USA.
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Nathaniel Burney
- Guardian Angels Medical Service Dogs, Inc., Williston, FL 32696, USA.
| | - Carol Borden
- Guardian Angels Medical Service Dogs, Inc., Williston, FL 32696, USA.
| | - Monique A R Udell
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA.
| | - Bridgett M VonHoldt
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
219
|
Behavioural correlations of the domestication syndrome are decoupled in modern dog breeds. Nat Commun 2019; 10:2422. [PMID: 31160605 PMCID: PMC6546797 DOI: 10.1038/s41467-019-10426-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/09/2019] [Indexed: 01/16/2023] Open
Abstract
Domestication is hypothesized to drive correlated responses in animal morphology, physiology and behaviour, a phenomenon known as the domestication syndrome. However, we currently lack quantitative confirmation that suites of behaviours are correlated during domestication. Here we evaluate the strength and direction of behavioural correlations among key prosocial (sociability, playfulness) and reactive (fearfulness, aggression) behaviours implicated in the domestication syndrome in 76,158 dogs representing 78 registered breeds. Consistent with the domestication syndrome hypothesis, behavioural correlations within prosocial and reactive categories demonstrated the expected direction-specificity across dogs. However, correlational strength varied between dog breeds representing early (ancient) and late (modern) stages of domestication, with ancient breeds exhibiting exaggerated correlations compared to modern breeds across prosocial and reactive behaviours. Our results suggest that suites of correlated behaviours have been temporally decoupled during dog domestication and that recent shifts in selection pressures in modern dog breeds affect the expression of domestication-related behaviours independently. Dog breeds differ in evolutionary age and admixture with wolves, enabling comparison across domestication stages. Here, Hansen Wheat et al. show that correlations among behaviours are decoupled in modern breeds compared to ancient breeds and suggest this reflects a recent shift in selection pressure.
Collapse
|
220
|
Hitti RJ, Oliver JAC, Schofield EC, Bauer A, Kaukonen M, Forman OP, Leeb T, Lohi H, Burmeister LM, Sargan D, Mellersh CS. Whole Genome Sequencing of Giant Schnauzer Dogs with Progressive Retinal Atrophy Establishes NECAP1 as a Novel Candidate Gene for Retinal Degeneration. Genes (Basel) 2019; 10:genes10050385. [PMID: 31117272 PMCID: PMC6562617 DOI: 10.3390/genes10050385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/08/2019] [Accepted: 05/17/2019] [Indexed: 12/30/2022] Open
Abstract
Canine progressive retinal atrophies (PRA) are genetically heterogeneous diseases characterized by retinal degeneration and subsequent blindness. PRAs are untreatable and affect multiple dog breeds, significantly impacting welfare. Three out of seven Giant Schnauzer (GS) littermates presented with PRA around four years of age. We sought to identify the causal variant to improve our understanding of the aetiology of this form of PRA and to enable development of a DNA test. Whole genome sequencing of two PRA-affected full-siblings and both unaffected parents was performed. Variants were filtered based on those segregating appropriately for an autosomal recessive disorder and predicted to be deleterious. Successive filtering against 568 canine genomes identified a single nucleotide variant in the gene encoding NECAP endocytosis associated 1 (NECAP1): c.544G>A (p.Gly182Arg). Five thousand one hundred and thirty canids of 175 breeds, 10 cross-breeds and 3 wolves were genotyped for c.544G>A. Only the three PRA-affected GS were homozygous (allele frequency in GS, excluding proband family = 0.015). In addition, we identified heterozygotes belonging to Spitz and Dachshund varieties, demonstrating c.544G>A segregates in other breeds of German origin. This study, in parallel with the known retinal expression and role of NECAP1 in clathrin mediated endocytosis (CME) in synapses, presents NECAP1 as a novel candidate gene for retinal degeneration in dogs and other species.
Collapse
Affiliation(s)
- Rebekkah J Hitti
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
| | - James A C Oliver
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
| | - Ellen C Schofield
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
| | - Anina Bauer
- Institute of Genetics, University of Bern, 3001 Bern, Switzerland.
| | - Maria Kaukonen
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland.
- Department of Medical Genetics, University of Helsinki, 00014 Helsinki, Finland.
- Folkhälsan Research Center, 00290 Helsinki, Finland.
| | - Oliver P Forman
- Wisdom Health, Waltham-on-the-Wolds, Leicestershire LE14 4RS, UK.
| | - Tosso Leeb
- Institute of Genetics, University of Bern, 3001 Bern, Switzerland.
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland.
- Department of Medical Genetics, University of Helsinki, 00014 Helsinki, Finland.
- Folkhälsan Research Center, 00290 Helsinki, Finland.
| | - Louise M Burmeister
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
| | - David Sargan
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
| | - Cathryn S Mellersh
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
| |
Collapse
|
221
|
Argenziano MA, Doss MX, Tabler M, Sachinidis A, Antzelevitch C. Transcriptional changes associated with advancing stages of heart failure underlie atrial and ventricular arrhythmogenesis. PLoS One 2019; 14:e0216928. [PMID: 31083689 PMCID: PMC6513089 DOI: 10.1371/journal.pone.0216928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 05/01/2019] [Indexed: 01/14/2023] Open
Abstract
Background Heart failure (HF) is a leading cause of mortality and is associated with cardiac remodeling. Vulnerability to atrial fibrillation (AF) has been shown to be greater in the early stages of HF, whereas ventricular tachycardia/fibrillation develop during late stages. Here, we explore changes in gene expression that underlie the differential development of fibrosis and structural alterations that predispose to atrial and ventricular arrhythmias. Objective To study transcriptomic changes associated with the development of cardiac arrhythmias in early and late stages of heart failure. Methods Dogs were tachy-paced from right ventricle (RV) for 2–3 or 5–6 weeks (early and late HF). We performed transcriptomic analysis of right atria (RA) and RV isolated from control dogs and those in early and late HF. Transcripts with mean relative log2-fold change ≥2 were included in the differential analysis with significance threshold adjusted to p<0.05. Results Early HF remodeling was more prominent in RA with enrichment of extracellular matrix, circulatory system, wound healing and immune response pathways; many of these processes were not present in RA in late HF. RV showed no signs of remodeling in early HF but enrichment of extracellular matrix and wound healing in late HF. Conclusion Our transcriptomic data indicate significant fibrosis-associated transcriptional changes in RA in early HF and in RV in late HF, with strong atrial predominance. These alterations in gene expression are consistent with the development of arrhythmogenesis in atria in early but not late HF and in the ventricle in late but not early HF.
Collapse
Affiliation(s)
- Mariana A. Argenziano
- Children’s Hospital of Philadelphia, Department of Genetics, Philadelphia, Pennsylvania, United States of America
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Michael Xavier Doss
- University of Cologne, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Megan Tabler
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Agapios Sachinidis
- University of Cologne, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
- Lankenau Heart Institute, Wynnewood, Pennsylvania, United States of America
- Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
222
|
Mealey KL, Martinez SE, Villarino NF, Court MH. Personalized medicine: going to the dogs? Hum Genet 2019; 138:467-481. [PMID: 31032534 DOI: 10.1007/s00439-019-02020-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/19/2019] [Indexed: 12/13/2022]
Abstract
Interindividual variation in drug response occurs in canine patients just as it does in human patients. Although canine pharmacogenetics still lags behind human pharmacogenetics, significant life-saving discoveries in the field have been made over the last 20 years, but much remains to be done. This article summarizes the available published data about the presence and impact of genetic polymorphisms on canine drug transporters, drug-metabolizing enzymes, drug receptors/targets, and plasma protein binding while comparing them to their human counterparts when applicable. In addition, precision medicine in cancer treatment as an application of canine pharmacogenetics and pertinent considerations for canine pharmacogenetics testing is reviewed. The field is poised to transition from single pharmacogene-based studies, pharmacogenetics, to pharmacogenomic-based studies to enhance our understanding of interindividual variation of drug response in dogs. Advances made in the field of canine pharmacogenetics will not only improve the health and well-being of dogs and dog breeds, but may provide insight into individual drug efficacy and toxicity in human patients as well.
Collapse
Affiliation(s)
- Katrina L Mealey
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA.
| | - Stephanie E Martinez
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| | - Nicolas F Villarino
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| | - Michael H Court
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| |
Collapse
|
223
|
Hair of the Dog: Identification of a Cis-Regulatory Module Predicted to Influence Canine Coat Composition. Genes (Basel) 2019; 10:genes10050323. [PMID: 31035530 PMCID: PMC6562840 DOI: 10.3390/genes10050323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/29/2022] Open
Abstract
Each domestic dog breed is characterized by a strict set of physical and behavioral characteristics by which breed members are judged and rewarded in conformation shows. One defining feature of particular interest is the coat, which is comprised of either a double- or single-layer of hair. The top coat contains coarse guard hairs and a softer undercoat, similar to that observed in wolves and assumed to be the ancestral state. The undercoat is absent in single-coated breeds which is assumed to be the derived state. We leveraged single nucleotide polymorphism (SNP) array and whole genome sequence (WGS) data to perform genome-wide association studies (GWAS), identifying a locus on chromosome (CFA) 28 which is strongly associated with coat number. Using WGS data, we identified a locus of 18.4 kilobases containing 62 significant variants within the intron of a long noncoding ribonucleic acid (lncRNA) upstream of ADRB1. Multiple lines of evidence highlight the locus as a potential cis-regulatory module. Specifically, two variants are found at high frequency in single-coated dogs and are rare in wolves, and both are predicted to affect transcription factor (TF) binding. This report is among the first to exploit WGS data for both GWAS and variant mapping to identify a breed-defining trait.
Collapse
|
224
|
Wainwright W, Vosough Ahmadi B, Mcvittie A, Simm G, Moran D. Prioritising Support for Cost Effective Rare Breed Conservation Using Multi-Criteria Decision Analysis. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
225
|
Plassais J, Kim J, Davis BW, Karyadi DM, Hogan AN, Harris AC, Decker B, Parker HG, Ostrander EA. Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nat Commun 2019; 10:1489. [PMID: 30940804 PMCID: PMC6445083 DOI: 10.1038/s41467-019-09373-w] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 03/06/2019] [Indexed: 01/14/2023] Open
Abstract
Domestic dog breeds are characterized by an unrivaled diversity of morphologic traits and breed-associated behaviors resulting from human selective pressures. To identify the genetic underpinnings of such traits, we analyze 722 canine whole genome sequences (WGS), documenting over 91 million single nucleotide and small indels, creating a large catalog of genomic variation for a companion animal species. We undertake both selective sweep analyses and genome wide association studies (GWAS) inclusive of over 144 modern breeds, 54 wild canids and a hundred village dogs. Our results identify variants of strong impact associated with 16 phenotypes, including body weight variation which, when combined with existing data, explain greater than 90% of body size variation in dogs. We thus demonstrate that GWAS and selection scans performed with WGS are powerful complementary methods for expanding the utility of companion animal systems for the study of mammalian growth and biology.
Collapse
Affiliation(s)
- Jocelyn Plassais
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jaemin Kim
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian W Davis
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Texas A&M University, College Station, TX, 77840, USA
| | - Danielle M Karyadi
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Laboratory of Genetic Susceptibility, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Andrew N Hogan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alex C Harris
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brennan Decker
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Heidi G Parker
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
226
|
Biasoli D, Compston-Garnett L, Ricketts SL, Birand Z, Courtay-Cahen C, Fineberg E, Arendt M, Boerkamp K, Melin M, Koltookian M, Murphy S, Rutteman G, Lindblad-Toh K, Starkey M. A synonymous germline variant in a gene encoding a cell adhesion molecule is associated with cutaneous mast cell tumour development in Labrador and Golden Retrievers. PLoS Genet 2019; 15:e1007967. [PMID: 30901340 PMCID: PMC6447235 DOI: 10.1371/journal.pgen.1007967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 04/03/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023] Open
Abstract
Mast cell tumours are the most common type of skin cancer in dogs, representing a significant concern in canine health. The molecular pathogenesis is largely unknown, but breed-predisposition for mast cell tumour development suggests the involvement of inherited genetic risk factors in some breeds. In this study, we aimed to identify germline risk factors associated with the development of mast cell tumours in Labrador Retrievers, a breed with an elevated risk of mast cell tumour development. Using a methodological approach that combined a genome-wide association study, targeted next generation sequencing, and TaqMan genotyping, we identified a synonymous variant in the DSCAM gene on canine chromosome 31 that is associated with mast cell tumours in Labrador Retrievers. DSCAM encodes a cell-adhesion molecule. We showed that the variant has no effect on the DSCAM mRNA level but is associated with a significant reduction in the level of the DSCAM protein, suggesting that the variant affects the dynamics of DSCAM mRNA translation. Furthermore, we showed that the variant is also associated with mast cell tumours in Golden Retrievers, a breed that is closely related to Labrador Retrievers and that also has a predilection for mast cell tumour development. The variant is common in both Labradors and Golden Retrievers and consequently is likely to be a significant genetic contributor to the increased susceptibility of both breeds to develop mast cell tumours. The results presented here not only represent an important contribution to the understanding of mast cell tumour development in dogs, as they highlight the role of cell adhesion in mast cell tumour tumourigenesis, but they also emphasise the potential importance of the effects of synonymous variants in complex diseases such as cancer. The combination of various genetic and environmental risk factors makes the understanding of the molecular circuitry behind complex diseases, like cancer, a major challenge. The homogeneous nature of pedigree dog breed genomes makes these dogs ideal for the identification of both simple disease-causing genetic variants and genetic risk factors for complex diseases. Mast cell tumours are the most common type of canine skin cancer, and one of the most common cancers affecting dogs of most breeds. Several breeds, including Labrador Retrievers (which represent one of the most popular dog breeds), have an elevated risk of mast cell tumour development. Here, by using a methodological approach that combined different techniques, we identified a common inherited synonymous variant, that predisposes Labrador Retrievers to mast cell tumour development. Interestingly, we showed that this variant, despite its synonymous nature, appears to have an effect on translation dynamics as it is associated with reduced levels of DSCAM, a cell adhesion molecule. The results presented here reveal dysregulation of cell adhesion to be an important factor in mast cell tumour pathogenesis, and also highlight the important role that synonymous variants can play in complex diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maja Arendt
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kim Boerkamp
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, The Netherlands
| | - Malin Melin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Michele Koltookian
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Sue Murphy
- Animal Health Trust, Newmarket, United Kingdom
| | - Gerard Rutteman
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, The Netherlands
- Veterinary Specialist Centre De Wagenrenk, Wageningen, The Netherlands
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Mike Starkey
- Animal Health Trust, Newmarket, United Kingdom
- * E-mail:
| |
Collapse
|
227
|
Zhang C, Lin D, Wang Y, Peng D, Li H, Fei J, Chen K, Yang N, Hu X, Zhao Y, Li N. Widespread introgression in Chinese indigenous chicken breeds from commercial broiler. Evol Appl 2019; 12:610-621. [PMID: 30828377 PMCID: PMC6383742 DOI: 10.1111/eva.12742] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 10/17/2018] [Accepted: 11/15/2018] [Indexed: 12/17/2022] Open
Abstract
Chinese indigenous chickens (CICs) constitute world-renowned genetic resources due to their excellent traits, including early puberty, good meat quality and strong resistance to disease. Unfortunately, the introduction of a large number of commercial chickens in the past two decades has had an adverse effect on CICs. Using the chicken 60 K single nucleotide polymorphism chip, we assessed the genetic diversity and population structure of 1,187 chickens, representing eight Chinese indigenous chicken breeds, two hybrid chicken breeds, two ancestral chicken breeds, two commercial populations and additional red jungle fowl. By investigating haplotype similarity, we found extensive gene introgression from commercial broiler to almost all CICs. Approximately 15% of the genome, on average, of CICs was introgressed, ranging from 0.64% for Tibetan chicken to 21.52% for Huiyang Bearded chicken. Further analysis revealed signals consistent with positive selection in the introgression loci. For the first time, we systematically mapped and quantified introgression from commercial broiler to CICs at the whole genome level. Our data provided a usable resource for chicken genetic diversity, and our findings indicated a dire need for protecting the genetic resources of CICs.
Collapse
Affiliation(s)
- Chunyuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthChina Agricultural UniversityBeijingChina
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Deng Lin
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthChina Agricultural UniversityBeijingChina
| | - Yuzhe Wang
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Dezhi Peng
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Huifang Li
- Institute of Poultry ScienceChinese Academy of Agricultural SciencesYangzhouChina
| | - Jing Fei
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Kuanwei Chen
- Institute of Poultry ScienceChinese Academy of Agricultural SciencesYangzhouChina
| | - Ning Yang
- National Engineering Laboratory for Animal BreedingChina Agricultural UniversityBeijingChina
| | - Xiaoxiang Hu
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yiqiang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthChina Agricultural UniversityBeijingChina
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
228
|
Ryan R, Gutierrez-Quintana R, Haar GT, De Decker S. Relationship between breed, hemivertebra subtype, and kyphosis in apparently neurologically normal French Bulldogs, English Bulldogs, and Pugs. Am J Vet Res 2019; 80:189-194. [DOI: 10.2460/ajvr.80.2.189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
229
|
Mowat FM. Naturally Occurring Inherited Forms of Retinal Degeneration in Vertebrate Animal Species: A Comparative and Evolutionary Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:239-243. [PMID: 31884618 DOI: 10.1007/978-3-030-27378-1_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The ability to noninvasively monitor retinal abnormalities using imaging and cognitive and electrophysiological assessment has made it possible to carefully characterize genetic influences on retinal health. Because genetic retinal traits in animal species are not commonly detrimental to survival beyond birth, it is possible to document the natural history of retinal disease. Human quality of life is greatly impacted by retinal disease, and blindness carries a significant financial burden to society. Because of these compelling reasons, there is an ongoing medical need to study the effect of genetic mutations on retinal health and to develop therapies to address them. Transgenic animal models have aided in these missions, but there are opportunities for novel gene discovery and a development of greater understanding of retinal physiology using animal models that develop naturally occurring heritable retinal disorders. In this chapter, the advantages and disadvantages of transgenic and spontaneous vertebrate animal models of human inherited retinal disease are debated, in particular those of carnivore species, and the potential resource of spontaneous heritable retinal disorders in inbred nondomestic carnivore species is discussed.
Collapse
Affiliation(s)
- Freya M Mowat
- North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA.
| |
Collapse
|
230
|
Hitte C. Toward the identification and role of structural variations during dog domestication. Natl Sci Rev 2019; 6:123-124. [PMID: 34691836 PMCID: PMC8291424 DOI: 10.1093/nsr/nwy086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Christophe Hitte
- Christophe Hitte University of Rennes, France Reviewer of NSR,E-mail:
| |
Collapse
|
231
|
Mastrangelo S, Biscarini F, Tolone M, Auzino B, Ragatzu M, Spaterna A, Ciampolini R. Genomic characterization of the Braque Français type Pyrénées dog and relationship with other breeds. PLoS One 2018; 13:e0208548. [PMID: 30517199 PMCID: PMC6281230 DOI: 10.1371/journal.pone.0208548] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/18/2018] [Indexed: 01/16/2023] Open
Abstract
The evaluation of genetic variability is a useful research tool for the correct management of selection and conservation strategies in dog breeds. In addition to pedigree genealogies, genomic data allow a deeper knowledge of the variability and genetic structure of populations. To date, many dog breeds, such as small regional breeds, still remain uncharacterized. Braque Français type Pyrénées (BRA) is a dog breed originating from a very old type of gun-dog used for pointing the location of game birds to hunters. Despite the ancient background, the knowledge about levels of genetic diversity, degree of inbreeding and population structure is scarce. This may raise concerns on the possibility that few inbred bloodlines may dominate the breed, and on its future health. The aim of this work was therefore to provide a high-resolution representation of the genome-wide diversity and population structure of BRA dogs, using the 170K genome-wide SNP array. Genome-wide polymorphisms in BRA were compared with those of other worldwide dog breeds. Between-dog relationships estimated from genomic data were very similar to pedigree relationships (Pearson correlation rg,a = 0.92). Results showed that BRA generally presents moderate levels of genetic diversity when compared with the major canine breeds. The estimated effective population size (recent Ne = 51) shows a similar declining pattern over generations as all other dog breeds, pointing at a common demographic history of modern canine breeds, clearly different from the demography of feral wolves. Multidimensional scaling (MDS), Bayesian clustering and Neighbor Joining tree were used to visualize and explore the genetic relationships among breeds, and revealed that BRA was highly differentiated and presented only low levels of admixture with other breeds. Brittany Spaniel, English Setter, Gordon Setter and Weimaraner dogs are the closest breeds to BRA. The exact reason for BRA being so divergent from other dog breeds, based on these results, is not yet clear. Further studies including additional ≪braccoid≫ breeds will be needed to refine the results presented here and to investigate the origin of the BRA breed. Nonetheless, the genome-wide characterization reported here provides a comprehensive insight into the genome diversity and population structure of the Braque Français, type Pyrénées breed.
Collapse
Affiliation(s)
- Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | | | - Marco Tolone
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | - Barbara Auzino
- Dipartimento di Scienze Veterinarie, Università di Pisa, V.le delle Piagge 2, 56124 Pisa, Italy
| | - Marco Ragatzu
- Club Italiano Braque Français Type Pyrénées, Capalbio, GR, Italy
| | - Andrea Spaterna
- Scuola di Scienze Mediche Veterinarie, University of Camerino, Matelica, MC, Italy
- Centro Interuniversitario di Ricerca e di Consulenza sulla Genetica e la Clinica del cane, Matelica, MC, Italy
| | - Roberta Ciampolini
- Dipartimento di Scienze Veterinarie, Università di Pisa, V.le delle Piagge 2, 56124 Pisa, Italy
- Centro Interuniversitario di Ricerca e di Consulenza sulla Genetica e la Clinica del cane, Matelica, MC, Italy
| |
Collapse
|
232
|
Fischer MS, Lehmann SV, Andrada E. Three-dimensional kinematics of canine hind limbs: in vivo, biplanar, high-frequency fluoroscopic analysis of four breeds during walking and trotting. Sci Rep 2018; 8:16982. [PMID: 30451855 PMCID: PMC6242825 DOI: 10.1038/s41598-018-34310-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/12/2018] [Indexed: 01/27/2023] Open
Abstract
The first high-precision 3D in vivo hindlimb kinematic data to be recorded in normal dogs of four different breeds (Beagle, French bulldog, Malinois, Whippet) using biplanar, high-frequency fluoroscopy combined with a 3D optoelectric system followed by a markerless XROMM analysis (Scientific Rotoscoping, SR or 3D-2D registration process) reveal a) 3D hindlimb kinematics to an unprecedented degree of precision and b) substantial limitations to the use of skin marker-based data. We expected hindlimb kinematics to differ in relation to body shape. But, a comparison of the four breeds sets the French bulldog aside from the others in terms of trajectories in the frontal plane (abduction/adduction) and long axis rotation of the femur. French bulldogs translate extensive femoral long axis rotation (>30°) into a strong lateral displacement and rotations about the craniocaudal (roll) and the distal-proximal (yaw) axes of the pelvis in order to compensate for a highly abducted hindlimb position from the beginning of stance. We assume that breeds which exhibit unusual kinematics, especially high femoral abduction, might be susceptible to a higher long-term loading of the cruciate ligaments.
Collapse
Affiliation(s)
- Martin S Fischer
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstr. 1, 07743, Jena, Germany.
| | - Silvia V Lehmann
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstr. 1, 07743, Jena, Germany
| | - Emanuel Andrada
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstr. 1, 07743, Jena, Germany
| |
Collapse
|
233
|
Abstract
Dogs are second only to humans in medical surveillance and preventative health care, leading to a recent perception of increased cancer incidence. Scientific priorities in veterinary oncology have thus shifted, with a demand for cancer genetic screens, better diagnostics, and more effective therapies. Most dog breeds came into existence within the last 300 years, and many are derived from small numbers of founders. Each has undergone strong artificial selection, in which dog fanciers selected for many traits, including body size, fur type, color, skull shape, and behavior, to create novel breeds. The adoption of the breed barrier rule-no dog may become a registered member of a breed unless both its dam and its sire are registered members-ensures a relatively closed genetic pool within each breed. As a result, there is strong phenotypic homogeneity within breeds but extraordinary phenotypic variation between breeds. One consequence of this is the high level of breed-associated genetic disease. We and others have taken advantage of this to identify genes for a large number of canine maladies for which mouse models do not exist, particularly with regard to cancer.
Collapse
Affiliation(s)
- Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Dayna L Dreger
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA; .,Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jacquelyn M Evans
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
234
|
Reimer C, Rubin CJ, Sharifi AR, Ha NT, Weigend S, Waldmann KH, Distl O, Pant SD, Fredholm M, Schlather M, Simianer H. Analysis of porcine body size variation using re-sequencing data of miniature and large pigs. BMC Genomics 2018; 19:687. [PMID: 30231878 PMCID: PMC6146782 DOI: 10.1186/s12864-018-5009-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022] Open
Abstract
Background Domestication has led to substantial phenotypic and genetic variation in domestic animals. In pigs, the size of so called minipigs differs by one order of magnitude compared to breeds of large body size. We used biallelic SNPs identified from re-sequencing data to compare various publicly available wild and domestic populations against two minipig breeds to gain better understanding of the genetic background of the extensive body size variation. We combined two complementary measures, expected heterozygosity and the composite likelihood ratio test implemented in “SweepFinder”, to identify signatures of selection in Minipigs. We intersected these sweep regions with a measure of differentiation, namely FST, to remove regions of low variation across pigs. An extraordinary large sweep between 52 and 61 Mb on chromosome X was separately analyzed based on SNP-array data of F2 individuals from a cross of Goettingen Minipigs and large pigs. Results Selective sweep analysis identified putative sweep regions for growth and subsequent gene annotation provided a comprehensive set of putative candidate genes. A long swept haplotype on chromosome X, descending from the Goettingen Minipig founders was associated with a reduction of adult body length by 3% in F2 cross-breds. Conclusion The resulting set of genes in putative sweep regions implies that the genetic background of body size variation in pigs is polygenic rather than mono- or oligogenic. Identified genes suggest alterations in metabolic functions and a possible insulin resistance to contribute to miniaturization. A size QTL located within the sweep on chromosome X, with an estimated effect of 3% on body length, is comparable to the largest known in pigs or other species. The androgen receptor AR, previously known to influence pig performance and carcass traits, is the most obvious potential candidate gene within this region. Electronic supplementary material The online version of this article (10.1186/s12864-018-5009-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C Reimer
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany. .,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany.
| | - C-J Rubin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala Biomedicinska centrum BMC, Husargatan 3, 75237, Uppsala, Sweden
| | - A R Sharifi
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
| | - N-T Ha
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
| | - S Weigend
- Institute of Farm Animal Genetics of the Friedrich-Loeffler-Institut, Höltystraße 10, 31535, Neustadt-Mariensee, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
| | - K-H Waldmann
- Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine - Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - O Distl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine - Foundation, Bünteweg 17p, 30559, Hannover, Germany
| | - S D Pant
- Graham Centre for Agricultural Innovation, School of Animal & Veterinary Sciences, Charles Sturt University, Locked Bag 588, Boorooma St., Wagga Wagga, NSW, Australia
| | - M Fredholm
- Department of Veterinary- and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, 1870, Frederiksberg C, Denmark
| | - M Schlather
- School of Business Informatics and Mathematics, University of Mannheim, A5 6, 68131, Mannheim, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
| | - H Simianer
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
| |
Collapse
|
235
|
Pedigree data indicate rapid inbreeding and loss of genetic diversity within populations of native, traditional dog breeds of conservation concern. PLoS One 2018; 13:e0202849. [PMID: 30208042 PMCID: PMC6135370 DOI: 10.1371/journal.pone.0202849] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/09/2018] [Indexed: 11/19/2022] Open
Abstract
Increasing concern is directed towards genetic diversity of domestic animal populations because strong selective breeding can rapidly deplete genetic diversity of socio-economically valuable animals. International conservation policy identifies minimizing genetic erosion of domesticated animals as a key biodiversity target. We used breeding records to assess potential indications of inbreeding and loss of founder allelic diversity in 12 native Swedish dog breeds, traditional to the country, ten of which have been identified by authorities as of conservation concern. The pedigrees dated back to the mid-1900, comprising 5-11 generations and 350-66,500 individuals per pedigree. We assessed rates of inbreeding and potential indications of loss of genetic variation by measuring inbreeding coefficients and remaining number of founder alleles at five points in time during 1980-2012. We found average inbreeding coefficients among breeds to double-from an average of 0.03 in 1980 to 0.07 in 2012 -in spite of the majority of breeds being numerically large with pedigrees comprising thousands of individuals indicating that such rapid increase of inbreeding should have been possible to avoid. We also found indications of extensive loss of intra-breed variation; on average 70 percent of founder alleles are lost during 1980-2012. Explicit conservation goals for these breeds were not reflected in pedigree based conservation genetic measures; breeding needs to focus more on retaining genetic variation, and supplementary genomic analyses of these breeds are highly warranted in order to find out the extent to which the trends indicated here are reflected over the genomes of these breeds.
Collapse
|
236
|
Berger B, Berger C, Heinrich J, Niederstätter H, Hecht W, Hellmann A, Rohleder U, Schleenbecker U, Morf N, Freire-Aradas A, McNevin D, Phillips C, Parson W. Dog breed affiliation with a forensically validated canine STR set. Forensic Sci Int Genet 2018; 37:126-134. [PMID: 30149287 DOI: 10.1016/j.fsigen.2018.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/23/2018] [Accepted: 08/11/2018] [Indexed: 11/28/2022]
Abstract
We tested a panel of 13 highly polymorphic canine short tandem repeat (STR) markers for dog breed assignment using 392 dog samples from the 23 most popular breeds in Austria, Germany, and Switzerland. This STR panel had originally been selected for canine identification. The dog breeds sampled in this study featured a population frequency ≥1% and accounted for nearly 57% of the entire pedigree dog population in these three countries. Breed selection was based on a survey comprising records for nearly 1.9 million purebred dogs belonging to more than 500 different breeds. To derive breed membership from STR genotypes, a range of algorithms were used. These methods included discriminant analysis of principal components (DAPC), STRUCTURE, GeneClass2, and the adegenet package for R. STRUCTURE analyses suggested 21 distinct genetic clusters. Differentiation between most breeds was clearly discernable. Fourteen of 23 breeds (61%) exhibited maximum mean cluster membership proportions of more than 0.70 with a highest value of 0.90 found for Cavalier King Charles Spaniels. Dogs of only 6 breeds (26%) failed to consistently show only one major cluster. The DAPC method yielded the best assignment results in all 23 declared breeds with 97.5% assignment success. The frequency-based assignment test also provided a high success rate of 87%. These results indicate the potential viability of dog breed prediction using a well-established and sensitive set of 13 canine STR markers intended for forensic routine use.
Collapse
Affiliation(s)
- Burkhard Berger
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Cordula Berger
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Josephin Heinrich
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Harald Niederstätter
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Werner Hecht
- Institute of Veterinary Pathology, Justus-Liebig-University, Giessen, Germany
| | - Andreas Hellmann
- Bundeskriminalamt, Kriminaltechnisches Institut, Wiesbaden, Germany
| | - Udo Rohleder
- Bundeskriminalamt, Kriminaltechnisches Institut, Wiesbaden, Germany
| | | | - Nadja Morf
- Institute of Legal Medicine, University of Zürich, Switzerland
| | - Ana Freire-Aradas
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| | - Dennis McNevin
- Centre for Forensic Science, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Australia
| | - Christopher Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, PA, USA.
| |
Collapse
|
237
|
Renard E, Leys SP, Wörheide G, Borchiellini C. Understanding Animal Evolution: The Added Value of Sponge Transcriptomics and Genomics: The disconnect between gene content and body plan evolution. Bioessays 2018; 40:e1700237. [PMID: 30070368 DOI: 10.1002/bies.201700237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/22/2018] [Indexed: 02/06/2023]
Abstract
Sponges are important but often-neglected organisms. The absence of classical animal traits (nerves, digestive tract, and muscles) makes sponges challenging for non-specialists to work with and has delayed getting high quality genomic data compared to other invertebrates. Yet analyses of sponge genomes and transcriptomes currently available have radically changed our understanding of animal evolution. Sponges are of prime evolutionary importance as one of the best candidates to form the sister group of all other animals, and genomic data are essential to understand the mechanisms that control animal evolution and diversity. Here we review the most significant outcomes of current genomic and transcriptomic analyses of sponges, and discuss limitations and future directions of sponge transcriptomic and genomic studies.
Collapse
Affiliation(s)
- Emmanuelle Renard
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, UMR 7263, Mediterranean Institute of Marine and Continental Biodiversity and Ecology (IMBE), Station Marine d'Endoume, Marseille, France.,Aix Marseille Univ., CNRS, UMR 7288, IBDM, Marseille, France
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany.,GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Bavarian State Collection for Paleontology and Geology, Munich, Germany
| | - Carole Borchiellini
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, UMR 7263, Mediterranean Institute of Marine and Continental Biodiversity and Ecology (IMBE), Station Marine d'Endoume, Marseille, France
| |
Collapse
|
238
|
Ní Leathlobhair M, Perri AR, Irving-Pease EK, Witt KE, Linderholm A, Haile J, Lebrasseur O, Ameen C, Blick J, Boyko AR, Brace S, Cortes YN, Crockford SJ, Devault A, Dimopoulos EA, Eldridge M, Enk J, Gopalakrishnan S, Gori K, Grimes V, Guiry E, Hansen AJ, Hulme-Beaman A, Johnson J, Kitchen A, Kasparov AK, Kwon YM, Nikolskiy PA, Lope CP, Manin A, Martin T, Meyer M, Myers KN, Omura M, Rouillard JM, Pavlova EY, Sciulli P, Sinding MHS, Strakova A, Ivanova VV, Widga C, Willerslev E, Pitulko VV, Barnes I, Gilbert MTP, Dobney KM, Malhi RS, Murchison EP, Larson G, Frantz LAF. The evolutionary history of dogs in the Americas. Science 2018; 361:81-85. [PMID: 29976825 PMCID: PMC7116273 DOI: 10.1126/science.aao4776] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/26/2017] [Accepted: 05/10/2018] [Indexed: 01/01/2023]
Abstract
Dogs were present in the Americas before the arrival of European colonists, but the origin and fate of these precontact dogs are largely unknown. We sequenced 71 mitochondrial and 7 nuclear genomes from ancient North American and Siberian dogs from time frames spanning ~9000 years. Our analysis indicates that American dogs were not derived from North American wolves. Instead, American dogs form a monophyletic lineage that likely originated in Siberia and dispersed into the Americas alongside people. After the arrival of Europeans, native American dogs almost completely disappeared, leaving a minimal genetic legacy in modern dog populations. The closest detectable extant lineage to precontact American dogs is the canine transmissible venereal tumor, a contagious cancer clone derived from an individual dog that lived up to 8000 years ago.
Collapse
Affiliation(s)
- Máire Ní Leathlobhair
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Angela R Perri
- Department of Archaeology, Durham University, Durham, UK
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Evan K Irving-Pease
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Kelsey E Witt
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Anna Linderholm
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Department of Anthropology, Texas A&M University, College Station, TX, USA
| | - James Haile
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ophelie Lebrasseur
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Carly Ameen
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - Jeffrey Blick
- Department of Government and Sociology, Georgia College and State University, Milledgeville, GA, USA
| | - Adam R Boyko
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Selina Brace
- Department of Earth Sciences, Natural History Museum, London, UK
| | | | | | | | - Evangelos A Dimopoulos
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | | | - Jacob Enk
- Arbor Biosciences, Ann Arbor, MI, USA
| | - Shyam Gopalakrishnan
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Kevin Gori
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Vaughan Grimes
- Department of Archaeology, Memorial University, Queen's College, St. John's, Canada
| | - Eric Guiry
- Department of Anthropology, University of British Columbia, Vancouver, Canada
| | - Anders J Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- The Qimmeq Project, University of Greenland, Nuussuaq, Greenland
| | - Ardern Hulme-Beaman
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - John Johnson
- Department of Anthropology, Santa Barbara Museum of Natural History, Santa Barbara, CA, USA
| | - Andrew Kitchen
- Department of Anthropology, University of Iowa, Iowa City, IA, USA
| | - Aleksei K Kasparov
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
| | - Young-Mi Kwon
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Pavel A Nikolskiy
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
- Geological Institute, Russian Academy of Sciences, Moscow, Russia
| | | | - Aurélie Manin
- Department of Archaeology, BioArCh, University of York, York, UK
- UMR 7209, Archéozoologie, Archéobotanique, Muséum National d'Histoire Naturelle, Paris, France
| | - Terrance Martin
- Research and Collections Center, Illinois State Museum, Springfield, IL, USA
| | - Michael Meyer
- Touray & Meyer Veterinary Clinic, Serrekunda, Gambia
| | - Kelsey Noack Myers
- Glenn A. Black Laboratory of Anthropology, Indiana University Bloomington, Bloomington, IN, USA
| | - Mark Omura
- Department of Mammalogy, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Jean-Marie Rouillard
- Arbor Biosciences, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Elena Y Pavlova
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
- Arctic & Antarctic Research Institute, St. Petersburg, Russia
| | - Paul Sciulli
- Department of Anthropology, Ohio State University, Columbus, OH, USA
| | - Mikkel-Holger S Sinding
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- The Qimmeq Project, University of Greenland, Nuussuaq, Greenland
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Andrea Strakova
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Christopher Widga
- Center of Excellence in Paleontology, East Tennessee State University, Gray, TN, USA
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir V Pitulko
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ian Barnes
- Department of Earth Sciences, Natural History Museum, London, UK
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Norwegian University of Science and Technology, University Museum, Trondheim, Norway
| | - Keith M Dobney
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
- Department of Archaeology, University of Aberdeen, Aberdeen, UK
| | - Ripan S Malhi
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Elizabeth P Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.
| | - Laurent A F Frantz
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
239
|
Abstract
We found that hundreds of years of selection by humans have produced sport-hunting breeds of superior speed and athleticism through strong selection on multiple genes relating to cardiovascular, muscle, and neuronal functions. We further substantiated these findings by showing that genes under selection significantly enhanced athleticism, as measured by racing speed and obstacle course success, using standardized measures from dogs competing in national competitions. Overall these results reveal both the evolutionary processes and the genetic pathways putatively involved in athletic success. Modern dogs are distinguished among domesticated species by the vast breadth of phenotypic variation produced by strong and consistent human-driven selective pressure. The resulting breeds reflect the development of closed populations with well-defined physical and behavioral attributes. The sport-hunting dog group has long been employed in assistance to hunters, reflecting strong behavioral pressures to locate and pursue quarry over great distances and variable terrain. Comparison of whole-genome sequence data between sport-hunting and terrier breeds, groups at the ends of a continuum in both form and function, reveals that genes underlying cardiovascular, muscular, and neuronal functions are under strong selection in sport-hunting breeds, including ADRB1, TRPM3, RYR3, UTRN, ASIC3, and ROBO1. We also identified an allele of TRPM3 that was significantly associated with increased racing speed in Whippets, accounting for 11.6% of the total variance in racing performance. Finally, we observed a significant association of ROBO1 with breed-specific accomplishments in competitive obstacle course events. These results provide strong evidence that sport-hunting breeds have been adapted to their occupations by improved endurance, cardiac function, blood flow, and cognitive performance, demonstrating how strong behavioral selection alters physiology to create breeds with distinct capabilities.
Collapse
|
240
|
The (nearly) complete dog. Curr Biol 2018. [DOI: 10.1016/j.cub.2018.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
241
|
Pohjoismäki JLO, Lampi S, Donner J, Anderson H. Origins and wanderings of the Finnish hunting spitzes. PLoS One 2018; 13:e0199992. [PMID: 29958296 PMCID: PMC6025854 DOI: 10.1371/journal.pone.0199992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 06/17/2018] [Indexed: 11/18/2022] Open
Abstract
Deducing the evolutionary histories of dog breeds can be challenging due to convergent traits and frequent admixture. In this report, we have explored the relationships of indigenous Finnish hunting spitz breeds among other northern Eurasian hunting breeds using commercially available SNP analysis (the MyDogDNA panel test). We find that Nordic hunting breeds Finnish Spitz, Nordic Spitz and the Karelian Bear Dog, as well as the reindeer herding Lapphund and Lapponian herder are all closely related and have common origins with the northeastern Eurasian Laika breeds, rather than with other Scandinavian Spitz breeds, such as Elkhounds and Swedish Vallhund. By tracing admixture events and direction of gene flow, we also elucidate the complex interactions between the breeds and provide new insight into the history of Swedish Elkhound and Russian-European Laika. The findings, together with an analysis of genetic differentiation between the populations, not only help to understand the origins of the breeds but also provide interesting possibilities to revive genetic diversity, lost during the breeding history, by backcrossing breeds to their hypothetical ancestry.
Collapse
Affiliation(s)
- Jaakko L O Pohjoismäki
- University of Eastern Finland, Department of Environmental and Biological Sciences, Joensuu, Finland
| | - Sara Lampi
- University of Eastern Finland, Department of Environmental and Biological Sciences, Joensuu, Finland
| | | | | |
Collapse
|
242
|
Geiger M, Sánchez-Villagra MR. Similar rates of morphological evolution in domesticated and wild pigs and dogs. Front Zool 2018; 15:23. [PMID: 29796043 PMCID: PMC5966889 DOI: 10.1186/s12983-018-0265-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/10/2018] [Indexed: 12/30/2022] Open
Abstract
Background Whether the great morphological disparity of domesticated forms is the result of uniformly higher evolutionary rates compared to the wild populations is debated. We provide new data on changes of skull dimensions within historical time periods in wild and domesticated dogs and pigs to test if domestication might lead to an accelerated tempo of evolution in comparison to the wild conspecifics. Darwins and Haldanes were used to quantify evolutionary rates. Comparisons with evolutionary rates in other species and concerning other characteristics from the literature were conducted. Results Newly gathered and literature data show that most skull dimensions do not change faster in domesticated breeds than in wild populations, although it is well known that there is extensive artificial selection on skull shape in some dog breeds. Evolutionary rates among domesticated forms and traits (e.g., production traits in pigs, and racing speed in some horses and greyhounds) might vary greatly with species and breeding aim. Conclusions Our study shows that evolutionary rates in domestication are not in any event faster than those in the wild, although they are often perceived as such given the vast changes that appear in a relatively short period of time. This may imply that evolution under natural conditions – i.e., without human intervention – is not as slow as previously described, for example by Darwin. On the other hand, our results illustrate how diverse domestication is in tempo, mode, and processes involved. Electronic supplementary material The online version of this article (10.1186/s12983-018-0265-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Madeleine Geiger
- 1Universität Zürich, Paläontologisches Institut und Museum, Karl-Schmid-Strasse 4, 8006 Zürich, Switzerland.,2Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
| | - Marcelo R Sánchez-Villagra
- 1Universität Zürich, Paläontologisches Institut und Museum, Karl-Schmid-Strasse 4, 8006 Zürich, Switzerland
| |
Collapse
|
243
|
Boland MR, Kraus MS, Dziuk E, Gelzer AR. Cardiovascular Disease Risk Varies by Birth Month in Canines. Sci Rep 2018; 8:7130. [PMID: 29773810 PMCID: PMC5958072 DOI: 10.1038/s41598-018-25199-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/13/2018] [Indexed: 01/05/2023] Open
Abstract
The canine heart is a robust physiological model for the human heart. Recently, birth month associations have been reported and replicated in humans using clinical health records. While animals respond readily to their environment in the wild, a systematic investigation of birth season dependencies among pets and specifically canines remains lacking. We obtained data from the Orthopedic Foundation of Animals on 129,778 canines representing 253 distinct breeds. Among canines that were not predisposed to cardiovascular disease, a clear birth season relationship is observed with peak risk occurring in June-August. Our findings indicate that acquired cardiovascular disease among canines, especially those that are not predisposed to cardiovascular disease, appears birth season dependent. The relative risk of cardiovascular disease for canines not predisposed to cardiovascular disease was as high as 1.47 among July pups. The overall adjusted odds ratio, when mixed breeds were excluded, for the birth season effect was 1.02 (95% CI: 1.002, 1.047, p = 0.032) after adjusting for breed and genetic cardiovascular predisposition effects. Studying birth season effects in model organisms can help to elucidate potential mechanisms behind the reported associations.
Collapse
Affiliation(s)
- Mary Regina Boland
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. .,Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA. .,Center for Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania, USA. .,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
| | - Marc S Kraus
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eddie Dziuk
- Orthopedic Foundation for Animals, Columbia, Missouri, USA
| | - Anna R Gelzer
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
244
|
Brocal J, De Decker S, José-López R, Manzanilla EG, Penderis J, Stalin C, Bertram S, Schoenebeck JJ, Rusbridge C, Fitzpatrick N, Gutierrez-Quintana R. C7 vertebra homeotic transformation in domestic dogs - are Pug dogs breaking mammalian evolutionary constraints? J Anat 2018; 233:255-265. [PMID: 29761492 DOI: 10.1111/joa.12822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2018] [Indexed: 12/20/2022] Open
Abstract
The number of cervical vertebrae in mammals is almost constant at seven, regardless of their neck length, implying that there is selection against variation in this number. Homebox (Hox) genes are involved in this evolutionary mammalian conservation, and homeotic transformation of cervical into thoracic vertebrae (cervical ribs) is a common phenotypic abnormality when Hox gene expression is altered. This relatively benign phenotypic change can be associated with fatal traits in humans. Mutations in genes upstream of Hox, inbreeding and stressors during organogenesis can also cause cervical ribs. The aim of this study was to describe the prevalence of cervical ribs in a large group of domestic dogs of different breeds, and explore a possible relation with other congenital vertebral malformations (CVMs) in the breed with the highest prevalence of cervical ribs. By phenotyping we hoped to give clues as to the underlying genetic causes. Twenty computed tomography studies from at least two breeds belonging to each of the nine groups recognized by the Federation Cynologique Internationale, including all the brachycephalic 'screw-tailed' breeds that are known to be overrepresented for CVMs, were reviewed. The Pug dog was more affected by cervical ribs than any other breed (46%; P < 0.001), and was selected for further analysis. No association was found between the presence of cervical ribs and vertebral body formation defect, bifid spinous process, caudal articular process hypoplasia/aplasia and an abnormal sacrum, which may infer they have a different aetiopathogenesis. However, Pug dogs with cervical ribs were more likely to have a transitional thoraco-lumbar vertebra (P = 0.041) and a pre-sacral vertebral count of 26 (P < 0.001). Higher C7/T1 dorsal spinous processes ratios were associated with the presence of cervical ribs (P < 0.001), supporting this is a true homeotic transformation. Relaxation of the stabilizing selection has likely occurred, and the Pug dog appears to be a good naturally occurring model to further investigate the aetiology of cervical ribs, other congenital vertebral anomalies and numerical alterations.
Collapse
Affiliation(s)
- J Brocal
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - S De Decker
- Department of Veterinary Clinical Science and Services, The Royal Veterinary College, University of London, North Mymms, Hertfordshire, UK
| | - R José-López
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - E G Manzanilla
- Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - J Penderis
- Vet-Extra Neurology, Broadleys Veterinary Hospital, Stirling, UK
| | - C Stalin
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - S Bertram
- Department of Veterinary Clinical Science and Services, The Royal Veterinary College, University of London, North Mymms, Hertfordshire, UK
| | - J J Schoenebeck
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - C Rusbridge
- Fitzpatrick Referrals, Eashing, Surrey, UK.,School of Veterinary Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | - R Gutierrez-Quintana
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
245
|
Minor KM, Letko A, Becker D, Drögemüller M, Mandigers PJJ, Bellekom SR, Leegwater PAJ, Stassen QEM, Putschbach K, Fischer A, Flegel T, Matiasek K, Ekenstedt KJ, Furrow E, Patterson EE, Platt SR, Kelly PA, Cassidy JP, Shelton GD, Lucot K, Bannasch DL, Martineau H, Muir CF, Priestnall SL, Henke D, Oevermann A, Jagannathan V, Mickelson JR, Drögemüller C. Canine NAPEPLD-associated models of human myelin disorders. Sci Rep 2018; 8:5818. [PMID: 29643404 PMCID: PMC5895582 DOI: 10.1038/s41598-018-23938-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/20/2018] [Indexed: 01/05/2023] Open
Abstract
Canine leukoencephalomyelopathy (LEMP) is a juvenile-onset neurodegenerative disorder of the CNS white matter currently described in Rottweiler and Leonberger dogs. Genome-wide association study (GWAS) allowed us to map LEMP in a Leonberger cohort to dog chromosome 18. Subsequent whole genome re-sequencing of a Leonberger case enabled the identification of a single private homozygous non-synonymous missense variant located in the highly conserved metallo-beta-lactamase domain of the N-acyl phosphatidylethanolamine phospholipase D (NAPEPLD) gene, encoding an enzyme of the endocannabinoid system. We then sequenced this gene in LEMP-affected Rottweilers and identified a different frameshift variant, which is predicted to replace the C-terminal metallo-beta-lactamase domain of the wild type protein. Haplotype analysis of SNP array genotypes revealed that the frameshift variant was present in diverse haplotypes in Rottweilers, and also in Great Danes, indicating an old origin of this second NAPEPLD variant. The identification of different NAPEPLD variants in dog breeds affected by leukoencephalopathies with heterogeneous pathological features, implicates the NAPEPLD enzyme as important in myelin homeostasis, and suggests a novel candidate gene for myelination disorders in people.
Collapse
Affiliation(s)
- K M Minor
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, 55108, USA
| | - A Letko
- Institute of Genetics, University of Bern, Bern, 3001, Switzerland
| | - D Becker
- Institute of Genetics, University of Bern, Bern, 3001, Switzerland
| | - M Drögemüller
- Institute of Genetics, University of Bern, Bern, 3001, Switzerland
| | - P J J Mandigers
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, 3508, CM, The Netherlands
| | - S R Bellekom
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, 3508, CM, The Netherlands
| | - P A J Leegwater
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, 3508, CM, The Netherlands
| | - Q E M Stassen
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, 3508, CM, The Netherlands
| | - K Putschbach
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Munich, 80539, Germany
| | - A Fischer
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Munich, 80539, Germany
| | - T Flegel
- Department of Small Animal Medicine, University of Leipzig, Leipzig, 04103, Germany
| | - K Matiasek
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Munich, 80539, Germany
| | - K J Ekenstedt
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - E Furrow
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, 55108, USA
| | - E E Patterson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, 55108, USA
| | - S R Platt
- Small Animal Medicine and Surgery, University of Georgia, Athens, GA, 30602, USA
| | - P A Kelly
- Veterinary Sciences Centre, University College Dublin, Dublin, D04 V1W8, Ireland
| | - J P Cassidy
- Veterinary Sciences Centre, University College Dublin, Dublin, D04 V1W8, Ireland
| | - G D Shelton
- Department of Pathology, University of California, La Jolla, CA, 92093, USA
| | - K Lucot
- Department of Population Health and Reproduction, University of California-Davis, Davis, CA, 95616, USA
| | - D L Bannasch
- Department of Population Health and Reproduction, University of California-Davis, Davis, CA, 95616, USA
| | - H Martineau
- Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, AL9 7TA, UK
| | - C F Muir
- Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, AL9 7TA, UK
| | - S L Priestnall
- Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, AL9 7TA, UK
| | - D Henke
- Division of Clinical Neurology, University of Bern, Bern, 3001, Switzerland
| | - A Oevermann
- Division of Neurological Sciences, University of Bern, Bern, 3001, Switzerland
| | - V Jagannathan
- Institute of Genetics, University of Bern, Bern, 3001, Switzerland
| | - J R Mickelson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, 55108, USA
| | - C Drögemüller
- Institute of Genetics, University of Bern, Bern, 3001, Switzerland.
| |
Collapse
|
246
|
Karlskov-Mortensen P, Proschowsky HF, Gao F, Fredholm M. Identification of the mutation causing progressive retinal atrophy in Old Danish Pointing Dog. Anim Genet 2018; 49:237-241. [DOI: 10.1111/age.12659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 12/23/2022]
Affiliation(s)
- P. Karlskov-Mortensen
- Animal Genetics, Bioinformatics & Breeding; Department of Veterinary & Animal Sciences; Faculty of Health & Medical Sciences; University of Copenhagen; Grønnegårdsvej 3 DK-1870 Frederiksberg C Denmark
| | | | - F. Gao
- Agricultural Genomes Institute at Shenzhen; Chinese Agricultural Academy of Sciences; Shenzhen China
| | - M. Fredholm
- Animal Genetics, Bioinformatics & Breeding; Department of Veterinary & Animal Sciences; Faculty of Health & Medical Sciences; University of Copenhagen; Grønnegårdsvej 3 DK-1870 Frederiksberg C Denmark
| |
Collapse
|
247
|
Talenti A, Dreger DL, Frattini S, Polli M, Marelli S, Harris AC, Liotta L, Cocco R, Hogan AN, Bigi D, Caniglia R, Parker HG, Pagnacco G, Ostrander EA, Crepaldi P. Studies of modern Italian dog populations reveal multiple patterns for domestic breed evolution. Ecol Evol 2018; 8:2911-2925. [PMID: 29531705 PMCID: PMC5838073 DOI: 10.1002/ece3.3842] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/27/2017] [Indexed: 01/16/2023] Open
Abstract
Through thousands of years of breeding and strong human selection, the dog (Canis lupus familiaris) exists today within hundreds of closed populations throughout the world, each with defined phenotypes. A singular geographic region with broad diversity in dog breeds presents an interesting opportunity to observe potential mechanisms of breed formation. Italy claims 14 internationally recognized dog breeds, with numerous additional local varieties. To determine the relationship among Italian dog populations, we integrated genetic data from 263 dogs representing 23 closed dog populations from Italy, seven Apennine gray wolves, and an established dataset of 161 globally recognized dog breeds, applying multiple genetic methods to characterize the modes by which breeds are formed within a single geographic region. Our consideration of each of five genetic analyses reveals a series of development events that mirror historical modes of breed formation, but with variations unique to the codevelopment of early dog and human populations. Using 142,840 genome-wide SNPs and a dataset of 1,609 canines, representing 182 breeds and 16 wild canids, we identified breed development routes for the Italian breeds that included divergence from common populations for a specific purpose, admixture of regional stock with that from other regions, and isolated selection of local stock with specific attributes.
Collapse
Affiliation(s)
- Andrea Talenti
- Dipartimento di Medicina VeterinariaUniversità di MilanoMilanoItaly
| | - Dayna L. Dreger
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | - Stefano Frattini
- Dipartimento di Medicina VeterinariaUniversità di MilanoMilanoItaly
| | - Michele Polli
- Dipartimento di Medicina VeterinariaUniversità di MilanoMilanoItaly
| | - Stefano Marelli
- Dipartimento di Medicina VeterinariaUniversità di MilanoMilanoItaly
| | - Alexander C. Harris
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | - Luigi Liotta
- Dipartimento di Scienze VeterinarieUniversity of MessinaMessinaItaly
| | - Raffaella Cocco
- Dipartimento di Medicina VeterinariaUniversity of SassariSassariItaly
| | - Andrew N. Hogan
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | - Daniele Bigi
- Dipartimento di Scienza e Tecnologie Agro‐AlimentariAlma Mater Studiorum University of BolognaBolognaItaly
| | - Romolo Caniglia
- Area per la Genetica della ConservazioneIstituto Superiore per la Protezione e la Ricerca AmbientaleOzzano dell'EmiliaBolognaItaly
| | - Heidi G. Parker
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | - Giulio Pagnacco
- Dipartimento di Medicina VeterinariaUniversità di MilanoMilanoItaly
| | - Elaine A. Ostrander
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | - Paola Crepaldi
- Dipartimento di Medicina VeterinariaUniversità di MilanoMilanoItaly
| |
Collapse
|
248
|
Mastrangelo S, Biscarini F, Auzino B, Ragatzu M, Spaterna A, Ciampolini R. Genome-wide diversity and runs of homozygosity in the "Braque Français, type Pyrénées" dog breed. BMC Res Notes 2018; 11:13. [PMID: 29316964 PMCID: PMC5761150 DOI: 10.1186/s13104-017-3112-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022] Open
Abstract
Objective Braque Français, type Pyrénées is a French hunting-dog breed whose origin is traced back to old pointing gun-dogs used to assist hunters in finding and retrieving game. This breed is popular in France, but seldom seen elsewhere. Despite the ancient background, the literature on its genetic characterization is surprisingly scarce. A recent study looked into the demography and inbreeding using pedigree records, but there is yet no report on the use of molecular markers in this breed. The aim of this work was to genotype a population of Braque Français, type Pyrénées dogs with the high-density SNP array to study the genomic diversity of the breed. Results The average observed (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H_O$$\end{document}HO) and expected (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H_E$$\end{document}HE) heterozygosity were 0.371 (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pm \,0.142$$\end{document}±0.142) and 0.359 (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pm \,0.124$$\end{document}±0.124). Effective population size (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$N_e$$\end{document}Ne) was 27.5635 runs of homozygosity (ROH) were identified with average length of 2.16 MB. A ROH shared by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$75\%$$\end{document}75% of the dogs was detected at the beginning of chromosome 22. Inbreeding coefficients from marker genotypes were in the range \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{IS}=[-\,0.127,0.172]$$\end{document}FIS=[-0.127,0.172]. Inbreeding estimated from ROH (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{ROH}$$\end{document}FROH) had mean \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.112\,(\pm \,0.023$$\end{document}0.112(±0.023), with range [0.0526, 0.225]. These results show that the Braque Français, type Pyrénées breed is a relatively inbred population, but with still sufficient genetic variability for conservation and genetic improvement. Electronic supplementary material The online version of this article (10.1186/s13104-017-3112-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Barbara Auzino
- Dipartimento di Scienze Veterinarie, Università di Pisa, V.le delle Piagge 2, 56124, Pisa, Italy
| | - Marco Ragatzu
- Club Italiano Braque Français Type Pyrénées, Capalbio, GR, Italy
| | - Andrea Spaterna
- Scuola di Scienze Mediche Veterinarie, University of Camerino, Matelica, MC, Italy.,Centro Interuniversitario di Ricerca e di Consulenza sulla Genetica e la Clinica del cane, Matelica, MC, Italy
| | - Roberta Ciampolini
- Centro Interuniversitario di Ricerca e di Consulenza sulla Genetica e la Clinica del cane, Matelica, MC, Italy.,Dipartimento di Scienze Veterinarie, Università di Pisa, V.le delle Piagge 2, 56124, Pisa, Italy
| |
Collapse
|
249
|
Byosiere SE, Espinosa J, Smith BP. The function of play bows in Canis lupus and its variants: a comparison of dingo (Canis lupus dingo), dog (Canis lupus familiaris) and wolf puppies (Canis lupus). BEHAVIOUR 2018. [DOI: 10.1163/1568539x-00003495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Play bows represent a common, highly stereotyped behaviour across the genus Canis. However, much of what we know is limited to the wolf and its domestic derivative, the domestic dog. Here we continue to look at the function of play bows among subspecies/variants of Canis lupus by including the dingo. Comparing dingoes to wolves and dogs may provide further insight into the impact of domestication on play behaviour. We analysed play bows in three-to-six month old dingo puppies and compared the results to previous studies of wolves and dogs. The function of play bows in dingoes appears consistent with those observed in dogs and wolf puppies. However, subtle intraspecific differences (such as the frequency and duration of play bows, and vocalizations during play) were apparent, and warrant further investigation in the genus Canis, as well as the Family Canidae more broadly.
Collapse
Affiliation(s)
- Sarah-Elizabeth Byosiere
- aSchool of Psychology and Public Health, La Trobe University, P.O. Box 199, Bendigo VIC 3552, Australia
| | - Julia Espinosa
- bDepartment of Psychology, University of Toronto, 100 St George Street, Toronto, ON, Canada M5S 3G3
| | - Bradley P. Smith
- cAppleton Institute, Central Queensland University, 44 Greenhill Road, Wayville, SA 5034, Australia
| |
Collapse
|
250
|
Size Variation under Domestication: Conservatism in the inner ear shape of wolves, dogs and dingoes. Sci Rep 2017; 7:13330. [PMID: 29042574 PMCID: PMC5645459 DOI: 10.1038/s41598-017-13523-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/25/2017] [Indexed: 11/08/2022] Open
Abstract
A broad sample of wolves, dingoes, and domesticated dogs of different kinds and time periods was used to identify changes in size and shape of the organs of balance and hearing related to domestication and to evaluate the potential utility of uncovered patterns as markers of domestication. Using geometric morphometrics coupled with non-invasive imaging and three-dimensional reconstructions, we exposed and compared complex structures that remain largely conserved. There is no statistically significant difference in the levels of shape variation between prehistoric and modern dogs. Shape variance is slightly higher for the different components of the inner ear in modern dogs than in wolves, but these differences are not significant. Wolves express a significantly greater level of variance in the angle between the lateral and the posterior canal than domestic dog breeds. Wolves have smaller levels of size variation than dogs. In terms of the shape of the semicircular canals, dingoes reflect the mean shape in the context of variation in the sample. This mirrors the condition of feral forms in other organs, in which there is an incomplete return to the characteristics of the ancestor. In general, morphological diversity or disparity in the inner ear is generated by scaling.
Collapse
|