201
|
Abstract
The burden imposed by pollution falls more on those living in low-income and middle-income countries, affecting children more than adults. Most air pollution results from incomplete combustion and contains a mixture of particulate matter and gases. Air pollution exposure has negative impacts on respiratory health. This article concentrates on air pollution in 2 settings, the child's home and the ambient environment. There is an inextricable 2-way link between air pollution and climate change, and the effects of climate change on childhood respiratory health also are discussed.
Collapse
|
202
|
Brauer M, Casadei B, Harrington RA, Kovacs R, Sliwa K. Taking a Stand Against Air Pollution - The Impact on Cardiovascular Disease: A Joint Opinion from the World Heart Federation, American College of Cardiology, American Heart Association, and the European Society of Cardiology. Glob Heart 2021; 16:8. [PMID: 33598388 PMCID: PMC7845468 DOI: 10.5334/gh.948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although the attention of the world and the global health community specifically is deservedly focused on the COVID-19 pandemic, other determinants of health continue to have large impacts and may also interact with COVID-19. Air pollution is one crucial example. Established evidence from other respiratory viruses and emerging evidence for COVID-19 specifically indicates that air pollution alters respiratory defense mechanisms leading to worsened infection severity. Air pollution also contributes to co-morbidities that are known to worsen outcomes amongst those infected with COVID-19, and air pollution may also enhance infection transmission due to its impact on more frequent coughing. Yet despite the massive disruption of the COVID-19 pandemic, there are reasons for optimism: broad societal lockdowns have shown us a glimpse of what a future with strong air pollution measures could yield. Thus, the urgency to combat air pollution is not diminished, but instead heightened in the context of the pandemic.
Collapse
Affiliation(s)
- Michael Brauer
- World Heart Federation Air Pollution Expert Group, School of Population and Public Health, The University of British Columbia, CA
- Institute for Health Metrics and Evaluation, University of Washington, US
- Prof Michael Brauer, The University of British Columbia, Institute for Health Metrics and Evaluation (University of Washington) (Canada/United States); Dr Narantuya Davaakhuu, National Center for Public Health Mongolia (Mongolia); Dr Michael Hadley, Mount Sinai (United States); Mr Daniel Kass, Vital Strategies (United States); Prof Mark Miller, Centre for Cardiovascular Sciences, University of Edinburgh (United Kingdom); Prof Maria Consuelo Escamilla Nuñez, Instituto Nacional de Salud Pública (Mexico); Prof Dorairaj Prabhakaran, Public Health Foundation India (India); Dr Ta-Chen Su, Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine (Taiwan); Dr Ilonca C.H. Vaartjes, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht (The Netherlands); Dr Rajesh Vedanthan, Mount Sinai (United States)
| | - Barbara Casadei
- European Society of Cardiology, Radcliffe Department of Medicine, University of Oxford, GB
| | | | - Richard Kovacs
- American College of Cardiology, Indiana University School of Medicine, US
| | - Karen Sliwa
- World Heart Federation, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, ZA
| | - the WHF Air Pollution Expert Group
- Prof Michael Brauer, The University of British Columbia, Institute for Health Metrics and Evaluation (University of Washington) (Canada/United States); Dr Narantuya Davaakhuu, National Center for Public Health Mongolia (Mongolia); Dr Michael Hadley, Mount Sinai (United States); Mr Daniel Kass, Vital Strategies (United States); Prof Mark Miller, Centre for Cardiovascular Sciences, University of Edinburgh (United Kingdom); Prof Maria Consuelo Escamilla Nuñez, Instituto Nacional de Salud Pública (Mexico); Prof Dorairaj Prabhakaran, Public Health Foundation India (India); Dr Ta-Chen Su, Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine (Taiwan); Dr Ilonca C.H. Vaartjes, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht (The Netherlands); Dr Rajesh Vedanthan, Mount Sinai (United States)
| |
Collapse
|
203
|
Chatkin J, Correa L, Santos U. External Environmental Pollution as a Risk Factor for Asthma. Clin Rev Allergy Immunol 2021; 62:72-89. [PMID: 33433826 PMCID: PMC7801569 DOI: 10.1007/s12016-020-08830-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
Air pollution is a worrisome risk factor for global morbidity and mortality and plays a special role in many respiratory conditions. It contributes to around 8 million deaths/year, with outdoor exposure being responsible for more than 4.2 million deaths throughout the world, while more than 3.8 million die from situations related to indoor pollution. Pollutant agents induce several respiratory symptoms. In addition, there is a clear interference in numerous asthma outcomes, such as incidence, prevalence, hospital admission, visits to emergency departments, mortality, and asthma attacks, among others. The particulate matter group of pollutants includes coarse particles/PM10, fine particles/PM2.5, and ultrafine particles/PM0.1. The gaseous components include ground-level ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide. The timing, load, and route of allergen exposure are other items affecting allergic disease phenotypes. The complex interaction between pollutant exposures and human host factors has an implication in the development and rise of asthma as a public health problem. However, there are hiatuses in the understanding of the pathways in this disease. The routes through which pollutants induce asthma are multiple, and include the epigenetic changes that occur in the respiratory tract microbiome, oxidative stress, and immune dysregulation. In addition, the expansion of the modern Westernized lifestyle, which is characterized by intense urbanization and more time spent indoors, resulted in greater exposure to polluted air. Another point to consider is the different role of the environment according to age groups. Children growing up in economically disadvantaged neighborhoods suffer more important negative health impacts. This narrative review highlights the principal polluting agents, their sources of emission, epidemiological findings, and mechanistic evidence that links environmental exposures to asthma.
Collapse
Affiliation(s)
- Jose Chatkin
- Pulmonology Division, School of Medicine, Pontifical Catholic University Rio Grande Do Sul (PUCRS), Hospital São Lucas da PUCRS, Porto Alegre, Brazil.
| | - Liana Correa
- Health Sciences Doctorate Program, School of Medicine, Pontifical Catholic University Rio Grande Do Sul (PUCRS), Pulmonologist Hospital São Lucas da PUCRS, Porto Alegre, Brazil
| | - Ubiratan Santos
- Pulmonology Division of Instituto Do Coração, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
204
|
Use of Untargeted Metabolomics to Explore the Air Pollution-Related Disease Continuum. Curr Environ Health Rep 2021; 8:7-22. [PMID: 33420964 DOI: 10.1007/s40572-020-00298-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the application of untargeted metabolomics to identify the perturbation of metabolites or metabolic pathways associated with air pollutant exposures. RECENT FINDINGS Twenty-three studies were included in this review, in adults, children, or pregnant women. The most commonly measured air pollutant is particulate matter smaller than 2.5 μm. Size-fractioned particles, particle chemical species, gas pollutants, or organic compounds were also investigated. The reviewed studies used a wide range of air pollution measurement techniques and metabolomics analyses. Identified metabolites were primarily related to oxidative stress and inflammatory responses, and a few were related to the alterations of steroid metabolic pathways. The observed metabolic perturbations can differ by disease status, sex, and age. Air pollution-related metabolic changes were also associated with health outcomes in some studies. Our review shows that air pollutant exposures are associated with metabolic pathways primarily related to oxidative stress, inflammation, as assessed through untargeted metabolomics in 23 studies. More metabolomic studies with larger sample sizes are needed to identify air pollution components most responsible for adverse health effects, elaborate on mechanisms for subpopulation susceptibility, and link air pollution exposure to specific adverse health effects.
Collapse
|
205
|
Simultaneous Roadside and Urban Background Measurements of Submicron Aerosol Number Concentration and Size Distribution (in the Range 20–800 nm), along with Chemical Composition in Strasbourg, France. ATMOSPHERE 2021. [DOI: 10.3390/atmos12010071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The adverse health impact of particles and ultrafine particles (UFP) is proven, highlighting the need of measuring the particle number concentration (PNC) dominated by UFP. So far, PNC had never been measured in the Strasbourg urban area (France). The present study on particle size distribution and PNC measurements by an UFP-3031 analyzer was conducted during winter 2019 on a background and a roadside multi-instrumented sites (Black Carbon, chemical speciation, particulate matter 10 μm or less in diameter—PM10 mass). This paper shows significantly higher particle number concentrations of particles below 100 nm at the traffic site compared to the background site. The presence of a road axis thus mainly influences UFP, contrary to larger particles whose levels are more homogeneous over the agglomeration. During the measurement period, the nature of the particles (particle size contribution and chemical composition) was different between periods of high PM10 mass concentrations and periods of high PNC. High PM10 mass concentrations were associated with a high contribution of particles larger than 100 nm but they did not show specific chemical signature. On the other hand, during the periods with high PNC, the chemical composition was modified with an increase of the primary carbonaceous fraction compared to the periods with low PNC, but there was then no clear change in size distribution. Overall, this study illustrates that PM10 mass concentrations were barely representative of UFP and PNC variations, confirming that the monitoring of the latter metrics is necessary to better evaluate the particles toxicity, knowing that this toxicity also depends on the particle’s chemical composition.
Collapse
|
206
|
Abstract
Tuberculosis is an important public health problem that needs good control. The interrelationship between air pollution and incidence of tuberculosis is interesting. In the present report, the authors report the observation on tuberculosis incidence in area with sulfur dioxide pollution. The retrospective analysis on public available on incidence of tuberculosis and ambient air sulfur dioxide level in Thailand is done. There is no significant relationship between air sulfur dioxide level and corresponding incidence of tuberculosis (r = –0.224, P = 0.535). In conclusion, there is a lack of association between air sulfur dioxide level and corresponding incidence of tuberculosis in our setting.
Collapse
Affiliation(s)
- Sora Yasri
- KMT Primary Care Center, Bangkok, Thailand
| | | |
Collapse
|
207
|
Nourian A, Abba MK, G Nasr G. Measurements and analysis of non-methane VOC (NMVOC) emissions from major domestic aerosol sprays at "source". ENVIRONMENT INTERNATIONAL 2021; 146:106152. [PMID: 33246244 DOI: 10.1016/j.envint.2020.106152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Non-Methane Volatile Organic Compounds (NMVOCs) from domestic aerosol sprays are emerging pollutants and have substantial negative effects on human health and the environment. This study, for the first time, carried out quantification of the NMVOC emissions from off-the-shelf domestic aerosol sprays, at "source" in the UK. These aerosol sprays contain harmful organic compounds as propellants and products. The results showed that the cosmetic category (i.e. body sprays) have higher concentrations of NMVOCs with 93.7 wt% per can compared to households (i.e. air fresheners) with 62 wt%. Also, water-based products showed less NMVOCs in all analyses compared to solvent-based formulations. Direct replacement of Liquefied Petroleum Gas (LPG) propellants from conventional products with 'clean air' (i.e. nitrogen) showed the potential emission reduction of 50%. Hair spray products, however, have the highest ozone forming potential with about 105.1 g of Ozone per litre of the product compared to other domestic aerosol sprays. The level of global warming contribution of the selected aerosol sprays in the UK was measured to be 129.8 ktCO2e in 2018 and globally, this can be projected to be 3154.6 ktCO2e in 2020. Furthermore, NMVOC emissions contribution from the domestic aerosol sprays in the UK was measured as 61.2 kt in 2018 based on annual consumption of 520 million cans. Globally this can equate to 1437.6 kt based on the projected usage of 17.5 billion cans. Therefore, it is vital to expedite replacing LPG propellant with nitrogen in a drive for a 'near-zero' emission in aerosol industry. The results presented in this study can also be used to steer policy makers to the potentially brewing danger from an otherwise passive emission source.
Collapse
Affiliation(s)
- Amir Nourian
- Spray Research Group (SRG), School of Science, Engineering and Environment (SEE), University of Salford, Manchester M5 4WT, UK.
| | - Muhammad Kabir Abba
- Spray Research Group (SRG), School of Science, Engineering and Environment (SEE), University of Salford, Manchester M5 4WT, UK
| | - Ghasem G Nasr
- Spray Research Group (SRG), School of Science, Engineering and Environment (SEE), University of Salford, Manchester M5 4WT, UK
| |
Collapse
|
208
|
Gayle AV, Quint JK, Fuertes EI. Understanding the relationships between environmental factors and exacerbations of COPD. Expert Rev Respir Med 2021; 15:39-50. [PMID: 32713218 DOI: 10.1080/17476348.2020.1801426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Exacerbations of chronic obstructive pulmonary disease (COPD) are associated with a significant health burden both for patients and healthcare systems. Exposure to various environmental factors increases the risk of exacerbations. AREAS COVERED We searched PubMed and assessed literature published within the last 10 years to include epidemiological evidence on the relationships between air pollution, temperature and COPD exacerbation risk as well as the implications of extreme weather events on exacerbations. EXPERT OPINION Ongoing climate change is expected to increase air pollution levels, global temperature and the frequency and severity of extreme weather events, all of which are associated with COPD exacerbations. Further research is needed using patient-focused methodological approaches to better understand and quantify these relationships, so that effective mitigation strategies that decrease the risk of exacerbations can be developed.
Collapse
Affiliation(s)
- Alicia V Gayle
- Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College London , London, UK
- Global Real World Evidence, AstraZeneca Plc , Cambridge, UK
| | - Jennifer K Quint
- Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College London , London, UK
| | - Elaine I Fuertes
- Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College London , London, UK
| |
Collapse
|
209
|
Parker ER. The influence of climate change on skin cancer incidence - A review of the evidence. Int J Womens Dermatol 2021; 7:17-27. [PMID: 33537393 PMCID: PMC7838246 DOI: 10.1016/j.ijwd.2020.07.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/02/2020] [Accepted: 07/08/2020] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Climate change is broadly affecting human health, with grave concern that continued warming of the earth's atmosphere will result is serious harm. Since the mid-20th century, skin cancer incidence rates have risen at an alarming rate worldwide. OBJECTIVE This review examines the relationship between climate change and cutaneous carcinogenesis. METHODS A literature review used the National Institutes of Health databases (PubMed and Medline), the Surveillance, Epidemiology, and End Results and International Agency for Research on Cancer registries, and published reports by federal and international agencies and consortia, including the Australian Institute of Health and Welfare, Climate and Clean Air Coalition, U.S. Environmental Protection Agency, Intergovernmental Panel on Climate Change, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, United Nations Environment Programme, World Health Organization, and World Meteorological Organization. RESULTS Skin cancer risk is determined by multiple factors, with exposure to ultraviolet radiation being the most important. Strong circumstantial evidence supports the hypothesis that factors related to climate change, including stratospheric ozone depletion, global warming, and ambient air pollution, have likely contributed to the increasing incidence of cutaneous malignancy globally and will continue to impose a negative on influence skin cancer incidence for many decades to come. CONCLUSION Because much of the data are based on animal studies and computer simulations, establishing a direct and definitive link remains challenging. More epidemiologic studies are needed to prove causality in skin cancer, but the evidence for overall harm to human health as a direct result of climate change is clear. Global action to mitigate these negative impacts to humans and the environment is imperative.
Collapse
Affiliation(s)
- Eva Rawlings Parker
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
210
|
Cao Y, Li S, Chen J. Modeling better in vitro models for the prediction of nanoparticle toxicity: a review. Toxicol Mech Methods 2021; 31:1-17. [PMID: 32972312 DOI: 10.1080/15376516.2020.1828521] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/22/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Exposure to nanoparticles (NPs) is plausible in real life due to ambient particulate exposure or development of nanotechnologies, hence the evaluation of NP toxicity as well as mechanism-based studies are necessary. The in vitro models allow rapid testing of NP toxicity, but it is required that the developed in vitro models are reliable to reflect the toxicity of NPs. In this review, we discussed the principles to model better in vitro models to predict the toxicity of NPs based on our own experiences and works of literature. We suggested that in vitro nanotoxicological studies should consider (1) using normal cells because the commonly used cancer cell lines might not reflect the toxicity of NPs to normal tissues; (2) the possible influence of biological molecules to reflect the toxicity of NPs in a biological microenvironment; (3) the influence of pathophysiological conditions to mimic the responses of NPs under different in vivo conditions; and (4) developing advanced tissue-based models to reflect the responses of tissues/organs to NPs. It is our hope that this review may provide useful information for the future design of in vitro nanotoxicological studies.
Collapse
Affiliation(s)
- Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P. R. China
| | - Shuang Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P. R. China
| | - Jiamao Chen
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P. R. China
| |
Collapse
|
211
|
Li M, Tang J, Yang H, Zhao L, Liu Y, Xu H, Fan Y, Hong J, Long Z, Li X, Zhang J, Guo W, Liu M, Yang L, Lai X, Zhang X. Short-term exposure to ambient particulate matter and outpatient visits for respiratory diseases among children: A time-series study in five Chinese cities. CHEMOSPHERE 2021; 263:128214. [PMID: 33297172 DOI: 10.1016/j.chemosphere.2020.128214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/25/2020] [Accepted: 08/29/2020] [Indexed: 06/12/2023]
Abstract
There was limited evidence regarding the association between short-term exposure to ambient particulate matter (PM) and respiratory outpatient visits among children at a multicity level. In this study, a time-series study was conducted among children aged 0-14 years in five Chinese cities from 2013 to 2018. City-specific effects of fine particles (PM2.5), inhalable particles (PM10) and coarse particles (PM10-2.5) were estimated for time lags of zero up to seven previous days using the overdispersed generalized additive models after adjusting for time trends, meteorological variables, day of the week and holidays. Meta-analyses were applied to pool the overall effects, while the exposure-response (E-R) curves were evaluated using a cubic regression spline. The overall effects of PM were significantly associated with total and cause-specific respiratory outpatients among children, even at PM2.5 and PM10 levels below the current Chinese Ambient Air Quality Standards (CAAQS) Grade II. Each 10 μg/m3 increment in PM2.5, PM10 and PM10-2.5 at lag 07 was associated with a 1.39% (95% CI: 0.38%, 2.40%), 1.10% (95% CI: 0.38%, 1.83%) and 2.93% (95% CI: 1.05%, 4.84%) increase in total respiratory outpatients, respectively. An E-R relationship was observed except for PM2.5 in Beijing and PM10 and PM10-2.5 in Shanghai. The effects of PM were stronger in cold season in 3 southern cities, while it was stronger in transition season in 2 northern cities. In conclusion, short-term PM exposures were dose-responsive associated with increased respiratory outpatient visits among children, even for PM2.5 and PM10 levels below current CAAQS II in certain cities.
Collapse
Affiliation(s)
- Meng Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jie Tang
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Ya Liu
- Department of Medical Record, Beijing Hospital, Beijing, China
| | - Haoli Xu
- Department of Healthcare, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yali Fan
- Qinghai Provincial Women and Children's Hospital, Xining, China
| | - Jun Hong
- Qinghai Provincial Women and Children's Hospital, Xining, China
| | - Zhen Long
- Department of Pediatric respiratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, HUST, Wuhan, China
| | - Xiaojuan Li
- Department of Medical Record and Statistics, Emergency General Hospital, Beijing, China
| | - Jianduan Zhang
- Department of Woman and Child's Care and Adolescence Health, School of Public Health, Tongji Medical College, HUST, Wuhan, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Miao Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.
| |
Collapse
|
212
|
Rosário Filho NA, Urrutia-Pereira M, D'Amato G, Cecchi L, Ansotegui IJ, Galán C, Pomés A, Murrieta-Aguttes M, Caraballo L, Rouadi P, Chong-Neto HJ, Peden DB. Air pollution and indoor settings. World Allergy Organ J 2021; 14:100499. [PMID: 33510831 PMCID: PMC7806792 DOI: 10.1016/j.waojou.2020.100499] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Indoor environments contribute significantly to total human exposure to air pollutants, as people spend most of their time indoors. Household air pollution (HAP) resulting from cooking with polluting ("dirty") fuels, which include coal, kerosene, and biomass (wood, charcoal, crop residues, and animal manure) is a global environmental health problem. Indoor pollutants are gases, particulates, toxins, and microorganisms among others, that can have an impact especially on the health of children and adults through a combination of different mechanisms on oxidative stress and gene activation, epigenetic, cellular, and immunological systems. Air pollution is a major risk factor and contributor to morbidity and mortality from major chronic diseases. Children are significantly affected by the impact of the environment due to biological immaturity, prenatal and postnatal lung development. Poor air quality has been related to an increased prevalence of clinical manifestations of allergic asthma and rhinitis. Health professionals should increase their role in managing the exposure of children and adults to air pollution with better methods of care, prevention, and collective action. Interventions to reduce household pollutants may promote health and can be achieved with education, community, and health professional involvement.
Collapse
Key Words
- AR, allergic rhinitis
- Air pollutants
- BAL, bronchoalveolar lavage
- CO, carbon monoxide
- CO2, carbon dioxide
- COPD, chronic obstructive pulmonary disease
- DEPs, diesel exhaust particles
- Environmental pollution
- FEV1, forced expiratory volume
- FeNO, fractional exhaled nitric oxide
- GM-CSF, granulocyte and macrophage growth stimulating factor
- GST, glutathione S-transferase
- HAP, household air pollution
- HEPA, High Efficiency Particulate Arrestance
- ILC2, innate lymphoid cells
- Indoor air pollution
- NCD, non-communicable disease
- NO, nitric oxide
- NO2, nitrogen dioxide
- O3, ozone
- PAH, polycyclic aromatic hydrocarbons
- PM, particulate matter
- PMNs, polymorphonuclear leukocytes
- Pollution
- SO2, sulfur dioxide
- TRAP, Traffic-related air pollution
- TSLP, thymic stromal lymphopoietin
- VOCs, volatile organic compounds
Collapse
Affiliation(s)
| | | | - Gennaro D'Amato
- Division of Respiratory and Allergic Diseases, High Specialty Hospital A. Cardarelli, School of Specialization in Respiratory Diseases, Federico II University, Naples, Italy
| | - Lorenzo Cecchi
- Centre of Bioclimatology, University of Florence, Florence, Italy; SOS Allergy and Clinical Immunology, USL Toscana Centro Prato, Italy
| | | | - Carmen Galán
- Department of Botany, Ecology and Plant Physiology, International Campus of Excellence on Agrifood (ceiA3), University of Córdoba, Córdoba, Spain
| | - Anna Pomés
- Basic Research, Indoor Biotechnologies, Inc, Charlottesville, VA, United States
| | | | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Philip Rouadi
- Department of Otolaryngology- Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Herberto J. Chong-Neto
- Division of Allergy and Immunology, Department of Pediatrics, Federal University of Paraná, Curitiba, PR, Brazil
| | - David B. Peden
- UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
213
|
Birnbaum HG, Carley CD, Desai U, Ou S, Zuckerman PR. Measuring The Impact Of Air Pollution On Health Care Costs. Health Aff (Millwood) 2020; 39:2113-2119. [PMID: 33284710 DOI: 10.1377/hlthaff.2020.00081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Air pollution contributes to the development of numerous adverse human health outcomes. The Environmental Protection Agency's Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) tool is widely used in estimating the health care costs of air pollution and in the development of federal and state regulations and policy. Its default features consider only the costs of hospital and emergency department admissions. A more complete accounting of the chain of costs would include ambulatory and other care. In this article we use employer health insurance claims data to infer additional costs that accompany hospitalizations but are not included in BenMAP-CE. Including additional categories increases BenMAP-CE health care cost estimates by approximately 40 percent for respiratory and cardiovascular patients. That is, for each dollar of health care costs captured by BenMAP-CE, a more complete accounting would include an additional 40 cents. These results suggest that because such air pollution costs are underestimated, the health care benefits associated with reducing air pollution may be much larger than previously estimated.
Collapse
Affiliation(s)
- Howard G Birnbaum
- Howard G. Birnbaum is a senior adviser in the Health Care practice at Analysis Group, Inc., in Boston, Massachusetts
| | - Christopher D Carley
- Christopher D. Carley is a senior analyst in the Health Care and the Energy and Environment practices at Analysis Group, Inc
| | - Urvi Desai
- Urvi Desai is a manager in the Health Care practice at Analysis Group, Inc
| | - Susan Ou
- Susan Ou is an associate in the Health Care and the Antitrust and Competition practices at Analysis Group, Inc
| | - Peter R Zuckerman
- Peter R. Zuckerman is a PhD student in the Department of Statistics at the University of Washington, in Seattle, Washington. He was a senior analyst in the Health Care practice at Analysis Group, Inc., at the time of this research
| |
Collapse
|
214
|
Lagesse B, Wang S, Larson TV, Kim AA. Predicting PM 2.5 in Well-Mixed Indoor Air for a Large Office Building Using Regression and Artificial Neural Network Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15320-15328. [PMID: 33201675 DOI: 10.1021/acs.est.0c02549] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although the exposure to PM2.5 has serious health implications, indoor PM2.5 monitoring is not a widely applied practice. Regulations on the indoor PM2.5 level and measurement schemes are not well established. Compared to other indoor settings, PM2.5 prediction models for large office buildings are particularly lacking. In response to these challenges, statistical models were developed in this paper to predict the PM2.5 concentration in well-mixed indoor air in a commercial office building. The performances of different modeling methods, including multiple linear regression (MLR), partial least squares regression (PLS), distributed lag model (DLM), least absolute shrinkage selector operator (LASSO), simple artificial neural networks (ANN), and long-short term memory (LSTM), were compared. Various combinations of environmental and meteorological parameters were used as predictors. The root-mean-square error (RMSE) of the predicted hourly PM2.5 was 1.73 μg/m3 for the LSTM model and in the range of 2.20-4.71 μg/m3 for the other models when regulatory ambient PM2.5 data were used as predictors. The LSTM models outperformed other modeling approaches across the performance metrics used by learning the predictors' temporal patterns. Even without any ambient PM2.5 information, the developed models still demonstrated relatively high skill in predicting the PM2.5 levels in well-mixed indoor air.
Collapse
Affiliation(s)
- Brent Lagesse
- Division of Computing and Software Systems, University of Washington Bothell, Bothell, Washington 98011, United States
| | - Shuoqi Wang
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Timothy V Larson
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Amy A Kim
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
215
|
Abstract
Globally, exposure to ambient air pollutants is responsible for premature mortality and is implicated in the development and exacerbation of several acute and chronic lung disease across all ages. In this article, we discuss the source apportionment of ambient pollutants and the respiratory health effects in humans. We specifically discuss the evidence supporting ambient pollution in the development of asthma and chronic obstructive pulmonary disease and acute exacerbations of each condition. Practical advice is given to health care providers in how to promote a healthy environment and advise patients with chronic conditions to avoid unsafe air quality.
Collapse
Affiliation(s)
- Gary Adamkiewicz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jahred Liddie
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jonathan M Gaffin
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
216
|
Human Health and Economic Costs of Air Pollution in Utah: An Expert Assessment. ATMOSPHERE 2020. [DOI: 10.3390/atmos11111238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Air pollution causes more damage to health and economy than previously understood, contributing to approximately one in six deaths globally. However, pollution reduction policies remain controversial even when proven effective and cost negative, partially because of misunderstanding and growing mistrust in science. We used an expert assessment to bridge these research–policy divides in the State of Utah, USA, combining quantitative estimates from 23 local researchers and specialists on the human health and economic costs of air pollution. Experts estimated that air pollution in Utah causes 2480 to 8000 premature deaths annually (90% confidence interval) and decreases the median life expectancy by 1.1 to 3.6 years. Economic costs of air pollution in Utah totaled $0.75 to $3.3 billion annually, up to 1.7% of the state’s gross domestic product. Though these results were generally in line with available estimates from downscaled national studies, they were met with surprise in the state legislature, where there had been an almost complete absence of quantitative health and economic cost estimates. We discuss the legislative and personal responses of Utah policy makers to these results and present a framework for increasing the assimilation of data into decision making via regional expert assessment. In conclusion, combining quantitative assessments from local experts is a responsive and cost-effective tool to increase trust and information uptake during time-sensitive policy windows.
Collapse
|
217
|
Lee T, Kim S, Kim S, Kwon NY, Rho S, Hwang DS, Kim M. Environmentally Friendly Methylcellulose-Based Binders for Active and Passive Dust Control. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50860-50869. [PMID: 33119259 DOI: 10.1021/acsami.0c15249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Particulate matter (PM) is an essential indicator to evaluate air pollution, threatening human health. Although PM control could be achieved by using a variety of polymeric materials, identifying effective and green materials remains elusive in dust control technology. Here, we have employed environmentally friendly cellulose modified by methyl side groups, such as methylcellulose (MC)-based polymers, and evaluated their PM reduction efficiency when utilized in active and passive dust control methods, such as dust suppressants and air filters, respectively. When 25 m/s wind was applied on soil treated by MC-based polymers, PM emissions were reduced 95% or 85% lower than the soil treated by only water or the other cellulose without methyl side groups. The MC-based polymer was also effectively suppressed mineral dust from a local copper mine in Arizona with approximately 50 times lower amounts than a synthetic polymer containing methyl side groups. Furthermore, when MC-based polymers have deposited on filters of commercial face masks, the average filtration efficiency improved to greater than 99% while maintaining airflow resistance. Our results present that environmentally friendly MC-based polymers can act as dust binders that effectively agglomerate air pollutants, preventing the PM emission from dust sources and the inhalation after being suspended in the air; thus, labeling them as essential materials for advanced active and passive dust control technology.
Collapse
Affiliation(s)
- Taehee Lee
- Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Sangsik Kim
- Division of Environmental Science and Engineering, POSTECH, Pohang 37673, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, POSTECH, Pohang 37673, Republic of Korea
- Department of Biosystems Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Samuel Kim
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Na-Yeon Kwon
- R&D Center, ANPOLY Inc., Pohang 37666, Republic of Korea
| | - Sangchul Rho
- R&D Center, ANPOLY Inc., Pohang 37666, Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, POSTECH, Pohang 37673, Republic of Korea
| | - Minkyu Kim
- Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721, United States
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
- BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
218
|
Hoffmann B, Roebbel N, Gumy S, Forastiere F, Brunekreef B, Jarosinska D, Walker KD, van Erp AM, O'Keefe R, Greenbaum D, Williams M, Krzyzanowski M, Kelly FJ, Brauer M, Bruyninckx H, Boogaard H. Air pollution and health: recent advances in air pollution epidemiology to inform the European Green Deal: a joint workshop report of ERS, WHO, ISEE and HEI. Eur Respir J 2020; 56:56/5/2002575. [PMID: 33154078 DOI: 10.1183/13993003.02575-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/16/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Barbara Hoffmann
- Environmental Epidemiology, Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University of Düsseldorf, Dusseldorf, Germany
| | - Nathalie Roebbel
- Air Quality and Health, Department for Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Sophie Gumy
- Air Quality and Health, Department for Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Francesco Forastiere
- Environmental Research Group, School of Public Health, Imperial College, London, UK
| | - Bert Brunekreef
- Environmental Epidemiology IRAS, University of Utrecht, Utrecht, The Netherlands
| | - Dorota Jarosinska
- WHO European Centre for Environment and Health, WHO Regional Office for Europe, Bonn, Germany
| | | | | | | | | | - Martin Williams
- MRC-PHE Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College, London, UK
| | - Michal Krzyzanowski
- Environmental Research Group, School of Public Health, Imperial College, London, UK
| | - Frank J Kelly
- Environmental Research Group, School of Public Health, Imperial College, London, UK
| | - Michael Brauer
- Faculty of Medicine, School of Population and Public Health, University of British Columbia, Institute for Health Metrics and Evaluation, University of Washington, Vancouver, BC, Canada
| | | | | |
Collapse
|
219
|
Harbo Poulsen A, Arthur Hvidtfeldt U, Sørensen M, Puett R, Ketzel M, Brandt J, Christensen JH, Geels C, Raaschou-Nielsen O. Components of particulate matter air-pollution and brain tumors. ENVIRONMENT INTERNATIONAL 2020; 144:106046. [PMID: 32858469 DOI: 10.1016/j.envint.2020.106046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Air pollution is an established carcinogen. Evidence for an association with brain tumors is, however, inconclusive. We investigated if individual particulate matter constituents were associated with brain tumor risk. METHODS From comprehensive national registers, we identified all (n = 12 928) brain tumor cases, diagnosed in Denmark in the period 1989-2014, and selected 22 961 controls, matched on age, sex and year of birth. We established address histories and estimated 10-year mean residential outdoor concentrations of particulate matter < 2.5 µm, primarily emitted black carbon (BC) and organic carbon (OC), and combined carbon (OC/BC), as well as secondary inorganic and organic PM air pollutants from a detailed dispersion model. We used conditional logistic regression to calculate odds ratios (OR) per inter quartile range (IQR) exposure. We adjusted for income, marital and employment status as well as area-level socio-demographic characteristics. RESULTS Total tumors of the brain were associated with OC/BC (OR: 1.053, 95%CI: 1.005-1.103, per IQR). The data suggested strongest associations for malignant tumors with ORs per IQR for OC/BC, BC and OC of 1.063 (95% CI: 1.007-1.123), 1.036 (95% CI: 1.006-1.067) and 1.030 (95%CI: 0.979-1.085), respectively. The results did not indicate adverse effects of other PM components. CONCLUSIONS This large, population based study showed associations between primary emitted carbonaceous particles and risk for malignant brain tumors. As the first of its kind, this study needs replication.
Collapse
Affiliation(s)
| | | | - Mette Sørensen
- Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Robin Puett
- Danish Cancer Society Research Center, Copenhagen, Denmark; Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, MD, USA
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Global Centre for Clean Air Research (GCARE) Department of Civil and Environmental Engineering University of Surrey, Guildford, United Kingdom
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | | - Camilla Geels
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
220
|
Zhang Y, Wang J, Gong X, Chen L, Zhang B, Wang Q, Han B, Zhang N, Xue F, Vedal S, Bai Z. Ambient PM 2.5 exposures and systemic biomarkers of lipid peroxidation and total antioxidant capacity in early pregnancy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115301. [PMID: 32827983 DOI: 10.1016/j.envpol.2020.115301] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Evidence for effects of PM2.5 on systemic oxidative stress in pregnant women is limited, especially in early pregnancy. To estimate the associations between ambient PM2.5 exposures and biomarkers of lipid peroxidation and total antioxidant capacity (T-AOC) in women with normal early pregnancy (NEP) and women with clinically recognized early pregnancy loss (CREPL), 206 early pregnant women who had measurements of serum malondialdehyde (MDA) and T-AOC were recruited from a larger case-control study in Tianjin, China from December 2017 to July 2018. Ambient PM2.5 concentrations of eight single-day lags exposure time windows before blood collection at the women's residential addresses were estimated using temporally-adjusted land use regression models. Effects of PM2.5 exposures on percentage change in the biomarkers were estimated using multivariable linear regression models adjusted for month, temperature, relative humidity, gestational age and other covariates. Unconstrained distributed lag models were used to estimate net cumulative effects. Increased serum MDA and T-AOC were significantly associated with increases in PM2.5 at several lag exposure time windows in both groups. The net effects of each interquartile range increase in PM2.5 over the preceding 8 days on MDA were significantly higher (p < 0.001) in CREPL [52% (95% CI: 41%, 62%)] than NEP [22% (95% CI: 9%, 36%)] women. Net effects of each interquartile range increase in PM2.5 over the preceding 5 days on T-AOC were significantly lower (p = 0.010) in CREPL [14% (95% CI: 9%, 19%)] than NEP [24% (95% CI: 18%, 29%)] women. Exposure to ambient PM2.5 may induce systemic lipid peroxidation and antioxidant response in early pregnant women. More severe lipid peroxidation and insufficient antioxidant capacity associated with PM2.5 was found in CREPL women than NEP women. Future studies should focus on mechanisms of individual susceptibility and interventions to reduce PM2.5-related oxidative stress in the first trimester.
Collapse
Affiliation(s)
- Yujuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jianmei Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xian Gong
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Li Chen
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
| | - Bumei Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qina Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Nan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Sverre Vedal
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| |
Collapse
|
221
|
Onakpohor A, Fakinle BS, Sonibare JA, Oke MA, Akeredolu FA. Investigation of air emissions from artisanal petroleum refineries in the Niger-Delta Nigeria. Heliyon 2020; 6:e05608. [PMID: 33299937 PMCID: PMC7702015 DOI: 10.1016/j.heliyon.2020.e05608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 11/21/2022] Open
Abstract
The increase in price of the available refined petroleum products for local consumption in Nigeria had led to the emergence of indigenous technology for petroleum refining in some parts of the Niger Delta region. This study, therefore characterized and quantified artisanal refineries' gaseous emissions for possible air pollutants based on various unit operations involved and evaluated their impacts. It measured the emissions directly from source using E8500 Portable Combustion Analyzer. It also categorized oven sizes/processing capacity of the refineries into various ranges in order to estimate emissions according to processing capacity. The result revealed that; pollutants emission varied significantly between the unit operations and increased with increase in processing capacity. When the emissions were compared with daily limits set by the Environmental Guidelines and Standard for Petroleum Industry in Nigeria (EGASPIN) 2002, the emissions (CO, NOx, and SO2) breached the available set limits. While with the Federal Environmental Protection Agency (FEPA), 1991 set limits for emissions from stationary source; HC and CO breached their limits. SO2 and H2S breached their lower limits but were below the upper limit, while NOx emissions were found within its set limit. The study concluded that, Nigeria Artisanal Petroleum Refineries are sources of air pollution, as they impact the host environment.
Collapse
Affiliation(s)
- Anthony Onakpohor
- Environmental Engineering Research Laboratory, Department of Chemical Engineering, Obafemi Awolowo University, Ile – Ife, Nigeria
| | - Bamidele Sunday Fakinle
- Department of Chemical Engineering, Landmark University, Omu-Aran, Kwara State, Nigeria
- Landmark University SDG 13 (Climate Action Research Group), Nigeria
| | - Jacob Ademola Sonibare
- Environmental Engineering Research Laboratory, Department of Chemical Engineering, Obafemi Awolowo University, Ile – Ife, Nigeria
| | - Michael Abidemi Oke
- Environmental Engineering Research Laboratory, Department of Chemical Engineering, Obafemi Awolowo University, Ile – Ife, Nigeria
| | - Funso Alaba Akeredolu
- Environmental Engineering Research Laboratory, Department of Chemical Engineering, Obafemi Awolowo University, Ile – Ife, Nigeria
| |
Collapse
|
222
|
Goobie GC, Nouraie M, Zhang Y, Kass DJ, Ryerson CJ, Carlsten C, Johannson KA. Air Pollution and Interstitial Lung Diseases: Defining Epigenomic Effects. Am J Respir Crit Care Med 2020; 202:1217-1224. [PMID: 32569479 PMCID: PMC7605178 DOI: 10.1164/rccm.202003-0836pp] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Gillian C. Goobie
- Department of Human Genetics, Graduate School of Public Health and
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Yingze Zhang
- Department of Human Genetics, Graduate School of Public Health and
- Department of Medicine and
| | | | - Christopher J. Ryerson
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, British Columbia, Canada; and
| | - Christopher Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, British Columbia, Canada; and
| | - Kerri A. Johannson
- Division of Respiratory Medicine, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
223
|
Yang H, Yan C, Li M, Zhao L, Long Z, Fan Y, Zhang Z, Chen R, Huang Y, Lu C, Zhang J, Tang J, Liu H, Liu M, Guo W, Yang L, Zhang X. Short term effects of air pollutants on hospital admissions for respiratory diseases among children: A multi-city time-series study in China. Int J Hyg Environ Health 2020; 231:113638. [PMID: 33080524 DOI: 10.1016/j.ijheh.2020.113638] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022]
Abstract
Evidence concerning short-term acute association between air pollutants and hospital admissions for respiratory diseases among children in a multi-city setting was quite limited. We conducted a time-series analysis to evaluate the association of six common air pollutants with hospital admissions for respiratory diseases among children aged 0-14 years in 4 cities (Guangzhou, Shanghai, Wuhan and Xining), China during 2013-2018. We used generalized additive models incorporating penalized smoothing splines and random-effect meta-analysis to calculate city-specific and pooled estimates, respectively. The exposure-response relationship curves were fitted using the cubic spline regression. Subgroup analyses by gender, age, season and disease subtype were also performed. A total of 183,036 respiratory diseases hospitalizations were recorded during the study period, and 94.1% of the cases were acute respiratory infections. Overall, we observed that increased levels of air pollutants except O3, were significantly associated with increased hospital admissions for respiratory disease. Each 10 μg/m3 increase in PM2.5, SO2 and NO2 at lag 07, PM10 at lag 03 and per 1 mg/m3 increase in CO at lag 01 corresponded to increments of 1.19%, 3.58%, 2.23%, 0.51% and 6.10% in total hospitalizations, respectively. Generally, exposure-response relationships of PM2.5 and SO2 in Guangzhou, SO2, NO2 and CO in Wuhan, as well as SO2 and NO2 in Xining with respiratory disease hospitalizations were also found. Moreover, the adverse effects of these pollutants apart from PM2.5 in certain cities remained significant even at exposure levels below the current Chinese Ambient Air Quality Standards (CAAQS) Grade II. Children aged 4-14 years appeared to be more vulnerable to the adverse effects of PM2.5, SO2 and NO2. Furthermore, with the exception of O3, the associations were stronger in cold season than in warm season. Short-term exposure to PM2.5, SO2, NO2 and CO were associated, in dose-responsive manners, with increased risks of hospitalizations for childhood respiratory diseases, and adverse effects of air pollutants except PM2.5 held even at exposure levels below the current CAAQS Grade II in certain cities.
Collapse
Affiliation(s)
- Huihua Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Chunxiang Yan
- Wuhan Children's Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Meng Li
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Zhen Long
- Department of Pediatric Respiratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, HUST, Wuhan, China
| | - Yali Fan
- Qinghai Provincial Women and Children's Hospital, Xining, China
| | - Zhonggang Zhang
- Qinghai Provincial Women and Children's Hospital, Xining, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yihui Huang
- Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Congbin Lu
- Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Jianduan Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jie Tang
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Hua Liu
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Miao Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.
| |
Collapse
|
224
|
Davison J, Bernard Y, Borken-Kleefeld J, Farren NJ, Hausberger S, Sjödin Å, Tate JE, Vaughan AR, Carslaw DC. Distance-based emission factors from vehicle emission remote sensing measurements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139688. [PMID: 32758932 DOI: 10.1016/j.scitotenv.2020.139688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Vehicle emission remote sensing has the potential to provide detailed emissions information at a highly disaggregated level owing to the ability to measure thousands of vehicles in a single day. Fundamentally, vehicle emission remote sensing provides a direct measure of the molar volume ratio of a pollutant to carbon dioxide, from which fuel-based emissions factors can readily be calculated. However, vehicle emissions are more commonly expressed in emission per unit distance travelled e.g. grams per km or mile. To express vehicle emission remote sensing data in this way requires an estimate of the fuel consumption at the time of the emission measurement. In this paper, an approach is developed based on vehicle specific power that uses commonly measured or easily obtainable vehicle information such as vehicle speed, acceleration and mass. We test the approach against 55 independent comprehensive PEMS measurements for Euro 5 and 6 gasoline and diesel vehicles over a wide range of driving conditions and find good agreement between the method and PEMS data. The method is applied to individual vehicle model types to quantify distance-based emission factors. The method will be appropriate for application to larger vehicle emission remote sensing databases, thus extending real-world distance-based vehicle emissions information.
Collapse
Affiliation(s)
- Jack Davison
- Wolfson Atmospheric Chemistry Laboratories, University of York, York, United Kingdom.
| | - Yoann Bernard
- International Council on Clean Transportation, Washington, United States
| | | | - Naomi J Farren
- Wolfson Atmospheric Chemistry Laboratories, University of York, York, United Kingdom
| | - Stefan Hausberger
- Institute for Internal Combustion Engines and Thermodynamic, TUG, University of Technology, Graz, Austria
| | - Åke Sjödin
- IVL Swedish Environmental Research Institute, Stockholm, Sweden
| | - James E Tate
- Institute for Transport Studies, University of Leeds, Leeds, United Kingdom
| | - Adam R Vaughan
- Wolfson Atmospheric Chemistry Laboratories, University of York, York, United Kingdom
| | - David C Carslaw
- Wolfson Atmospheric Chemistry Laboratories, University of York, York, United Kingdom; Ricardo Energy & Environment, Harwell, Oxfordshire, United Kingdom.
| |
Collapse
|
225
|
Abstract
Air pollution is a grave risk to human health that affects nearly everyone in the world and nearly every organ in the body. Fortunately, it is largely a preventable risk. Reducing pollution at its source can have a rapid and substantial impact on health. Within a few weeks, respiratory and irritation symptoms, such as shortness of breath, cough, phlegm, and sore throat, disappear; school absenteeism, clinic visits, hospitalizations, premature births, cardiovascular illness and death, and all-cause mortality decrease significantly. The interventions are cost-effective. Reducing factors causing air pollution and climate change have strong cobenefits. Although regions with high air pollution have the greatest potential for health benefits, health improvements continue to be associated with pollution decreases even below international standards. The large response to and short time needed for benefits of these interventions emphasize the urgency of improving global air quality and the importance of increasing efforts to reduce pollution at local levels.
Collapse
|
226
|
Finicelli M, Squillaro T, Galderisi U, Peluso G. Micro-RNAs: Crossroads between the Exposure to Environmental Particulate Pollution and the Obstructive Pulmonary Disease. Int J Mol Sci 2020; 21:7221. [PMID: 33007849 PMCID: PMC7582315 DOI: 10.3390/ijms21197221] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Environmental pollution has reached a global echo and represents a serious problem for human health. Air pollution encompasses a set of hazardous substances, such as particulate matter and heavy metals (e.g., cadmium, lead, and arsenic), and has a strong impact on the environment by affecting groundwater, soil, and air. An adaptive response to environmental cues is essential for human survival, which is associated with the induction of adaptive phenotypes. The epigenetic mechanisms regulating the expression patterns of several genes are promising candidates to provide mechanistic and prognostic insights into this. Micro-RNAs (miRNAs) fulfil these features given their ability to respond to environmental factors and their critical role in determining phenotypes. These molecules are present in extracellular fluids, and their expression patterns are organ-, tissue-, or cell-specific. Moreover, the experimental settings for their quantitative and qualitative analysis are robust, standardized, and inexpensive. In this review, we provide an update on the role of miRNAs as suitable tools for understanding the mechanisms behind the physiopathological response to toxicants and the prognostic value of their expression pattern associable with specific exposures. We look at the mechanistic evidence associable to the role of miRNAs in the processes leading to environmental-induced pulmonary disease (i.e., chronic obstructive pulmonary disease).
Collapse
Affiliation(s)
- Mauro Finicelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Pietro Castellino 111, 80131 Naples, Italy
| | - Tiziana Squillaro
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (T.S.); (U.G.)
| | - Umberto Galderisi
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (T.S.); (U.G.)
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
227
|
Mullen C, Grineski SE, Collins TW, Mendoza DL. Effects of PM 2.5 on Third Grade Students' Proficiency in Math and English Language Arts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6931. [PMID: 32971971 PMCID: PMC7559489 DOI: 10.3390/ijerph17186931] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Fine particulate air pollution is harmful to children in myriad ways. While evidence is mounting that chronic exposures are associated with reduced academic proficiency, no research has examined the frequency of peak exposures. It is also unknown if pollution exposures influence academic proficiency to the same degree in all schools or if the level of children's social disadvantage in schools modifies the effects, such that some schools' academic proficiency levels are more sensitive to exposures. We address these gaps by examining the percentage of third grade students who tested below the grade level in math and English language arts (ELA) in Salt Lake County, Utah primary schools (n = 156), where fine particulate pollution is a serious health threat. More frequent peak exposures were associated with reduced math and ELA proficiency, as was greater school disadvantage. High frequency peak exposures were more strongly linked to lower math proficiency in more advantaged schools. Findings highlight the need for policies to reduce the number of days with peak air pollution.
Collapse
Affiliation(s)
- Casey Mullen
- Department of Sociology, University of Utah, 480 S 1530 E. Rm 0301, Salt Lake City, UT 84112, USA;
| | - Sara E. Grineski
- Department of Sociology/Environmental and Sustainability Studies, University of Utah, 480 S 1530 E. Room 0301, Salt Lake City, UT 84112, USA
| | - Timothy W. Collins
- Department of Geography/Environmental and Sustainability Studies, University of Utah, 260 Central Campus Dr #4625, Salt Lake City, UT 84112, USA;
| | - Daniel L. Mendoza
- Department of Atmospheric Sciences/City & Metropolitan Planning, University of Utah, 135 S 1460 E. Room 819, Salt Lake City, UT 84112, USA;
| |
Collapse
|
228
|
Wang Q, Tapia Granados JA. Household heating associated with disability in activities of daily living among Chinese middle-aged and elderly: a longitudinal study. Environ Health Prev Med 2020; 25:49. [PMID: 32892744 PMCID: PMC7487906 DOI: 10.1186/s12199-020-00882-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/13/2020] [Indexed: 11/10/2022] Open
Abstract
Background The health hazards of indoor air pollution are well-established but studies of the health effects due to pollution from heating are rare. This study investigated the association of heating and disability for activities of daily living among Chinese middle-aged and elderly. Methods We used two consecutive surveys in a cohort of over 17,000 adults aged 45 or older, who were interviewed first in 2011–2012 and then in 2013. In these surveys, taking advantage of random survey time, we applied a random effects logit regression model that included an interaction between pollution-producing heating fuel and a dummy variable, which measured interview time based on whether or not it was heating season. Results Exposure to pollution-producing heating fuel was associated with a 39.9% (OR 1.399; 95%CI 1.227–1.594) and 71.0% (OR 1.710; 95%CI 1.523–1.920) increase in the likelihood of disability in activities of daily living (DADL) and disability in instrumental activities of daily living (DIADL), respectively. In heating season between year 2011 and 2013, moving from clean heating energy for heating to pollution-producing fuel was linked with an increase in the likelihoods having DADL and DIADL, with the OR of 2.014 (95%CI 1.126–3.600) and 1.956 (95%CI 1.186–3.226), respectively. However, disability increases due to change from clean energy to pollution-producing heating energy did not appear in advantaged education respondents. Conclusions We found that exposure to heating by burning of coal, wood, or crop residue was associated with disability in performing daily living activities. Health policymakers should take indoor pollution due to heating into consideration as it is a major determinant of activities of daily living in elderly people; especially, such policy should focus on elderly people who have disadvantaged education.
Collapse
Affiliation(s)
- Qing Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong, China. .,Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250002, Shandong, China. .,Pudong Institute for Health Development, Shanghai, 200122, China.
| | | |
Collapse
|
229
|
Biswal A, Singh T, Singh V, Ravindra K, Mor S. COVID-19 lockdown and its impact on tropospheric NO 2 concentrations over India using satellite-based data. Heliyon 2020; 6:e04764. [PMID: 32864482 PMCID: PMC7441877 DOI: 10.1016/j.heliyon.2020.e04764] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/09/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization has declared the COVID-19 pandemic a global public health emergency. Many countries of the world, including India, closed their borders and imposed a nationwide lockdown. In India, the lockdown was declared on March 24 for 21 days (March 25-April 14, 2020) and was later extended until May 3, 2020. During the lockdown, all major anthropogenic activities, which contribute to atmospheric pollution (such as industries, vehicles, and businesses), were restricted. The current study examines the impact of the lockdown on tropospheric NO2 concentrations. Satellite-based ozone monitoring instrument sensor data were analyzed in order to investigate the variations in tropospheric NO2 concentrations. The results showed that from March 1 to 21, 2020, the average tropospheric NO2 concentration was 214.4 ×1013 molecule cm-2 over India, and it subsequently decreased by 12.1% over the next four weeks. An increase of 0.8% in tropospheric NO2 concentrations was observed for the same period in 2019 and hence, the reduced tropospheric NO2 concentrations can be attributed to restricted anthropogenic activities during the lockdown. In the absence of significant activities, the contribution of various sources was estimated, and the emissions from biomass burning were identified as a major source of tropospheric NO2 during the lockdown. The findings of this study provide an opportunity to understand the mechanism of tropospheric NO2 emissions over India, in order to improve air quality modeling and management strategies.
Collapse
Affiliation(s)
- Akash Biswal
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
- National Atmospheric Research Laboratory, Gadanki, 517502, India
| | - Tanbir Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Vikas Singh
- National Atmospheric Research Laboratory, Gadanki, 517502, India
| | - Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
230
|
Miller MR, Poland CA. Nanotoxicology: The Need for a Human Touch? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001516. [PMID: 32697439 DOI: 10.1002/smll.202001516] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/28/2020] [Indexed: 06/11/2023]
Abstract
With the ever-expanding number of manufactured nanomaterials (MNMs) under development there is a vital need for nanotoxicology studies that test the potential for MNMs to cause harm to health. An extensive body of work in cell cultures and animal models is vital to understanding the physicochemical characteristics of MNMs and the biological mechanisms that underlie any detrimental actions to cells and organs. In human subjects, exposure monitoring is combined with measurement of selected health parameters in small panel studies, especially in occupational settings. However, the availability of further in vivo human data would greatly assist the risk assessment of MNMs. Here, the potential for controlled inhalation exposures of MNMs in human subjects is discussed. Controlled exposures to carbon, gold, aluminum, and zinc nanoparticles in humans have already set a precedence to demonstrate the feasibility of this approach. These studies have provided considerable insight into the potential (or not) of nanoparticles to induce inflammation, alter lung function, affect the vasculature, reach the systemic circulation, and accumulate in other organs. The need for further controlled exposures of MNMs in human volunteers - to establish no-effect limits, biological mechanisms, and provide vital data for the risk assessment of MNMs - is advocated.
Collapse
Affiliation(s)
- Mark R Miller
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Craig A Poland
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
231
|
Miller MR, Shah ASV, Newby DE. We all breathe the same air … and we are all mortal. Cardiovasc Res 2020; 116:1797-1799. [PMID: 32421767 PMCID: PMC7449551 DOI: 10.1093/cvr/cvaa126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Mark R Miller
- University/BHF Centre for Cardiovascular Sciences, University of Edinburgh, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK, Corresponding author. Tel: +44 (0)131 242 2664; fax: +44 (0)131 242 9215, E-mail:
| | - Anoop S V Shah
- University/BHF Centre for Cardiovascular Sciences, University of Edinburgh, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - David E Newby
- University/BHF Centre for Cardiovascular Sciences, University of Edinburgh, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
232
|
Measures to increase the nitrogen use efficiency of European agricultural production. GLOBAL FOOD SECURITY-AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT 2020. [DOI: 10.1016/j.gfs.2020.100381] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
233
|
Masekela R, Vanker A. Lung Health in Children in Sub-Saharan Africa: Addressing the Need for Cleaner Air. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6178. [PMID: 32858786 PMCID: PMC7504680 DOI: 10.3390/ijerph17176178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/17/2022]
Abstract
Air pollution is increasingly recognized as a global health emergency with its impacts being wide ranging, more so for low- and middle-income countries where both indoor and outdoor pollution levels are high. In Africa, more than 80% of children live in households which use unclean sources of energy. The effects of both indoor and outdoor pollution on lung health on children who are the most vulnerable to their effects range from acute lower respiratory tract infections to long-term chronic health effects. We reviewed the literature on the effects of air pollution in children in Sub-Saharan Africa from prenatal exposure, infancy and school-going children. Data from Sub-Saharan Africa on quantification of exposures both indoor and outdoor mainly utilizes modelling or self-reporting. Exposures to biomass not only increases the risk of acute respiratory tract infections in young children but also increases the risk of carriage of pathogenic bacteria in the upper respiratory tract. Although there is limited evidence of association between asthma and pollution in African children, airway hyper-responsiveness and lower lung function has been demonstrated in children with higher risk of exposure. Interventions at a policy level to both quantify the exposure levels at a population level are urgently needed to address the possible interventions to limit exposure and improve lung health in children in Sub-Saharan Africa.
Collapse
Affiliation(s)
- Refiloe Masekela
- Department of Paediatrics and Child Health, Nelson R Mandela School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban 4013, South Africa
| | - Aneesa Vanker
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital and MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town 7700, South Africa;
| |
Collapse
|
234
|
Fong KM, Welte T. World Lung Day: what, why, and where to? Am J Physiol Lung Cell Mol Physiol 2020; 319:L527-L533. [PMID: 32783632 DOI: 10.1152/ajplung.00364.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Kwun M Fong
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, Queensland, Australia.,University of Queensland Thoracic Research Centre, Brisbane, Queensland, Australia
| | - Tobias Welte
- Department of Pulmonary and Infectious Diseases at Hannover University School of Medicine, Member of the German Center of Lung Research, Hannover, Germany
| | -
- The Forum of International Respiratory Societies, Lausanne, Switzerland
| |
Collapse
|
235
|
Lin MY, Chen YC, Lin DY, Hwang BF, Hsu HT, Cheng YH, Liu YT, Tsai PJ. Effect of Implementing Electronic Toll Collection in Reducing Highway Particulate Matter Pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9210-9216. [PMID: 32589404 DOI: 10.1021/acs.est.0c00900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Highway vehicle emissions can result in adverse health problems to nearby residents and workers, especially during traffic congestion. In response, the policy to implement electronic toll collection (ETC) has helped alleviate traffic congestion, as compared to manual toll collection (MTC) and has led to reduced air pollution and improved public health. However, the effect of ETC in reducing particulate matter polluting the air is not well understood, especially in the ultrafine particle (UFP) range (particle diameter <100 nm). To the best of our knowledge, this is the first study to investigate how ETC affects the traffic pattern and air quality, especially UFP and PM2.5. We selected a site in Tainan, Taiwan, and measured UFP and PM2.5 concentrations before and after the construction of the ETC system. The computed traffic volumes during peak travel periods (7:00 AM to 9:00 AM and 4:00 PM to 6:00 PM) respectively, accounted for approximately 23-25% and 14-18% before and after the implementation of ETC, indicating that peak traffic volumes were more homogeneous after ETC. Moreover, the results indicate that the full implementation of ETC can help reduce UFP number concentrations and PM2.5 mass concentrations in the highway downwind area by 4 × 103 #/cm3 and 20.5 μg/m3, respectively. After the full implementation of the ETC, significant reductions in both the UFP number concentration and PM2.5 mass concentration were seen. Furthermore, excessive lifetime cancer risks (ELCR) from exposure to PM2.5 and UFP together were reduced 49.3% after the implementation of the ETC. Accordingly, ETC not only helps alleviate traffic congestion but also reduces traffic emissions and lifetime cancer risk for people living or working near highways.
Collapse
Affiliation(s)
- Ming-Yeng Lin
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Dung-Ying Lin
- Department of Industrial Engineering and Engineering Management, College of Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Bing-Fang Hwang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Hui-Tsung Hsu
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Yu-Hsiang Cheng
- Department of Safety, Health and Environmental Engineering, College of Environment and Resources, Ming Chi University of Technology, Taipei, Taiwan
| | - Yu-Ting Liu
- Department of Soil and Environmental Sciences, College of Agricultural and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Perng-Jy Tsai
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
236
|
Borro M, Di Girolamo P, Gentile G, De Luca O, Preissner R, Marcolongo A, Ferracuti S, Simmaco M. Evidence-Based Considerations Exploring Relations between SARS-CoV-2 Pandemic and Air Pollution: Involvement of PM2.5-Mediated Up-Regulation of the Viral Receptor ACE-2. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5573. [PMID: 32748812 PMCID: PMC7432777 DOI: 10.3390/ijerph17155573] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/23/2022]
Abstract
The COVID-19/SARS-CoV-2 pandemic struck health, social and economic systems worldwide, and represents an open challenge for scientists -coping with the high inter-individual variability of COVID-19, and for policy makers -coping with the responsibility to understand environmental factors affecting its severity across different geographical areas. Air pollution has been warned of as a modifiable factor contributing to differential SARS-CoV-2 spread but the biological mechanisms underlying the phenomenon are still unknown. Air quality and COVID-19 epidemiological data from 110 Italian provinces were studied by correlation analysis, to evaluate the association between particulate matter (PM)2.5 concentrations and incidence, mortality rate and case fatality risk of COVID-19 in the period 20 February-31 March 2020. Bioinformatic analysis of the DNA sequence encoding the SARS-CoV-2 cell receptor angiotensin-converting enzyme 2 (ACE-2) was performed to identify consensus motifs for transcription factors mediating cellular response to pollutant insult. Positive correlations between PM2.5 levels and the incidence (r = 0.67, p < 0.0001), the mortality rate (r = 0.65, p < 0.0001) and the case fatality rate (r = 0.7, p < 0.0001) of COVID-19 were found. The bioinformatic analysis of the ACE-2 gene identified nine putative consensus motifs for the aryl hydrocarbon receptor (AHR). Our results confirm the supposed link between air pollution and the rate and outcome of SARS-CoV-2 infection and support the hypothesis that pollution-induced over-expression of ACE-2 on human airways may favor SARS-CoV-2 infectivity.
Collapse
Affiliation(s)
- Marina Borro
- Laboratory of Clinical Biochemistry, University Hospital Sant’Andrea, Department of Neurosciences, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, via di Grottarossa 1035, 00189 Rome, Italy; (M.B.); (G.G.)
| | - Paolo Di Girolamo
- School of Engineering, University of Basilicata, viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Giovanna Gentile
- Laboratory of Clinical Biochemistry, University Hospital Sant’Andrea, Department of Neurosciences, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, via di Grottarossa 1035, 00189 Rome, Italy; (M.B.); (G.G.)
| | - Ottavia De Luca
- Laboratory of Clinical Biochemistry, University Hospital Sant’Andrea, via di Grottarossa 1035, 00189 Rome, Italy;
| | - Robert Preissner
- Structural Bioinformatics Group, Charité–Universitätsmedizin Berlin, Philippstr. 12, 10115 Berlin, Germany;
| | - Adriano Marcolongo
- General Direction, University Hospital Sant’Andrea, via di Grottarossa 1035, 00189 Rome, Italy;
| | - Stefano Ferracuti
- Department of Human Neuroscience, Sapienza University, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
| | - Maurizio Simmaco
- Laboratory of Clinical Biochemistry, University Hospital Sant’Andrea, Department of Neurosciences, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, via di Grottarossa 1035, 00189 Rome, Italy; (M.B.); (G.G.)
| |
Collapse
|
237
|
Ambient air pollution and cause-specific risk of hospital admission in China: A nationwide time-series study. PLoS Med 2020; 17:e1003188. [PMID: 32760064 PMCID: PMC7410211 DOI: 10.1371/journal.pmed.1003188] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 07/08/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The impacts of air pollution on circulatory and respiratory systems have been extensively studied. However, the associations between air pollution exposure and the risk of noncommunicable diseases of other organ systems, including diseases of the digestive, musculoskeletal, and genitourinary systems, remain unclear or inconclusive. We aimed to systematically assess the associations between short-term exposure to main air pollutants (fine particulate matter [PM2.5] and ozone) and cause-specific risk of hospital admission in China over a wide spectrum of human diseases. METHODS AND FINDINGS Daily data on hospital admissions for primary diagnosis of 14 major and 188 minor disease categories in 252 Chinese cities (107 cities in North China and 145 cities in South China) from January 1, 2013, to December 31, 2017, were obtained from the Hospital Quality Monitoring System of China (covering 387 hospitals in North China and 614 hospitals in South China). We applied a 2-stage analytic approach to assess the associations between air pollution and daily hospital admissions. City-specific associations were estimated with quasi-Poisson regression models and then pooled by random-effects meta-analyses. Each disease category was analyzed separately, and the P values were adjusted for multiple comparisons. A total of 117,338,867 hospital admissions were recorded in the study period. Overall, 51.7% of the hospitalized cases were male, and 71.3% were aged <65 years. Robust positive associations were found between short-term PM2.5 exposure and hospital admissions for 7 major disease categories: (1) endocrine, nutritional, and metabolic diseases; (2) nervous diseases; (3) circulatory diseases; (4) respiratory diseases; (5) digestive diseases; (6) musculoskeletal and connective tissue diseases; and (7) genitourinary diseases. For example, a 10-μg/m3 increase in PM2.5 was associated with a 0.21% (95% CI 0.15% to 0.27%; adjusted P < 0.001) increase in hospital admissions for diseases of the digestive system on the same day in 2-pollutant models (adjusting for ozone). There were 35 minor disease categories significantly positively associated with same-day PM2.5 in both single- and 2-pollutant models, including diabetes mellitus, anemia, intestinal infection, liver diseases, gastrointestinal hemorrhage, renal failure, urinary tract calculus, chronic ulcer of skin, and back problems. The association between short-term ozone exposure and respiratory diseases was robust. No safety threshold in the exposure-response relationships between PM2.5 and hospital admissions was observed. The main limitations of the present study included the unavailability of data on personal air pollution exposures. CONCLUSIONS In the Chinese population during 2013-2017, short-term exposure to air pollution, especially PM2.5, was associated with increased risk of hospitalization for diseases of multiple organ systems, including certain diseases of the digestive, musculoskeletal, and genitourinary systems; many of these associations are important but still not fully recognized. The effect estimates and exposure-response relationships can inform policy making aimed at protecting public health from air pollution in China.
Collapse
|
238
|
Tubbs JD, Ding J, Baum L, Sham PC. Immune dysregulation in depression: Evidence from genome-wide association. Brain Behav Immun Health 2020; 7:100108. [PMID: 34589869 PMCID: PMC8474691 DOI: 10.1016/j.bbih.2020.100108] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 12/15/2022] Open
Abstract
A strong body of evidence supports a role for immune dysregulation across many psychiatric disorders including depression, the leading cause of global disability. Recent progress in the search for genetic variants associated with depression provides the opportunity to strengthen our current understanding of etiological factors contributing to depression and generate novel hypotheses. Here, we provide an overview of the literature demonstrating a role for immune dysregulation in depression, followed by a detailed discussion of the immune-related genes identified by the most recent genome-wide meta-analysis of depression. These genes represent strong evidence-based targets for future basic and translational research which aims to understand the role of the immune system in depression pathology and identify novel points for therapeutic intervention.
Collapse
Affiliation(s)
- Justin D. Tubbs
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - Jiahong Ding
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - Larry Baum
- Department of Psychiatry, The University of Hong Kong, Hong Kong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| | - Pak C. Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
- Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
239
|
Fu X, Xiang S, Liu Y, Liu J, Yu J, Mauzerall DL, Tao S. High-resolution simulation of local traffic-related NO x dispersion and distribution in a complex urban terrain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114390. [PMID: 32203857 DOI: 10.1016/j.envpol.2020.114390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
Urban air pollution features large spatial and temporal variations due to the high heterogeneity in emissions and ventilation conditions, which render the pollutant distributions in complex urban terrains difficult to measure. Current urban air pollution models are not able to simulate pollutant dispersion and distribution at a low computational cost and high resolution. To address this limitation, we have developed the urban terrain air pollution (UTAP) dispersion model to investigate, at a spatial resolution of 5 m and a temporal resolution of 1 h, the distribution of the local traffic-related NOx concentration at the pedestrian level in a 1 × 1 km2 area in Baoding, Hebei, China. The UTAP model was shown to be capable of capturing the local pollution variations in a complex urban terrain at a low computational cost. We found that the local traffic-related NOx concentration along or near major roads (10-200 μg m-3) was 1-2 orders of magnitude higher than that in places far from roads (0.1-10 μg m-3). Considering the background pollution, the NO and NO2 concentrations exhibited similar patterns with higher concentrations in street canyons and lower concentrations away from streets, while the O3 concentration exhibited the opposite behavior. Sixty percent of the NOx concentration likely stemmed from local traffic when the background pollution level was low. Both the background wind speed and direction substantially impacted the overall pollution level and concentration variations, with a low wind speed and direction perpendicular to the axes of most streets identified as unfavorable pollutant dispersion conditions. Our results revealed a large variability in the local traffic-related air pollutant concentration at the pedestrian level in the complex urban terrain, indicating that high-resolution computationally efficient models such as the UTAP model are required to accurately estimate the pollutant exposure of urban residents.
Collapse
Affiliation(s)
- Xiangwen Fu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China; Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ, 08544, USA
| | - Songlin Xiang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Ying Liu
- School of Statistics, University of International Business and Economics, Beijing, 100029, China
| | - Junfeng Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| | - Jun Yu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Denise L Mauzerall
- Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ, 08544, USA; Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
240
|
Long-Term Assessment of Air Quality and Identification of Aerosol Sources at Setúbal, Portugal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155447. [PMID: 32731647 PMCID: PMC7432894 DOI: 10.3390/ijerph17155447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/21/2022]
Abstract
Understanding air pollution in urban areas is crucial to identify mitigation actions that may improve air quality and, consequently, minimize human exposure to air pollutants and their impact. This study aimed to assess the temporal evolution of the air quality in the city of Setúbal (Portugal) during a time period of 10 years (2003–2012), by evaluating seasonal trends of air pollutants (PM10, PM2.5, O3, NO, NO2 and NOx) measured in nine monitoring stations. In order to identify emission sources of particulate matter, PM2.5 and PM2.5–10 were characterized in two different areas (urban traffic and industrial) in winter and summer and, afterwards, source apportionment was performed by means of Positive Matrix Factorization. Overall, the air quality has been improving over the years with a decreasing trend of air pollutant concentration, with the exception of O3. Despite this improvement, levels of PM10, O3 and nitrogen oxides still do not fully comply with the requirements of European legislation, as well as with the guideline values of the World Health Organization (WHO). The main anthropogenic sources contributing to local PM levels were traffic, industry and wood burning, which should be addressed by specific mitigation measures in order to minimize their impact on the local air quality.
Collapse
|
241
|
Zhu X, Lei L, Han J, Wang P, Liang F, Wang X. Passenger comfort and ozone pollution exposure in an air-conditioned bus microenvironment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:496. [PMID: 32643033 DOI: 10.1007/s10661-020-08471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Ground-level ozone is the primary source of air pollution in China, particularly during the warmer months. In this study, we investigated the exposure status of ozone pollution and the temperature distribution in an air-conditioned bus in Jinan during the evening peak period based on field measurements obtained with a handheld portable particle counter and indigo disulfonate spectrophotometry. Statistical analysis showed that the passengers experienced poor air quality within the confines of the bus due to the poor air quality outside. Furthermore, the level of passenger comfort was dissatisfactory because of the high temperature, thereby highlighting the urgent need to improve the current situation. Numerical simulations were conducted using FLUENT software to explore the impacts of the air supply angle, the opening and closing of the bus door, and the chemical reaction between ozone and its precursors on the diffusion and distribution of ozone, the temperature, and the airflow field. The results indicated that high concentrations of ozone were present in the middle and front regions of the bus. Pollution can be reduced by keeping the bus door open for no longer than 20 s when waiting for other passengers, and the best optimization effect in relation to the temperature and passenger comfort was determined as an air supply angle of 30°. In addition, the average individual daily intake of ozone was combined with other relevant parameters to assess the exposure level. It is recommended that the elderly and children should avoid peak time travel to reduce their exposure to ozone (inhalation dose values > 60 μg/m3 and > 56 μg/m3 according to simulations, respectively). These findings are expected to effectively improve the air quality and passenger comfort levels in busses, thereby protecting the health of passengers and reducing carbon usage.
Collapse
Affiliation(s)
- Xiaoxuan Zhu
- School of Power and Energy Engineering, Shandong University, P.O. Box 250061, Jinan, China
- School of Automotive Engineering, Shandong Yingcai University, P.O. Box 250104, Jinan, China
| | - Li Lei
- School of Power and Energy Engineering, Shandong University, P.O. Box 250061, Jinan, China.
| | - Jitian Han
- School of Power and Energy Engineering, Shandong University, P.O. Box 250061, Jinan, China
| | - Peng Wang
- Design institute of Shandong Guoshun Group Co., Ltd., P.O. Box 250000, Jinan, China
| | - Fushun Liang
- School of Power and Energy Engineering, Shandong University, P.O. Box 250061, Jinan, China
| | - Xingshen Wang
- School of Traffic and Transportation, Beijing Jiaotong University, P.O. Box 100044, Beijing, China
| |
Collapse
|
242
|
Poulsen AH, Hvidtfeldt UA, Sørensen M, Puett R, Ketzel M, Brandt J, Geels C, Christensen JH, Raaschou-Nielsen O. Intracranial tumors of the central nervous system and air pollution - a nationwide case-control study from Denmark. Environ Health 2020; 19:81. [PMID: 32641060 PMCID: PMC7346389 DOI: 10.1186/s12940-020-00631-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/24/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Inconclusive evidence has suggested a possible link between air pollution and central nervous system (CNS) tumors. We investigated a range of air pollutants in relation to types of CNS tumors. METHODS We identified all (n = 21,057) intracranial tumors in brain, meninges and cranial nerves diagnosed in Denmark between 1989 and 2014 and matched controls on age, sex and year of birth. We established personal 10-year mean residential outdoor exposure to particulate matter < 2.5 μm (PM2.5), nitrous oxides (NOX), primary emitted black carbon (BC) and ozone. We used conditional logistic regression to calculate odds ratios (OR) linearly (per interquartile range (IQR)) and categorically. We accounted for personal income, employment, marital status, use of medication as well as socio-demographic conditions at area level. RESULTS Malignant tumors of the intracranial CNS was associated with BC (OR: 1.034, 95%CI: 1.005-1.065 per IQR. For NOx the OR per IQR was 1.026 (95%CI: 0.998-1.056). For malignant non-glioma tumors of the brain we found associations with PM2.5 (OR: 1.267, 95%CI: 1.053-1.524 per IQR), BC (OR: 1.049, 95%CI: 0.996-1.106) and NOx (OR: 1.051, 95% CI: 0.996-1.110). CONCLUSION Our results suggest that air pollution is associated with malignant intracranial CNS tumors and malignant non-glioma of the brain. However, additional studies are needed.
Collapse
Affiliation(s)
- Aslak Harbo Poulsen
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark
| | - Ulla Arthur Hvidtfeldt
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark
| | - Mette Sørensen
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Robin Puett
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD USA
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE) Department of Civil and Environmental Engineering, University of Surrey, Guildford, UK
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Camilla Geels
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
243
|
Milton LA, White AR. The potential impact of bushfire smoke on brain health. Neurochem Int 2020; 139:104796. [PMID: 32650032 DOI: 10.1016/j.neuint.2020.104796] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/20/2020] [Accepted: 06/22/2020] [Indexed: 11/26/2022]
Abstract
Smoke from bushfires (also known as wildfires or forest fires) has blanketed large regions of Australia during the southern hemisphere summer of 2019/2020, potentially endangering residents who breathe the polluted air. While such air pollution is known to cause respiratory irritation and damage, its effect on the brain is not well described. In this review, we aim to outline the potentially damaging effects of bushfire smoke on brain health. We also describe the composition of air pollution, including ambient particulate matter (PM) and bushfire PM, before covering the general health effects of each. The investigated entry routes for ambient PM and postulated entry routes for bushfire PM are discussed, along with epidemiological and experimental evidence of the effect of both PMs in the brain. It appears that bushfire PM may be more toxic than ambient PM, and that it may enter the brain through extrapulmonary or olfactory routes to cause inflammation and oxidative stress. Ultimately, this review highlights the desperate requirement of greater research into the effects of bushfire PM on brain health.
Collapse
Affiliation(s)
- Laura A Milton
- Mental Health Program, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, 4006, Australia
| | - Anthony R White
- Mental Health Program, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, 4006, Australia.
| |
Collapse
|
244
|
Ereth MH, Hess DH, Driscoll A, Hernandez M, Stamatatos F. Particle control reduces fine and ultrafine particles greater than HEPA filtration in live operating rooms and kills biologic warfare surrogate. Am J Infect Control 2020; 48:777-780. [PMID: 31911069 DOI: 10.1016/j.ajic.2019.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Controlling indoor air quality and the airborne transmission of infectious agents in hospitals is critical. The most hazardous particles and pathogens are not easily eliminated by traditionally passive air cleansing. METHODS We studied the effect of a novel particle control technology on airborne particulate matter in 2 live real-world operating room settings and on pathogen survival in a microbiology laboratory. RESULTS Particle control technology reduced operating room particle and pathogen loads by 94.4% in a community hospital operating room, and by 95% in an academic medical center operating room. The addition of particle control technology to a collector loaded with a biologic warfare surrogate resulted in a 95% kill rate of an anthrax surrogate (Bacillus subtilis) within 3 hours. DISCUSSION Deployment of this emerging technology could significantly reduce indoor air contamination and associated infections in operating rooms, hospital isolation rooms, and intensive care settings, as well as reduce inflammatory responses to airborne particles. CONCLUSIONS The particle control technology studied may protect patients from hospital-acquired infections, reduce inflammatory pulmonary disease, and mitigate exposure to biologic weapons.
Collapse
Affiliation(s)
- Mark H Ereth
- Department of Anesthesiology, Mayo Clinic College of Medicine and Science, Rochester, MN.
| | | | | | - Mark Hernandez
- Department of Environmental Engineering, University of Colorado Boulder, Boulder, CO
| | | |
Collapse
|
245
|
Chang AB, Oppenheimer JJ, Irwin RS, Adams TM, Altman KW, Azoulay E, Blackhall F, Birring SS, Bolser DC, Boulet LP, Braman SS, Brightling C, Callahan-Lyon P, Chang AB, Cowley T, Davenport P, El Solh AA, Escalante P, Field SK, Fisher D, French CT, Grant C, Harding SM, Harnden A, Hill AT, Irwin RS, Kahrilas PJ, Kavanagh J, Keogh KA, Lai K, Lane AP, Lilly C, Lim K, Lown M, Madison JM, Malesker MA, Mazzone S, McGarvey L, Molasoitis A, Murad MH, Narasimhan M, Oppenheimer J, Russell RJ, Ryu JH, Singh S, Smith MP, Tarlo SM, Vertigan AE. Managing Chronic Cough as a Symptom in Children and Management Algorithms. Chest 2020; 158:303-329. [DOI: 10.1016/j.chest.2020.01.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/11/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
|
246
|
Dujardin CE, Mars RAT, Manemann SM, Kashyap PC, Clements NS, Hassett LC, Roger VL. Impact of air quality on the gastrointestinal microbiome: A review. ENVIRONMENTAL RESEARCH 2020; 186:109485. [PMID: 32289569 DOI: 10.1016/j.envres.2020.109485] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/20/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Poor air quality is increasingly associated with several gastrointestinal diseases suggesting a possible association between air quality and the human gut microbiome. However, details on this remain largely unexplored as current available research is scarce. The aim of this comprehensive rigorous review was to summarize the existing reports on the impact of indoor or outdoor airborne pollutants on the animal and human gut microbiome and to outline the challenges and suggestions to expand this field of research. METHODS AND RESULTS A comprehensive search of several databases (inception to August 9, 2019, humans and animals, English language only) was designed and conducted by an experienced librarian to identify studies describing the impact of air pollution on the human gut microbiome. The retrieved articles were assessed independently by two reviewers. This process yielded six original research papers on the animal GI gastrointestinal microbiome and four on the human gut microbiome. β-diversity analyses from selected animal studies demonstrated a significantly different composition of the gut microbiota between control and exposed groups but changes in α-diversity were less uniform. No consistent findings in α or β-diversity were reported among the human studies. Changes in microbiota at the phylum level disclosed substantial discrepancies across animal and human studies. CONCLUSIONS A different composition of the gut microbiome, particularly in animal models, is associated with exposure to air pollution. Air pollution is associated with various taxa changes, which however do not follow a clear pattern. Future research using standardized methods are critical to replicate these initial findings and advance this emerging field.
Collapse
Affiliation(s)
- Charlotte E Dujardin
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ruben A T Mars
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Sheila M Manemann
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Nicholas S Clements
- Well Living Lab, Inc., 221 First Avenue SW, Rochester, MN, 55902, USA; Department of General Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Leslie C Hassett
- Library Public Services, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Véronique L Roger
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA; Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
247
|
Brostrøm A, Kling KI, Hougaard KS, Mølhave K. Complex Aerosol Characterization by Scanning Electron Microscopy Coupled with Energy Dispersive X-ray Spectroscopy. Sci Rep 2020; 10:9150. [PMID: 32499579 PMCID: PMC7272469 DOI: 10.1038/s41598-020-65383-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Particulate matter (PM) air pollution is a central concern for public health. Current legislation relies on a mass concentration basis, despite broad acceptance that mass alone is insufficient to capture the complexity and toxicity of airborne PM, calling for additional and more comprehensive measurement techniques. We study to what extent scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDS) can be applied for physicochemical characterization of complex aerosols, and investigate its potential for separating particle properties on a single particle basis, even for nanosized particles. SEM/EDS analysis is performed on impactor samples of laboratory generated aerosols, consisting of either NaCl, Halloysite fibers, soot-like Printex90 agglomerates, or their combination. The analysis is automated and performed as EDS maps, covering a statistically relevant number of particles, with analysis times of approximately one hour/sample. Derived size distributions are compared to scanning mobility particle sizer (SMPS) and electric low-pressure impactor (ELPI) results. A method is presented to estimate airborne number concentrations and size distributions directly from SEM results, within a factor 10 of SMPS and ELPI outcomes. A classification scheme is developed based on elemental composition, providing class-specific information with individual particle statistics on shape, size, and mixing state. This can identify primary particles for source apportionment and enables easy distinction between fibrous and dense particle classes, e.g. for targeted risk assessments. Overall, the SEM/EDS analysis provides a more detailed physicochemical characterization of PM than online measurements, e.g. SMPS and ELPI. The method has the potential to improve assessments of PM exposure and risk, and facilitates source identification, even without prior knowledge at sampling.
Collapse
Affiliation(s)
- Anders Brostrøm
- Technical University of Denmark, DTU Nanolab - National Centre for Nano Fabrication and Characterization, Fysikvej, Building 307, 2800 Kgs, Lyngby, Denmark.,National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Kirsten I Kling
- Technical University of Denmark, DTU Nanolab - National Centre for Nano Fabrication and Characterization, Fysikvej, Building 307, 2800 Kgs, Lyngby, Denmark.,SAXOCON A/S, Bredevej 2D, 2830, Virum, Denmark
| | - Karin S Hougaard
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Kristian Mølhave
- Technical University of Denmark, DTU Nanolab - National Centre for Nano Fabrication and Characterization, Fysikvej, Building 307, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
248
|
Padula AM, Rivera-Núñez Z, Barrett ES. Combined Impacts of Prenatal Environmental Exposures and Psychosocial Stress on Offspring Health: Air Pollution and Metals. Curr Environ Health Rep 2020; 7:89-100. [PMID: 32347455 PMCID: PMC7299240 DOI: 10.1007/s40572-020-00273-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Pregnant women and their offspring are vulnerable to the adverse effects of environmental and psychosocial stressors, individually and in combination. Here, we review the literature on how air pollution and metal exposures may interact with structural and individual-level stressors (including poverty and stressful life events) to impact perinatal and child outcomes. RECENT FINDINGS The adverse associations between air pollution and metal exposures and adverse infant and child health outcomes are often exacerbated by co-exposure to psychosocial stressors. Although studies vary by geography, study population, pollutants, stressors, and outcomes considered, the effects of environmental exposures and psychosocial stressors on early health outcomes are sometimes stronger when considered in combination than individually. Environmental and psychosocial stressors are often examined separately, even though their co-occurrence is widespread. The evidence that combined associations are often stronger raises critical issues around environmental justice and protection of vulnerable populations.
Collapse
Affiliation(s)
- Amy M Padula
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.
| | - Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Environmental and Occupational Health Sciences Institute, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Environmental and Occupational Health Sciences Institute, Rutgers School of Public Health, Piscataway, NJ, USA
| |
Collapse
|
249
|
Mao Z, Dong S, Li J, Lin X, Jian X, Wu P. Inorganic gas sensing of green phosphorene nanosheet: insights from density functional theory. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:355002. [PMID: 32330915 DOI: 10.1088/1361-648x/ab8cda] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Our work highlights the functionality of a novel two-dimensional phosphorene allotrope entitled green phosphorene for inorganic gas detection for the first time. Four inorganic molecules, NH3, SO2, HCN and O3, are considered as adsorbates and the adsorption conformation, adsorption energy, charge transfer, density of states, and electronic band structure are systematically scrutinized based on density functional theory. Our calculations show that the adsorption energy of O3on pristine green phosphorene is the lowest among the four considered gas molecules, suggesting that the substrate is more sensitive to O3. Significant changes in electronic structures confirm the possibility of green phosphorene for O3detection. Biaxial strains and electric fields were applied to investigate the changes in adsorption behavior. The presence of compressive strain could enhance adsorption sensitivity between O3and green phosphorene, while the tensile strain induces the dissociative adsorption that not suitable for reversible sensor. Furthermore, by controlling the orientation of external electric field, it is possible to achieve O3adsorption-desorption cycle, which is of great significance for green phosphorene in the application of reversible gas sensor.
Collapse
Affiliation(s)
- Zhuo Mao
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, Department of Applied Physics, School of Science, Tianjin University, Tianjin 300354, People's Republic of China, Tel/Fax: +86-22-27408599
| | - Shengjie Dong
- Faculty of General Education, Guangdong Baiyun University, Guangzhou 510450, People's Republic of China
| | - Jiesen Li
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, People's Republic of China
| | - Xiang Lin
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, Department of Applied Physics, School of Science, Tianjin University, Tianjin 300354, People's Republic of China, Tel/Fax: +86-22-27408599
| | - Xiaodong Jian
- National Supercomputer Center in Tianjin, 3F, No. 5 Building, TEDA Tianhe Science and Technology Park, Binhai New Area, Tianjin, 300457, People's Republic of China
| | - Ping Wu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, Department of Applied Physics, School of Science, Tianjin University, Tianjin 300354, People's Republic of China, Tel/Fax: +86-22-27408599
| |
Collapse
|
250
|
High Resolution Chemistry Transport Modeling with the On-Line CHIMERE-WRF Model over the French Alps—Analysis of a Feedback of Surface Particulate Matter Concentrations on Mountain Meteorology. ATMOSPHERE 2020. [DOI: 10.3390/atmos11060565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Air pollution is of major concern throughout the world and the use of modeling tools to analyze and forecast the pollutant concentrations in complex orographic areas remains challenging. This work proposes an exhaustive framework to analyze the ability of models to simulate the air quality over the French Alps up to 1.2 km resolution over Grenoble and the Arve Valley. The on-line coupled suite of models CHIMERE-WRF is used in its recent version to analyze a 1 month episode in November–December 2013. As expected, an improved resolution increases the concentrations close to the emission areas and reduced the negative bias for Particulate Matter that is the usual weakness of air quality models. However, the nitrate concentrations seem overestimated with at the same time an overestimation of surface temperature in the morning by WRF. Different WRF settings found in the literature are tested to improve the results, particularly the ability of the meteorological model to simulate the strong thermal inversions in the morning. Wood burning is one of the main contributor of air pollution during the period ranging from 80 to 90% of the Organic Matter. The activation of the on-line coupling has a moderate impact on the background concentrations but surprisingly a change of Particulate Matter (PM) concentrations in the valley will affect more the meteorology nearby high altitude areas than in the valley. This phenomenon is the result of a chain of processes involving the radiative effects and the water vapor column gradients in complex orographic areas. At last, the model confirms that the surrounding glaciers are largely impacted by long range transport of desert dust. However, in wintertime some outbreaks of anthropogenic pollution from the valley when the synoptic situation changes can be advected up to the nearby high altitude areas, then deposited.
Collapse
|