201
|
Al-Awsi GRL, Alameri AA, Al-Dhalimy AMB, Gabr GA, Kianfar E. Application of nano-antibiotics in the diagnosis and treatment of infectious diseases. BRAZ J BIOL 2023; 84:e264946. [PMID: 36722677 DOI: 10.1590/1519-6984.264946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 02/02/2023] Open
Abstract
Infectious diseases are the leading cause of death worldwide. Thus, nanotechnology provides an excellent opportunity to treat drug-resistant microbial infections. Numerous antibiotics have been used to inhibit the growth and kill of microbes, but the development of resistance and the emergence of side effects have severely limited the use of these agents. Due to the development of the nanotechnology, nanoparticles are widely used as antimicrobials. Silver and chitosan nanoparticles have antifungal, antiviral and antibacterial properties, and many studies confirm the antifungal properties of silver nanoparticles. Nowadays, the use of nanoparticles in the diagnosis and treatment of infectious diseases has developed due to less side effects and also the help of these particles in effective drug delivery to the target tissue. Liposomes are also used as carriers of drug delivery, genes, and modeling of cell membranes in both animals and humans. The ability of these liposomes to encapsulate large amounts of drugs, minimize unwanted side effects, high effectiveness and low toxicity has attracted the interest of researchers. This review article examines recent efforts by researchers to identify and treat infectious diseases using antimicrobial nanoparticles and drug nano-carriers.
Collapse
Affiliation(s)
- G R L Al-Awsi
- Al-Mustaqbal University College, Department of Radiological Techniques, Hillah, Babylon, Iraq
| | - A A Alameri
- University of Babylon, College of Science, Department of Chemistry, Babylon, Babylon, Iraq
| | - A M B Al-Dhalimy
- Altoosi University College, Department of Nursing, Najaf, Iraq.,The Islamic University, Islamic University Centre for Scientific Research, Najaf, Iraq
| | - G A Gabr
- Prince Sattam Bin Abdulaziz University, College of Pharmacy, Department of Pharmacology and Toxicology, Al-Kharj, Al-Kharj, Saudi Arabia.,Agricultural Genetic Engineering Research Institute - AGERI, Agricultural Research Center, Giza, Egypt
| | - E Kianfar
- Islamic Azad University, Department of Chemistry, Sousangerd, Iran.,Istanbul Medeniyet University, Department of Mechanical Engineering, Istanbul, Turkey.,Islamic Azad University, Department of Chemical Engineering, Arak, Iran.,Islamic Azad University, Young Researchers and Elite Club, Gachsaran, Iran
| |
Collapse
|
202
|
Baruah N, Ahamad N, Halder P, Koley H, Katti DS. Facile synthesis of multi-faceted, biomimetic and cross-protective nanoparticle-based vaccines for drug-resistant Shigella: a flexible platform technology. J Nanobiotechnology 2023; 21:34. [PMID: 36710326 PMCID: PMC9884485 DOI: 10.1186/s12951-023-01780-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND No commercial vaccines are available against drug-resistant Shigella due to serotype-specific/narrow-range of protection. Nanoparticle-based biomimetic vaccines involving stable, conserved, immunogenic proteins fabricated using facile chemistries can help formulate a translatable cross-protective Shigella vaccine. Such systems can also negate cold-chain transportation/storage thus overcoming challenges prevalent in various settings. METHODS We explored facile development of biomimetic poly (lactide-co-glycolide)/PLGA 50:50 based nanovaccines (NVs), encapsulating conserved stabilized antigen(s)/immunostimulant of S. dysenteriae 1 origin surface-modified using simple chemistries. All encapsulants (IpaC/IpaB/LPS) and nanoparticles (NPs)-bare and modified (NV), were thoroughly characterized. Effect of IpaC on cellular uptake of NPs was assessed in-vitro. Immunogenicity of the NVs was assessed in-vivo in BALB/c mice by intranasal immunization. Cross-protective efficacy was assessed by intraperitoneally challenging the immunized groups with a high dose of heterologous S. flexneri 2a and observing for visible diarrhea, weight loss and survival. Passive-protective ability of the simplest NV was assessed in the 5-day old progeny of vaccinated mice. RESULTS All the antigens and immunostimulant to be encapsulated were successfully purified and found to be stable both before and after encapsulation into NPs. The ~ 300 nm sized NPs with a zeta potential of ~ - 25 mV released ~ 60% antigen by 14th day suggesting an appropriate delivery kinetics. The NPs could be successfully surface-modified with IpaC and/or CpG DNA. In vitro experiments revealed that the presence of IpaC can significantly increase cellular uptake of NPs. All NVs were found to be cytocompatible and highly immunogenic. Antibodies in sera of NV-immunized mice could recognize heterologous Shigella. Immunized sera also showed high antibody and cytokine response. The immunized groups were protected from diarrhea and weight loss with ~ 70-80% survival upon heterologous Shigella challenge. The simplest NV showed ~ 88% survival in neonates. CONCLUSIONS Facile formulation of biomimetic NVs can result in significant cross-protection. Further, passive protection in neonates suggest that parental immunization could protect infants, the most vulnerable group in context of Shigella infection. Non-invasive route of vaccination can also lead to greater patient compliance making it amenable for mass-immunization. Overall, our work contributes towards a yet to be reported platform technology for facile development of cross-protective Shigella vaccines.
Collapse
Affiliation(s)
- Namrata Baruah
- grid.417965.80000 0000 8702 0100Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016 Uttar Pradesh India ,grid.417965.80000 0000 8702 0100The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, 208016 Uttar Pradesh India
| | - Nadim Ahamad
- grid.417965.80000 0000 8702 0100Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016 Uttar Pradesh India
| | - Prolay Halder
- grid.419566.90000 0004 0507 4551Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, 700010 West Bengal India
| | - Hemanta Koley
- grid.419566.90000 0004 0507 4551Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, 700010 West Bengal India
| | - Dhirendra S. Katti
- grid.417965.80000 0000 8702 0100Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016 Uttar Pradesh India ,grid.417965.80000 0000 8702 0100The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, 208016 Uttar Pradesh India
| |
Collapse
|
203
|
Sultana H, Aamir MN, Madni A, Rehman MU, Shafiq A, Shirazi JH, Hassan S, Sumaira. Polymeric Nanogel for Oral Delivery of the Chemotherapeutic Agent: Fabrication and Evaluation Alongside Toxicological Studies and Histopathological Examination. AAPS PharmSciTech 2023; 24:43. [PMID: 36702971 DOI: 10.1208/s12249-023-02499-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/27/2022] [Indexed: 01/27/2023] Open
Abstract
Nanogel has attracted considerable attention as one of the most versatile drug delivery systems, especially for site-specific and/or time-controlled delivery of the chemotherapeutic agent. The main objective of this study was to prepare the polymeric nanogel characterized by Fourier transform infrared spectroscopy, x-ray diffraction, thermogravimetric analysis, differential scanning, and oral acute toxicity. Free radical polymerization was done for the fabrication of polymeric nanogel. Fourier transform infrared spectroscopy was used to confirm the successful free radical polymerization. Various techniques such as x-ray diffraction, differential scanning calorimetric, and thermogravimetric analysis measurement were used to investigate the thermal behavior and crystallinity of developed nanogel. Parameters such as swelling, drug loading, and in vitro drug release is enhanced as polymers and monomers concentrations increase while these parameters decrease in case of increasing crosslinker concentration. The oral biocompatibility results of developed nanogel exhibited no toxicity in rabbits. Histopathological changes were observed between empty and loaded group. The nanosized gel offers a specific surface area which increases the stability of loaded drug (oxaliplatin) and bioavailability of the drug (oxaliplatin) as compared to the conventional drug delivery systems.
Collapse
Affiliation(s)
- Humaira Sultana
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Muhammad Naeem Aamir
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan. .,School of Pharmacy, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Masood Ur Rehman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 45320, Pakistan
| | - Afifa Shafiq
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Jafir Hussain Shirazi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Sidra Hassan
- Bahawalpur College of Pharmacy, Bahawalpur Medical and Dental College, Bahawalpur, Pakistan
| | - Sumaira
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| |
Collapse
|
204
|
Sarkar A, Roy S, Bhatia P, Jaiswal A. Quaternary ammonium substituted dextrin‐based biocompatible cationic nanoparticles with ultrahigh
pH
stability for drug delivery. J Appl Polym Sci 2023. [DOI: 10.1002/app.53626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ankita Sarkar
- School of Biosciences and Bioengineering Indian Institute of Technology Mandi Mandi India
| | - Shounak Roy
- School of Biosciences and Bioengineering Indian Institute of Technology Mandi Mandi India
| | - Prachi Bhatia
- School of Biosciences and Bioengineering Indian Institute of Technology Mandi Mandi India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering Indian Institute of Technology Mandi Mandi India
| |
Collapse
|
205
|
Optimizing the Preparation of Silk Fibroin Nanoparticles and Their Loading with Polyphenols: Towards a More Efficient Anti-Inflammatory Effect on Macrophages. Pharmaceutics 2023; 15:pharmaceutics15010263. [PMID: 36678894 PMCID: PMC9861267 DOI: 10.3390/pharmaceutics15010263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Silk fibroin nanoparticles (SFN) have become a promising tool in drug delivery systems due to their physicochemical characteristics. SFN have shown their outstanding properties as an active vehicle for polyphenols, enhancing their antioxidant and anti-inflammatory effects on macrophages; therefore, it becomes necessary to have an easy, reproducible and scalable production method. In order to improve the production of nanoparticles, we performed direct precipitation of non-dialyzed silk fibroin solutions and evaluated the reproducibility of the method using dynamic light scattering. We also studied the loading efficiency of three different natural polyphenols using propylene glycol as a solvent. The loaded nanoparticles were fully characterized and used to treat human macrophage cells to assess the anti-inflammatory activity of these nanoparticles. The measured hydrodynamic characteristics of the SFN and the overall yield of the process showed that the new preparation method is highly reproducible and repeatable. Thus, we not only present a new scalable method to prepare silk nanoparticles but also how to improve the loading of natural polyphenolic compounds to the SFN, as well as the important anti-inflammatory effects of these loaded nanoparticles in a cell model of human macrophage cells.
Collapse
|
206
|
Rani S, Sahoo RK, Kumar V, Chaurasiya A, Kulkarni O, Mahale A, Katke S, Kuche K, Yadav V, Jain S, Nakhate KT, Ajazuddin, Gupta U. N-2-Hydroxypropylmethacrylamide-Polycaprolactone Polymeric Micelles in Co-delivery of Proteasome Inhibitor and Polyphenol: Exploration of Synergism or Antagonism. Mol Pharm 2023; 20:524-544. [PMID: 36306447 DOI: 10.1021/acs.molpharmaceut.2c00752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Breast cancer leads to the highest mortality among women resulting in a major clinical burden. Multidrug therapy is more efficient in such patients compared to monodrug therapy. Simultaneous combinatorial or co-delivery garnered significant interest in the past years. Caffeic acid (CFA) (a natural polyphenol) has received growing attention because of its anticarcinogenic and antioxidant potential. Bortezomib (BTZ) is a proteasome inhibitor and may be explored for treating breast cancer. Despite its high anticancer activity, the low water solubility and chemical instability restrict its efficacy against solid tumors. In the present study, we designed and investigated a HP-PCL (N-2-hydroxypropylmethacrylamide-polycaprolactone) polymeric micellar (PMCs) system for the simultaneous delivery of BTZ and CFA in the treatment of breast cancer. The designed BTZ+CFA-HP-PCL PMCs were fabricated, optimized, and characterized for size, zeta potential, surface morphology, and in vitro drug release. Developed nanosized (174.6 ± 0.24 nm) PMCs showed enhanced cellular internalization and cell cytotoxicity in both MCF-7 and MDA-MB-231 cells. ROS (reactive oxygen species) levels were highest in BTZ-HP-PCL PMCs, while CFA-HP-PCL PMCs significantly (p < 0.001) scavenged the ROS generated in 2',7'-dichlorofluorescein diacetate (DCFH-DA) assay. The mitochondrial membrane potential (MMP) assay revealed intense and significant green fluorescence in both types of cancer cells when treated with BTZ-HP-PCL PMCs (p < 0.001) indicating apoptosis or cell death. The pharmacokinetic studies revealed that BTZ-HP-PCL PMCs and BTZ+CFA-HP-PCL PMCs exhibited the highest bioavailability, enhanced plasma half-life, decreased volume of distribution, and lower clearance rate than the pure combination of drugs. In the organ biodistribution studies, the combination of BTZ+CFA showed higher distribution in the spleen and the heart. Overall findings of in vitro studies surprisingly resulted in better therapeutic efficiency of BTZ-HP-PCL PMCs than BTZ+CFA-HP-PCL PMCs. However, the in vivo tumor growth inhibition study performed in tumor-induced mice concluded that the tumor growth was inhibited by both BTZ-HP-PCL PMCs and BTZ+CFA-HP-PCL PMCs (p < 0.0001) more efficiently than pure BTZ and the combination (BTZ+CFA), which may be due to the conversion of boronate ester into boronic acid. Henceforth, the combination of BTZ and CFA provides further indications to be explored in the future to support the hypothesis that BTZ may work with polyphenol (CFA) in the acidic environment of the tumor.
Collapse
Affiliation(s)
- Sarita Rani
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan305817, India
| | - Rakesh K Sahoo
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan305817, India
| | - Vinay Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan305817, India
| | - Akash Chaurasiya
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Medchal District, Hyderabad, Telangana500078, India
| | - Onkar Kulkarni
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Medchal District, Hyderabad, Telangana500078, India
| | - Ashutosh Mahale
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Medchal District, Hyderabad, Telangana500078, India
| | - Sumeet Katke
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Medchal District, Hyderabad, Telangana500078, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab160062, India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab160062, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra424001, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh490024, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan305817, India
| |
Collapse
|
207
|
Dristant U, Mukherjee K, Saha S, Maity D. An Overview of Polymeric Nanoparticles-Based Drug Delivery System in Cancer Treatment. Technol Cancer Res Treat 2023; 22:15330338231152083. [PMID: 36718541 PMCID: PMC9893377 DOI: 10.1177/15330338231152083] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Cancer is recognized as one of the world's deadliest diseases, with more than 10 million new cases each year. Over the past 2 decades, several studies have been performed on cancer to pursue solutions for effective treatment. One of the vital benefits of utilizing nanoparticles (NPs) in cancer treatment is their high adaptability for modification and amalgamation of different physicochemical properties to boost their anti-cancer activity. Various nanomaterials have been designed as nanocarriers attributing nontoxic and biocompatible drug delivery systems with improved bioactivity. The present review article briefly explained various types of nanocarriers, such as organic-inorganic-hybrid NPs, and their targeting mechanisms. Here a special focus is given to the synthesis, benefits, and applications of polymeric NPs (PNPs) involved in various anti-cancer therapeutics. It has also been discussed about the drug delivery approach by the functionalized/encapsulated PNPs (without/with targeting ability) that are being applied in the therapy and diagnostic (theranostics). Overall, this review can give a glimpse into every aspect of PNPs, from their synthesis to drug delivery application for cancer cells.
Collapse
Affiliation(s)
- Utkarsh Dristant
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha, India
| | - Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
208
|
Lages M, Pesenti T, Zhu C, Le D, Mougin J, Guillaneuf Y, Nicolas J. Degradable polyisoprene by radical ring-opening polymerization and application to polymer prodrug nanoparticles. Chem Sci 2023; 14:3311-3325. [PMID: 36970097 PMCID: PMC10034157 DOI: 10.1039/d2sc05316k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Radical ring-opening copolymerization of isoprene and dibenzo[c,e]oxepane-5-thione via free-radical and controlled radical polymerizations led to degradable polyisoprene under basic, oxidative and physiological conditions with application to prodrug nanoparticles.
Collapse
Affiliation(s)
- Maëlle Lages
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Théo Pesenti
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Chen Zhu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Dao Le
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Julie Mougin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Yohann Guillaneuf
- Aix-Marseille-Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| |
Collapse
|
209
|
Ashrafizadeh M, Hushmandi K, Mirzaei S, Bokaie S, Bigham A, Makvandi P, Rabiee N, Thakur VK, Kumar AP, Sharifi E, Varma RS, Aref AR, Wojnilowicz M, Zarrabi A, Karimi‐Maleh H, Voelcker NH, Mostafavi E, Orive G. Chitosan-based nanoscale systems for doxorubicin delivery: Exploring biomedical application in cancer therapy. Bioeng Transl Med 2023; 8:e10325. [PMID: 36684100 PMCID: PMC9842052 DOI: 10.1002/btm2.10325] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Green chemistry has been a growing multidisciplinary field in recent years showing great promise in biomedical applications, especially for cancer therapy. Chitosan (CS) is an abundant biopolymer derived from chitin and is present in insects and fungi. This polysaccharide has favorable characteristics, including biocompatibility, biodegradability, and ease of modification by enzymes and chemicals. CS-based nanoparticles (CS-NPs) have shown potential in the treatment of cancer and other diseases, affording targeted delivery and overcoming drug resistance. The current review emphasizes on the application of CS-NPs for the delivery of a chemotherapeutic agent, doxorubicin (DOX), in cancer therapy as they promote internalization of DOX in cancer cells and prevent the activity of P-glycoprotein (P-gp) to reverse drug resistance. These nanoarchitectures can provide co-delivery of DOX with antitumor agents such as curcumin and cisplatin to induce synergistic cancer therapy. Furthermore, co-loading of DOX with siRNA, shRNA, and miRNA can suppress tumor progression and provide chemosensitivity. Various nanostructures, including lipid-, carbon-, polymeric- and metal-based nanoparticles, are modifiable with CS for DOX delivery, while functionalization of CS-NPs with ligands such as hyaluronic acid promotes selectivity toward tumor cells and prevents DOX resistance. The CS-NPs demonstrate high encapsulation efficiency and due to protonation of amine groups of CS, pH-sensitive release of DOX can occur. Furthermore, redox- and light-responsive CS-NPs have been prepared for DOX delivery in cancer treatment. Leveraging these characteristics and in view of the biocompatibility of CS-NPs, we expect to soon see significant progress towards clinical translation.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci University, Üniversite CaddesiTuzla, IstanbulTurkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of ScienceIslamic Azad University, Science and Research BranchTehranIran
| | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials ‐ National Research Council (IPCB‐CNR)NaplesItaly
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Center for Materials InterfacesPontedera, PisaItaly
| | - Navid Rabiee
- School of Engineering, Macquarie UniversitySydneyNew South WalesAustralia
| | - Vijay Kumar Thakur
- School of EngineeringUniversity of Petroleum & Energy Studies (UPES)DehradunUttarakhandIndia
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC)EdinburghUK
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR)Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
| | - Esmaeel Sharifi
- Department of Tissue Engineering and BiomaterialsSchool of Advanced Medical Sciences and Technologies, Hamadan University of Medical SciencesHamadanIran
| | - Rajender S. Varma
- Regional Center of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute, Palacky UniversityOlomoucCzech Republic
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana‐Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
- Xsphera Biosciences Inc.BostonMassachusettsUSA
| | - Marcin Wojnilowicz
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) ManufacturingClaytonVictoriaAustralia
- Monash Institute of Pharmaceutical SciencesParkvilleVictoriaAustralia
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Hassan Karimi‐Maleh
- School of Resources and Environment, University of Electronic Science and Technology of ChinaChengduPR China
- Department of Chemical EngineeringQuchan University of TechnologyQuchanIran
- Department of Chemical Sciences, University of Johannesburg, Doornfontein CampusJohannesburgSouth Africa
| | - Nicolas H. Voelcker
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) ManufacturingClaytonVictoriaAustralia
- Monash Institute of Pharmaceutical SciencesParkvilleVictoriaAustralia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVictoriaAustralia
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordCaliforniaUSA
- Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Gorka Orive
- NanoBioCel Research Group, School of PharmacyUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI(UPV/EHU‐Fundación Eduardo Anitua)Vitoria‐GasteizSpain
- Bioaraba, NanoBioCel Research GroupVitoria‐GasteizSpain
- Singapore Eye Research InstituteSingapore
| |
Collapse
|
210
|
Shin YB, Choi JY, Shin DH, Lee JW. Anticancer Evaluation of Methoxy Poly(Ethylene Glycol)- b-Poly(Caprolactone) Polymeric Micelles Encapsulating Fenbendazole and Rapamycin in Ovarian Cancer. Int J Nanomedicine 2023; 18:2209-2223. [PMID: 37152471 PMCID: PMC10162106 DOI: 10.2147/ijn.s394712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/25/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose We aimed to inhibit ovarian cancer (OC) development by interfering with microtubule polymerization and inhibiting mTOR signaling. To achieve this, previously developed micelles containing fenbendazole and rapamycin were applied. Methods Herein, we prepared micelles for drug delivery using fenbendazole and rapamycin at a 1:2 molar ratio and methoxy poly(ethylene glycol)-b-poly(caprolactone)(mPEG-b-PCL) via freeze-drying. We revealed their long-term storage capacity of up to 120 days. Furthermore, a cytotoxicity test was performed on the OC cell line HeyA8, and an orthotopic model was established for evaluating in vivo antitumor efficacy. Results Fenbendazole/rapamycin-loaded mPEG-b-PCL micelle (M-FR) had an average particle size of 37.2 ± 1.10 nm, a zeta potential of -0.07 ± 0.09 mV, and a polydispersity index of 0.20 ± 0.02. Additionally, the average encapsulation efficiency of fenbendazole was 75.7 ± 4.61% and that of rapamycin was 98.0 ± 1.97%. In the clonogenic assay, M-FR was 6.9 times more effective than that free fenbendazole/rapamycin. The in vitro drug release profile showed slower release in the combination formulation than in the single formulation. Conclusion There was no toxicity, and tumor growth was suppressed substantially by our formulation compared with that seen with the control. The findings of our study lay a foundation for using fenbendazole and rapamycin for OC treatment.
Collapse
Affiliation(s)
- Yu Been Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Ju-Yeon Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
- Correspondence: Dae Hwan Shin, College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea, Tel +82 43 261 2820, Fax +82 43 268 2732, Email
| | - Jeong-Won Lee
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Jeong-Won Lee, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea, Tel +82-2-3410-1382, Fax +82-2-3410-0630, Email
| |
Collapse
|
211
|
Qiang S, Gu L, Kuang Y, Zhao M, You Y, Han Q. Changes in the content of Puerarin-PLGA nanoparticles in mice under the influence of alcohol and analysis of their antialcoholism. J Appl Biomater Funct Mater 2023; 21:22808000221148100. [PMID: 36708246 DOI: 10.1177/22808000221148100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To observe the metabolic changes and antialcoholic effect of Puerarin-PLGA nanoparticles (PUE-NP) in mice. PUE-NP was prepared and characterized by particle size distribution and morphology. The mouse models with acute alcoholism were established to observe their behavioral changes after alcohol poisoning. The expressions of biologically active enzymes such as CRE, BUN, AST, ALT in serum and SOD and TLR4 in liver of mice in each group were detected, and the pathological changes in liver and kidney tissues were observed by HE staining. The PUE-NP metabolism in mice was determined by in vitro release assay and HPLC. PUE-NP nanoparticles had good morphology and structure, and the mouse models with alcohol poisoning were established successfully. Compared with alcohol group, puerarin and PUE-NP increased the disappearance latency time of righting reflex, and the recovery time of righting reflex was significantly shortened. Water maze results showed that Puerarin and PUE-NP had inhibitory effect on impaired memory. HPLC results showed that PUE-NP reached its peak in mice after 1 h, and the content percentage was twice that of puerarin preparation alone, and the distribution time of puerarin concentration in vivo was prolonged, indicating that PLGA nanoparticles had a loading and slow-release effect on puerarin and increased the bioavailability of puerarin in mice. In addition, compared with the alcohol group, Puerarin and PUE-NP improved serum ALT, AST, CRE, and BUN levels in mice, enhanced SOD activity in liver, and inhibited TLR4 expression. The effect was better in the PUE-NP group than in the Puerarin group. PUE-NP delayed the release and metabolism of Puerarin and had better effect in the treatment of the alcoholic liver and kidney injury.
Collapse
Affiliation(s)
- Siyu Qiang
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Lixiang Gu
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Yu Kuang
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Minyao Zhao
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Yu You
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Qin Han
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| |
Collapse
|
212
|
The Future of Nanomedicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
213
|
Biswas S, Biswas R. Chitosan-the miracle biomaterial as detection and diminishing mediating agent for heavy metal ions: A mini review. CHEMOSPHERE 2023; 312:137187. [PMID: 36379428 DOI: 10.1016/j.chemosphere.2022.137187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/17/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Proliferation of heavy metal ions as aquatic pollutants has been a matter of growing concern now a days. Several anthropogenic activities have fueled higher concentration of heavy metal ions in aquatic bodies above threshold values, as set by World Health Organization. Of late, chitosan for its exquisite properties has been widely used in tackling this burning problem of aquatic pollution caused by heavy metal ions. Accordingly, this mini review appraises the detection as well as diminution activities where chitosan plays the major contributing part. Starting from the intrinsic properties of chitosan, the detection strategy via chitosan composites is comprehensively delineated. Likewise, the removal activities via chitosan mediating agents are also overviewed, followed by future recommendations. It is believed that this mini review will give researchers a brief appraisal of two prominent activities related to controlling of heavy metal ion pollution.
Collapse
Affiliation(s)
- Sankar Biswas
- Department of English, Amguri College, Amguri, India
| | - Rajib Biswas
- Applied Optics and Photonics Laboratory, Department of Physics, Tezpur University, India.
| |
Collapse
|
214
|
de Souza Ferreira JN, Vasconcelos VVV, Figueiredo BS, Alves DP, de Abreu ALLV, de Souza PP, Costa DLN, da Silva AR. PLGA nanoparticles for treatment of cardiovascular diseases. POLY(LACTIC-CO-GLYCOLIC ACID) (PLGA) NANOPARTICLES FOR DRUG DELIVERY 2023:267-302. [DOI: 10.1016/b978-0-323-91215-0.00015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
215
|
Ahmed YW, Tsai HC, Wu TY, Darge HF, Chen YS. Role of thermal and reactive oxygen species-responsive synthetic hydrogels in localized cancer treatment (bibliometric analysis and review). MATERIALS ADVANCES 2023; 4:6118-6151. [DOI: 10.1039/d3ma00341h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Cancer is a major pharmaceutical challenge that necessitates improved care.
Collapse
Affiliation(s)
- Yohannis Wondwosen Ahmed
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
- Advanced Membrane Material Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, Republic of China
| | - Tsung-Yun Wu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
| | - Yu-Shuan Chen
- Bio Innovation Center, Buddhist Tzu Chi Medical Foundation, Taiwan, Republic of China
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
- Tzu Chi University of Science and Technology, Taiwan, Republic of China
| |
Collapse
|
216
|
Biodegradable Polymers in Triboelectric Nanogenerators. Polymers (Basel) 2022; 15:polym15010222. [PMID: 36616571 PMCID: PMC9823430 DOI: 10.3390/polym15010222] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Triboelectric nanogenerators (TENGs) have attracted much attention because they not only efficiently harvest energy from the surrounding environment and living organisms but also serve as multifunctional sensors toward the detection of various chemical and physical stimuli. In particular, biodegradable TENG (BD-TENG) represents an emerging type of self-powered device that can be degraded, either in physiological environments as an implantable power source without the necessity of second surgery for device retrieval, or in the ambient environment to minimize associated environmental pollution. Such TENGs or TNEG-based self-powered devices can find important applications in many scenarios, such as tissue regeneration, drug release, pacemakers, etc. In this review, the recent progress of TENGs developed on the basis of biodegradable polymers is comprehensively summarized. Material strategies and fabrication schemes of biodegradable and self-powered devices are thoroughly introduced according to the classification of plant-degradable polymer, animal-degradable polymer, and synthetic degradable polymer. Finally, current problems, challenges, and potential opportunities for the future development of BD-TENGs are discussed. We hope this work may provide new insights for modulating the design of BD-TNEGs that can be beneficial for both environmental protection and healthcare.
Collapse
|
217
|
Hegeman CV, de Jong OG, Lorenowicz MJ. A kaleidoscopic view of extracellular vesicles in lysosomal storage disorders. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:393-421. [PMID: 39697359 PMCID: PMC11651879 DOI: 10.20517/evcna.2022.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of stable lipid membrane particles that play a critical role in the regulation of numerous physiological and pathological processes. EV cargo, which includes lipids, proteins, and RNAs including miRNAs, is affected by the metabolic status of the parental cell. Concordantly, abnormalities in the autophagic-endolysosomal pathway, as seen in lysosomal storage disorders (LSDs), can affect EV release as well as EV cargo. LSDs are a group of over 70 inheritable diseases, characterized by lysosomal dysfunction and gradual accumulation of undigested molecules. LSDs are caused by single gene mutations that lead to a deficiency of a lysosomal protein or lipid. Lysosomal dysfunction sets off a cascade of alterations in the endolysosomal pathway that can affect autophagy and alter calcium homeostasis, leading to energy imbalance, oxidative stress, and apoptosis. The pathophysiology of these diseases is very heterogenous, complex, and currently incompletely understood. LSDs lead to progressive multisystemic symptoms that often include neurological deficits. In this review, a kaleidoscopic overview will be given on the roles of EVs in LSDs, from their contribution to pathology and diagnostics to their role as drug delivery vehicles. Furthermore, EV cargo and surface engineering strategies will be discussed to show the potential of EVs in future LSD treatment, both in the context of enzyme replacement therapy, as well as future gene editing strategies like CRISPR/Cas. The use of engineered EVs as drug delivery vehicles may mask therapeutic cargo from the immune system and protect it from degradation, improving circulation time and targeted delivery.
Collapse
Affiliation(s)
- Charlotte V. Hegeman
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Olivier G. de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
- Authors contributed equally
| | - Magdalena J. Lorenowicz
- Regenerative Medicine Center, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
- Biomedical Primate Research Centre, Lange Kleinweg 161, Rijswijk 2288 GJ, The Netherlands
- Authors contributed equally
| |
Collapse
|
218
|
Advances in Polymeric Colloids for Cancer Treatment. Polymers (Basel) 2022; 14:polym14245445. [PMID: 36559812 PMCID: PMC9788371 DOI: 10.3390/polym14245445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Polymer colloids have remarkable features and are gaining importance in many areas of research including medicinal science. Presently, the innovation of cancer drugs is at the top in the world. Polymer colloids have been used as drug delivery and diagnosis agents in cancer treatment. The polymer colloids may be of different types such as micelles, liposomes, emulsions, cationic carriers, and hydrogels. The current article describes the state-of-the-art polymer colloids for the treatment of cancer. The contents of this article are about the role of polymeric nanomaterials with special emphasis on the different types of colloidal materials and their applications in targeted cancer therapy including cancer diagnoses. In addition, attempts are made to discuss future perspectives. This article will be useful for academics, researchers, and regulatory authorities.
Collapse
|
219
|
Meghana MC, Nandhini C, Benny L, George L, Varghese A. A road map on synthetic strategies and applications of biodegradable polymers. Polym Bull (Berl) 2022; 80:1-50. [PMID: 36530484 PMCID: PMC9735231 DOI: 10.1007/s00289-022-04565-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 12/14/2022]
Abstract
Biodegradable polymers have emerged as fascinating materials due to their non-toxicity, environmentally benign nature and good mechanical strength. The toxic effects of non-biodegradable plastics paved way for the development of sustainable and biodegradable polymers. The engineering of biodegradable polymers employing various strategies like radical ring opening polymerization, enzymatic ring opening polymerization, anionic ring opening polymerization, photo-initiated radical polymerization, chemoenzymatic method, enzymatic polymerization, ring opening polymerization and coordinative ring opening polymerization have been discussed in this review. The application of biodegradable polymeric nanoparticles in the biomedical field and cosmetic industry is considered to be an emerging field of interest. However, this review mainly highlights the applications of selected biodegradable polymers like polylactic acid, poly(ε-caprolactone), polyethylene glycol, polyhydroxyalkanoates, poly(lactide-co-glycolide) and polytrimethyl carbonate in various fields like agriculture, biomedical, biosensing, food packaging, automobiles, wastewater treatment, textile and hygiene, cosmetics and electronic devices.
Collapse
Affiliation(s)
- M. C. Meghana
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - C. Nandhini
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Libina Benny
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Louis George
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| |
Collapse
|
220
|
Chen L, Kuang L, Ross AE, Farhat W, Boychev N, Sharfi S, Kanu LN, Liu L, Kohane DS, Ciolino JB. Topical Sustained Delivery of Miltefosine Via Drug-Eluting Contact Lenses to Treat Acanthamoeba Keratitis. Pharmaceutics 2022; 14:pharmaceutics14122750. [PMID: 36559244 PMCID: PMC9781349 DOI: 10.3390/pharmaceutics14122750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
This study aimed to develop a miltefosine-eluting contact lens (MLF-CL) device that would allow sustained and localized miltefosine release for the treatment of Acanthamoeba keratitis. MLF-CLs were produced in three different miltefosine doses by solvent-casting a thin miltefosine-polymer film around the periphery of a methafilcon hydrogel, which was then lathed into a contact lens. During seven days of in vitro testing, all three formulations demonstrated sustained release from the lens at theoretically therapeutic levels. Based on the physicochemical characterization of MLF-CLs, MLF-CL's physical properties are not significantly different from commercial contact lenses in terms of light transmittance, water content and wettability. MLF-CLs possessed a slight reduction in compression modulus that was attributed to the inclusion of polymer-drug films but still remain within the optimal range of soft contact lenses. In cytotoxicity studies, MLF-CL indicated up to 91% viability, which decreased proportionally as miltefosine loading increased. A three-day biocompatibility test on New Zealand White rabbits revealed no impact of MLF-CLs on the corneal tissue. The MLF-CLs provided sustained in vitro release of miltefosine for a week while maintaining comparable physical features to a commercial contact lens. MLF-CL has a promising potential to be used as a successful treatment method for Acanthamoeba keratitis.
Collapse
Affiliation(s)
- Lin Chen
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Liangju Kuang
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (L.K.); (J.B.C.)
| | - Amy E. Ross
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Wissam Farhat
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Nikolay Boychev
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Sina Sharfi
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Levi N. Kanu
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Longqian Liu
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Daniel S. Kohane
- Department of Anesthesia, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph B. Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (L.K.); (J.B.C.)
| |
Collapse
|
221
|
Gaglio SC, Jabalera Y, Montalbán-López M, Millán-Placer AC, Lázaro-Callejón M, Maqueda M, Carrasco-Jimenez MP, Laso A, Aínsa JA, Iglesias GR, Perduca M, López CJ. Embedding Biomimetic Magnetic Nanoparticles Coupled with Peptide AS-48 into PLGA to Treat Intracellular Pathogens. Pharmaceutics 2022; 14:2744. [PMID: 36559238 PMCID: PMC9785849 DOI: 10.3390/pharmaceutics14122744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Among the strategies employed to overcome the development of multidrug-resistant bacteria, directed chemotherapy combined with local therapies (e.g., magnetic hyperthermia) has gained great interest. A nano-assembly coupling the antimicrobial peptide AS-48 to biomimetic magnetic nanoparticles (AS-48-BMNPs) was demonstrated to have potent bactericidal effects on both Gram-positive and Gram-negative bacteria when the antimicrobial activity of the peptide was combined with magnetic hyperthermia. Nevertheless, intracellular pathogens remain challenging due to the difficulty of the drug reaching the bacterium. Thus, improving the cellular uptake of the nanocarrier is crucial for the success of the treatment. In the present study, we demonstrate the embedding cellular uptake of the original nano-assembly into THP-1, reducing the toxicity of AS-48 toward healthy THP-1 cells. We optimized the design of PLGA[AS-48-BMNPs] in terms of size, colloidal stability, and hyperthermia activity (either magnetic or photothermal). The stability of the nano-formulation at physiological pH values was evaluated by studying the AS-48 release at this pH value. The influence of pH and hyperthermia on the AS-48 release from the nano-formulation was also studied. These results show a slower AS-48 release from PLGA[AS-48-BMNPs] compared to previous nano-formulations, which could make this new nano-formulation suitable for longer extended treatments of intracellular pathogens. PLGA[AS-48-BMNPs] are internalized in THP-1 cells where AS-48 is liberated slowly, which may be useful to treat diseases and prevent infection caused by intracellular pathogens. The treatment will be more efficient combined with hyperthermia or photothermia.
Collapse
Affiliation(s)
| | - Ylenia Jabalera
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Manuel Montalbán-López
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Ana Cristina Millán-Placer
- Departamento de Microbiología, Pediatría, Radiología y Salud Publica (Facultad de Medicina) & BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marina Lázaro-Callejón
- Department of Applied Physics and Instituto de Investigación Biosanitaria ibs. GRANADA, NanoMag Laboratory, University of Granada, 18071 Granada, Spain
| | - Mercedes Maqueda
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | | | - Alejandro Laso
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain
| | - José A. Aínsa
- Departamento de Microbiología, Pediatría, Radiología y Salud Publica (Facultad de Medicina) & BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Guillermo R. Iglesias
- Department of Applied Physics and Instituto de Investigación Biosanitaria ibs. GRANADA, NanoMag Laboratory, University of Granada, 18071 Granada, Spain
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | | |
Collapse
|
222
|
Diniz F, Azevedo M, Sousa F, Osório H, Campos D, Sampaio P, Gomes J, Sarmento B, Reis CA. Polymeric nanoparticles targeting Sialyl-Tn in gastric cancer: A live tracking under flow conditions. Mater Today Bio 2022; 16:100417. [PMID: 36105678 PMCID: PMC9465339 DOI: 10.1016/j.mtbio.2022.100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
Drug delivery using nanoparticles (NPs) represents a potential approach for therapy in cancer, such gastric cancer (GC) due to their targeting ability and controlled release properties. The use of advanced nanosystems that deliver anti-cancer drugs specifically to tumor cells may strongly rely on the expression of cancer-associated targets. Glycans aberrantly expressed by cancer cells are attractive targets for such delivery strategy. Sialylated glycans, such as Sialyl-Tn (STn) are aberrantly expressed in several epithelial tumors, including GC, being a potential target for a delivery nanosystem. The aim of this study was the development of NPs surface-functionalized with a specific antibody targeting the STn glycan and further evaluate this nanosystem effectiveness regarding its specificity and recognition capacity. Our results showed that the NPs surface-functionalized with anti-STn antibody efficiently are recognized by cells displaying the cancer-associated STn antigen under static and live cell monitoring flow conditions. This uncovers the potential use of such NPs for drug delivery in cancer. However, flow exposure was disclosed as an important biomechanical parameter to be taken into consideration. Here we presented an innovative and successful methodology to live track the NPs targeting STn antigen under shear stress, simulating the physiological flow. We demonstrate that unspecific binding of NPs agglomerates did not occur under flow conditions, in contrast with static assays. This robust approach can be applied for in vitro drug studies, giving valuable insights for in vivo studies.
Collapse
Affiliation(s)
- Francisca Diniz
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Azevedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Flávia Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB- Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- CESPU-IUCS, 4585-116 Gandra, Portugal
| | - Hugo Osório
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Diana Campos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Paula Sampaio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB- Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- CESPU-IUCS, 4585-116 Gandra, Portugal
| | - Celso A. Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- FMUP- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Corresponding author. i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
223
|
Essa RZ, Wu YS, Batumalaie K, Sekar M, Poh CL. Antiviral peptides against SARS-CoV-2: therapeutic targets, mechanistic antiviral activity, and efficient delivery. Pharmacol Rep 2022; 74:1166-1181. [PMID: 36401119 PMCID: PMC9676828 DOI: 10.1007/s43440-022-00432-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022]
Abstract
The global pandemic of COVID-19 is a serious public health concern. Over 625 million confirmed cases and more than 6 million deaths have been recorded worldwide. Although several vaccines and antiviral medications have been developed, their efficacy is limited by the emerging new SARS-CoV-2 strains. Peptide-based therapeutics is a fast-growing class of new drugs and have unique advantages over large proteins and small molecules. Antiviral peptides (AVPs) are short polycationic antivirals with broad-spectrum effects, which have been shown to exert both prophylactic and therapeutic actions against reported coronaviruses. The potential therapeutic targets of AVPs are located either on the virus (e.g., E-protein and S-protein) to prohibit viral binding or host cells, particularly, those present on the cell surface (e.g., ACE2 and TMPRSS2). Despite AVPs having promising antiviral effects, their efficacy is limited by low bioavailability. Thus, nanoformulation is a prerequisite for prolonged bioavailability and efficient delivery. This review aimed to present an insight into the therapeutic AVP targets on both virus and host cells by discussing their antiviral activities and associated molecular mechanisms. Besides, it described the technique for discovering and developing possible AVPs based on their targets, as well as the significance of using nanotechnology for their efficient delivery against SARS-CoV-2.
Collapse
Affiliation(s)
- Raahilah Zahir Essa
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, 47500 Selangor, Malaysia
| | - Yuan-seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Selangor, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Selangor, Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, 81750 Johor, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, 30450 Ipoh, Perak Malaysia
| | - Chit-laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Selangor, Malaysia
| |
Collapse
|
224
|
Alvi M, Yaqoob A, Rehman K, Shoaib SM, Akash MSH. PLGA-based nanoparticles for the treatment of cancer: current strategies and perspectives. AAPS OPEN 2022. [DOI: 10.1186/s41120-022-00060-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AbstractResearch on cancer treatment is always of great importance because of the extensive and difficult treatment options and side effects of chemotherapeutic agents. Due to this, novel techniques for cancer treatment are the need of the day. Nowadays, nanotechnology is of great interest for its applications as diagnostic tools, theragnostic, contrasting agents, and vehicles for delivering drugs. Nanoparticles (NPs) are made up of biocompatible and biodegradable polymers that improve the pharmacokinetic and pharmacodynamic properties of drugs, reduce side effects, improve stability, prolong the release of drug, and reduce the dosing frequency. Poly (lactic-co-glycolic acid) (PLGA) is FDA-approved synthetic polymer which can be used to formulate NPs that can be targeted to a specific site for the safe and effective delivery of drugs. PLGA-based NPs can be used for a variety of cancer therapies including tumor-targeted drug delivery, gene therapy, hyperthermia, and photodynamic therapy. This article discusses the method of preparation, characterization, encapsulation of chemotherapeutic drugs, effect of physicochemical properties of PLGA- based NPs, and how we can exploit these aspects through various methods of preparation for drug loading, biodistribution, target specificity, and their use in cancer treatment. Along with these targeting strategies, gene therapy, cancer immunotherapy, and various applications have also been discussed. This article also aims to discuss the incorporation of diagnostic tools and therapeutic moiety in one versatile formulation of PLGA-NPs and the difficulties faced in translating this promising tool to clinical use.
Collapse
|
225
|
Tonon CC, Panariello B, Chorilli M, Spolidorio DMP, Duarte S. Effect of curcumin-loaded photoactivatable polymeric nanoparticle on peri-implantitis-related biofilm. Photodiagnosis Photodyn Ther 2022; 40:103150. [PMID: 36244678 DOI: 10.1016/j.pdpdt.2022.103150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Curcumin has been used as a photosensitizer (PS) for antimicrobial photodynamic chemotherapy (PACT). However, its low solubility, instability, and poor bioavailability challenge its in vivo application. This study aimed to synthesize curcumin-loaded polymeric nanoparticles (curcumin-NP) and determine their antimicrobial and cytotoxic effects. Nanoparticles (NP) were synthesized using polycaprolactone (PCL) as a polymer by the nanoprecipitation method. Curcumin-NP was characterized by particle size, polydispersity index and zeta potential, scanning electron microscopy, and curcumin encapsulation efficiency (EE). Curcumin-NP was compared to free curcumin solubilized in 10% DMSO as photosensitizers for PACT in single and multispecies Porphyromonas gingivalis, Fusobacterium nucleatum, and Streptococcus oralis biofilms. Chlorhexidine 0.12% (CHX) and ultrapure water were used as positive and negative controls. The cytotoxic effect of curcumin-NP was evaluated on human periodontal ligament fibroblast cells (HPLF). Data were analyzed by ANOVA (α=0.05). Curcumin-NP exhibited homogeneity and stability in solution, small particle size, and 67.5% EE of curcumin. Curcumin-NP presented reduced antibiofilm activity at 500 µg/ml, although in planktonic cultures it showed inhibitory and bactericidal effect. Curcumin-NP and curcumin with and without photoactivation were not cytotoxic to HPLF cells. Curcumin-NP has antimicrobial and antibiofilm properties, with better effects when associated with blue light, being a promising therapy for preventing and treating peri-implant diseases.
Collapse
Affiliation(s)
- Caroline Coradi Tonon
- Department of Oral Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Beatriz Panariello
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Marlus Chorilli
- Department of Drugs and Pharmaceuticals, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Simone Duarte
- American Dental Association Science and Research Institute, 211 E. Chicago Ave, Chicago, IL 60611, USA.
| |
Collapse
|
226
|
Hyldbakk A, Mørch Y, Snipstad S, Åslund AKO, Klinkenberg G, Nakstad VT, Wågbø AM, Schmid R, Molesworth PP. Identification of novel cyanoacrylate monomers for use in nanoparticle drug delivery systems prepared by miniemulsion polymerisation - A multistep screening approach. Int J Pharm X 2022; 4:100124. [PMID: 35898812 PMCID: PMC9310130 DOI: 10.1016/j.ijpx.2022.100124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/24/2022] Open
Abstract
Poly (alkyl cyanoacrylate) (PACA) polymeric nanoparticles (NPs) are promising drug carriers in drug delivery. However, the selection of commercially available alkyl cyanoacrylate (ACA) monomers is limited, because most monomers were designed for use in medical and industrial glues and later repurposed for drug encapsulation. This study therefore aimed to seek out novel ACA materials for use in NP systems using a toxicity led screening approach. A multistep strategy, including cytotoxicity screening of alcohols as degradation products of PACA (44 alcohols), NPs (14 polymers), and a final in vivo study (2 polymers) gave poly (2-ethylhexyl cyanoacrylate) PEHCA as a promising novel PACA candidate. For the first time, this work presents cytotoxicity data on several novel ACAs, PEHCA in vivo toxicity data, and miniemulsion polymerisation-based encapsulation of the cabazitaxel and NR688 in novel PACA candidates. Furthermore, several of the ACA candidates were compatible with a wider selection of lipophilic active pharmaceutical ingredients (APIs) versus commercially available controls. Combined, this work demonstrates the potential benefits of expanding the array of available ACA materials in drug delivery. Novel ACAs have the potential to encapsulate a wider range of APIs in miniemulsion polymerisation processes and may also broaden PACA applicability in other fields. Screening of novel poly(alkylcyanoacrylate) (PACA) materials to broaden PACA nanomedicine potential. A comprehensive screening process evaluated the toxicity of novel poly(alkylcyanoacrylate) (PACA) materials. Novel poly(2-ethylhexyl cyanoacrylate) nanoparticles has a promising safety profile. Novel ACA materials show potential to enable encapsulation of a wider range of APIs.
Collapse
Affiliation(s)
- Astrid Hyldbakk
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway.,Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yrr Mørch
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Sofie Snipstad
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway.,Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway.,Cancer Clinic, St. Olavs Hospital, Trondheim, Norway
| | - Andreas K O Åslund
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Geir Klinkenberg
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Vu To Nakstad
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Ane-Marit Wågbø
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Ruth Schmid
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Peter P Molesworth
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| |
Collapse
|
227
|
Shakiba S, Shariati S, Wu H, Astete CE, Cueto R, Fini EH, Rodrigues DF, Sabliov CM, Louie SM. Distinguishing nanoparticle drug release mechanisms by asymmetric flow field-flow fractionation. J Control Release 2022; 352:485-496. [PMID: 36280154 DOI: 10.1016/j.jconrel.2022.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
This research demonstrates the development, application, and mechanistic value of a multi-detector asymmetric flow field-flow fractionation (AF4) approach to acquire size-resolved drug loading and release profiles from polymeric nanoparticles (NPs). AF4 was hyphenated with multiple online detectors, including dynamic and multi-angle light scattering for NP size and shape factor analysis, fluorescence for drug detection, and total organic carbon (TOC) to quantify the NPs and dissolved polymer in nanoformulations. The method was demonstrated on poly(lactic-co-glycolic acid) (PLGA) NPs loaded with coumarin 6 (C6) as a lipophilic drug surrogate. The bulk C6 release profile using AF4 was validated against conventional analysis of drug extracted from the NPs and complemented with high performance liquid chromatography - quadrupole time-of-flight (HPLC-QTOF) mass spectrometry analysis of oligomeric PLGA species. Interpretation of the bulk drug release profile was ambiguous, with several release models yielding reasonable fits. In contrast, the size-resolved release profiles from AF4 provided critical information to confidently establish the release mechanism. Specifically, the C6-loaded NPs exhibited size-independent release rate constants and no significant NP size or shape transformations, suggesting surface desorption rather than diffusion through the PLGA matrix or erosion. This conclusion was supported through comparative experimental evaluation of PLGA NPs carrying a fully entrapped drug, enrofloxacin, which showed size-dependent diffusive release, along with density functional theory (DFT) calculations indicating a higher adsorption affinity of C6 onto PLGA. In summary, the development of the size-resolved AF4 method and data analysis framework fulfills salient analytical gaps to determine drug localization and release mechanisms from nanomedicines.
Collapse
Affiliation(s)
- Sheyda Shakiba
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77004, United States
| | - Saba Shariati
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, United States
| | - Haoran Wu
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77004, United States
| | - Carlos E Astete
- Department of Biological & Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Rafael Cueto
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Elham H Fini
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, United States
| | - Debora F Rodrigues
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77004, United States
| | - Cristina M Sabliov
- Department of Biological & Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Stacey M Louie
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77004, United States.
| |
Collapse
|
228
|
Engineered nanoparticles as emerging gene/drug delivery systems targeting the nuclear factor-κB protein and related signaling pathways in cancer. Biomed Pharmacother 2022; 156:113932. [DOI: 10.1016/j.biopha.2022.113932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
|
229
|
Polymeric Nanoparticles for Drug Delivery in Osteoarthritis. Pharmaceutics 2022; 14:pharmaceutics14122639. [PMID: 36559133 PMCID: PMC9788411 DOI: 10.3390/pharmaceutics14122639] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative musculoskeletal disorder affecting the whole synovial joint and globally impacts more than one in five individuals aged 40 and over, representing a huge socioeconomic burden. Drug penetration into and retention within the joints are major challenges in the development of regenerative therapies for OA. During the recent years, polymeric nanoparticles (PNPs) have emerged as promising drug carrier candidates due to their biodegradable properties, nanoscale structure, functional versatility, and reproducible manufacturing, which makes them particularly attractive for cartilage penetration and joint retention. In this review, we discuss the current development state of natural and synthetic PNPs for drug delivery and OA treatment. Evidence from in vitro and pre-clinical in vivo studies is used to show how disease pathology and key cellular pathways of joint inflammation are modulated by these nanoparticle-based therapies. Furthermore, we compare the biodegradability and surface modification of these nanocarriers in relation to the drug release profile and tissue targeting. Finally, the main challenges for nanoparticle delivery to the cartilage are discussed, as a function of disease state and physicochemical properties of PNPs such as size and surface charge.
Collapse
|
230
|
Assali M, Jaradat N, Maqboul L. The Formation of Self-Assembled Nanoparticles Loaded with Doxorubicin and d-Limonene for Cancer Therapy. ACS OMEGA 2022; 7:42096-42104. [PMID: 36440142 PMCID: PMC9686194 DOI: 10.1021/acsomega.2c04238] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/18/2022] [Indexed: 05/23/2023]
Abstract
Self-assembled nanoparticles present unique properties that have potential applications in the development of a successful drug delivery system. Doxorubicin (DOX) is an important anti-neoplastic anthracycline chemotherapeutic drug widely described. However, it suffers from serious dose-dependent cardiotoxicity. d-Limonene is a major constituent of numerous citrus oils that is considered a specific monoterpene against free radicals producing antioxidant activity. Herein, we aimed to design three types of self-assembled nanodelivery systems (nanoemulsion, niosomes, and polylactide nanoparticles) for loading both DOX and d-limonene to enhance the solubilization of d-limonene and provide antioxidant activity with excellent anticancer activity. As confirmed by dynamic light scattering and transmission electron microscopy, the nanoparticles were prepared successfully with diameter sizes of 52, 180, and 257 nm for the DOX-loaded nanoemulsion, niosomes, and polylactide nanoparticles, respectively. The zeta potential values were above -30 mV in all cases, which confirms the formation of stable nanoparticles. The loading efficiency of DOX was the highest in the case of the DOX-loaded nanoemulsion (75.8%), followed by niosomes (62.8%), and the least was in the case of polylactide nanoparticles with a percentage of 50.2%. The in vitro release study of the DOX-loaded nanoparticles showed a sustained release profile of doxorubicin with the highest release in the case of DOX-loaded PDLLA nanoparticles. The kinetic release model for all developed nanoparticles was the Peppas-Sahlin model, demonstrating DOX release through Fickian diffusion phenomena. Moreover, all developed nanoparticles maintain the antioxidant activity of d-limonene. The cytotoxicity study of the DOX-loaded nanoparticles showed concentration-dependent anticancer activity with excellent anticancer activity in the case of the DOX-loaded nanoemulsion and polylactide nanoparticles. These nanoparticles will be further studied in vivo to prove the cardioprotective effect of d-limonene in combination with DOX.
Collapse
|
231
|
Khan MUA, Al-Arjan WS, Ashammakhi N, Haider S, Amin R, Hasan A. Multifunctional Bioactive Scaffolds from ARX- g-(Zn@rGO)-HAp for Bone Tissue Engineering: In Vitro Antibacterial, Antitumor, and Biocompatibility Evaluations. ACS APPLIED BIO MATERIALS 2022; 5:5445-5456. [PMID: 36215135 DOI: 10.1021/acsabm.2c00777] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Advanced biomaterials are required with enhanced antibacterial and anticancer activities to obtain desirable biocompatibility during and after scaffold implantation in tissue engineering. Here, we report the development of a nanosystem by the hydrothermal method using different zinc (Zn) amounts and reduced graphene oxide (GO). Arabinoxylan, the nanosystem (Zn@rGO), and nanohydroxyapatite polymeric nanocomposites ARX-g-(Zn@rGO)/HAp were prepared by the free radical polymerization method, and porous bioactive scaffolds were fabricated via the freeze-drying technique. The structural, morphological, and elemental analyses of the bioactive scaffolds were conducted using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray analysis. The wetting behavior was studied by a water contact meter and swelling in aqueous and phosphate-buffered saline solutions at 37 °C. The degradation was also studied in the phosphate-buffered saline solution at 37 °C. The increase in Zn content increased the pore size, and hydrophobic behavior shifted to hydrophilic (AGZ-1 = 131.40° at 0 s and 120.60° at 10 s to AGZ-1 = 81.30° at 0 s and 69.20° at 10 s) with the increase in contact time. Maximum swelling was observed in deionized water (AGZ-1 = 52.87%, AGZ-4 = 90.20%), followed by phosphate-buffered saline (PBS; AGZ-1 = 44.80%, AGZ-4 = 67.90%) and electrolyte (AGZ-1 = 32.40%, AGZ-4 = 63.47%), and biodegradation in PBS media increased (AGZ-1 = 36.80%, AGZ-4 = 55.92%). Antimicrobial activities against severe infection-causing pathogens and antitumor activity against U87 cell lines showed exceptional results. Cell viability and cell proliferation studies were conducted against preosteoblast cell lines, and increased cell viability and proliferation were observed from AGZ-1 to AGZ-4. Antimicrobial and anticancer activities were enhanced with the increase of Zn content in the Zn@rGO system. The bioactive scaffolds with different formulations could be potential biomaterials to treat and regenerate defected bone tissue.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Biomedical Research Center, Qatar University, Doha2713, Qatar.,Department of Mechanical and Industrial Engineering, Qatar University, Doha2713, Qatar
| | - Wafa Shamsan Al-Arjan
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa31982, Saudi Arabia
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan48824, United States
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh11421, Saudi Arabia
| | - Rashid Amin
- Department of Biology, College of Sciences, University of Hafr Al Batin, Hafar Al Batin39524, Saudi Arabia
| | - Anwarul Hasan
- Biomedical Research Center, Qatar University, Doha2713, Qatar.,Department of Mechanical and Industrial Engineering, Qatar University, Doha2713, Qatar
| |
Collapse
|
232
|
Bacha K, Chemotti C, Monboisse JC, Robert A, Furlan AL, Smeralda W, Damblon C, Estager J, Brassart-Pasco S, Mbakidi JP, Pršić J, Bouquillon S, Deleu M. Encapsulation of Vitamin C by Glycerol-Derived Dendrimers, Their Interaction with Biomimetic Models of Stratum corneum and Their Cytotoxicity. Molecules 2022; 27:8022. [PMID: 36432124 PMCID: PMC9698622 DOI: 10.3390/molecules27228022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Vitamin C is one of the most sensitive cosmetic active ingredients. To avoid its degradation, its encapsulation into biobased carriers such as dendrimers is one alternative of interest. In this work, we wanted to evaluate the potential of two biobased glycerodendrimer families (GlyceroDendrimers-Poly(AmidoAmine) (GD-PAMAMs) or GlyceroDendrimers-Poly(Propylene Imine) (GD-PPIs)) as a vitamin C carrier for topical application. The higher encapsulation capacity of GD-PAMAM-3 compared to commercial PAMAM-3 and different GD-PPIs, and its absence of cytotoxicity towards dermal cells, make it a good candidate. Investigation of its mechanism of action was done by using two kinds of biomimetic models of stratum corneum (SC), lipid monolayers and liposomes. GD-PAMAM-3 and VitC@GD-PAMAM-3 (GD-PAMAM-3 with encapsulated vitamin C) can both interact with the lipid representatives of the SC lipid matrix, whichever pH is considered. However, only pH 5.0 is suggested to be favorable to release vitamin C into the SC matrix. Their binding to SC-biomimetic liposomes revealed only a slight effect on membrane permeability in accordance with the absence of cytotoxicity but an increase in membrane rigidity, suggesting a reinforcement of the SC barrier property. Globally, our results suggest that the dendrimer GD-PAMAM-3 could be an efficient carrier for cosmetic applications.
Collapse
Affiliation(s)
- Katia Bacha
- Molecular Chemistry Reims Institute UMR CNRS 7312, Reims Champagne-Ardenne University, Boîte n° 44, B.P. 1039, F-51687 Reims, France
- Laboratory of Molecular Biophysics at Interfaces (LBMI), Gembloux Agro-Bio Tech-University of Liege, Passage des Déportés, 2 B-5030 Gembloux, Belgium
| | - Catherine Chemotti
- Laboratory of Molecular Biophysics at Interfaces (LBMI), Gembloux Agro-Bio Tech-University of Liege, Passage des Déportés, 2 B-5030 Gembloux, Belgium
| | - Jean-Claude Monboisse
- Laboratoire de Biochimie Médicale et de Biologie Moléculaire, UMR CNRS/URCA 7369 (MEDyC), UFR Médecine, Reims Champagne Ardenne University, 51 Rue Cognacq Jay, F-51095 Reims, France
| | - Anthony Robert
- Molecular Chemistry Reims Institute UMR CNRS 7312, Reims Champagne-Ardenne University, Boîte n° 44, B.P. 1039, F-51687 Reims, France
| | - Aurélien L. Furlan
- Laboratory of Molecular Biophysics at Interfaces (LBMI), Gembloux Agro-Bio Tech-University of Liege, Passage des Déportés, 2 B-5030 Gembloux, Belgium
| | - Willy Smeralda
- Laboratory of Molecular Biophysics at Interfaces (LBMI), Gembloux Agro-Bio Tech-University of Liege, Passage des Déportés, 2 B-5030 Gembloux, Belgium
| | - Christian Damblon
- Structural Biological Chemistry Laboratory, MolSys Research Unity, University of Liege, 11, Allée du six Août, 4000 Liège, Belgium
| | - Julien Estager
- Certech, Rue Jules Bordet, 45-Zone Industrielle C, B 7180 Seneffe, Belgium
| | - Sylvie Brassart-Pasco
- Laboratoire de Biochimie Médicale et de Biologie Moléculaire, UMR CNRS/URCA 7369 (MEDyC), UFR Médecine, Reims Champagne Ardenne University, 51 Rue Cognacq Jay, F-51095 Reims, France
| | - Jean-Pierre Mbakidi
- Molecular Chemistry Reims Institute UMR CNRS 7312, Reims Champagne-Ardenne University, Boîte n° 44, B.P. 1039, F-51687 Reims, France
| | - Jelena Pršić
- Laboratory of Molecular Biophysics at Interfaces (LBMI), Gembloux Agro-Bio Tech-University of Liege, Passage des Déportés, 2 B-5030 Gembloux, Belgium
| | - Sandrine Bouquillon
- Molecular Chemistry Reims Institute UMR CNRS 7312, Reims Champagne-Ardenne University, Boîte n° 44, B.P. 1039, F-51687 Reims, France
| | - Magali Deleu
- Laboratory of Molecular Biophysics at Interfaces (LBMI), Gembloux Agro-Bio Tech-University of Liege, Passage des Déportés, 2 B-5030 Gembloux, Belgium
| |
Collapse
|
233
|
Chapla R, Huynh KT, Schutt CE. Microbubble–Nanoparticle Complexes for Ultrasound-Enhanced Cargo Delivery. Pharmaceutics 2022; 14:pharmaceutics14112396. [PMID: 36365214 PMCID: PMC9698658 DOI: 10.3390/pharmaceutics14112396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022] Open
Abstract
Targeted delivery of therapeutics to specific tissues is critically important for reducing systemic toxicity and optimizing therapeutic efficacy, especially in the case of cytotoxic drugs. Many strategies currently exist for targeting systemically administered drugs, and ultrasound-controlled targeting is a rapidly advancing strategy for externally-stimulated drug delivery. In this non-invasive method, ultrasound waves penetrate through tissue and stimulate gas-filled microbubbles, resulting in bubble rupture and biophysical effects that power delivery of attached cargo to surrounding cells. Drug delivery capabilities from ultrasound-sensitive microbubbles are greatly expanded when nanocarrier particles are attached to the bubble surface, and cargo loading is determined by the physicochemical properties of the nanoparticles. This review serves to highlight and discuss current microbubble–nanoparticle complex component materials and designs for ultrasound-mediated drug delivery. Nanocarriers that have been complexed with microbubbles for drug delivery include lipid-based, polymeric, lipid–polymer hybrid, protein, and inorganic nanoparticles. Several schemes exist for linking nanoparticles to microbubbles for efficient nanoparticle delivery, including biotin–avidin bridging, electrostatic bonding, and covalent linkages. When compared to unstimulated delivery, ultrasound-mediated cargo delivery enables enhanced cell uptake and accumulation of cargo in target organs and can result in improved therapeutic outcomes. These ultrasound-responsive delivery complexes can also be designed to facilitate other methods of targeting, including bioactive targeting ligands and responsivity to light or magnetic fields, and multi-level targeting can enhance therapeutic efficacy. Microbubble–nanoparticle complexes present a versatile platform for controlled drug delivery via ultrasound, allowing for enhanced tissue penetration and minimally invasive therapy. Future perspectives for application of this platform are also discussed in this review.
Collapse
Affiliation(s)
- Rachel Chapla
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
| | - Katherine T. Huynh
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Carolyn E. Schutt
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
234
|
Escutia-Guadarrama L, Morales D, Pérez-Calixto D, Burillo G. Development of Polyphenol-Functionalized Gelatin-Poly(vinylpyrrolidone) IPN for Potential Biomedical Applications. Polymers (Basel) 2022; 14:4705. [PMID: 36365697 PMCID: PMC9655966 DOI: 10.3390/polym14214705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 08/13/2024] Open
Abstract
Owing to their suitable physical and chemical properties, hydrogels have been considered a convenient choice for wound dressings because of the advantages that they offer, such as maintaining the moist environment required for wound healing. In this research, interpenetrating hydrogels of polyphenol-functionalized gelatin (GE), a water-soluble protein derived from natural polymer collagen with excellent biocompatibility, no immunogenicity, and hydrophilicity, and polyvinylpyrrolidone (PVP), a hydrophilic, non-toxic, biodegradable, biocompatible polymer that is soluble in many solvents, widely used in biomedical applications, particularly as a basic material for the manufacturing of hydrogel wound dressings, were synthesized. Gallic acid (GA) was selected in this work to study whether the interpenetrating polymer networks (IPNs) synthesized can provide antioxidant properties given that this material is intended to be used as a potential wound dressing. The obtained IPN hydrogels showed improved mechanical properties in comparison with pristine gelatin network (net-GE), a porous structure, and good thermal stability for biological applications. The antioxidant capacity of the IPNs functionalized with GA was compared to Trolox standards, obtaining a radical scavenging activity (RSA%) equivalent to a Trolox concentration of 400 µM.
Collapse
Affiliation(s)
- Lidia Escutia-Guadarrama
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
| | - David Morales
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
| | - Daniel Pérez-Calixto
- Subdirección de Genómica Poblacional, Instituto Nacional de Medicina Genómica, Ciudad de Mexico 14610, Mexico
| | - Guillermina Burillo
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
| |
Collapse
|
235
|
Song L, Zheng D, Xu J, Xu T, Liu Z, Zhang H, Li Y, Peng Y, Shi H. Improvement of TNBC immune checkpoint blockade with a microwave-controlled ozone release nanosystem. J Control Release 2022; 351:954-969. [PMID: 36183970 DOI: 10.1016/j.jconrel.2022.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022]
Abstract
Despite revolutionary achievements have been made in clinical cancer therapy, the immune checkpoint blockade regimen still presents limited efficacy on tumors lack of neoantigens exposure. Here, we designed and synthesized an on-demand microwave-controlled ozone release nanosystem to specifically generate reactive oxygen species in tumor mass. By taking advantage of iRGD modification, the synthesized nanosystem can be specifically enriched in the tumor microenvironment and subsequently internalized by tumor cells. Triggered by the low-power microwave, ozone was released from the nanocarriers and inhibited tumor cell growth in vitro and in vivo. Molecular mechanism investigation further unraveled that the released-ozone induced cytolytic cell death through the rapid generation of reactive oxygen species such as hydroxyl radical. The tumor-specific neoantigen derived from this immunogenic cell death promoted cytotoxic T-lymphocytes infiltration, which provided a fundament for immune checkpoint blockade therapy. In the triple-negative breast cancer animal model, tumor-specific delivery of ozone significantly improved the systematical anti-tumor efficacy of the PD-1 blockade antibody. Notably, tumor-locally confined microwave-controlled release avoided systematic toxicity in the tested animals. Collectively, our nanosystem provides a novel controllable strategy for promoting immune checkpoint blockade therapy, especially in tumor types deficient in infiltrated T-lymphocytes.
Collapse
Affiliation(s)
- Linlin Song
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, PR China; Department of Ultrasound & Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Dan Zheng
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, PR China
| | - Jinshun Xu
- Department of Ultrasound & Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tianyue Xu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, PR China
| | - Zhihui Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, PR China
| | - Huan Zhang
- Department of Ultrasound & Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yi Li
- Core Facilities of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yulan Peng
- Department of Ultrasound & Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Hubing Shi
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
236
|
Synthesis of pH-responsive dimethylglycine surface-modified branched lipids for targeted delivery of antibiotics. Chem Phys Lipids 2022; 249:105241. [PMID: 36152880 DOI: 10.1016/j.chemphyslip.2022.105241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 01/25/2023]
Abstract
The rampant antimicrobial resistance crisis calls for efficient and targeted drug delivery of antibiotics at the infectious site. Hence, this study aimed to synthesize a pH-responsive dimethylglycine surface-modified branched lipid (DMGSAD-lipid). The structure of the synthesized lipid was fully confirmed. The lipid polymer hybrid nanoparticles (LPHNPs) were formulated using the solvent evaporation method and characterised. Two LPHNPs (VCM_HS15_LPHNPs and VCM_RH40_LPHNPs) were formulated and characterised for size, polydispersity index (PDI), and zeta potential (ZP). Atomistic molecular dynamics simulations revealed that both the systems self-assembled to form energetically stable aggregates. The ZP of RH40_VCM_LPHNPs changed from 0.55 ± 0.14-9.44 ± 0.33 Vm, whereas for SH15_VCM_LPHNPs, ZP changed from - 1.55 ± 0.184 Vm to 9.83 ± 0.52 Vm at pH 7.4 and 6.0, respectively. The encapsulation efficiencies of VCM were above 40% while the drug release was faster at acidic pH when compared to pH 7.4. The antibacterial activity of LPHNPs against MRSA was eight-fold better in MICs at pH 6.0, compared to 7.4, when compared to bare VCM-treated specimens. The study confirms that pH-responsive LPHNPs have the potential for enhancing the treatment of bacterial infections and other diseases characterised by acidic conditions at the target site.
Collapse
|
237
|
Pourmadadi M, Abbasi P, Eshaghi MM, Bakhshi A, Ezra Manicum AL, Rahdar A, Pandey S, Jadoun S, Díez-Pascual AM. Curcumin delivery and co-delivery based on nanomaterials as an effective approach for cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
238
|
Qbd based and Box-Behnken design assisted Oral delivery of stable lactone (active) form of Topotecan as PLGA nanoformulation: Cytotoxicity, pharmacokinetic, in vitro, and ex vivo gut permeation studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
239
|
Kandasamy G, Maity D. Current Advancements in Self-assembling Nanocarriers-Based siRNA Delivery for Cancer Therapy. Colloids Surf B Biointerfaces 2022; 221:113002. [PMID: 36370645 DOI: 10.1016/j.colsurfb.2022.113002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/01/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
Abstract
Different therapeutic practices for treating cancers have significantly evolved to compensate and/or overcome the failures in conventional methodologies. The demonstrated potentiality in completely inhibiting the tumors and in preventing cancer relapse has made nucleic acids therapy (NAT)/gene therapy as an attractive practice. This has been made possible because NAT-based cancer treatments are highly focused on the fundamental mechanisms - i.e., silencing the expression of oncogenic genes responsible for producing abnormal proteins (via messenger RNAs (mRNAs)). However, the future clinical translation of NAT is majorly dependent upon the effective delivery of the exogenous nucleic acids (especially RNAs - e.g., short interfering RNAs (siRNAs) - herein called biological drugs). Moreover, nano-based vehicles (i.e., nanocarriers) are involved in delivering them to prevent degradation and undesired bioaccumulation while enhancing the stability of siRNAs. Herein, we have initially discussed about three major types of self-assembling nanocarriers (liposomes, polymeric nanoparticles and exosomes). Later, we have majorly reviewed recent developments in non-targeted/targeted nanocarriers for delivery of biological drugs (individual/dual) to silence the most important genes/mRNAs accountable for inducing protein abnormality. These proteins include polo-like kinase 1 (PLK1), survivin, vascular endothelial growth factor (VEGF), B-cell lymphoma/leukaemia-2 (Bcl-2) and multi-drug resistance (MDR). Besides, the consequent therapeutic effects on cancer growth, invasion and/or metastasis have also been discussed. Finally, we have comprehensively reviewed the improvements achieved in the cutting-edge cancer therapeutics while delivering siRNAs in combination with clinically approved chemotherapeutic drugs.
Collapse
|
240
|
Naseer F, Ahmed M, Majid A, Kamal W, Phull AR. Green nanoparticles as multifunctional nanomedicines: Insights into anti-inflammatory effects, growth signaling and apoptosis mechanism in cancer. Semin Cancer Biol 2022; 86:310-324. [PMID: 35787941 DOI: 10.1016/j.semcancer.2022.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023]
Abstract
Recently, green nanotechnology got great attention due to their reliable, sustainable, and eco-friendly synthesis protocols. The green nanoparticles (GNPs) are preferred over chemically synthesized nanoparticles owing to less destructive effects associated with the synthesis procedures as well as therapeutic involvement. In this review, we have discussed the applications of GNPs in inflammation-mediated disorders, with special emphasis on cancer, initiated due to oxidative stress and inflammatory cascade. Real-time mechanism based studies on GNPs have suggested their anticancer effects through inducing apoptosis, inhibiting angiogenesis, tissue invasion metastasis, reduced replicative capabilities in addition to target specific different signaling molecules and cascades involved in the development or progression of cancer. Moreover, the association of GNPs with the inhibition or induction of autophagy for the management of cancer has also been discussed. A large number of studies showed the GNPs have multifunctional biomedical properties of theranostic prominence. Therefore, the development of GNPs with naturally established systems could upsurge their definite applications as biomedicines including target specific destruction of the cancerous cells.
Collapse
Affiliation(s)
- Faiza Naseer
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan; Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, NUST, Islamabad, Pakistan
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Abdul Majid
- Department of Biochemistry, Shah Abdul Latif University, Khairpur, Pakistan
| | - Warda Kamal
- Biomediotronics, Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Abdul Rehman Phull
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Gyeong gi-do, Republic of Korea.
| |
Collapse
|
241
|
Yan M, Zhu L, Wu S, Cao Y, Mou N, Chi Q, Wang G, Zhong Y, Wu W. ROS responsive polydopamine nanoparticles to relieve oxidative stress and inflammation for ameliorating acute inflammatory bowel. BIOMATERIALS ADVANCES 2022; 142:213126. [PMID: 36191534 DOI: 10.1016/j.bioadv.2022.213126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/11/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Oxidative stress is a key factor in the development of inflammatory diseases. Elimination of reactive oxygen species (ROS) in the inflamed colon has been confirmed as an effective strategy to alleviate inflammatory bowel disease (IBD). The conventional approaches will cause systemic absorption and potential side effects. To address these issues, we develop a nanomedicine (LS@PDA NPs) that is capable of delivering to target inflammatory lesions by electrostatic adsorption, subsequently effectively scavenging the excess ROS and alleviating inflammation to ameliorate ulcerative colitis (UC). In the DSS induced acute colitis mice model, LS@PDA NPs can significantly reduce the production of pro-inflammatory cytokines, alleviate oxidative stress, and promote the favorable recovery of the damaged colonic tissue. These results indicate that LS@PDA NPs are able to effectively alleviate intestinal inflammation and provide strong theoretical support for the treatment of other inflammatory diseases.
Collapse
Affiliation(s)
- Meng Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Shuai Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Yu Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Nianlian Mou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Qingjia Chi
- Department of Engineering Structure and Mechanics, School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China; Jin Feng Laboratory, Chongqing, 401329, China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China.
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China; Jin Feng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
242
|
Upadhyay P, Agarwal S, Upadhyay S. Hydrophobically Modified Abelmoschus esculentus Polysaccharide Based Nanoparticles and Applications: A Review. Curr Drug Discov Technol 2022; 19:e010822207168. [PMID: 35927911 DOI: 10.2174/1570163819666220801121857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/07/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023]
Abstract
Nanomaterials are indeed a nanoscale technology that deals with the creation, evaluation, fabrication, and utilization of systems at the nanometre scale by manipulating their size and shape. We consider natural polysaccharides such as promising polysaccharides, which are biodegradable, nontoxic, abundant, and inexpensive bio-polymeric precursors for preparing the materials of choice in various industries. The aim is to review different methods to produce hydrophobically modified Abelmoschus esculentus nanoparticles and study the evaluation processes of these nanoparticles as given in the literature. It proved the benefits of derivatives of gum by introducing different chemical groups. The chemical functionalization of gum mainly includes the esterification, etherification, and crosslinking reactions of the hydroxyl groups and contains a special fibre which takes sugar levels in the blood under control, providing a sugar quantity suitable for the bowels. Okra contains mucilage that helps remove poisonous chemicals and bad cholesterol, often overloads the liver. Recovering from psychological conditions, like depression, general weakness, and joint healthiness can be done with Okra. Someone additionally applied it for pulmonary inflammation, bowel irritation, and sore throat. Purgative properties okra possesses are beneficial for bowel purification. It is used to counteract the acids. Fibre okra contains a valuable nutrient for intestinal microorganisms and ensures proper intestine functionality. It also protects the mucosa of the digestive tract by covering them with an extra layer because of its alkaline nature. Nanotechnology has emerged as a critical component of pharmaceutics, with many applications in drug carriers of interest aimed at improving drug clinical outcomes such as cancer, diabetes mellitus, wound care management, atopic dermatitis, cosmeceutical, etc. Beneficial outcomes of this review are discussed briefly.
Collapse
Affiliation(s)
- Prashant Upadhyay
- Faculty of Pharmacy, School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Shivani Agarwal
- Faculty of Pharmacy, School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Sukirti Upadhyay
- Faculty of Pharmacy, School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| |
Collapse
|
243
|
Fabrication and comparative appraisal of natural and synthetic polymeric pH responsive nanoparticles for effective delivery of dexlansoprazole. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04489-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
244
|
New amphiphilic terpolymers of N-vinylpyrrolidone with poly(ethylene glycol) methyl ether methacrylate and triethylene glycol dimethacrylate as carriers of the hydrophobic fluorescent dye. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
245
|
Fatima H, Naz MY, Shukrullah S, Aslam H, Ullah S, Assiri MA. A Review of Multifunction Smart Nanoparticle based Drug Delivery Systems. Curr Pharm Des 2022; 28:2965-2983. [PMID: 35466867 DOI: 10.2174/1381612828666220422085702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Cancer nano-therapeutics are rapidly evolving and are often used to overcome a number of concerns with traditional drug delivery methods, including non-specific drug targeting and distribution, low oral bioavailability, and poor hydrophilicity. Modern nano-based targeting techniques have been developed as a result of advances in nano vehicle engineering and materials science, which may bring people with cancer a new hope. Clinical trials have been authorized for a number of medicinal nanocarriers. Nanocarriers with the best feasible size and surface attributes have been developed to optimize biodistribution and increase blood circulation duration. Nanotherapeutics can carry preloaded active medicine towards cancerous cells by preferentially leveraging the specific physiopathology of malignancies. In contrast to passive targeting, active targeting strategies involving antigens or ligands, developed against specific tumor sites, boost the selectivity of these curative nanovehicles. Another barrier that nanoparticles may resolve or lessen is drug resistance. Multifunctional and complex nanoparticles are currently being explored and are predicted to usher in a new era of nanoparticles that will allow for more individualized and customized cancer therapy. The potential prospects and opportunities of stimuli-triggered nanosystems in therapeutic trials are also explored in this review.
Collapse
Affiliation(s)
- Hareem Fatima
- Department of Physics, University of Agriculture, Faisalabad, 38040 Pakistan
| | - Muhammad Yasin Naz
- Department of Physics, University of Agriculture, Faisalabad, 38040 Pakistan
| | - Shazia Shukrullah
- Department of Physics, University of Agriculture, Faisalabad, 38040 Pakistan
| | - Hira Aslam
- Department of Physics, University of Agriculture, Faisalabad, 38040 Pakistan
| | - Sami Ullah
- Department of Chemistry, College of Science, King Khalid University Abha, 61413 Saudi Arabia
| | - Mohammed Ali Assiri
- Department of Chemistry, College of Science, King Khalid University Abha, 61413 Saudi Arabia
| |
Collapse
|
246
|
Chawla R, Rani V, Mishra M. Changing paradigms in the treatment of tuberculosis. Indian J Tuberc 2022; 69:389-403. [PMID: 36460368 DOI: 10.1016/j.ijtb.2021.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/25/2021] [Indexed: 06/17/2023]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, is a disease long dealt with, but still remains the second leading cause of death world-wide. The current anti-tubercular chemotherapy primarily targets the microbial pathogenesis, which however, is failing due to the development of drug resistance. Moreover, with fewer new drugs reaching the market, there is a need to focus on alternate treatment approaches that could be used as stand-alone or adjunct therapy and the existing drugs, referred to as Track II chemotherapy. This article is an attempt to review the changing global patterns of tuberculosis and its treatment. Further, newer drug delivery approaches like multi-particulate drug carriers which increase the therapeutic efficacy and bring down the systemic toxicity associated with drugs have also been discussed. There is also a need to use interventions which can be used as Track II therapy. Host-directed therapeutics (HDT) is an emerging area concept in which host cell functions and hence the response to pathogens can be modulated, which can help manage TB. HDT decreases damage induced due to inflammation and necrosis in the lungs and other parts of the body due to the disease. Various immuno-modulatory pathways have been discussed in this review which could be explored further to treat TB. An in-depth understanding of multi-particulate drug carriers and HDT could help in dealing with tuberculosis; however, there is still a long way to go.
Collapse
Affiliation(s)
- Ruchi Chawla
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India.
| | - Varsha Rani
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| | - Mohini Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| |
Collapse
|
247
|
Suárez DF, Pinzón-García AD, Sinisterra RD, Dussan A, Mesa F, Ramírez-Clavijo S. Uniaxial and Coaxial Nanofibers PCL/Alginate or PCL/Gelatine Transport and Release Tamoxifen and Curcumin Affecting the Viability of MCF7 Cell Line. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193348. [PMID: 36234476 PMCID: PMC9565524 DOI: 10.3390/nano12193348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 05/11/2023]
Abstract
Breast cancer is the second cause of cancer death in women worldwide. The search for therapeutic and preventive alternatives has increased in recent years. One synthetic drug for patients with hormone receptor-positive tumours is tamoxifen citrate (TMX). Curcumin (Cur) is a natural compound that is being tested. Both were coupled with nanoscale-controlled and sustained release systems to increase the effectiveness of the treatment and reduce adverse effects. We produced a controlled release system based on uniaxial and coaxial polymeric nanofibers of polycaprolactone (PCL), alginate (Alg) and gelatine (Gel) for the transport and release of TMX and Cur, as a new alternative to breast cancer treatment. Nanofibers combining PCL-Alg and PCL-Gel were fabricated by the electrospinning technique and physicochemically characterised by thermal analysis, absorption spectroscopy in the infrared region and X-ray diffraction. Morphology and size were studied by scanning electron microscopy. Additionally, the release profile of TMX and Cur was obtained by UV-Vis spectroscopy. Additionally, the cytotoxic effect on breast cancer cell line MCF7 and peripheral-blood mononuclear cells (PBMCs) from a healthy donor were evaluated by a Resazurin reduction assay. These assays showed that PCL-TMX nanofiber was highly toxic to both cell types, while PCL-Cur was less toxic.
Collapse
Affiliation(s)
- Diego Fernando Suárez
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Ana Delia Pinzón-García
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Rubén Darío Sinisterra
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Anderson Dussan
- Departamento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones, Universidad Nacional de Colombia, Bogotá 110011, Colombia
| | - Fredy Mesa
- Departamento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones, Universidad Nacional de Colombia, Bogotá 110011, Colombia
| | - Sandra Ramírez-Clavijo
- Department of Biology, Grupo Ciencias Básicas Médicas, Faculty of Natural Science, Universidad del Rosario, Bogotá 110311, Colombia
- Correspondence:
| |
Collapse
|
248
|
Antonio LC, Ribovski L, Pincela Lins PM, Zucolotto V. The amount of dextran in PLGA nanocarriers modulates protein corona and promotes cell membrane damage. J Mater Chem B 2022; 10:8282-8294. [PMID: 36155711 DOI: 10.1039/d2tb01296k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymeric nanocarriers (NCs) are efficient vehicles to prevent drug unspecific biodistribution and increase the drug amounts delivered to tumor tissues. However, some toxicological aspects of NCs still lack a comprehensive assessment, such as their effects on cellular processes that lead to toxicity. We evaluate the interaction of poly(lactic-co-glycolic acid) (PLGA) NCs prepared using dextran (Dex) and Pluronic®-F127 as stabilizing agents with myocardial cells (H9C2), breast adenocarcinoma cells (MCF-7) and macrophages (RAW 264.7) to address the effect of Dex in PLGA NC formulations. By an emulsion diffusion method, doxorubicin-loaded NCs were prepared with no Dex (PLGA-DOX), 1% (w/v) Dex (Dex1/PLGA-DOX) and 5% (w/v) Dex (Dex5/PLGA-DOX). Uptake analyses revealed a significant reduction in Dex5/PLGA-DOX NC uptake by H9C2 and MCF-7, as in the case of Dex1/PLGA-DOX NCs in the absence of in vitro protein corona, revealing an effect of dextran concentration on the formation of protein corona. RAW 264.7 cells presented a greater uptake of Dex5/PLGA-DOX NCs than the other NCs likely because of receptor mediated endocytosis, since C-type lectins like SIGN-R1, mannose receptors and scavenger receptor type 1 that are expressed in RAW 264.7 can mediate Dex uptake. Despite the lower uptake, Dex5/PLGA-DOX NCs promote the generation of reactive oxygen species and oxidative membrane damage in MCF-7 and H9C2 even though cellular metabolic activity assessed by MTT was comparable among all the NCs. Our results highlight the importance of an in-depth investigation of the NC-cell interaction considering additional mechanisms of damage apart from metabolic variations, as nanoparticle-induced damage is not limited to imbalance in metabolic processes, but also associated with other mechanisms, e.g., membrane and DNA damage.
Collapse
Affiliation(s)
- Luana Corsi Antonio
- University of São Paulo, Physics Institute of São Carlos, Nanomedicine and Nanotoxicology Group, CP 369, 13566-590, São Carlos, SP, Brazil
| | - Laís Ribovski
- University of São Paulo, Physics Institute of São Carlos, Nanomedicine and Nanotoxicology Group, CP 369, 13566-590, São Carlos, SP, Brazil.,University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands.
| | - Paula Maria Pincela Lins
- University of São Paulo, Physics Institute of São Carlos, Nanomedicine and Nanotoxicology Group, CP 369, 13566-590, São Carlos, SP, Brazil
| | - Valtencir Zucolotto
- University of São Paulo, Physics Institute of São Carlos, Nanomedicine and Nanotoxicology Group, CP 369, 13566-590, São Carlos, SP, Brazil
| |
Collapse
|
249
|
Zhang B, Zhang Y, Dang W, Xing B, Yu C, Guo P, Pi J, Deng X, Qi D, Liu Z. The anti-tumor and renoprotection study of E-[c(RGDfK)2]/folic acid co-modified nanostructured lipid carrier loaded with doxorubicin hydrochloride/salvianolic acid A. J Nanobiotechnology 2022; 20:425. [PMID: 36153589 PMCID: PMC9509648 DOI: 10.1186/s12951-022-01628-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Poor in vivo targeting of tumors by chemotherapeutic drugs reduces their anti-cancer efficacy in the clinic. The discovery of over-expressed components on the tumor cell surface and their specific ligands provide a basis for targeting tumor cells. However, the differences in the expression levels of these receptors on the tumor cell surface limit the clinical application of anti-tumor preparations modified by a single ligand. Meanwhile, toxicity of chemotherapeutic drugs leads to poor tolerance to anti-tumor therapy. The discovery of natural active products antagonizing these toxic side effects offers an avenue for relieving cancer patients’ pain during the treatment process. Since the advent of nanotechnology, interventions, such as loading appropriate drug combinations into nano-sized carriers and multiple tumor-targeting functional modifications on the carrier surface to enhance the anti-tumor effect and reduce toxic and side effects, have been widely used for treating tumors.
Results
Nanocarriers containing doxorubicin hydrochloride (DOX) and salvianolic acid A (Sal A) are spherical with a diameter of about 18 nm; the encapsulation efficiency of both DOX and salvianolic acid A is greater than 80%. E-[c(RGDfK)2]/folic acid (FA) co-modification enabled nanostructured lipid carriers (NLC) to efficiently target a variety of tumor cells, including 4T1, MDA-MB-231, MCF-7, and A549 cells in vitro. Compared with other preparations (Sal A solution, NLC-Sal A, DOX solution, DOX injection, Sal A/DOX solution, NLC-DOX, NLC-Sal A/DOX, and E-[c(RGDfK)2]/FA-NLC-Sal A/DOX) in this experiment, the prepared E-[c(RGDfK)2]/FA-NLC-Sal A/DOX had the best anti-tumor effect. Compared with the normal saline group, it had the highest tumor volume inhibition rate (90.72%), the highest tumor weight inhibition rate (83.94%), led to the highest proportion of apoptosis among the tumor cells (61.30%) and the lowest fluorescence intensity of proliferation among the tumor cells (0.0083 ± 0.0011). Moreover, E-[c(RGDfK)2]/FA-NLC-Sal A/DOX had a low level of nephrotoxicity, with a low creatinine (Cre) concentration of 52.58 μmoL/L in the blood of mice, and no abnormalities were seen on pathological examination of the isolated kidneys at the end of the study. Sal A can antagonize the nephrotoxic effect of DOX. Free Sal A reduced the Cre concentration of the free DOX group by 61.64%. In NLC groups, Sal A reduced the Cre concentration of the DOX group by 42.47%. The E-[c(RGDfK)2]/FA modification reduced the side effects of the drug on the kidney, and the Cre concentration was reduced by 46.35% compared with the NLC-Sal A/DOX group. These interventions can potentially improve the tolerance of cancer patients to chemotherapy.
Conclusion
The E-[c(RGDfK)2]/FA co-modified DOX/Sal A multifunctional nano-drug delivery system has a good therapeutic effect on tumors and low nephrotoxicity and is a promising anti-cancer strategy.
Graphical Abstract
Collapse
|
250
|
Bao Y, Maeki M, Ishida A, Tani H, Tokeshi M. Effect of Organic Solvents on a Production of PLGA-Based Drug-Loaded Nanoparticles Using a Microfluidic Device. ACS OMEGA 2022; 7:33079-33086. [PMID: 36157756 PMCID: PMC9494669 DOI: 10.1021/acsomega.2c03137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
The translation of nanoparticles (NPs) from laboratory to clinical settings is limited, which is not ideal. One of the reasons for this is that we currently have limited ability to precisely regulate various physicochemical parameters of nanoparticles. This has made it difficult to rapidly perform targeted screening of drug preparation conditions. In this study, we attempted to broaden the range of preparation conditions for particle size-modulated poly(lactic-co-glycolic-acid) (PLGA) NP to enhance their applicability for drug delivery systems (DDS). This was done using a variety of organic solvents and a glass-based microfluidic device. Furthermore, we compared the PDMS-based microfluidic device to the glass-based microfluidic device in terms of the possibility of a wider range of preparation conditions, especially the effect of different solvents on the size of the PLGA NPs. PLGA NPs with different sizes (sub-200 nm) were successfully prepared, and three different types of taxanes were employed for encapsulation. The drug-loaded NPs showed size-dependent cytotoxicity in cellular assays, regardless of the taxane drug used.
Collapse
Affiliation(s)
- Yi Bao
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Masatoshi Maeki
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
- JST
PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Akihiko Ishida
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Hirofumi Tani
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Manabu Tokeshi
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| |
Collapse
|