201
|
Ema M, Mori D, Niwa H, Hasegawa Y, Yamanaka Y, Hitoshi S, Mimura J, Kawabe YI, Hosoya T, Morita M, Shimosato D, Uchida K, Suzuki N, Yanagisawa J, Sogawa K, Rossant J, Yamamoto M, Takahashi S, Fujii-Kuriyama Y. Krüppel-like factor 5 Is Essential for Blastocyst Development and the Normal Self-Renewal of Mouse ESCs. Cell Stem Cell 2008; 3:555-67. [DOI: 10.1016/j.stem.2008.09.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Revised: 07/20/2008] [Accepted: 09/11/2008] [Indexed: 02/05/2023]
|
202
|
Weinreich MA, Hogquist KA. Thymic emigration: when and how T cells leave home. THE JOURNAL OF IMMUNOLOGY 2008; 181:2265-70. [PMID: 18684914 DOI: 10.4049/jimmunol.181.4.2265] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The thymus supports the differentiation of multiple distinct T cell subsets that play unique roles in the immune system. CD4 and CD8 alpha/beta T cells, gamma/delta T cells, NKT cells, regulatory T cells, and intraepithelial lymphocytes all develop in the thymus and must leave it to provide their functions elsewhere in the body. This article will review recent research indicating differences in the time and migration patterns of T cell subsets found in the thymus. Additionally, we review current understanding of the molecules involved in thymocyte emigration, including the sphingolipid receptor S1P(1) and its regulation by the Krüppel-like transcription factor KLF2.
Collapse
Affiliation(s)
- Michael A Weinreich
- Center for Immunology and Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | |
Collapse
|
203
|
The development of the heart and microcirculation: role of shear stress. Med Biol Eng Comput 2008; 46:479-84. [PMID: 18228072 PMCID: PMC2329736 DOI: 10.1007/s11517-008-0304-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 01/10/2008] [Indexed: 12/24/2022]
Abstract
It is evident that hemodynamic factors have a dominant function already during early cardiogenesis. Flow and ensuing shear stress are sensed by endothelial cells by, ciliary modified, cytoskeletal deformation which then activates a number of subcellular structures and molecules. Shear stress dependent changes mostly converge towards NF kappa B signaling and DNA binding, thereby altering metabolic paths and influencing differentiation of the cells. Geometry of the vascular system heavily affects the flow and shear patterns, as is the case in the adult vasculature where atheroprone areas nicely coincide with the frequency of the primary cilium as shear stress sensor.
Collapse
|
204
|
Ridger V, Krams R, Carpi A, Evans PC. Hemodynamic parameters regulating vascular inflammation and atherosclerosis: a brief update. Biomed Pharmacother 2008; 62:536-40. [PMID: 18757166 DOI: 10.1016/j.biopha.2008.07.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 07/01/2008] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis is a chronic lipid-driven inflammatory disease of the arteries. Early lesions (fatty streaks) contain monocytes and T lymphocytes which are recruited from the circulation by adhesion to activated vascular endothelial cells (EC). This process is described as the leukocyte adhesion cascade. Atherogenesis occurs predominantly at branches and bends of the arterial tree that are exposed to relatively low or re-circulating blood flow. Here we briefly review the effects of blood flow and shear stress on the leukocyte adhesion cascade and endothelial cell function.
Collapse
|
205
|
Hierck BP, Van der Heiden K, Alkemade FE, Van de Pas S, Van Thienen JV, Groenendijk BCW, Bax WH, Van der Laarse A, Deruiter MC, Horrevoets AJG, Poelmann RE. Primary cilia sensitize endothelial cells for fluid shear stress. Dev Dyn 2008; 237:725-35. [PMID: 18297727 DOI: 10.1002/dvdy.21472] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Primary cilia are mechanosensors for fluid shear stress, and are involved in a number of syndromes and congenital anomalies. We identified endothelial cilia in areas of low shear stress in the embryonic heart. The objective of the present study was to demonstrate the role of primary cilia in mechanosensing. Ciliated embryonic endothelial cells were cultured from the heart, and non-ciliated cells from the arteries. Non-ciliated cells that were subjected to fluid shear stress showed significantly less induction of the shear marker Krüppel-Like Factor-2, as compared to ciliated cells. In addition, ciliated cells from which the cilia were chemically removed show a similar decrease in flow response. This shows that primary cilia sensitize endothelial cells for fluid shear stress. In addition, we targeted and stabilized the connection of the cilium to the cytoplasm by treatment with Colchicine and Taxol/Paclitaxel, respectively, and show that microtubular integrity is essential to sense shear stress.
Collapse
Affiliation(s)
- Beerend P Hierck
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Shaut CAE, Keene DR, Sorensen LK, Li DY, Stadler HS. HOXA13 Is essential for placental vascular patterning and labyrinth endothelial specification. PLoS Genet 2008; 4:e1000073. [PMID: 18483557 PMCID: PMC2367452 DOI: 10.1371/journal.pgen.1000073] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Accepted: 04/11/2008] [Indexed: 12/26/2022] Open
Abstract
In eutherian mammals, embryonic growth and survival is dependent on the formation of the placenta, an organ that facilitates the efficient exchange of oxygen, nutrients, and metabolic waste between the maternal and fetal blood supplies. Key to the placenta's function is the formation of its vascular labyrinth, a series of finely branched vessels whose molecular ontogeny remains largely undefined. In this report, we demonstrate that HOXA13 plays an essential role in labyrinth vessel formation. In the absence of HOXA13 function, placental endothelial cell morphology is altered, causing a loss in vessel wall integrity, edema of the embryonic blood vessels, and mid-gestational lethality. Microarray analysis of wild-type and mutant placentas revealed significant changes in endothelial gene expression profiles. Notably, pro-vascular genes, including Tie2 and Foxf1, exhibited reduced expression in the mutant endothelia, which also exhibited elevated expression of genes normally expressed in lymphatic or sinusoidal endothelia. ChIP analysis of HOXA13–DNA complexes in the placenta confirmed that HOXA13 binds the Tie2 and Foxf1 promoters in vivo. In vitro, HOXA13 binds sequences present in the Tie2 and Foxf1 promoters with high affinity (Kd = 27–42 nM) and HOXA13 can use these bound promoter regions to direct gene expression. Taken together, these findings demonstrate that HOXA13 directly regulates Tie2 and Foxf1 in the placental labyrinth endothelia, providing a functional explanation for the mid-gestational lethality exhibited by Hoxa13 mutant embryos as well as a novel transcriptional program necessary for the specification of the labyrinth vascular endothelia. Defects in placental development are a common cause of mid-gestational lethality. Key to the placenta's function is its vascular labyrinth, a series of finely branched vessels that facilitate the efficient exchange of gases, nutrients, and metabolic waste between the maternal and fetal blood supplies. In this study, we identify a novel role for the transcription factor HOXA13 in formation of the placental vascular labyrinth. In the absence of HOXA13 function, labyrinth vessel branching and endothelial specification is compromised, causing mid-gestational lethality due to placental insufficiency. Analysis of the genes affected by the loss of HOXA13 function revealed significant reductions in the expression of several pro-vascular genes, including Tie2 and Foxf1. Analysis of the Tie2 and Foxf1 promoters confirmed that HOXA13 binds sites present in each promoter with high affinity in the placenta, and in vitro, HOXA13 can use these bound sequences to regulate gene expression. These results suggest that Tie2 and Foxf1 are direct transcriptional targets of HOXA13 in the developing placental labyrinth, providing a novel transcriptional pathway to consider when examining pathologies of the placenta and placental insufficiency, as well as the evolutionary mechanisms required for the emergence of the vascular placenta in eutherian mammals.
Collapse
Affiliation(s)
- Carley A. E. Shaut
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
- Heart Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Douglas R. Keene
- Shriners Hospital for Children Research Division, Portland, Oregon, United States of America
| | - Lise K. Sorensen
- Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Dean Y. Li
- Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - H. Scott Stadler
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
- Shriners Hospital for Children Research Division, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
207
|
Abstract
Congenital heart disease is the commonest malformation in humans and contributes greatly to the burden of disease in infancy. Increasingly, developmental origins are also implicated in heart disease in adults. Significant advances have been made over the past decade in elucidating morphogenetic events of heart formation and their underlying molecular cascades, mostly in animal models. Clinical studies are increasingly successful in quantifying and unraveling genetic factors. This review focuses on recent progress made in understanding the genetic underpinnings of normal and abnormal heart formation and highlights the importance of understanding these mechanisms to improve patient management.
Collapse
Affiliation(s)
- G Andelfinger
- Cardiovascular Genetics, Pediatric Cardiology Service, Department of Pediatrics, Sainte-Justine Hospital, University of Montréal, Québec, Canada.
| |
Collapse
|
208
|
Affiliation(s)
- Ivo R. Buschmann
- From Art.Net. (Arteriogenesis Network), Universitätsmedizin Berlin-Charité, Center for Cardiovascular Research, Department for Internal Medicine, CC 13 Cardiology, Berlin, and University Clinic Freiburg-Cardiology, Freiburg; and the Max Delbrück Center for Molecular Medicine, Department of Angiogenesis and Cardiovascular Pathology, Germany
| | - Kerstin Lehmann
- From Art.Net. (Arteriogenesis Network), Universitätsmedizin Berlin-Charité, Center for Cardiovascular Research, Department for Internal Medicine, CC 13 Cardiology, Berlin, and University Clinic Freiburg-Cardiology, Freiburg; and the Max Delbrück Center for Molecular Medicine, Department of Angiogenesis and Cardiovascular Pathology, Germany
| | - Ferdinand Le Noble
- From Art.Net. (Arteriogenesis Network), Universitätsmedizin Berlin-Charité, Center for Cardiovascular Research, Department for Internal Medicine, CC 13 Cardiology, Berlin, and University Clinic Freiburg-Cardiology, Freiburg; and the Max Delbrück Center for Molecular Medicine, Department of Angiogenesis and Cardiovascular Pathology, Germany
| |
Collapse
|
209
|
Transcription factor KLF2 regulates the migration of naive T cells by restricting chemokine receptor expression patterns. Nat Immunol 2008; 9:292-300. [PMID: 18246069 DOI: 10.1038/ni1565] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 01/14/2008] [Indexed: 11/08/2022]
Abstract
The migration patterns of naive and activated T cells are associated with the expression of distinct sets of chemokine receptors, but the molecular basis for this regulation is unknown. Here we identify Krupple-like factor 2 (KLF2) as a key transcriptional factor needed to prevent naive T cells from expressing inflammatory chemokine receptors and acquiring the migration patterns of activated T cells. Lineage-specific deletion of KLF2 resulted in fewer naive T cells in the blood and secondary lymphoid organs, whereas it expanded naive T cell numbers in nonlymphoid tissues; these effects were associated with altered expression of inflammatory chemokine receptors on naive T cells. KLF2 repressed the expression of several chemokine receptors, including CCR3 and CCR5. We thus conclude that KLF2 maintains proper T cell migration patterns by linking T cell movement and transcriptional regulation of chemokine receptor expression patterns.
Collapse
|
210
|
Groenendijk BCW, Van der Heiden K, Hierck BP, Poelmann RE. The role of shear stress on ET-1, KLF2, and NOS-3 expression in the developing cardiovascular system of chicken embryos in a venous ligation model. Physiology (Bethesda) 2008; 22:380-9. [PMID: 18073411 DOI: 10.1152/physiol.00023.2007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, the role of wall shear stress in the chicken embryonic heart is analyzed to determine its effect on cardiac development through regulating gene expression. Therefore, background information is provided for fluid dynamics, normal chicken and human heart development, cardiac malformations, cardiac and vitelline blood flow, and a chicken model to induce cardiovascular anomalies. A set of endothelial shear stress-responsive genes coding for endothelin-1 (ET-1), lung Krüppel-like factor (LKLF/KLF2), and endothelial nitric oxide synthase (eNOS/NOS-3) are active in development and are specifically addressed.
Collapse
|
211
|
Griffin CT, Brennan J, Magnuson T. The chromatin-remodeling enzyme BRG1 plays an essential role in primitive erythropoiesis and vascular development. Development 2007; 135:493-500. [PMID: 18094026 DOI: 10.1242/dev.010090] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ATP-dependent chromatin-remodeling complexes contribute to the proper temporal and spatial patterns of gene expression in mammalian embryos and therefore play important roles in a number of developmental processes. SWI/SNF-like chromatin-remodeling complexes use one of two different ATPases as their catalytic subunit: brahma (BRM, also known as SMARCA2) and brahma-related gene 1 (BRG1, also known as SMARCA4). We have conditionally deleted a floxed Brg1 allele with a Tie2-Cre transgene, which is expressed in developing hematopoietic and endothelial cells. Brg1(fl/fl):Tie2-Cre(+) embryos die at midgestation from anemia, as mutant primitive erythrocytes fail to transcribe embryonic alpha- and beta-globins, and subsequently undergo apoptosis. Additionally, vascular remodeling of the extraembryonic yolk sac is abnormal in Brg1(fl/fl):Tie2-Cre(+) embryos. Importantly, Brm deficiency does not exacerbate the erythropoietic or vascular abnormalities found in Brg1(fl/fl):Tie2-Cre(+) embryos, implying that Brg1-containing SWI/SNF-like complexes, rather than Brm-containing complexes, play a crucial role in primitive erythropoiesis and in early vascular development.
Collapse
Affiliation(s)
- Courtney T Griffin
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
212
|
Wu J, Bohanan CS, Neumann JC, Lingrel JB. KLF2 transcription factor modulates blood vessel maturation through smooth muscle cell migration. J Biol Chem 2007; 283:3942-50. [PMID: 18063572 DOI: 10.1074/jbc.m707882200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vasculogenesis, angiogenesis, and maturation are three major phases of the development of blood vessels. Although many receptors required for blood vessel formation have been defined, the intracellular signal transduction pathways involved in vascular maturation remain unclear. KLF2(-/-) embryos fail to develop beyond 13.5 days because of a lack of blood vessel stabilization. The molecular mechanism of KLF2 function in embryonic vascular vessels is still largely unknown. Here we show a normal development pattern of endothelial cells in KLF2(-/-) embryos but a defect of smooth muscle cells at the dorsal side of the aorta. This phenotype results from arrested vascular maturation characterized by the failure of mural cells to migrate around endothelial cells. This migration defect is also observed when platelet-derived growth factor-B (PDGF) controlled migration is studied in murine embryonic fibroblast (MEF) cells from KLF2(-/-) animals. In addition, KLF2(-/-) MEFs exhibit a significant growth defect, indicating that KLF2 is required to maintain the viability of MEF cells. The PDGF signal is mediated through the Src signaling pathway, and a downstream target of KLF2 is sphingosine 1-phosphate receptor 1. These studies demonstrate that KLF2 is required for smooth muscle cell migration and elucidate a novel mechanism involving communication between PDGF and KLF2 in vascular maturation.
Collapse
Affiliation(s)
- Jinghai Wu
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | |
Collapse
|
213
|
Helderman F, Segers D, de Crom R, Hierck BP, Poelmann RE, Evans PC, Krams R. Effect of shear stress on vascular inflammation and plaque development. Curr Opin Lipidol 2007; 18:527-33. [PMID: 17885423 DOI: 10.1097/mol.0b013e3282ef7716] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW This review describes evidence that shear stress acts through modulation of inflammation and by that process affects atherogenesis and plaque composition. RECENT FINDINGS In low shear stress regions antiatherogenic transcription factors are downregulated and pro-atherogenic transcription factors are upregulated. Consequently, inflammatory cells may home low shear stress regions more easily to the plaques because of increased expression of adhesion factors, a decreased rolling speed and an increased expression of chemokines, thereby changing the composition of the plaques into a more vulnerable phenotype. In contrast, in advanced plaque development vascular lumen decreases and shear stress increases, especially upstream of the plaques. The predominant upstream location of lipids induces a prevalent upstream location of inflammatory cells leading to localized plaque rupture. SUMMARY Shear stress has been shown to play a role in plaque induction, plaque progression and plaque rupture. The mechanism for plaque induction seems to differ from the role of shear stress for plaque rupture, whereby the former mechanism is induced by low shear stress and the latter by high shear stress.
Collapse
Affiliation(s)
- Frank Helderman
- Department of Physics, Free University of Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
214
|
Gardiner MR, Gongora MM, Grimmond SM, Perkins AC. A global role for zebrafish klf4 in embryonic erythropoiesis. Mech Dev 2007; 124:762-74. [PMID: 17709232 DOI: 10.1016/j.mod.2007.06.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 06/06/2007] [Accepted: 06/18/2007] [Indexed: 01/21/2023]
Abstract
There are two waves of erythropoiesis, known as primitive and definitive waves in mammals and lower vertebrates including zebrafish. The founding member of the Kruppel-like factor (KLF) family of CACCC-box binding proteins, EKLF/Klf1, is essential for definitive erythropoiesis in mammals but only plays a minor role in primitive erythropoiesis. Morpholino knockdown experiments have shown a role for zebrafish klf4 in primitive erythropoiesis and hatching gland formation. In order to generate a global understanding of how klf4 might influence gene expression and differentiation, we have performed expression profiling of klf4 morphants, and then performed validation of many putative target genes by qRT-PCR and whole mount in situ hybridization. We found a critical role for klf4 in embryonic globin, heme synthesis and hatching gland gene expression. In contrast, there was an increase in expression of definitive hematopoietic specific genes such as larval globin genes, runx1 and c-myb from 24 hpf, suggesting a selective role for klf4 in primitive rather than definitive erythropoiesis. In addition, we show klf4 preferentially binds CACCC box elements in the primitive zebrafish beta-like globin gene promoters. These results have global implications for primitive erythroid gene regulation by KLF-CACCC box interactions.
Collapse
Affiliation(s)
- M R Gardiner
- Institute for Molecular Bioscience, University of Queensland, Australia
| | | | | | | |
Collapse
|
215
|
Basu P, Lung TK, Lemsaddek W, Sargent TG, Williams DC, Basu M, Redmond LC, Lingrel JB, Haar JL, Lloyd JA. EKLF and KLF2 have compensatory roles in embryonic beta-globin gene expression and primitive erythropoiesis. Blood 2007; 110:3417-25. [PMID: 17675555 PMCID: PMC2200909 DOI: 10.1182/blood-2006-11-057307] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Krüppel-like C2/H2 zinc finger transcription factors (KLFs) control development and differentiation. Erythroid Krüppel-like factor (EKLF or KLF1) regulates adult beta-globin gene expression and is necessary for normal definitive erythropoiesis. KLF2 is required for normal embryonic Ey- and betah1-, but not adult betaglobin, gene expression in mice. Both EKLF and KLF2 play roles in primitive erythroid cell development. To investigate potential interactions between these genes, EKLF/KLF2 double-mutant embryos were analyzed. EKLF(-/-)KLF2(-/-) mice appear anemic at embryonic day 10.5 (E10.5) and die before E11.5, whereas single-knockout EKLF(-/-) or KLF2(-/-) embryos are grossly normal at E10.5 and die later than EKLF(-/-)KLF2(-/-) embryos. At E10.5, Ey- and betah1-globin mRNA is greatly reduced in EKLF(-/-)KLF2(-/-), compared with EKLF(-/-) or KLF2(-/-) embryos, consistent with the observed anemia. Light and electron microscopic analyses of E9.5 EKLF(-/-)KLF2(-/-) yolk sacs, and cytospins, indicate that erythroid and endothelial cells are morphologically more abnormal than in either single knockout. EKLF(-/-)KLF2(-/-) erythroid cells are markedly irregularly shaped, suggesting membrane abnormalities. EKLF and KLF2 may have coordinate roles in a common progenitor to erythroid and endothelial cells. The data indicate that EKLF and KLF2 have redundant functions in embryonic beta-like globin gene expression, primitive erythropoiesis, and endothelial development.
Collapse
Affiliation(s)
- Priyadarshi Basu
- Department of Human Genetics, and Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Abstract
Krüppel-like factors are members of the zinc finger family of transcription factors that have been implicated as playing key roles in regulating cellular differentiation and tissue development. Studies over the past several years support an important role for this family of factors in vascular biology. This review summarizes the role of Krüppel-like factors in endothelial cell biology.
Collapse
Affiliation(s)
- G Brandon Atkins
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
217
|
Mu J, Qu D, Bartczak A, Phillips MJ, Manuel J, He W, Koscik C, Mendicino M, Zhang L, Clark DA, Grant DR, Backx PH, Levy GA, Adamson SL. Fgl2 deficiency causes neonatal death and cardiac dysfunction during embryonic and postnatal development in mice. Physiol Genomics 2007; 31:53-62. [PMID: 17550996 DOI: 10.1152/physiolgenomics.00026.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We hypothesized that cardiac dysfunction was responsible for the high perinatal lethality that we previously reported in fibrinogen-like protein 2 (Fgl2) knockout (KO) mice. We therefore used ultrasound biomicroscopy to assess left ventricular (LV) cardiac structure and function during development in Fgl2 KO and wild-type (WT) mice. The only deaths observed between embryonic day (E)8.5 (onset of heart beating) and postnatal day (P)28 (weaning) were within 3 days after birth, when 33% of Fgl2 KO pups died. Histopathology and Doppler assessments suggested that death was due to acute congestive cardiac failure without evidence of valvular or other obvious cardiac structural abnormalities. Heart rates in Fgl2 KO embryos were significantly reduced at E8.5 and E17.5, and irregular heart rhythms were significantly more common in Fgl2 KO (21/26) than WT (2/21) embryos at E13.5. Indexes of systolic and/or diastolic cardiac function were also abnormal in KO mice at E13.5 and E17.5, in postnatal mice studied at P1, and in KO mice surviving to P28. M-mode analysis showed no difference in LV diastolic chamber dimension, although posterior wall thickness was thinner at P7 and P28 in Fgl2 KO mice. We conclude that Fgl2 deficiency is not associated with obvious structural cardiac defects but is associated with a high incidence of neonatal death as well as contractile dysfunction and rhythm abnormalities during embryonic and postnatal development in mice.
Collapse
Affiliation(s)
- Junwu Mu
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|