201
|
Jeske M, Moritz B, Anders A, Wahle E. Smaug assembles an ATP-dependent stable complex repressing nanos mRNA translation at multiple levels. EMBO J 2010; 30:90-103. [PMID: 21081899 DOI: 10.1038/emboj.2010.283] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 10/12/2010] [Indexed: 12/23/2022] Open
Abstract
The nanos (nos) mRNA encodes the posterior determinant of the Drosophila embryo. Translation of the RNA is repressed throughout most of the embryo by the protein Smaug binding to Smaug recognition elements (SREs) in the 3' UTR. Translation is locally activated at the posterior pole by Oskar. This paper reports that the SREs govern the time- and ATP-dependent assembly of an exceedingly stable repressed ribonucleoprotein particle (RNP) in embryo extract. Repression can be virtually complete. Smaug and its co-repressor Cup as well as Trailer hitch and the DEAD box protein Me31B are part of the repressed RNP. The initiation factor eIF4G is specifically displaced, and 48S pre-initiation complex formation is inhibited. However, later steps in translation initiation are also sensitive to SRE-dependent inhibition. These data confirm several previously untested predictions of a current model for Cup-dependent repression but also suggest that the Cup model by itself is insufficient to explain translational repression of the nos RNA. In the embryo extract, recombinant Oskar relieves translational repression and deadenylation by preventing Smaug's binding to the SREs.
Collapse
Affiliation(s)
- Mandy Jeske
- Institute of Biochemistry and Biotechnology, General Biochemistry, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | | | | |
Collapse
|
202
|
Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature 2010; 467:1128-32. [PMID: 20953170 DOI: 10.1038/nature09465] [Citation(s) in RCA: 345] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 08/27/2010] [Indexed: 12/25/2022]
Abstract
Piwi-associated RNAs (piRNAs), a specific class of 24- to 30-nucleotide-long RNAs produced by the Piwi-type of Argonaute proteins, have a specific germline function in repressing transposable elements. This repression is thought to involve heterochromatin formation and transcriptional and post-transcriptional silencing. The piRNA pathway has other essential functions in germline stem cell maintenance and in maintaining germline DNA integrity. Here we uncover an unexpected function of the piRNA pathway in the decay of maternal messenger RNAs and in translational repression in the early embryo. A subset of maternal mRNAs is degraded in the embryo at the maternal-to-zygotic transition. In Drosophila, maternal mRNA degradation depends on the RNA-binding protein Smaug and the deadenylase CCR4, as well as the zygotic expression of a microRNA cluster. Using mRNA encoding the embryonic posterior morphogen Nanos (Nos) as a paradigm to study maternal mRNA decay, we found that CCR4-mediated deadenylation of nos depends on components of the piRNA pathway including piRNAs complementary to a specific region in the nos 3' untranslated region. Reduced deadenylation when piRNA-induced regulation is impaired correlates with nos mRNA stabilization and translational derepression in the embryo, resulting in head development defects. Aubergine, one of the Argonaute proteins in the piRNA pathway, is present in a complex with Smaug, CCR4, nos mRNA and piRNAs that target the nos 3' untranslated region, in the bulk of the embryo. We propose that piRNAs and their associated proteins act together with Smaug to recruit the CCR4 deadenylation complex to specific mRNAs, thus promoting their decay. Because the piRNAs involved in this regulation are produced from transposable elements, this identifies a direct developmental function for transposable elements in the regulation of gene expression.
Collapse
|
203
|
Genome-wide analysis of mRNA decay patterns during early Drosophila development. Genome Biol 2010; 11:R93. [PMID: 20858238 PMCID: PMC2965385 DOI: 10.1186/gb-2010-11-9-r93] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/08/2010] [Accepted: 09/21/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The modulation of mRNA levels across tissues and time is key for the establishment and operation of the developmental programs that transform the fertilized egg into a fully formed embryo. Although the developmental mechanisms leading to differential mRNA synthesis are heavily investigated, comparatively little attention is given to the processes of mRNA degradation and how these relate to the molecular programs controlling development. RESULTS Here we combine timed collection of Drosophila embryos and unfertilized eggs with genome-wide microarray technology to determine the degradation patterns of all mRNAs present during early fruit fly development. Our work studies the kinetics of mRNA decay, the contributions of maternally and zygotically encoded factors to mRNA degradation, and the ways in which mRNA decay profiles relate to gene function, mRNA localization patterns, translation rates and protein turnover. We also detect cis-regulatory sequences enriched in transcripts with common degradation patterns and propose several proteins and microRNAs as developmental regulators of mRNA decay during early fruit fly development. Finally, we experimentally validate the effects of a subset of cis-regulatory sequences and trans-regulators in vivo. CONCLUSIONS Our work advances the current understanding of the processes controlling mRNA degradation during early Drosophila development, taking us one step closer to the understanding of mRNA decay processes in all animals. Our data also provide a valuable resource for further experimental and computational studies investigating the process of mRNA decay.
Collapse
|
204
|
Temme C, Zhang L, Kremmer E, Ihling C, Chartier A, Sinz A, Simonelig M, Wahle E. Subunits of the Drosophila CCR4-NOT complex and their roles in mRNA deadenylation. RNA (NEW YORK, N.Y.) 2010; 16:1356-1370. [PMID: 20504953 PMCID: PMC2885685 DOI: 10.1261/rna.2145110] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/16/2010] [Indexed: 05/27/2023]
Abstract
The CCR4-NOT complex is the main enzyme catalyzing the deadenylation of mRNA. We have investigated the composition of this complex in Drosophila melanogaster by immunoprecipitation with a monoclonal antibody directed against NOT1. The CCR4, CAF1 (=POP2), NOT1, NOT2, NOT3, and CAF40 subunits were associated in a stable complex, but NOT4 was not. Factors known to be involved in mRNA regulation were prominent among the other proteins coprecipitated with the CCR4-NOT complex, as analyzed by mass spectrometry. The complex was localized mostly in the cytoplasm but did not appear to be a major component of P bodies. Of the known CCR4 paralogs, Nocturnin was found associated with the subunits of the CCR4-NOT complex, whereas Angel and 3635 were not. RNAi experiments in Schneider cells showed that CAF1, NOT1, NOT2, and NOT3 are required for bulk poly(A) shortening and hsp70 mRNA deadenylation, but knock-down of CCR4, CAF40, and NOT4 did not affect these processes. Overexpression of catalytically dead CAF1 had a dominant-negative effect on mRNA decay. In contrast, overexpression of inactive CCR4 had no effect. We conclude that CAF1 is the major catalytically important subunit of the CCR4-NOT complex in Drosophila Schneider cells. Nocturnin may also be involved in mRNA deadenylation, whereas there is no evidence for a similar role of Angel and 3635.
Collapse
Affiliation(s)
- Claudia Temme
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | | | | | | | | | | | | | | |
Collapse
|
205
|
Li X, Quon G, Lipshitz HD, Morris Q. Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure. RNA (NEW YORK, N.Y.) 2010; 16:1096-107. [PMID: 20418358 PMCID: PMC2874161 DOI: 10.1261/rna.2017210] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
While many RNA-binding proteins (RBPs) bind RNA in a sequence-specific manner, their sequence preferences alone do not distinguish known target RNAs from other potential targets that are coexpressed and contain the same sequence motifs. Recently, the mRNA targets of dozens of RNA-binding proteins have been identified, facilitating a systematic study of the features of target transcripts. Using these data, we demonstrate that calculating the predicted structural accessibility of a putative RBP binding site allows one to significantly improve the accuracy of predicting in vivo binding for the majority of sequence-specific RBPs. In our new in silico approach, accessibility is predicted based solely on the mRNA sequence without consideration of the locations of bound trans-factors; as such, our results suggest a greater than previously anticipated role for intrinsic mRNA secondary structure in determining RBP binding target preference. Target site accessibility aids in predicting target transcripts and the binding sites for RBPs with a range of RNA-binding domains and subcellular functions. Based on this work, we introduce a new motif-finding algorithm that identifies accessible sequence-specific RBP motifs from in vivo binding data.
Collapse
Affiliation(s)
- Xiao Li
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1E3, Canada
| | | | | | | |
Collapse
|
206
|
Shen-Orr SS, Pilpel Y, Hunter CP. Composition and regulation of maternal and zygotic transcriptomes reflects species-specific reproductive mode. Genome Biol 2010; 11:R58. [PMID: 20515465 PMCID: PMC2911106 DOI: 10.1186/gb-2010-11-6-r58] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 04/23/2010] [Accepted: 06/01/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early embryos contain mRNA transcripts expressed from two distinct origins; those expressed from the mother's genome and deposited in the oocyte (maternal) and those expressed from the embryo's genome after fertilization (zygotic). The transition from maternal to zygotic control occurs at different times in different animals according to the extent and form of maternal contributions, which likely reflect evolutionary and ecological forces. Maternally deposited transcripts rely on post-transcriptional regulatory mechanisms for precise spatial and temporal expression in the embryo, whereas zygotic transcripts can use both transcriptional and post-transcriptional regulatory mechanisms. The differences in maternal contributions between animals may be associated with gene regulatory changes detectable by the size and complexity of the associated regulatory regions. RESULTS We have used genomic data to identify and compare maternal and/or zygotic expressed genes from six different animals and find evidence for selection acting to shape gene regulatory architecture in thousands of genes. We find that mammalian maternal genes are enriched for complex regulatory regions, suggesting an increase in expression specificity, while egg-laying animals are enriched for maternal genes that lack transcriptional specificity. CONCLUSIONS We propose that this lack of specificity for maternal expression in egg-laying animals indicates that a large fraction of maternal genes are expressed non-functionally, providing only supplemental nutritional content to the developing embryo. These results provide clear predictive criteria for analysis of additional genomes.
Collapse
Affiliation(s)
- Shai S Shen-Orr
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
207
|
Abstract
What is a larva, if it is not what survives of an ancestor's adult, compressed into a transient pre-reproductive phase, as suggested by Haeckel's largely disreputed model of evolution by recapitulation? A recently published article hypothesizes that larva and adult of holometabolous insects are developmental expressions of two different genomes coexisting in the same animal as a result of an ancient hybridization event between an onychophoran and a primitive insect with eventless post-embryonic development. More likely, however, larvae originated from late embryonic or early post-embryonic stages of ancestors with direct development. Evolutionary novelties would thus be intercalary rather than terminal, with respect to the ancestor's ontogenetic schedule. This scenario, supported by current research on holometabolous insects and marine invertebrates with complex life cycles, offers a serious alternative to the traditional scenario ('what is early in ontogeny is also early in phylogeny') underlying the current perception of the evolution of genetic regulatory networks.
Collapse
|
208
|
Localization of ribosomes and translation initiation factors to talin/beta3-integrin-enriched adhesion complexes in spreading and migrating mammalian cells. Biol Cell 2010; 102:265-76. [PMID: 19929852 DOI: 10.1042/bc20090141] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND INFORMATION The spatial localization of translation can facilitate the enrichment of proteins at their sites of function while also ensuring that proteins are expressed in the proximity of their cognate binding partners. RESULTS Using human embryonic lung fibroblasts and employing confocal imaging and biochemical fractionation techniques, we show that ribosomes, translation initiation factors and specific RNA-binding proteins localize to nascent focal complexes along the distal edge of migrating lamellipodia. 40S ribosomal subunits appear to associate preferentially with beta3 integrin in focal adhesions at the leading edges of spreading cells, with this association strongly augmented by a synergistic effect of cell engagement with a mixture of extracellular matrix proteins. However, both ribosome and initiation factor localizations do not require de novo protein synthesis. CONCLUSIONS Taken together, these findings demonstrate that repression, complex post-transcriptional regulation and modulation of mRNA stability could potentially be taking place along the distal edge of migrating lamellipodia.
Collapse
|
209
|
Meignin C, Davis I. Transmitting the message: intracellular mRNA localization. Curr Opin Cell Biol 2010; 22:112-9. [DOI: 10.1016/j.ceb.2009.11.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/16/2009] [Accepted: 11/20/2009] [Indexed: 11/25/2022]
|
210
|
Gabrieli P, Falaguerra A, Siciliano P, Gomulski LM, Scolari F, Zacharopoulou A, Franz G, Malacrida AR, Gasperi G. Sex and the single embryo: early deveiopment in the Mediterranean fruit fly, Ceratitis capitata. BMC DEVELOPMENTAL BIOLOGY 2010; 10:12. [PMID: 20102629 PMCID: PMC2826288 DOI: 10.1186/1471-213x-10-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 01/26/2010] [Indexed: 01/17/2023]
Abstract
Background In embryos the maternal-to-zygotic transition (MTZ) integrates post-transcriptional regulation of maternal transcripts with transcriptional activation of the zygotic genome. Although the molecular mechanisms underlying this event are being clarified in Drosophila melanogaster, little is know about the embryogenic processes in other insect species. The recent publication of expressed sequence tags (ESTs) from embryos of the global pest species Ceratitis capitata (medfly) has enabled the investigation of embryogenesis in this species and has allowed a comparison of the embryogenic processes in these two related dipteran species, C. capitata and D. melanogaster, that shared a common ancestor 80-100 mya. Results Using a novel PCR-based sexing method, which takes advantage of a putative LTR retrotransposon MITE insertion on the medfly Y chromosome, the transcriptomes of individual early male and female embryos were analysed using RT-PCR. This study is focused on two crucial aspects of the onset of embryonic development: sex determination and cellular blastoderm formation. Together with the three known medfly genes (Cctransformer, Cctransformer2 and Ccdoublesex), the expression patterns of other medfly genes that are similar to the D. melanogaster sex-determination genes (sisterlessA, groucho, deadpan, Sex-lethal, female lethal d, sans fille and intersex) and four cellular blastoderm formation genes (Rho1, spaghetti squash, slow-as-molasses and serendipity-α) were analyzed, allowing us to sketch a preliminary outline of the embryonic process in the medfly. Furthermore, a putative homologue of the Zelda gene has been considered, which in D. melanogaster encodes a DNA-binding factor responsible for the maternal-to-zygotic transition. Conclusions Our novel sexing method facilitates the study of i) when the MTZ transition occurs in males and females of C. capitata, ii) when and how the maternal information of "female-development" is reprogrammed in the embryos and iii) similarities and differences in the regulation of gene expression in C. capitata and D. melanogaster. We suggest a new model for the onset of the sex determination cascade in the medfly: the maternally inherited Cctra transcripts in the female embryos are insufficient to produce enough active protein to inhibit the male mode of Cctra splicing. The slow rate of development and the inefficiency of the splicing mechanism in the pre-cellular blastoderm facilitates the male-determining factor (M) activity, which probably acts by inhibiting CcTRA protein activity.
Collapse
Affiliation(s)
- Paolo Gabrieli
- Department of Animal Biology, University of Pavia, Piazza Botta 9, 27100 Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Abstract
Myc genes play a major role in human cancer, and they are important regulators of growth and proliferation during normal development. Despite intense study over the last three decades, many aspects of Myc function remain poorly understood. The identification of a single Myc homolog in the model organism Drosophila melanogaster more than 10 years ago has opened new possibilities for addressing these issues. This review summarizes what the last decade has taught us about Myc biology in the fruit fly.
Collapse
Affiliation(s)
- Peter Gallant
- Zoologisches Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
212
|
Translational control during early development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:211-54. [PMID: 20374743 DOI: 10.1016/s1877-1173(09)90006-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Translational control of specific messenger RNAs, which themselves are often asymmetrically localized within the cytoplasm of a cell, underlies many events in germline development, and in embryonic axis specification. This comprehensive, but by no means exhaustive, review attempts to present a picture of the present state of knowledge about mechanisms underlying mRNA localization and translational control of specific mRNAs that are mediated by trans-acting protein factors. While RNA localization and translational control are widespread in evolution and have been studied in many experimental systems, this article will focus mainly on three particularly well-characterized systems: Drosophila, Caenorhabditis elegans, and Xenopus. In keeping with the overall theme of this volume, instances in which translational control factors have been linked to human disease states will also be discussed.
Collapse
|
213
|
Biedermann B, Wright J, Senften M, Kalchhauser I, Sarathy G, Lee MH, Ciosk R. Translational repression of cyclin E prevents precocious mitosis and embryonic gene activation during C. elegans meiosis. Dev Cell 2009; 17:355-64. [PMID: 19758560 DOI: 10.1016/j.devcel.2009.08.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/15/2009] [Accepted: 08/11/2009] [Indexed: 12/21/2022]
Abstract
Germ cells, the cells that give rise to sperm and egg, maintain the potential to recreate all cell types in a new individual. This wide developmental potential, or totipotency, is manifested in unusual tumors called teratomas, in which germ cells undergo somatic differentiation. Although recent studies have implicated RNA regulation, the mechanism that normally prevents the loss of germ cell identity remains unexplained. In C. elegans, a teratoma is induced in the absence of the conserved RNA-binding protein GLD-1. Here, we demonstrate that GLD-1 represses translation of CYE-1/cyclin E during meiotic prophase, which prevents germ cells from re-entering mitosis and inducing embryonic-like transcription. We describe a mechanism that prevents precocious mitosis in germ cells undergoing meiosis, propose that this mechanism maintains germ cell identity by delaying the onset of embryonic gene activation until after fertilization, and provide a paradigm for the possible origin of human teratomas.
Collapse
Affiliation(s)
- Bjoern Biedermann
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
214
|
Abstract
All animal embryos pass through a stage during which developmental control is handed from maternally provided gene products to those synthesized from the zygotic genome. This maternal-to-zygotic transition (MZT) has been extensively studied in model organisms, including echinoderms, nematodes, insects, fish,amphibians and mammals. In all cases, the MZT can be subdivided into two interrelated processes: first, a subset of maternal mRNAs and proteins is eliminated; second, zygotic transcription is initiated. The timing and scale of these two events differ across species, as do the cellular and morphogenetic processes that sculpt their embryos. In this article, we discuss conserved and distinct features within the two component processes of the MZT.
Collapse
Affiliation(s)
- Wael Tadros
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, TMDT Building, 101 College Street, Toronto,Ontario, Canada M5G 1L7
| | - Howard D. Lipshitz
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, TMDT Building, 101 College Street, Toronto,Ontario, Canada M5G 1L7
| |
Collapse
|
215
|
Abstract
Morphogens are molecules that specify cell fate in a concentration-dependent manner. A classic example is the Bicoid (BCD) protein, for which the prevailing model is that translation of bcd mRNA occurs from a point source at the anterior pole of the Drosophila melanogaster embryo followed by diffusion to produce a protein gradient. This model has been challenged by experiments showing that the diffusion rate of BCD is too slow to establish the protein gradient. The work described in a recent paper has solved this conundrum by demonstrating that a bcd mRNA gradient prefigures the BCD protein gradient.
Collapse
|
216
|
Sackton KL, Lopez JM, Berman CL, Wolfner MF. YA is needed for proper nuclear organization to transition between meiosis and mitosis in Drosophila. BMC DEVELOPMENTAL BIOLOGY 2009; 9:43. [PMID: 19627584 PMCID: PMC2724486 DOI: 10.1186/1471-213x-9-43] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 07/23/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND The Drosophila YA protein is required to initiate the embryonic cleavage divisions. After egg activation, YA enters nuclei and interacts with chromatin and the nuclear lamina. This study was designed to define more precisely the events prior to the first cleavage division that are dependent upon YA. RESULTS We find that meiosis is completed normally in the absence of YA function. The first defects in embryos and eggs from mutant mothers first appear just after the completion of meiosis, and are seen as abnormal associations among the resultant haploid nuclei. These defects are associated with asynchronies in the cell cycle-dependent chromatin condensation state of the haploid nuclei. However, we find evidence of DNA replication in the absence of YA function. CONCLUSION Our data suggest YA function is needed at a control point, following meiosis II and the initiation of the first postmeiotic S phase, which is sensitive to the chromatin condensation state of the haploid meiotic products.
Collapse
Affiliation(s)
- Katharine L Sackton
- Dept of Molecular Biology and Genetics, Cornell University, Ithaca NY 14853, USA
| | - Jacqueline M Lopez
- Dept of Molecular Biology and Genetics, Cornell University, Ithaca NY 14853, USA
| | - Cindy L Berman
- Dept of Molecular Biology and Genetics, Cornell University, Ithaca NY 14853, USA
| | - Mariana F Wolfner
- Dept of Molecular Biology and Genetics, Cornell University, Ithaca NY 14853, USA
| |
Collapse
|
217
|
Benoit B, He CH, Zhang F, Votruba SM, Tadros W, Westwood JT, Smibert CA, Lipshitz HD, Theurkauf WE. An essential role for the RNA-binding protein Smaug during the Drosophila maternal-to-zygotic transition. Development 2009; 136:923-32. [PMID: 19234062 DOI: 10.1242/dev.031815] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genetic control of embryogenesis switches from the maternal to the zygotic genome during the maternal-to-zygotic transition (MZT), when maternal mRNAs are destroyed, high-level zygotic transcription is initiated, the replication checkpoint is activated and the cell cycle slows. The midblastula transition (MBT) is the first morphological event that requires zygotic gene expression. The Drosophila MBT is marked by blastoderm cellularization and follows 13 cleavage-stage divisions. The RNA-binding protein Smaug is required for cleavage-independent maternal transcript destruction during the Drosophila MZT. Here, we show that smaug mutants also disrupt syncytial blastoderm stage cell-cycle delays, DNA replication checkpoint activation, cellularization, and high-level zygotic expression of protein coding and micro RNA genes. We also show that Smaug protein levels increase through the cleavage divisions and peak when the checkpoint is activated and zygotic transcription initiates, and that transgenic expression of Smaug in an anterior-to-posterior gradient produces a concomitant gradient in the timing of maternal transcript destruction, cleavage cell cycle delays, zygotic gene transcription, cellularization and gastrulation. Smaug accumulation thus coordinates progression through the MZT.
Collapse
Affiliation(s)
- Beatrice Benoit
- Program in Molecular Medicine, University of Massachusetts Medical School, 377 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Fontenele M, Carneiro K, Agrellos R, Oliveira D, Oliveira-Silva A, Vieira V, Negreiros E, Machado E, Araujo H. The Ca2+-dependent protease Calpain A regulates Cactus/I kappaB levels during Drosophila development in response to maternal Dpp signals. Mech Dev 2009; 126:737-51. [PMID: 19442719 DOI: 10.1016/j.mod.2009.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/24/2009] [Accepted: 04/27/2009] [Indexed: 11/15/2022]
Abstract
Regulation of NF kappaB activity is central to many processes during development and disease. Activation of NF kappaB family members depends on degradation of inhibitory I kappaB proteins. In Drosophila, a nuclear gradient of the NF kappaB/c-rel protein Dorsal subdivides the embryonic dorsal-ventral axis, defining the extent and location of mesodermal and ectodermal territories. Activation of the Toll pathway directs Dorsal nuclear translocation by inducing proteosomal degradation of the I kappaB homologue Cactus. Another mechanism that impacts on Dorsal activation involves the Toll-independent pathway, which regulates constitutive Cactus degradation. We have shown that the BMP protein Decapentaplegic (Dpp) inhibits Cactus degradation independent of Toll. Here we report on a novel element of this pathway: the calcium-dependent protease Calpain A. Calpain A knockdowns increase Cactus levels, shifting the Dorsal gradient and dorsal-ventral patterning. As shown for mammalian I kappaB, this effect requires PEST sequences in the Cactus C-terminus, implying a conserved role for calpains. Alteration of Calpain A or dpp results in similar effects on Dorsal target genes. Epistatic analysis confirms Calpain A activity is regulated by Dpp, indicating that Dpp signals increase Cactus levels through Calpain A inhibition, thereby interfering with Dorsal activation. This mechanism may allow coordination of Toll, BMP and Ca(2+) signals, conferring precision to Dorsal-target expression domains.
Collapse
Affiliation(s)
- M Fontenele
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Skern-Mauritzen R, Frost P, Dalvin S, Kvamme BO, Sommerset I, Nilsen F. A trypsin-like protease with apparent dual function in early Lepeophtheirus salmonis (Krøyer) development. BMC Mol Biol 2009; 10:44. [PMID: 19439101 PMCID: PMC2689223 DOI: 10.1186/1471-2199-10-44] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 05/13/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypsin-like serine proteases are involved in a large number of processes including digestive degradation, regulation of developmental processes, yolk degradation and yolk degradome activation. Trypsin like peptidases considered to be involved in digestion have been characterized in Lepeophtheirus salmonis. During these studies a trypsin-like peptidase which differed in a number of traits were identified. RESULTS An intronless trypsin-like serine peptidase (LsTryp10) from L., salmonis was identified and characterized. LsTryp10 mRNA is evenly distributed in the ovaries and oocytes, but is located along the ova periphery. LsTryp10 protein is deposited in the oocytes and all embryonic cells. LsTryp10 mRNA translation and concurrent degradation after fertilization was found in the embryos demonstrating that LsTryp10 protein is produced both by the embryo and maternally. The results furthermore indicate that LsTryp10 protein of maternal origin has a distribution pattern different to that of embryonic origin. CONCLUSION Based on present data and previous studies of peptidases in oocytes and embryos, we hypothesize that maternally deposited LsTryp10 protein is involved in regulation of the yolk degradome. The function of LsTryp10 produced by the embryonic cells remains unknown. To our knowledge a similar expression pattern has not previously been reported for any protease.
Collapse
Affiliation(s)
- Rasmus Skern-Mauritzen
- Department of Population Genetics and Ecology, Institute of Marine Research, 5817 Bergen, Norway
| | - Petter Frost
- Department of Population Genetics and Ecology, Institute of Marine Research, 5817 Bergen, Norway
- Intervet Norbio AS, 5008 Bergen, Norway
| | - Sussie Dalvin
- Department of Population Genetics and Ecology, Institute of Marine Research, 5817 Bergen, Norway
| | - Bjørn Olav Kvamme
- Department of Health, Institute of Marine Research, 5817 Bergen, Norway
| | | | - Frank Nilsen
- Department of Population Genetics and Ecology, Institute of Marine Research, 5817 Bergen, Norway
- Department of Biology, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
220
|
Discovering structural cis-regulatory elements by modeling the behaviors of mRNAs. Mol Syst Biol 2009; 5:268. [PMID: 19401680 PMCID: PMC2683727 DOI: 10.1038/msb.2009.24] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 03/17/2009] [Indexed: 12/29/2022] Open
Abstract
Gene expression is regulated at each step from chromatin remodeling through translation and degradation. Several known RNA-binding regulatory proteins interact with specific RNA secondary structures in addition to specific nucleotides. To provide a more comprehensive understanding of the regulation of gene expression, we developed an integrative computational approach that leverages functional genomics data and nucleotide sequences to discover RNA secondary structure-defined cis-regulatory elements (SCREs). We applied our structural cis-regulatory element detector (StructRED) to microarray and mRNA sequence data from Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens. We recovered the known specificities of Vts1p in yeast and Smaug in flies. In addition, we discovered six putative SCREs in flies and three in humans. We characterized the SCREs based on their condition-specific regulatory influences, the annotation of the transcripts that contain them, and their locations within transcripts. Overall, we show that modeling functional genomics data in terms of combined RNA structure and sequence motifs is an effective method for discovering the specificities and regulatory roles of RNA-binding proteins.
Collapse
|
221
|
Gouw JW, Pinkse MWH, Vos HR, Moshkin Y, Verrijzer CP, Heck AJR, Krijgsveld J. In vivo stable isotope labeling of fruit flies reveals post-transcriptional regulation in the maternal-to-zygotic transition. Mol Cell Proteomics 2009; 8:1566-78. [PMID: 19321433 DOI: 10.1074/mcp.m900114-mcp200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
An important hallmark in embryonic development is characterized by the maternal-to-zygotic transition (MZT) where zygotic transcription is activated by a maternally controlled environment. Post-transcriptional and translational regulation is critical for this transition and has been investigated in considerable detail at the gene level. We used a proteomics approach using metabolic labeling of Drosophila to quantitatively assess changes in protein expression levels before and after the MZT. By combining stable isotope labeling of fruit flies in vivo with high accuracy quantitative mass spectrometry we could quantify 2,232 proteins of which about half changed in abundance during this process. We show that approximately 500 proteins increased in abundance, providing direct evidence of the identity of proteins as a product of embryonic translation. The group of down-regulated proteins is dominated by maternal factors involved in translational control of maternal and zygotic transcripts. Surprisingly a direct comparison of transcript and protein levels showed that the mRNA levels of down-regulated proteins remained relatively constant, indicating a translational control mechanism specifically targeting these proteins. In addition, we found evidence for post-translational processing of cysteine proteinase-1 (Cathepsin L), which became activated during the MZT as evidenced by the loss of its N-terminal propeptide. Poly(A)-binding protein was shown to be processed at its C-terminal tail, thereby losing one of its protein-interacting domains. Altogether this quantitative proteomics study provides a dynamic profile of known and novel proteins of maternal as well as embryonic origin. This provides insight into the production, stability, and modification of individual proteins, whereas discrepancies between transcriptional profiles and protein dynamics indicate novel control mechanisms in genome activation during early fly development.
Collapse
Affiliation(s)
- Joost W Gouw
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
222
|
Moore J, Lasko P. Breaking the A chain: regulating mRNAs in development through CCR4 deadenylase. F1000 BIOLOGY REPORTS 2009; 1:20. [PMID: 20948665 PMCID: PMC2920682 DOI: 10.3410/b1-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Post-transcriptional mechanisms of gene regulation have long been implicated in specifying embryonic pattern in many organisms. Experiments in Caenorhabditis elegans, Drosophila, and Xenopus have recently converged, pointing to the CCR4 deadenylase complex as a key effector that modulates the expression of proteins from specific germline mRNAs.
Collapse
Affiliation(s)
- Jocelyn Moore
- Department of Biology and Developmental Biology Research Initiative, McGill University 1205 Avenue Docteur Penfield, Montréal, QC H3A 1B1 Canada
| | | |
Collapse
|
223
|
Abstract
The localization of mRNAs to subcellular compartments provides a mechanism for regulating gene expression with exquisite temporal and spatial control. Recent studies suggest that a large fraction of mRNAs localize to distinct cytoplasmic domains. In this Review, we focus on cis-acting RNA localization elements, RNA-binding proteins, and the assembly of mRNAs into granules that are transported by molecular motors along cytoskeletal elements to their final destination in the cell.
Collapse
Affiliation(s)
- Kelsey C Martin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095-1737, USA.
| | | |
Collapse
|
224
|
Abstract
In contrast to the extensive analysis of the regulation of Cyclin B protein levels during developmental progression through meiosis in oogenesis, little is known about Cyclin A. Repression of cyclin A translation early in prophase I in Drosophila is important to maintain the oocyte in meiosis, and this has been shown to be mediated by deadenylation of the mRNA and inhibition by the Bruno repressor. We find that at oocyte maturation as meiosis resumes, Cyclin A protein reappears, coincident with polyadenylation of the mRNA and loss of Bruno repressor. Cyclin A is multiphosphorylated in a pattern consistent with autophosphorylation, and this form accumulates aberrantly in metaphase I if the Cortex form of the Anaphase Promoting Complex/Cyclosome is inactive. The PAN GU (PNG) kinase positively promotes translation of Cyclin A, beginning in oogenesis, an earlier onset than previously recognized. After egg activation and the completion of meiosis, PNG promotes further polyadenylation of cyclin A mRNA and appears to antagonize repression of translation by the PUMILIO inhibitor. Epistasis studies with png; apc mutants indicate that PNG acts solely to promote translation, rather than having a parallel function to inhibit degradation. These studies reveal multiple levels of posttranscriptional regulation of Cyclin A protein by translational and proteolytic control during oocyte maturation and the onset of embryogenesis.
Collapse
|
225
|
Abstract
Regulated translation and subcellular localization of maternal mRNAs underlies establishment of the antero-posterior axis in the Drosophila oocyte. In this issue of Genes & Development, Besse et al. (pp. 195-207) show that a molecule better known as a regulator of alternative splicing in the nucleus, polypyrimidine tract-binding protein (PTB), is required for repression of oskar mRNA in the cytoplasm. Their work suggests that PTB need not engage oskar mRNA in the nucleus for efficient repression, providing an important counterexample to the increasingly popular idea that cytoplasmic regulation initiates in the nucleus.
Collapse
Affiliation(s)
- Robin P Wharton
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710, USA.
| |
Collapse
|
226
|
Rangan P, DeGennaro M, Jaime-Bustamante K, Coux RX, Martinho R, Lehmann R. Temporal and spatial control of germ-plasm RNAs. Curr Biol 2009; 19:72-7. [PMID: 19110432 PMCID: PMC2766415 DOI: 10.1016/j.cub.2008.11.066] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 11/24/2008] [Accepted: 11/26/2008] [Indexed: 12/19/2022]
Abstract
In many species, germ cells form in a specialized germ plasm, which contains localized maternal RNAs. In the absence of active transcription in early germ cells, these maternal RNAs encode germ-cell components with critical functions in germ-cell specification, migration, and development. For several RNAs, localization has been correlated with release from translational repression, suggesting an important regulatory function linked to localization. To address the role of RNA localization and translational control more systematically, we assembled a comprehensive set of RNAs that are localized to polar granules, the characteristic germ-plasm organelles. We find that the 3'-untranslated regions (UTRs) of all RNAs tested control RNA localization and instruct distinct temporal patterns of translation of the localized RNAs. We demonstrate necessity for translational timing by swapping the 3'UTR of polar granule component (pgc), which controls translation in germ cells, with that of nanos, which is translated earlier. Translational activation of pgc is concurrent with extension of its poly(A) tail length but appears largely independent of the Drosophila CPEB homolog ORB. Our results demonstrate a role for 3'UTR mediated translational regulation in fine-tuning the temporal expression of localized RNA, and this may provide a paradigm for other RNAs that are found enriched at distinct cellular locations such as the leading edge of fibroblasts or the neuronal synapse.
Collapse
Affiliation(s)
- Prashanth Rangan
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
| | - Matthew DeGennaro
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
| | - Kean Jaime-Bustamante
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
| | - Rémi- Xavier Coux
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
- Université Paris Diderot, Paris, France
| | - Rui Martinho
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
| | - Ruth Lehmann
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
| |
Collapse
|
227
|
Liang HL, Nien CY, Liu HY, Metzstein MM, Kirov N, Rushlow C. The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Nature 2008; 456:400-3. [PMID: 18931655 PMCID: PMC2597674 DOI: 10.1038/nature07388] [Citation(s) in RCA: 372] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 08/29/2008] [Indexed: 02/06/2023]
Abstract
In all animals, the initial events of embryogenesis are controlled by maternal gene products that are deposited into the developing oocyte. At some point after fertilization, control of embryogenesis is transferred to the zygotic genome in a process called the maternal-to-zygotic transition. During this time, many maternal RNAs are degraded and transcription of zygotic RNAs ensues. There is a long-standing question as to which factors regulate these events. The recent findings that microRNAs and Smaug mediate maternal transcript degradation have shed new light on this aspect of the problem. However, the transcription factor(s) that activate the zygotic genome remain elusive. The discovery that many of the early transcribed genes in Drosophila share a cis-regulatory heptamer motif, CAGGTAG and related sequences, collectively referred to as TAGteam sites raised the possibility that a dedicated transcription factor could interact with these sites to activate transcription. Here we report that the zinc-finger protein Zelda (Zld; Zinc-finger early Drosophila activator) binds specifically to these sites and is capable of activating transcription in transient transfection assays. Mutant embryos lacking zld are defective in cellular blastoderm formation, and fail to activate many genes essential for cellularization, sex determination and pattern formation. Global expression profiling confirmed that Zld has an important role in the activation of the early zygotic genome and suggests that Zld may also regulate maternal RNA degradation during the maternal-to-zygotic transition.
Collapse
Affiliation(s)
- Hsiao-Lan Liang
- Department of Biology, New York University, 100 Washington Square East, New York, New York 10003, USA
| | | | | | | | | | | |
Collapse
|
228
|
de Vries WN, Evsikov AV, Brogan LJ, Anderson CP, Graber JH, Knowles BB, Solter D. Reprogramming and differentiation in mammals: motifs and mechanisms. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 73:33-8. [PMID: 19022741 PMCID: PMC2735112 DOI: 10.1101/sqb.2008.73.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The natural reprogramming of the mammalian egg and sperm genomes is an efficient process that takes place in less than 24 hours and gives rise to a totipotent zygote. Transfer of somatic nuclei to mammalian oocytes also leads to their reprogramming and formation of totipotent embryos, albeit very inefficiently and requiring an activation step. Reprogramming of differentiated cells to induced pluripotent stem (iPS) cells takes place during a period of time substantially longer than reprogramming of the egg and sperm nuclei and is significantly less efficient. The stochastic expression of endogenous proteins during this process would imply that controlled expression of specific proteins is crucial for reprogramming to take place. The fact that OCT4, NANOG, and SOX2 form the core components of the pluripotency circuitry would imply that control at the transcriptional level is important for reprogramming to iPS cells. In contradistinction, the much more efficient reprogramming of the mammalian egg and sperm genomes implies that other levels of control are necessary, such as chromatin remodeling, translational regulation, and efficient degradation of no longer needed proteins and RNAs.
Collapse
Affiliation(s)
- W N de Vries
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | |
Collapse
|
229
|
Abstract
Regulation of gene activity by microRNAs is critical to myriad aspects of eukaryotic development and physiology. Amidst an extensive regulatory web that is predicted to involve thousands of transcripts, emergent themes are now beginning to illustrate how microRNAs have been incorporated into diverse settings. These include potent inhibition of individual key targets, fine-tuning of target activity, the coordinated regulation of target batteries, and the reversibility of some aspects of microRNA-mediated repression. Such themes may reflect some of the inherent advantages of exploiting microRNA control in biological circuits, and provide insight into the consequences of microRNA dysfunction in disease.
Collapse
Affiliation(s)
- Alex S Flynt
- Sloan-Kettering Institute, Department of Developmental Biology, 521 Rockefeller Research Labs, 1275 York Avenue, Box 252, New York, New York 10065, USA
| | | |
Collapse
|
230
|
Farley BM, Ryder SP. Regulation of Maternal mRNAs in Early Development. Crit Rev Biochem Mol Biol 2008; 43:135-62. [PMID: 18365862 DOI: 10.1080/10409230801921338] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
231
|
Drosophila maternal Hsp83 mRNA destabilization is directed by multiple SMAUG recognition elements in the open reading frame. Mol Cell Biol 2008; 28:6757-72. [PMID: 18794360 DOI: 10.1128/mcb.00037-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SMAUG (SMG) is an RNA-binding protein that functions as a key component of a transcript degradation pathway that eliminates maternal mRNAs in the bulk cytoplasm of activated Drosophila melanogaster eggs. We previously showed that SMG destabilizes maternal Hsp83 mRNA by recruiting the CCR4-NOT deadenylase to trigger decay; however, the cis-acting elements through which this was accomplished were unknown. Here we show that Hsp83 transcript degradation is regulated by a major element, the Hsp83 mRNA instability element (HIE), which maps to a 615-nucleotide region of the open reading frame (ORF). The HIE is sufficient for association of a transgenic mRNA with SMG protein as well as for SMG-dependent destabilization. Although the Hsp83 mRNA is translated in the early embryo, we show that translation of the mRNA is not necessary for destabilization; indeed, the HIE functions even when located in an mRNA's 3' untranslated region. The Hsp83 mRNA contains eight predicted SMG recognition elements (SREs); all map to the ORF, and six reside within the HIE. Mutation of a single amino acid residue that is essential for SMG's interaction with SREs stabilizes endogenous Hsp83 transcripts. Furthermore, simultaneous mutation of all eight predicted SREs also results in transcript stabilization. A plausible model is that the multiple, widely distributed SREs in the ORF enable some SMG molecules to remain bound to the mRNA despite ribosome transit through any individual SRE. Thus, SMG can recruit the CCR4-NOT deadenylase to trigger Hsp83 mRNA degradation despite the fact that it is being translated.
Collapse
|
232
|
A genomewide survey argues that every zygotic gene product is dispensable for the initiation of somatic homolog pairing in Drosophila. Genetics 2008; 180:1329-42. [PMID: 18791221 DOI: 10.1534/genetics.108.094862] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Studies from diverse organisms show that distinct interchromosomal interactions are associated with many developmental events. Despite recent advances in uncovering such phenomena, our understanding of how interchromosomal interactions are initiated and regulated is incomplete. During the maternal-to-zygotic transition (MZT) of Drosophila embryogenesis, stable interchromosomal contacts form between maternal and paternal homologous chromosomes, a phenomenon known as somatic homolog pairing. To better understand the events that initiate pairing, we performed a genomewide assessment of the zygotic contribution to this process. Specifically, we took advantage of the segregational properties of compound chromosomes to generate embryos lacking entire chromosome arms and, thus, all zygotic gene products derived from those arms. Using DNA fluorescence in situ hybridization (FISH) to assess the initiation of pairing at five separate loci, this approach allowed us to survey the entire zygotic genome using just a handful of crosses. Remarkably, we found no defect in pairing in embryos lacking any chromosome arm, indicating that no zygotic gene product is essential for pairing to initiate. From these data, we conclude that the initiation of pairing can occur independently of zygotic control and may therefore be part of the developmental program encoded by the maternal genome.
Collapse
|
233
|
Bushati N, Stark A, Brennecke J, Cohen SM. Temporal reciprocity of miRNAs and their targets during the maternal-to-zygotic transition in Drosophila. Curr Biol 2008; 18:501-6. [PMID: 18394895 DOI: 10.1016/j.cub.2008.02.081] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 02/21/2008] [Accepted: 02/22/2008] [Indexed: 11/15/2022]
Abstract
During oogenesis, female animals load their eggs with messenger RNAs (mRNAs) that will be translated to produce new proteins in the developing embryo. Some of these maternally provided mRNAs are stable and continue to contribute to development long after the onset of transcription of the embryonic (zygotic) genome. However, a subset of maternal mRNAs are degraded during the transition from purely maternal to mixed maternal-zygotic gene expression. In Drosophila, two independent RNA degradation pathways are used to promote turnover of maternal transcripts during the maternal-to-zygotic transition [1]. The first is driven by maternally encoded factors, including SMAUG [2], whereas the second is activated about 2 hr after fertilization, coinciding with the onset of zygotic transcription. Here, we report that a cluster of zygotically expressed microRNAs (miRNAs) targets maternal mRNAs for turnover, as part of the zygotic degradation pathway. miRNAs are small noncoding RNAs that silence gene expression by repressing translation of their target mRNAs and by promoting mRNA turnover. Intriguingly, use of miRNAs to promote mRNA turnover during the maternal-to-zygotic transition appears to be a conserved phenomenon because a comparable role was reported for miR-430 in zebrafish [3]. The finding that unrelated miRNAs regulate the maternal to zygotic transition in different animals suggests convergent evolution.
Collapse
Affiliation(s)
- Natascha Bushati
- European Molecular Biology Laboratory, Developmental Biology Programme, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
234
|
Fan YF, Jiang L, Gong HQ, Liu CM. Sexual reproduction in higher plants I: fertilization and the initiation of zygotic program. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:860-867. [PMID: 18713396 DOI: 10.1111/j.1744-7909.2008.00705.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Sexual plant reproduction is a critical developmental step in the life cycle of higher plants, to allow maternal and paternal genes to be transmitted in a highly regulated manner to the next generation. During evolution, a whole set of signal transduction machinery is developed by plants to ensure an error-free recognition between male and female gametes and initiation of zygotic program. In the past few years, the molecular machineries underlying this biological process have been elucidated, particularly on the importance of synergid cells in pollen tube guidance, the Ca(++) spike as the immediate response of fertilization and the epigenetic regulation of parental gene expressions in early zygotic embryogenesis. This review outlines the most recent development in this area.
Collapse
Affiliation(s)
- Yong-Feng Fan
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | |
Collapse
|
235
|
Wispy, the Drosophila homolog of GLD-2, is required during oogenesis and egg activation. Genetics 2008; 178:2017-29. [PMID: 18430932 DOI: 10.1534/genetics.107.084558] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Egg activation is the process that modifies mature, arrested oocytes so that embryo development can proceed. One key aspect of egg activation is the cytoplasmic polyadenylation of certain maternal mRNAs to permit or enhance their translation. wispy (wisp) maternal-effect mutations in Drosophila block development during the egg-to-embryo transition. We show here that the wisp gene encodes a member of the GLD-2 family of cytoplasmic poly(A) polymerases (PAPs). The WISP protein is required for poly(A) tail elongation of bicoid, Toll, and torso mRNAs upon egg activation. In Drosophila, WISP and Smaug (SMG) have previously been reported to be required to trigger the destabilization of maternal mRNAs during egg activation. SMG is the major regulator of this activity. We report here that SMG is still translated in activated eggs from wisp mutant mothers, indicating that WISP does not regulate mRNA stability by controlling the translation of smg mRNA. We have also analyzed in detail the very early developmental arrest associated with wisp mutations. Pronuclear migration does not occur in activated eggs laid by wisp mutant females. Finally, we find that WISP function is also needed during oogenesis to regulate the poly(A) tail length of dmos during oocyte maturation and to maintain a high level of active (phospho-) mitogen-activated protein kinases (MAPKs).
Collapse
|
236
|
Horner VL, Wolfner MF. Mechanical stimulation by osmotic and hydrostatic pressure activates Drosophila oocytes in vitro in a calcium-dependent manner. Dev Biol 2008; 316:100-9. [PMID: 18304524 PMCID: PMC2372165 DOI: 10.1016/j.ydbio.2008.01.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 12/13/2007] [Accepted: 01/07/2008] [Indexed: 02/05/2023]
Abstract
Embryogenesis in vertebrates and marine invertebrates begins when a mature oocyte is fertilized, resulting in a rise in intracellular calcium (Ca(2+)) that activates development. Insect eggs activate without fertilization via an unknown signal imparted to the egg during ovulation or egg laying. One hypothesis for the activating signal is that deformation of eggs as they pass through a tight orifice provides a mechanical stimulus to trigger activation. Ovulation could produce two forms of mechanical stimulus: external pressure resulting from the passage of oocytes from the ovary into the narrow oviducts, and osmotic pressure caused by hydration-induced swelling of the oocyte within the oviducts. Ovulation could also trigger activation by placing the oocyte in a new environment that contains an activating substance, such as a particular ion. Here, we provide the first evidence that Drosophila oocytes require Ca(2+) for activation, and that activation can be triggered in vitro by mechanical stimuli, specifically osmotic and hydrostatic pressure. Our results suggest that activation in Drosophila is triggered by a mechanosensitive process that allows external Ca(2+) to enter the oocyte and drive the events of activation. This will allow exploitation of Drosophila genetics to dissect molecular pathways involving Ca(2+) and the activation of development.
Collapse
Affiliation(s)
- Vanessa L. Horner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
237
|
Gene expression analysis of the ovary of hybrid females of Xenopus laevis and X. muelleri. BMC Evol Biol 2008; 8:82. [PMID: 18331635 PMCID: PMC2330042 DOI: 10.1186/1471-2148-8-82] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 03/10/2008] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Interspecific hybrids of frogs of the genus Xenopus result in sterile hybrid males and fertile hybrid females. Previous work has demonstrated a dramatic asymmetrical pattern of misexpression in hybrid males compared to the two parental species with relatively few genes misexpressed in comparisons of hybrids and the maternal species (X. laevis) and dramatically more genes misexpressed in hybrids compared to the paternal species (X. muelleri). In this work, we examine the gene expression pattern in hybrid females of X. laevis x X. muelleri to determine if this asymmetrical pattern of expression also occurs in hybrid females. RESULTS We find a similar pattern of asymmetry in expression compared to males in that there were more genes differentially expressed between hybrids and X. muelleri compared to hybrids and X. laevis. We also found a dramatic increase in the number of misexpressed genes with hybrid females having about 20 times more genes misexpressed in ovaries compared to testes of hybrid males and therefore the match between phenotype and expression pattern is not supported. CONCLUSION We discuss these intriguing findings in the context of reproductive isolation and suggest that divergence in female expression may be involved in sterility of hybrid males due to the inherent sensitivity of spermatogenesis as defined by the faster male evolution hypothesis for Haldane's rule.
Collapse
|
238
|
Bornemann DJ, Park S, Phin S, Warrior R. A translational block to HSPG synthesis permits BMP signaling in the early Drosophila embryo. Development 2008; 135:1039-47. [PMID: 18256192 PMCID: PMC3013297 DOI: 10.1242/dev.017061] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are extracellular macromolecules found on virtually every cell type in eumetazoans. HSPGs are composed of a core protein covalently linked to glycosaminoglycan (GAG) sugar chains that bind and modulate the signaling efficiency of many ligands, including Hedgehog (Hh), Wingless (Wg) and Bone morphogenetic proteins (BMPs). Here, we show that, in Drosophila, loss of HSPGs differentially affects embryonic Hh, Wg and BMP signaling. We find that a stage-specific block to GAG synthesis prevents HSPG expression during establishment of the BMP activity gradient that is crucial for dorsal embryonic patterning. Subsequently, GAG synthesis is initiated coincident with the onset of Hh and Wg signaling which require HSPGs. This temporal regulation is achieved by the translational control of HSPG synthetic enzymes through internal ribosome entry sites (IRESs). IRES-like features are conserved in GAG enzyme transcripts from diverse organisms, suggesting that this represents a novel evolutionarily conserved mechanism for regulating GAG synthesis and modulating growth factor activity.
Collapse
Affiliation(s)
| | - Sangbin Park
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California
| | | | - Rahul Warrior
- Correspondence and requests for materials should be addressed to RW. ()
| |
Collapse
|
239
|
Muraro NI, Weston AJ, Gerber AP, Luschnig S, Moffat KG, Baines RA. Pumilio binds para mRNA and requires Nanos and Brat to regulate sodium current in Drosophila motoneurons. J Neurosci 2008; 28:2099-109. [PMID: 18305244 PMCID: PMC2323674 DOI: 10.1523/jneurosci.5092-07.2008] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 01/10/2008] [Accepted: 01/14/2008] [Indexed: 12/19/2022] Open
Abstract
Homeostatic regulation of ionic currents is of paramount importance during periods of synaptic growth or remodeling. Our previous work has identified the translational repressor Pumilio (Pum) as a regulator of sodium current (I(Na)) and excitability in Drosophila motoneurons. In this current study, we show that Pum is able to bind directly the mRNA encoding the Drosophila voltage-gated sodium channel paralytic (para). We identify a putative binding site for Pum in the 3' end of the para open reading frame (ORF). Characterization of the mechanism of action of Pum, using whole-cell patch clamp and real-time reverse transcription-PCR, reveals that the full-length protein is required for translational repression of para mRNA. Additionally, the cofactor Nanos is essential for Pum-dependent para repression, whereas the requirement for Brain Tumor (Brat) is cell type specific. Thus, Pum-dependent regulation of I(Na) in motoneurons requires both Nanos and Brat, whereas regulation in other neuronal types seemingly requires only Nanos but not Brat. We also show that Pum is able to reduce the level of nanos mRNA and as such identify a potential negative-feedback mechanism to protect neurons from overactivity of Pum. Finally, we show coupling between I(Na) (para) and I(K) (Shal) such that Pum-mediated change in para results in a compensatory change in Shal. The identification of para as a direct target of Pum represents the first ion channel to be translationally regulated by this repressor and the location of the binding motif is the first example in an ORF rather than in the canonical 3'-untranslated region of target transcripts.
Collapse
Affiliation(s)
- Nara I. Muraro
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Andrew J. Weston
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Andre P. Gerber
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zurich, CH-8093 Zurich, Switzerland, and
| | - Stefan Luschnig
- Institute of Zoology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Kevin G. Moffat
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Richard A. Baines
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
240
|
Lécuyer E, Yoshida H, Parthasarathy N, Alm C, Babak T, Cerovina T, Hughes TR, Tomancak P, Krause HM. Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 2008; 131:174-87. [PMID: 17923096 DOI: 10.1016/j.cell.2007.08.003] [Citation(s) in RCA: 732] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/30/2007] [Accepted: 08/02/2007] [Indexed: 01/01/2023]
Abstract
Although subcellular mRNA trafficking has been demonstrated as a mechanism to control protein distribution, it is generally believed that most protein localization occurs subsequent to translation. To address this point, we developed and employed a high-resolution fluorescent in situ hybridization procedure to comprehensively evaluate mRNA localization dynamics during early Drosophila embryogenesis. Surprisingly, of the 3370 genes analyzed, 71% of those expressed encode subcellularly localized mRNAs. Dozens of new and striking localization patterns were observed, implying an equivalent variety of localization mechanisms. Tight correlations between mRNA distribution and subsequent protein localization and function, indicate major roles for mRNA localization in nucleating localized cellular machineries. A searchable web resource documenting mRNA expression and localization dynamics has been established and will serve as an invaluable tool for dissecting localization mechanisms and for predicting gene functions and interactions.
Collapse
Affiliation(s)
- Eric Lécuyer
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Abstract
Over 80 years ago, Bridges came to the conclusion that sex inDrosophila is determined by the X:A ratio. Doubts about this hypothesis are raised by taking a molecular look at how--and when--sex is determined.
Collapse
Affiliation(s)
- Helen K Salz
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America.
| |
Collapse
|
242
|
Horner VL, Wolfner MF. Transitioning from egg to embryo: Triggers and mechanisms of egg activation. Dev Dyn 2008; 237:527-44. [DOI: 10.1002/dvdy.21454] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
243
|
Abstract
Deadenylation initiates degradation of most mRNAs in eukaryotes. Regulated deadenylation of an mRNA plays an important role in translation control as well, especially during animal oogenesis and early embryonic development. To investigate the mechanism of sequence-dependent deadenylation, we established an in vitro system derived from 0- to 2-h-old Drosophila embryos. These extracts faithfully reproduce several aspects of the regulation of nanos mRNA: They display translation repression and deadenylation both mediated by the same sequences within the nanos 3' UTR. Here, we describe detailed protocols for preparing Drosophila embryo extracts, and their use in deadenylation assays exemplified with exogenous RNA substrates containing the nanos 3' UTR.
Collapse
Affiliation(s)
- Mandy Jeske
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | |
Collapse
|
244
|
Vardy L, Orr-Weaver TL. Regulating translation of maternal messages: multiple repression mechanisms. Trends Cell Biol 2007; 17:547-54. [PMID: 18029182 DOI: 10.1016/j.tcb.2007.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 09/06/2007] [Accepted: 09/07/2007] [Indexed: 12/20/2022]
Abstract
The dowry of mRNAs and proteins that mothers provide their progeny as part of a common developmental strategy to permit rapid embryogenesis necessitates precise translational regulation of the deposited mRNAs. Recent studies with Drosophila uncovered diverse mechanisms to control translation of the transcripts for genes that control the cell cycle and embryonic patterning. The newly delineated mechanisms include: alternative ways to disrupt eIF4E action and the formation of the preinitiation complex b y the eIF4E homologous protein, d4EHP; recruitment of the deadenylase complex by the SMAUG and PUMILIO proteins; both poly(A)-dependent and -independent promotion of translation by the PNG kinase complex; and 5' cap-independent translational regulation b y BRUNO.
Collapse
Affiliation(s)
- Leah Vardy
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | |
Collapse
|
245
|
De Renzis S, Elemento O, Tavazoie S, Wieschaus EF. Unmasking activation of the zygotic genome using chromosomal deletions in the Drosophila embryo. PLoS Biol 2007; 5:e117. [PMID: 17456005 PMCID: PMC1854917 DOI: 10.1371/journal.pbio.0050117] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Accepted: 02/28/2007] [Indexed: 11/19/2022] Open
Abstract
During the maternal-to-zygotic transition, a developing embryo integrates post-transcriptional regulation of maternal mRNAs with transcriptional activation of its own genome. By combining chromosomal ablation in Drosophila with microarray analysis, we characterized the basis of this integration. We show that the expression profile for at least one third of zygotically active genes is coupled to the concomitant degradation of the corresponding maternal mRNAs. The embryo uses transcription and degradation to generate localized patterns of expression, and zygotic transcription to degrade distinct classes of maternal transcripts. Although degradation does not appear to involve a simple regulatory code, the activation of the zygotic genome starts from intronless genes sharing a common cis-element. This cis-element interacts with a single protein, the Bicoid stability factor, and acts as a potent enhancer capable of timing the activity of an exogenous transactivator. We propose that this regulatory mode links morphogen gradients with temporal regulation during the maternal-to-zygotic transition.
Collapse
Affiliation(s)
- Stefano De Renzis
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, New Jersey, United States of America
- * To whom correspondence should be addressed. E-mail: (SDR); (EFW)
| | - Olivier Elemento
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Saeed Tavazoie
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Eric F Wieschaus
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, New Jersey, United States of America
- * To whom correspondence should be addressed. E-mail: (SDR); (EFW)
| |
Collapse
|
246
|
Abstract
Recent genome-scale analyses have uncovered the magnitude of the changes in mRNA populations that occur during the maternal-to-zygotic transition in early Drosophila embryos as well as two of the key regulators of this process, SMAUG and bicoid stability factor (BSF).
Collapse
Affiliation(s)
- Wael Tadros
- Department of Molecular & Medical Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
247
|
Chen J, Concel VJ, Bhatla S, Rajeshwaran R, Smith DLH, Varadarajan M, Backscheider KL, Bockrath RA, Petschek JP, Vaughn JC. Alternative splicing of an rnp-4f mRNA isoform retaining an evolutionarily-conserved 5'-UTR intronic element is developmentally regulated and shown via RNAi to be essential for normal central nervous system development in Drosophila melanogaster. Gene 2007; 399:91-104. [PMID: 17582706 DOI: 10.1016/j.gene.2007.04.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 04/25/2007] [Accepted: 04/26/2007] [Indexed: 01/08/2023]
Abstract
Two major mRNA isoforms arise via alternative splicing in the 5'-UTR of Drosophila splicing assembly factor rnp-4f pre-mRNA, designated "long" (unspliced) and "short" (alternatively spliced). The coding potential for the two isoforms is identical, raising interesting questions as to the control mechanism and functional significance of this 5'-UTR intronic splicing decision. Developmental Northerns show that two temporally distinct rnp-4f mRNA degradation episodes occur during embryogenesis. The first occurs at the midblastula transition (MBT) stage and involves degradation of both maternally-derived transcripts, while the second involves only the long mRNA isoform and occurs during late embryo stages. Immunostaining of ovaries and staged embryos combined with results from developmental Westerns shows that maternal RNP-4F protein persists into fertilized eggs at high levels, associated with a burst of long isoform-specific transcription which begins just after the MBT and peaks in mid-embryo stages. These observations are discussed in support of a putative negative feedback control model for modulation of RNP-4F translation. In situ hybridization shows that the long isoform is relatively abundant throughout the developing embryonic germ band and central nervous system (CNS), especially along the dorsal roof of the ventral nerve cord. Long rnp-4f mRNA knockdown via RNAi reveals a variety of CNS abnormalities, which leads us to postulate that this isoform acts upstream of other genes which have been shown to be important for normal CNS development.
Collapse
Affiliation(s)
- Jing Chen
- Department of Zoology, Miami University, Oxford, OH 45056, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Abstract
Oocytes, the female germ cells, contain all the messenger RNAs necessary to start a new life but typically wait until fertilization to begin development. The transition from oocyte to fertilized egg (zygote) involves many changes, including protein synthesis, protein and RNA degradation, and organelle remodeling. These changes occur concurrently with the meiotic divisions that produce the haploid maternal genome. Accumulating evidence indicates that the cell-cycle regulators that control the meiotic divisions also regulate the many changes that accompany the oocyte-to-zygote transition. We suggest that the meiotic machinery functions as an internal pacemaker that propels oocytes toward embryogenesis.
Collapse
Affiliation(s)
- Michael L Stitzel
- Department of Molecular Biology and Genetics and Howard Hughes Medical Institute, Johns Hopkins School of Medicine, 725 North Wolfe Street, PCTB 706, Baltimore, MD 21205, USA
| | | |
Collapse
|
249
|
Semotok JL, Lipshitz HD. Regulation and function of maternal mRNA destabilization during early Drosophila development. Differentiation 2007; 75:482-506. [PMID: 17509066 DOI: 10.1111/j.1432-0436.2007.00178.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Early embryonic development in all animals depends on maternally provided gene products. Posttranscriptional and posttranslational processes control spatial and temporal readout of the maternal information. This review focuses on the control of maternal transcript stability in the early Drosophila embryo and how transcript destabilization is necessary for normal development. The molecular pathways that regulate transcript stability are often intimately linked with other posttranscriptional mechanisms such as mRNA localization and translational regulation. These additional mechanisms are explored here with an emphasis on their relationship to transcript decay.
Collapse
Affiliation(s)
- Jennifer L Semotok
- Graduate Department of Molecular and Medical Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | | |
Collapse
|
250
|
Kadyrova LY, Habara Y, Lee TH, Wharton RP. Translational control of maternal Cyclin B mRNA by Nanos in the Drosophila germline. Development 2007; 134:1519-27. [PMID: 17360772 DOI: 10.1242/dev.002212] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the Drosophila embryo, Nanos and Pumilio collaborate to repress the translation of hunchback mRNA in the somatic cytoplasm. Both proteins are also required for repression of maternal Cyclin B mRNA in the germline; it has not been clear whether they act directly on Cyclin B mRNA, and if so, whether regulation in the presumptive somatic and germline cytoplasm proceeds by similar or fundamentally different mechanisms. In this report, we show that Pumilio and Nanos bind to an element in the 3' UTR to repress Cyclin B mRNA. Regulation of Cyclin B and hunchback differ in two significant respects. First, Pumilio is dispensable for repression of Cyclin B (but not hunchback) if Nanos is tethered via an exogenous RNA-binding domain. Nanos probably acts, at least in part, by recruiting the CCR4-Pop2-NOT deadenylase complex, interacting directly with the NOT4 subunit. Second, although Nanos is the sole spatially limiting factor for regulation of hunchback, regulation of Cyclin B requires another Oskar-dependent factor in addition to Nanos. Ectopic repression of Cyclin B in the presumptive somatic cytoplasm causes lethal nuclear division defects. We suggest that a requirement for two spatially restricted factors is a mechanism for ensuring that Cyclin B regulation is strictly limited to the germline.
Collapse
Affiliation(s)
- Lyudmila Y Kadyrova
- Howard Hughes Medical Institute, Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|