201
|
Huber F, Boire A, López MP, Koenderink GH. Cytoskeletal crosstalk: when three different personalities team up. Curr Opin Cell Biol 2015; 32:39-47. [DOI: 10.1016/j.ceb.2014.10.005] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 12/29/2022]
|
202
|
Kim TJ, Zheng S, Sun J, Muhamed I, Wu J, Lei L, Kong X, Leckband DE, Wang Y. Dynamic visualization of α-catenin reveals rapid, reversible conformation switching between tension states. Curr Biol 2015; 25:218-224. [PMID: 25544608 PMCID: PMC4302114 DOI: 10.1016/j.cub.2014.11.017] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/26/2014] [Accepted: 11/06/2014] [Indexed: 12/13/2022]
Abstract
The cytosolic protein α-catenin is a postulated force transducer at cadherin complexes. The demonstration of force activation, identification of consequent downstream events in live cells, and development of tools to study these dynamic processes in living cells are central to elucidating the role of α-catenin in cellular mechanics and tissue function. Here we demonstrate that α-catenin is a force-activatable mechanotransducer at cell-cell junctions by using an engineered α-catenin conformation sensor based on fluorescence resonance energy transfer (FRET). This sensor reconstitutes α-catenin-dependent functions in α-catenin-depleted cells and recapitulates the behavior of the endogenous protein. Dynamic imaging of cells expressing the sensor demonstrated that α-catenin undergoes immediate, reversible conformation switching in direct response to different mechanical perturbations of cadherin adhesions. Combined magnetic twisting cytometry with dynamic FRET imaging revealed rapid, local conformation switching upon the mechanical stimulation of specific cadherin bonds. At acutely stretched cell-cell junctions, the immediate, reversible conformation change further reveals that α-catenin behaves like an elastic spring in series with cadherin and actin. The force-dependent recruitment of vinculin—a principal α-catenin effector—to junctions requires the vinculin binding site of the α-catenin sensor. In cells, the relative rates of force-dependent α-catenin conformation switching and vinculin recruitment reveal that α-catenin activation and vinculin recruitment occur sequentially, rather than in a concerted process, with vinculin accumulation being significantly slower. This engineered α-catenin sensor revealed that α-catenin is a reversible, stretch-activatable sensor that mechanically links cadherin complexes and actin and is an indispensable player in cadherin-specific mechanotransduction at intercellular junctions.
Collapse
Affiliation(s)
- Tae-Jin Kim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shuai Zheng
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jie Sun
- Department of Integrative and Molecular Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ismaeel Muhamed
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jun Wu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lei Lei
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xinyu Kong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Deborah E Leckband
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Yingxiao Wang
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Integrative and Molecular Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
203
|
Regulation of keratin network organization. Curr Opin Cell Biol 2015; 32:56-64. [PMID: 25594948 DOI: 10.1016/j.ceb.2014.12.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/10/2014] [Accepted: 12/19/2014] [Indexed: 12/31/2022]
Abstract
Keratins form the major intermediate filament cytoskeleton of epithelia and are assembled from heterodimers of 28 type I and 26 type II keratins in cell- and differentiation-dependent patterns. By virtue of their primary sequence composition, interactions with cell adhesion complexes and components of major signaling cascades, keratins act as targets and effectors of mechanical force and chemical signals to determine cell mechanics, epithelial cohesion and modulate signaling in keratin isotype-specific manners. Therefore, cell-specific keratin expression and organization impact on cell growth, migration and invasion. Here, we review the recent literature, focusing on the question how keratin networks are regulated and how the interplay of keratins with adhesion complexes affects these processes and provides a framework to understand keratins contribution to blistering and inflammatory disorders and to tumor metastasis.
Collapse
|
204
|
Leader cells regulate collective cell migration via Rac activation in the downstream signaling of integrin β1 and PI3K. Sci Rep 2015; 5:7656. [PMID: 25563751 PMCID: PMC5379035 DOI: 10.1038/srep07656] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/03/2014] [Indexed: 01/19/2023] Open
Abstract
Collective cell migration plays a crucial role in several biological processes, such as embryonic development, wound healing, and cancer metastasis. Here, we focused on collectively migrating Madin-Darby Canine Kidney (MDCK) epithelial cells that follow a leader cell on a collagen gel to clarify the mechanism of collective cell migration. First, we removed a leader cell from the migrating collective with a micromanipulator. This then caused disruption of the cohesive migration of cells that followed in movement, called “follower” cells, which showed the importance of leader cells. Next, we observed localization of active Rac, integrin β1, and PI3K. These molecules were clearly localized in the leading edge of leader cells, but not in follower cells. Live cell imaging using active Rac and active PI3K indicators was performed to elucidate the relationship between Rac, integrin β1, and PI3K. Finally, we demonstrated that the inhibition of these molecules resulted in the disruption of collective migration. Our findings not only demonstrated the significance of a leader cell in collective cell migration, but also showed that Rac, integrin β1, and PI3K are upregulated in leader cells and drive collective cell migration.
Collapse
|
205
|
Smutny M, Behrndt M, Campinho P, Ruprecht V, Heisenberg CP. UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo. Methods Mol Biol 2015; 1189:219-35. [PMID: 25245697 DOI: 10.1007/978-1-4939-1164-6_15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mechanically coupled cells can generate forces driving cell and tissue morphogenesis during development. Visualization and measuring of these forces is of major importance to better understand the complexity of the biomechanic processes that shape cells and tissues. Here, we describe how UV laser ablation can be utilized to quantitatively assess mechanical tension in different tissues of the developing zebrafish and in cultures of primary germ layer progenitor cells ex vivo.
Collapse
Affiliation(s)
- Michael Smutny
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | | | | | | | | |
Collapse
|
206
|
R. Noppe A, Roberts AP, Yap AS, Gomez GA, Neufeld Z. Modelling wound closure in an epithelial cell sheet using the cellular Potts model. Integr Biol (Camb) 2015; 7:1253-64. [DOI: 10.1039/c5ib00053j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We use a two-dimensional cellular Potts model to represent the behavior of an epithelial cell layer and describe its dynamics in response to a microscopic wound.
Collapse
Affiliation(s)
- Adrian R. Noppe
- School of Mathematics and Physics
- The University of Queensland
- Brisbane
- Australia 4072
| | - Anthony P. Roberts
- School of Mathematics and Physics
- The University of Queensland
- Brisbane
- Australia 4072
| | - Alpha S. Yap
- Institute for Molecular Bioscience
- Division of Cell Biology and Molecular Medicine
- The University of Queensland
- Brisbane
- Australia 4072
| | - Guillermo A. Gomez
- Institute for Molecular Bioscience
- Division of Cell Biology and Molecular Medicine
- The University of Queensland
- Brisbane
- Australia 4072
| | - Zoltan Neufeld
- School of Mathematics and Physics
- The University of Queensland
- Brisbane
- Australia 4072
| |
Collapse
|
207
|
Ng MR, Besser A, Brugge JS, Danuser G. Mapping the dynamics of force transduction at cell-cell junctions of epithelial clusters. eLife 2014; 3:e03282. [PMID: 25479385 PMCID: PMC4300730 DOI: 10.7554/elife.03282] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 12/04/2014] [Indexed: 12/15/2022] Open
Abstract
Force transduction at cell-cell adhesions regulates tissue development, maintenance and adaptation. We developed computational and experimental approaches to quantify, with both sub-cellular and multi-cellular resolution, the dynamics of force transmission in cell clusters. Applying this technology to spontaneously-forming adherent epithelial cell clusters, we found that basal force fluctuations were coupled to E-cadherin localization at the level of individual cell-cell junctions. At the multi-cellular scale, cell-cell force exchange depended on the cell position within a cluster, and was adaptive to reconfigurations due to cell divisions or positional rearrangements. Importantly, force transmission through a cell required coordinated modulation of cell-matrix adhesion and actomyosin contractility in the cell and its neighbors. These data provide insights into mechanisms that could control mechanical stress homeostasis in dynamic epithelial tissues, and highlight our methods as a resource for the study of mechanotransduction in cell-cell adhesions. DOI:http://dx.doi.org/10.7554/eLife.03282.001 The intestines, liver, and skin are all examples of organs that perform specific functions. Organs are comprised of tissues, which are themselves made up of cells. Epithelial tissue is one of the four basic types of tissue found in animals, and it occurs in almost every organ in the body. For example, epithelial tissue makes up the outermost layer of the skin, and the lining of the lungs and the intestines; the cells in epithelial tissues are attached to one another via ‘adhesion molecules’. Organs and tissues need to be maintained throughout life in order for them to work properly. Epithelial cells in particular are very short-lived and must be constantly replaced. If epithelial tissue is cut or damaged in any way, the surrounding healthy epithelial cells must work together to repair the wound and restore the tissue's integrity. These processes require individual epithelial cells to communicate with one another. While chemical signals provide one means of cell-to-cell communication, cells also sense and respond to the physical presence of surrounding cells. In adults, organs and tissues generally do not change shape or size; as such there is a tightly balanced exchange of mechanical forces between the individual cells. Damage to the tissue causes a detectable change in these mechanical forces, which is sensed by nearby healthy epithelial cells and causes them to work towards healing the wound. While the importance of mechanical forces in maintaining tissue integrity is widely recognized, there were few tools to study these forces; this meant that mechanical communication through cell–cell adhesion sites was not well understood. Now Ng, Besser et al. describe the development and use of a new method for measuring and mapping the exchange of mechanical forces at cell–cell adhesion sites. Changes in the strength of the forces exchanged between cells could be measured across clusters of multiple cells or for specific parts of individual cells. Ng, Besser et al. found that when an epithelial cell in a cluster started to divide to form two new cells, the cell exerted less mechanical force on its neighboring cells. Ng, Besser et al. found that the forces exerted between cells were strongest when there was more of an adhesion molecule called E-cadherin in the cell surface membrane at the cell–cell adhesion sites. The opposite was also true, as these forces were weakest at cell–cell adhesion sites with fewer E-cadherin molecules. The new method and findings will now help to guide future studies into how mechanical forces are transmitted between living cells. DOI:http://dx.doi.org/10.7554/eLife.03282.002
Collapse
Affiliation(s)
- Mei Rosa Ng
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Achim Besser
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Gaudenz Danuser
- Department of Cell Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
208
|
Osmani N, Labouesse M. Remodeling of keratin-coupled cell adhesion complexes. Curr Opin Cell Biol 2014; 32:30-8. [PMID: 25460779 DOI: 10.1016/j.ceb.2014.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/13/2014] [Accepted: 10/18/2014] [Indexed: 12/12/2022]
Abstract
Epithelial cells constitute the main barrier between the inside and outside of organs, acting as gatekeepers of their structure and integrity. Hemidesmosomes and desmosomes are respectively cell-matrix and cell-cell adhesions coupled to the intermediate filament cytoskeleton. These adhesions ensure mechanical integrity of the epithelial barrier. Although desmosomes and hemidesmosomes are essential in maintaining strong cell-cell and cell-matrix adhesions, there is an emerging view that they should be remodeled in order to maintain epithelial homeostasis. Here we review the adhesion properties of desmosomes and hemidesmosomes, as well as the mechanisms driving their remodeling. We also discuss recent data suggesting that keratin-coupled adhesion complexes can sense the biomechanical cellular environment and participate in the cellular response to such external cues.
Collapse
Affiliation(s)
- Naël Osmani
- IGBMC, Development and Stem Cells Program, 67400 Illkirch, France; CNRS (UMR 7104), 67400 Illkirch, France; INSERM (U964), 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France.
| | - Michel Labouesse
- IGBMC, Development and Stem Cells Program, 67400 Illkirch, France; CNRS (UMR 7104), 67400 Illkirch, France; INSERM (U964), 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
209
|
|
210
|
Bjerke MA, Dzamba BJ, Wang C, DeSimone DW. FAK is required for tension-dependent organization of collective cell movements in Xenopus mesendoderm. Dev Biol 2014; 394:340-56. [PMID: 25127991 PMCID: PMC4172504 DOI: 10.1016/j.ydbio.2014.07.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/04/2014] [Accepted: 07/30/2014] [Indexed: 12/21/2022]
Abstract
Collective cell movements are integral to biological processes such as embryonic development and wound healing and also have a prominent role in some metastatic cancers. In migrating Xenopus mesendoderm, traction forces are generated by cells through integrin-based adhesions and tension transmitted across cadherin adhesions. This is accompanied by assembly of a mechanoresponsive cadherin adhesion complex containing keratin intermediate filaments and the catenin-family member plakoglobin. We demonstrate that focal adhesion kinase (FAK), a major component of integrin adhesion complexes, is required for normal morphogenesis at gastrulation, closure of the anterior neural tube, axial elongation and somitogenesis. Depletion of zygotically expressed FAK results in disruption of mesendoderm tissue polarity similar to that observed when expression of keratin or plakoglobin is inhibited. Both individual and collective migrations of mesendoderm cells from FAK depleted embryos are slowed, cell protrusions are disordered, and cell spreading and traction forces are decreased. Additionally, keratin filaments fail to organize at the rear of cells in the tissue and association of plakoglobin with cadherin is diminished. These findings suggest that FAK is required for the tension-dependent assembly of the cadherin adhesion complex that guides collective mesendoderm migration, perhaps by modulating the dynamic balance of substrate traction forces and cell cohesion needed to establish cell polarity.
Collapse
Affiliation(s)
- Maureen A Bjerke
- Department of Cell Biology, School of Medicine, University of Virginia Health System, P.O.Box 800732, Charlottesville, VA 22908, USA
| | - Bette J Dzamba
- Department of Cell Biology, School of Medicine, University of Virginia Health System, P.O.Box 800732, Charlottesville, VA 22908, USA
| | - Chong Wang
- Department of Cell Biology, School of Medicine, University of Virginia Health System, P.O.Box 800732, Charlottesville, VA 22908, USA
| | - Douglas W DeSimone
- Department of Cell Biology, School of Medicine, University of Virginia Health System, P.O.Box 800732, Charlottesville, VA 22908, USA.
| |
Collapse
|
211
|
Affiliation(s)
- D.E. Leckband
- Departments of Chemical and Biomolecular Engineering, Chemistry, and Biochemistry, University of Illinois, Urbana, Illinois 61801;
| | - J. de Rooij
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands;
| |
Collapse
|
212
|
Rodriguez-Fraticelli AE, Martin-Belmonte F. Picking up the threads: extracellular matrix signals in epithelial morphogenesis. Curr Opin Cell Biol 2014; 30:83-90. [DOI: 10.1016/j.ceb.2014.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 01/30/2023]
|
213
|
Polarity mechanisms such as contact inhibition of locomotion regulate persistent rotational motion of mammalian cells on micropatterns. Proc Natl Acad Sci U S A 2014; 111:14770-5. [PMID: 25258412 DOI: 10.1073/pnas.1414498111] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pairs of endothelial cells on adhesive micropatterns rotate persistently, but pairs of fibroblasts do not; coherent rotation is present in normal mammary acini and kidney cells but absent in cancerous cells. Why? To answer this question, we develop a computational model of pairs of mammalian cells on adhesive micropatterns using a phase field method and study the conditions under which persistent rotational motion (PRM) emerges. Our model couples the shape of the cell, the cell's internal chemical polarity, and interactions between cells such as volume exclusion and adhesion. We show that PRM can emerge from this minimal model and that the cell-cell interface may be influenced by the nucleus. We study the effect of various cell polarity mechanisms on rotational motion, including contact inhibition of locomotion, neighbor alignment, and velocity alignment, where cells align their polarity to their velocity. These polarity mechanisms strongly regulate PRM: Small differences in polarity mechanisms can create significant differences in collective rotation. We argue that the existence or absence of rotation under confinement may lead to insight into the cell's methods for coordinating collective cell motility.
Collapse
|
214
|
Mechanochemical actuators of embryonic epithelial contractility. Proc Natl Acad Sci U S A 2014; 111:14366-71. [PMID: 25246549 DOI: 10.1073/pnas.1405209111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spatiotemporal regulation of cell contractility coordinates cell shape change to construct tissue architecture and ultimately directs the morphology and function of the organism. Here we show that contractility responses to spatially and temporally controlled chemical stimuli depend much more strongly on intercellular mechanical connections than on biochemical cues in both stimulated tissues and adjacent cells. We investigate how the cell contractility is triggered within an embryonic epithelial sheet by local ligand stimulation and coordinates a long-range contraction response. Our custom microfluidic control system allows spatiotemporally controlled stimulation with extracellular ATP, which results in locally distinct contractility followed by mechanical strain pattern formation. The stimulation-response circuit exposed here provides a better understanding of how morphogenetic processes integrate responses to stimulation and how intercellular responses are transmitted across multiple cells. These findings may enable one to create a biological actuator that actively drives morphogenesis.
Collapse
|
215
|
|
216
|
Cai D, Chen SC, Prasad M, He L, Wang X, Choesmel-Cadamuro V, Sawyer JK, Danuser G, Montell DJ. Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 2014; 157:1146-59. [PMID: 24855950 DOI: 10.1016/j.cell.2014.03.045] [Citation(s) in RCA: 374] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 01/03/2014] [Accepted: 03/12/2014] [Indexed: 11/16/2022]
Abstract
E-cadherin is a major homophilic cell-cell adhesion molecule that inhibits motility of individual cells on matrix. However, its contribution to migration of cells through cell-rich tissues is less clear. We developed an in vivo sensor of mechanical tension across E-cadherin molecules, which we combined with cell-type-specific RNAi, photoactivatable Rac, and morphodynamic profiling, to interrogate how E-cadherin contributes to collective migration of cells between other cells. Using the Drosophila ovary as a model, we found that adhesion between border cells and their substrate, the nurse cells, functions in a positive feedback loop with Rac and actin assembly to stabilize forward-directed protrusion and directionally persistent movement. Adhesion between individual border cells communicates direction from the lead cell to the followers. Adhesion between motile cells and polar cells holds the cluster together and polarizes each individual cell. Thus, E-cadherin is an integral component of the guidance mechanisms that orchestrate collective chemotaxis in vivo.
Collapse
Affiliation(s)
- Danfeng Cai
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Shann-Ching Chen
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037-1000, USA
| | - Mohit Prasad
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Li He
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Xiaobo Wang
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Université P. Sabatier Toulouse III and CNRS, LBCMCP, 31062 Toulouse Cedex 9, France
| | | | - Jessica K Sawyer
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Gaudenz Danuser
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037-1000, USA
| | - Denise J Montell
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106-9625, USA.
| |
Collapse
|
217
|
Etienne-Manneville S. Neighborly relations during collective migration. Curr Opin Cell Biol 2014; 30:51-9. [PMID: 24997300 DOI: 10.1016/j.ceb.2014.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
Abstract
The collective migration of sheets, cohorts, chains or streams of cells contributes to embryogenesis, tissue remodeling and repair as well as to cancer invasion. The functional coordination between neighboring cells is at the heart of collective migration, during which cells migrate with a similar speed in an identical direction. Far from being the result of the simultaneous migration of isolated cells, collective migration relies on the intercellular communication between migrating cells. Although the mechanisms of cell coordination are far from being completely understood, accumulated evidence show that exchange of mechanical and chemical information by direct intercellular contacts and by soluble extracellular signals orchestrate the coordinated behavior of collectively migrating cells.
Collapse
Affiliation(s)
- Sandrine Etienne-Manneville
- Institut Pasteur - CNRS URA 2582, Cell Polarity, Migration and Cancer Unit, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
218
|
Collins C, Osborne LD, Guilluy C, Chen Z, O'Brien ET, Reader JS, Burridge K, Superfine R, Tzima E. Haemodynamic and extracellular matrix cues regulate the mechanical phenotype and stiffness of aortic endothelial cells. Nat Commun 2014; 5:3984. [PMID: 24917553 PMCID: PMC4068264 DOI: 10.1038/ncomms4984] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/29/2014] [Indexed: 01/16/2023] Open
Abstract
Endothelial cell (ECs) lining blood vessels express many mechanosensors, including platelet endothelial cell adhesion molecule-1 (PECAM-1), that convert mechanical force to biochemical signals. While it is accepted that mechanical stresses and the mechanical properties of ECs regulate vessel health, the relationship between force and biological response remains elusive. Here we show that ECs integrate mechanical forces and extracellular matrix (ECM) cues to modulate their own mechanical properties. We demonstrate that the ECM influences EC response to tension on PECAM-1. ECs adherent on collagen display divergent stiffening and focal adhesion growth compared to ECs on fibronectin. This is due to PKA-dependent serine phosphorylation and inactivation of RhoA. PKA signaling regulates focal adhesion dynamics and EC compliance in response to shear stress in vitro and in vivo. Our study identifies a ECM-specific, mechanosensitive signaling pathway that regulates EC compliance and may serve as an atheroprotective mechanism maintains blood vessel integrity in vivo.
Collapse
Affiliation(s)
- Caitlin Collins
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Lukas D Osborne
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Christophe Guilluy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zhongming Chen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - E Tim O'Brien
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - John S Reader
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Keith Burridge
- 1] Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA [2] Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA [3] McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Richard Superfine
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ellie Tzima
- 1] Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA [2] Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA [3] McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
219
|
Poh YC, Chen J, Hong Y, Yi H, Zhang S, Chen J, Wu DC, Wang L, Jia Q, Singh R, Yao W, Tan Y, Tajik A, Tanaka TS, Wang N. Generation of organized germ layers from a single mouse embryonic stem cell. Nat Commun 2014; 5:4000. [PMID: 24873804 PMCID: PMC4050279 DOI: 10.1038/ncomms5000] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/29/2014] [Indexed: 12/15/2022] Open
Abstract
Mammalian inner cell mass cells undergo lineage-specific differentiation into germ
layers of endoderm, mesoderm and ectoderm during gastrulation. It has been a
long-standing challenge in developmental biology to replicate these organized germ
layer patterns in culture. Here we present a method of generating organized germ
layers from a single mouse embryonic stem cell cultured in a soft fibrin matrix.
Spatial organization of germ layers is regulated by cortical tension of the colony,
matrix dimensionality and softness, and cell–cell adhesion. Remarkably,
anchorage of the embryoid colony from the 3D matrix to collagen-1-coated 2D
substrates of ~1 kPa results in self-organization of all three
germ layers: ectoderm on the outside layer, mesoderm in the middle and endoderm at
the centre of the colony, reminiscent of generalized gastrulating chordate embryos.
These results suggest that mechanical forces via cell–matrix and
cell–cell interactions are crucial in spatial organization of germ layers
during mammalian gastrulation. This new in vitro method could be used to gain
insights on the mechanisms responsible for the regulation of germ layer
formation. The three germ layers are formed from the inner cell mass of the
mammalian embryo during gastrulation. Here, the authors present a method by which a
single mouse embryonic stem cell, derived from inner cell mass, differentiates into the
three germ layers in a self-organized manner when cultured in soft fibrin gel.
Collapse
Affiliation(s)
- Yeh-Chuin Poh
- 1] Laboratory for Cell Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China [2] Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Junwei Chen
- Laboratory for Cell Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ying Hong
- Laboratory for Cell Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Haiying Yi
- Laboratory for Cell Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shuang Zhang
- Laboratory for Cell Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Junjian Chen
- Laboratory for Cell Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Douglas C Wu
- Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Lili Wang
- Laboratory for Cell Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qiong Jia
- Laboratory for Cell Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Rishi Singh
- Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Wenting Yao
- Laboratory for Cell Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Youhua Tan
- 1] Laboratory for Cell Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China [2] Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Arash Tajik
- Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Tetsuya S Tanaka
- 1] Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA [2] Department of Biological Science, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Ning Wang
- 1] Laboratory for Cell Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China [2] Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
220
|
Abstract
Cell migration is a fundamental process that occurs during embryo development. Classic studies using in vitro culture systems have been instrumental in dissecting the principles of cell motility and highlighting how cells make use of topographical features of the substrate, cell-cell contacts, and chemical and physical environmental signals to direct their locomotion. Here, we review the guidance principles of in vitro cell locomotion and examine how they control directed cell migration in vivo during development. We focus on developmental examples in which individual guidance mechanisms have been clearly dissected, and for which the interactions among guidance cues have been explored. We also discuss how the migratory behaviours elicited by guidance mechanisms generate the stereotypical patterns of migration that shape tissues in the developing embryo.
Collapse
Affiliation(s)
- Germán Reig
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences
- Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Eduardo Pulgar
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences
- Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Miguel L. Concha
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences
- Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| |
Collapse
|
221
|
Abstract
The family of Rho GTPases are intracellular signal transducers that link cell surface signals to multiple intracellular responses. They are best known for their role in regulating actin dynamics required for cell migration, but in addition control cell-cell adhesion, polarization, vesicle trafficking, and the cell cycle. The roles of Rho GTPases in single mesenchymal cell migration are well established and rely on Cdc42- and Rac-dependent cell protrusion of a leading edge, coupled to Rho-dependent contractility required to move the cell body forward. In cells migrating collectively, cell-cell junctions are maintained, and migrating leader cells are mechanically coupled to, and coordinate, migration with follower cells. Recent evidence suggests that Rho GTPases provide multifunctional input to collective cell polarization, cell-cell interaction, and migration. Here, we discuss the role of Rho GTPases in initiating and maintaining front-rear, apical-basal cell polarization, mechanotransduction, and cell-cell junction stability between leader and follower cells, and how these roles are integrated in collective migration. Thereby, spatiotemporal fine-tuning of Rho GTPases within the same cell and among cells in the cell group are crucial in controlling potentially conflicting, divergent cell adhesion and cytoskeletal functions to achieve supracellular coordination and mechanocoupling.
Collapse
Affiliation(s)
- Mirjam M Zegers
- Department of Cell Biology; Radboud University Medical Center; Nijmegen, the Netherlands
| | - Peter Friedl
- Department of Cell Biology; Radboud University Medical Center; Nijmegen, the Netherlands; David H. Koch Center for Applied Research of Genitourinary Cancers; Department of Genitourinary Medical Oncology; The University of Texas MD Anderson Cancer Center; Houston, TX USA; Cancer Genomics Centre Netherlands; Utrecht, the Netherlands
| |
Collapse
|
222
|
Abstract
Collective cell migration depends on multicellular mechanocoupling between leader and follower cells to coordinate traction force and position change. Co-registration of Rho GTPase activity and forces in migrating epithelial cell sheets now shows how RhoA controls leader-follower cell hierarchy, multicellular cytoskeletal contractility and mechanocoupling, to prevent ectopic leading edges and to move the cell sheet forward.
Collapse
|
223
|
Stapleton SC, Chopra A, Chen CS. Force measurement tools to explore cadherin mechanotransduction. ACTA ACUST UNITED AC 2014; 21:193-205. [PMID: 24754475 DOI: 10.3109/15419061.2014.905929] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell-cell adhesions serve to mechanically couple cells, allowing for long-range transmission of forces across cells in development, disease, and homeostasis. Recent work has shown that such contacts also play a role in transducing mechanical cues into a wide variety of cellular behaviors important to tissue function. As such, understanding the mechanical regulation of cells through their adhesion molecules has become a point of intense focus. This review will highlight the existing and emerging technologies and models that allow for exploration of cadherin-based adhesions as sites of mechanotransduction.
Collapse
Affiliation(s)
- Sarah C Stapleton
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, PA , USA
| | | | | |
Collapse
|
224
|
Marcq P. Spatio-temporal dynamics of an active, polar, viscoelastic ring. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2014; 37:29. [PMID: 24771233 DOI: 10.1140/epje/i2014-14029-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/31/2013] [Accepted: 02/14/2014] [Indexed: 06/03/2023]
Abstract
Constitutive equations for a one-dimensional, active, polar, viscoelastic liquid are derived by treating the strain field as a slow hydrodynamic variable. Taking into account the couplings between strain and polarity allowed by symmetry, the hydrodynamics of an active, polar, viscoelastic body include an evolution equation for the polarity field that generalizes the damped Kuramoto-Sivashinsky equation. Beyond thresholds of the active coupling coefficients between the polarity and the stress or the strain rate, bifurcations of the homogeneous state lead first to stationary waves, then to propagating waves of the strain, stress and polarity fields. I argue that these results are relevant to living matter, and may explain rotating actomyosin rings in cells and mechanical waves in epithelial cell monolayers.
Collapse
Affiliation(s)
- Philippe Marcq
- Physico-Chimie Curie, Institut Curie, Université Pierre et Marie Curie, 26 rue d'Ulm, F-75248, Paris Cedex 05, France,
| |
Collapse
|
225
|
Fichtner D, Lorenz B, Engin S, Deichmann C, Oelkers M, Janshoff A, Menke A, Wedlich D, Franz CM. Covalent and density-controlled surface immobilization of E-cadherin for adhesion force spectroscopy. PLoS One 2014; 9:e93123. [PMID: 24675966 PMCID: PMC3968077 DOI: 10.1371/journal.pone.0093123] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/02/2014] [Indexed: 11/18/2022] Open
Abstract
E-cadherin is a key cell-cell adhesion molecule but the impact of receptor density and the precise contribution of individual cadherin ectodomains in promoting cell adhesion are only incompletely understood. Investigating these mechanisms would benefit from artificial adhesion substrates carrying different cadherin ectodomains at defined surface density. We therefore developed a quantitative E-cadherin surface immobilization protocol based on the SNAP-tag technique. Extracellular (EC) fragments of E-cadherin fused to the SNAP-tag were covalently bound to self-assembled monolayers (SAM) of thiols carrying benzylguanine (BG) head groups. The adhesive functionality of the different E-cadherin surfaces was then assessed using cell spreading assays and single-cell (SCSF) and single-molecule (SMSF) force spectroscopy. We demonstrate that an E-cadherin construct containing only the first and second outmost EC domain (E1-2) is not sufficient for mediating cell adhesion and yields only low single cadherin-cadherin adhesion forces. In contrast, a construct containing all five EC domains (E1-5) efficiently promotes cell spreading and generates strong single cadherin and cell adhesion forces. By varying the concentration of BG head groups within the SAM we determined a lateral distance of 5–11 nm for optimal E-cadherin functionality. Integrating the results from SCMS and SMSF experiments furthermore demonstrated that the dissolution of E-cadherin adhesion contacts involves a sequential unbinding of individual cadherin receptors rather than the sudden rupture of larger cadherin receptor clusters. Our method of covalent, oriented and density-controlled E-cadherin immobilization thus provides a novel and versatile platform to study molecular mechanisms underlying cadherin-mediated cell adhesion under defined experimental conditions.
Collapse
Affiliation(s)
- Dagmar Fichtner
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
| | - Bärbel Lorenz
- University of Göttingen, Institute of Physical Chemistry, Göttingen, Germany
| | - Sinem Engin
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
| | - Christina Deichmann
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
| | - Marieelen Oelkers
- University of Göttingen, Institute of Physical Chemistry, Göttingen, Germany
| | - Andreas Janshoff
- University of Göttingen, Institute of Physical Chemistry, Göttingen, Germany
| | - Andre Menke
- Justus-Liebig-University Gieβen, Molecular Oncology of Solid Tumors, Gieβen, Germany
| | - Doris Wedlich
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
| | - Clemens M. Franz
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
226
|
Sadati M, Nourhani A, Fredberg JJ, Qazvini NT. Glass-like dynamics in the cell and in cellular collectives. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2014; 6:137-49. [PMID: 24431332 PMCID: PMC4000035 DOI: 10.1002/wsbm.1258] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 10/21/2013] [Accepted: 12/02/2013] [Indexed: 01/19/2023]
Abstract
Prominent fluctuations, heterogeneity, and cooperativity dominate the dynamics of the cytoskeleton as well as the dynamics of the cellular collective. Such systems are out of equilibrium, disordered, and remain poorly understood. To explain these findings, we consider a unifying mechanistic rubric that imagines these systems as comprising phases of soft condensed matter in proximity to a glass or jamming transition, with associated transitions between solid-like versus liquid-like phases. At the scale of the cytoskeleton, data suggest that intermittent dynamics, kinetic arrest, and dynamic heterogeneity represent mesoscale features of glassy protein-protein interactions that link underlying biochemical events to integrative cellular behaviors such as crawling, contraction, and remodeling. At the scale of the multicellular collective, jamming has the potential to unify diverse biological factors that previously had been considered mostly as acting separately and independently. Although a quantitative relationship between intra- and intercellular dynamics is still lacking, glassy dynamics and jamming offer insights linking the mechanobiology of cell to human physiology and pathophysiology.
Collapse
Affiliation(s)
- Monirosadat Sadati
- School of Public Health, Harvard University, Boston, MA 02115, United States
| | - Amir Nourhani
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, United States
| | - Jeffrey J. Fredberg
- School of Public Health, Harvard University, Boston, MA 02115, United States
| | - Nader Taheri Qazvini
- School of Public Health, Harvard University, Boston, MA 02115, United States, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
227
|
Barry AK, Tabdili H, Muhamed I, Wu J, Shashikanth N, Gomez GA, Yap AS, Gottardi CJ, de Rooij J, Wang N, Leckband DE. α-catenin cytomechanics--role in cadherin-dependent adhesion and mechanotransduction. J Cell Sci 2014; 127:1779-91. [PMID: 24522187 DOI: 10.1242/jcs.139014] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The findings presented here demonstrate the role of α-catenin in cadherin-based adhesion and mechanotransduction in different mechanical contexts. Bead-twisting measurements in conjunction with imaging, and the use of different cell lines and α-catenin mutants reveal that the acute local mechanical manipulation of cadherin bonds triggers vinculin and actin recruitment to cadherin adhesions in an actin- and α-catenin-dependent manner. The modest effect of α-catenin on the two-dimensional binding affinities of cell surface cadherins further suggests that force-activated adhesion strengthening is due to enhanced cadherin-cytoskeletal interactions rather than to α-catenin-dependent affinity modulation. Complementary investigations of cadherin-based rigidity sensing also suggest that, although α-catenin alters traction force generation, it is not the sole regulator of cell contractility on compliant cadherin-coated substrata.
Collapse
Affiliation(s)
- Adrienne K Barry
- Department of Biochemistry, University of Illinois, Urbana, IL 61801-3709, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Bordeleau F, Alcoser TA, Reinhart-King CA. Physical biology in cancer. 5. The rocky road of metastasis: the role of cytoskeletal mechanics in cell migratory response to 3D matrix topography. Am J Physiol Cell Physiol 2014; 306:C110-20. [PMID: 24196535 PMCID: PMC3919983 DOI: 10.1152/ajpcell.00283.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/30/2013] [Indexed: 01/22/2023]
Abstract
The tumor microenvironment is a milieu of heterogeneous architectural features that affect tumor growth and metastatic invasion. Pore size, density, stiffness, and fiber architecture change dramatically from location to location throughout the tumor matrix. While many studies have addressed the effects of two-dimensional extracellular matrix structure and composition on cell migration, less is known about how cancer cells navigate complex, heterogeneous three-dimensional (3D) microenvironments. Mechanical structures such as actin and keratin, part of the cytoskeletal framework, and lamins, part of the nucleoskeletal framework, play a key role in migration and are altered during cancer progression. Recent evidence suggests that these changes in cytoskeletal and nucleoskeletal structures may enable cancer cells to efficiently respond to features such as pore size and stiffness to invade and migrate. Here we discuss the role of cell mechanics and the cytoskeleton in the ability of cells to navigate and respond to 3D matrix features and heterogeneities.
Collapse
Affiliation(s)
- Francois Bordeleau
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | | | | |
Collapse
|
229
|
Menko AS, Bleaken BM, Walker JL. Regional-specific alterations in cell-cell junctions, cytoskeletal networks and myosin-mediated mechanical cues coordinate collectivity of movement of epithelial cells in response to injury. Exp Cell Res 2014; 322:133-48. [PMID: 24397950 DOI: 10.1016/j.yexcr.2013.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/21/2013] [Accepted: 12/26/2013] [Indexed: 01/27/2023]
Abstract
This study investigates how epithelial cells moving together function to coordinate their collective movement to repair a wound. Using a lens ex vivo mock cataract surgery model we show that region-specific reorganization of cell-cell junctions, cytoskeletal networks and myosin function along apical and basal domains of an epithelium mediates the process of collective migration. An apical junctional complex composed of N-cadherin/ZO-1/myosin II linked to a cortical actin cytoskeleton network maintains integrity of the tissue during the healing process. These cells' basal domains often preceded their apical domains in the direction of movement, where an atypical N-cadherin/ZO-1 junction, linked to an actin stress fiber network rich in phosphomyosin, was prominent in cryptic lamellipodia. These junctions joined the protruding forward-moving lamellipodia to the back end of the cell moving directly in front of it. These were the only junctions detected in cryptic lamellipodia of lens epithelia migrating in response to wounding that could transmit the protrusive forces that drive collective movement. Both integrity of the epithelium and ability to effectively heal the wound was found to depend on myosin mechanical cues.
Collapse
Affiliation(s)
- A S Menko
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States; Wills Vision Research Center at Jefferson, Philadelphia, PA 19107, United States
| | - B M Bleaken
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - J L Walker
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States; Wills Vision Research Center at Jefferson, Philadelphia, PA 19107, United States.
| |
Collapse
|
230
|
Chapnick DA, Jacobsen J, Liu X. The development of a novel high throughput computational tool for studying individual and collective cellular migration. PLoS One 2013; 8:e82444. [PMID: 24386097 PMCID: PMC3873918 DOI: 10.1371/journal.pone.0082444] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
Understanding how cells migrate individually and collectively during development and cancer metastasis can be significantly aided by a computation tool to accurately measure not only cellular migration speed, but also migration direction and changes in migration direction in a temporal and spatial manner. We have developed such a tool for cell migration researchers, named Pathfinder, which is capable of simultaneously measuring the migration speed, migration direction, and changes in migration directions of thousands of cells both instantaneously and over long periods of time from fluorescence microscopy data. Additionally, we demonstrate how the Pathfinder software can be used to quantify collective cell migration. The novel capability of the Pathfinder software to measure the changes in migration direction of large populations of cells in a spatiotemporal manner will aid cellular migration research by providing a robust method for determining the mechanisms of cellular guidance during individual and collective cell migration.
Collapse
Affiliation(s)
- Douglas A. Chapnick
- 1 Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, United States of America
| | - Jeremy Jacobsen
- 1 Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, United States of America
| | - Xuedong Liu
- 1 Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
231
|
Abstract
Carcinomas typically invade as a cohesive multicellular unit, a process termed collective invasion. It remains unclear how different subpopulations of cancer cells contribute to this process. We developed three-dimensional (3D) organoid assays to identify the most invasive cancer cells in primary breast tumors. Collective invasion was led by specialized cancer cells that were defined by their expression of basal epithelial genes, such as cytokeratin-14 (K14) and p63. Furthermore, K14+ cells led collective invasion in the major human breast cancer subtypes. Importantly, luminal cancer cells were observed to convert phenotypically to invasive leaders following induction of basal epithelial genes. Although only a minority of cells within luminal tumors expressed basal epithelial genes, knockdown of either K14 or p63 was sufficient to block collective invasion. Our data reveal that heterotypic interactions between epithelial subpopulations are critical to collective invasion. We suggest that targeting the basal invasive program could limit metastatic progression.
Collapse
Affiliation(s)
- Kevin J Cheung
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Edward Gabrielson
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew J Ewald
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
232
|
Cheung KJ, Gabrielson E, Werb Z, Ewald AJ. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 2013; 155:1639-51. [PMID: 24332913 DOI: 10.1016/j.cell.2013.11.029] [Citation(s) in RCA: 627] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 05/02/2013] [Accepted: 11/11/2013] [Indexed: 12/14/2022]
Abstract
Carcinomas typically invade as a cohesive multicellular unit, a process termed collective invasion. It remains unclear how different subpopulations of cancer cells contribute to this process. We developed three-dimensional (3D) organoid assays to identify the most invasive cancer cells in primary breast tumors. Collective invasion was led by specialized cancer cells that were defined by their expression of basal epithelial genes, such as cytokeratin-14 (K14) and p63. Furthermore, K14+ cells led collective invasion in the major human breast cancer subtypes. Importantly, luminal cancer cells were observed to convert phenotypically to invasive leaders following induction of basal epithelial genes. Although only a minority of cells within luminal tumors expressed basal epithelial genes, knockdown of either K14 or p63 was sufficient to block collective invasion. Our data reveal that heterotypic interactions between epithelial subpopulations are critical to collective invasion. We suggest that targeting the basal invasive program could limit metastatic progression.
Collapse
Affiliation(s)
- Kevin J Cheung
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Edward Gabrielson
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew J Ewald
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
233
|
The interplay between cell signalling and mechanics in developmental processes. Nat Rev Genet 2013; 14:733-44. [PMID: 24045690 DOI: 10.1038/nrg3513] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Force production and the propagation of stress and strain within embryos and organisms are crucial physical processes that direct morphogenesis. In addition, there is mounting evidence that biomechanical cues created by these processes guide cell behaviours and cell fates. In this Review we discuss key roles for biomechanics during development to directly shape tissues, to provide positional information for cell fate decisions and to enable robust programmes of development. Several recently identified molecular mechanisms suggest how cells and tissues might coordinate their responses to biomechanical cues. Finally, we outline long-term challenges in integrating biomechanics with genetic analysis of developing embryos.
Collapse
|
234
|
Vedula SRK, Ravasio A, Lim CT, Ladoux B. Collective Cell Migration: A Mechanistic Perspective. Physiology (Bethesda) 2013; 28:370-9. [DOI: 10.1152/physiol.00033.2013] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Collective cell migration is fundamental to gaining insights into various important biological processes such as wound healing and cancer metastasis. In particular, recent in vitro studies and in silico simulations suggest that mechanics can explain the social behavior of multicellular clusters to a large extent with minimal knowledge of various cellular signaling pathways. These results suggest that a mechanistic perspective is necessary for a comprehensive and holistic understanding of collective cell migration, and this review aims to provide a broad overview of such a perspective.
Collapse
Affiliation(s)
| | - Andrea Ravasio
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Bioengineering and Department of Mechanical Engineering, National University of Singapore, Singapore; and
| | - Benoit Ladoux
- Mechanobiology Institute, National University of Singapore, Singapore
- Institut Jacques Monod, Université Paris Diderot, Paris, France
| |
Collapse
|
235
|
Planar cell polarity proteins differentially regulate extracellular matrix organization and assembly during zebrafish gastrulation. Dev Biol 2013; 383:39-51. [DOI: 10.1016/j.ydbio.2013.08.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/25/2013] [Accepted: 08/31/2013] [Indexed: 11/22/2022]
|
236
|
Breckenridge MT, Desai RA, Yang MT, Fu J, Chen CS. Substrates with engineered step changes in rigidity induce traction force polarity and durotaxis. Cell Mol Bioeng 2013; 7:26-34. [PMID: 27721906 DOI: 10.1007/s12195-013-0307-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rigidity sensing plays a fundamental role in multiple cell functions ranging from migration, to proliferation and differentiation1-5. During migration, single cells have been reported to preferentially move toward more rigid regions of a substrate in a process termed durotaxis. Durotaxis could contribute to cell migration in wound healing and gastrulation, where local gradients in tissue rigidity have been described. Despite the potential importance of this phenomenon to physiology and disease, it remains unclear how rigidity guides these behaviors and the underlying cellular and molecular mechanisms. To investigate the functional role of subcellular distribution and dynamics of cellular traction forces during durotaxis, we developed a unique microfabrication strategy to generate elastomeric micropost arrays patterned with regions exhibiting two different rigidities juxtaposed next to each other. After initial cell attachment on the rigidity boundary of the micropost array, NIH 3T3 fibroblasts were observed to preferentially migrate toward the rigid region of the micropost array, indicative of durotaxis. Additionally, cells bridging two rigidities across the rigidity boundary on the micropost array developed stronger traction forces on the more rigid side of the substrate indistinguishable from forces generated by cells exclusively seeded on rigid regions of the micropost array. Together, our results highlighted the utility of step-rigidity micropost arrays to investigate the functional role of traction forces in rigidity sensing and durotaxis, suggesting that cells could sense substrate rigidity locally to induce an asymmetrical intracellular traction force distribution to contribute to durotaxis.
Collapse
Affiliation(s)
- Mark T Breckenridge
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ravi A Desai
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Michael T Yang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jianping Fu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christopher S Chen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
237
|
Roca-Cusachs P, Sunyer R, Trepat X. Mechanical guidance of cell migration: lessons from chemotaxis. Curr Opin Cell Biol 2013; 25:543-9. [DOI: 10.1016/j.ceb.2013.04.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 04/26/2013] [Indexed: 01/04/2023]
|
238
|
Chung BM, Rotty JD, Coulombe PA. Networking galore: intermediate filaments and cell migration. Curr Opin Cell Biol 2013; 25:600-12. [PMID: 23886476 PMCID: PMC3780586 DOI: 10.1016/j.ceb.2013.06.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 11/22/2022]
Abstract
Intermediate filaments (IFs) are assembled from a diverse group of evolutionarily conserved proteins and are specified in a tissue-dependent, cell type-dependent, and context-dependent fashion in the body. IFs are involved in multiple cellular processes that are crucial for the maintenance of cell and tissue integrity and the response and adaptation to various stresses, as conveyed by the broad array of crippling clinical disorders caused by inherited mutations in IF coding sequences. Accordingly, the expression, assembly, and organization of IFs are tightly regulated. Migration is a fitting example of a cell-based phenomenon in which IFs participate as both effectors and regulators. With a particular focus on vimentin and keratin, we here review how the contributions of IFs to the cell's mechanical properties, to cytoarchitecture and adhesion, and to regulatory pathways collectively exert a significant impact on cell migration.
Collapse
Affiliation(s)
- Byung-Min Chung
- Dept. of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy D. Rotty
- Dept. of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Pierre A. Coulombe
- Dept. of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
239
|
Insall R. The interaction between pseudopods and extracellular signalling during chemotaxis and directed migration. Curr Opin Cell Biol 2013; 25:526-31. [PMID: 23747069 DOI: 10.1016/j.ceb.2013.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 04/30/2013] [Indexed: 12/22/2022]
Abstract
Eukaryotic chemotaxis is extremely complex. Cells can sense a wide range of stimuli, and many intracellular pathways are simultaneously involved. Recent genetic analyses of the steps between receptors and cytoskeleton, and how the cell controls actin and pseudopod behaviour, have yielded exciting new data but still no coherent understanding of chemotaxis. However, concentrating on pseudopods themselves and the physical processes that regulate them, rather than the internal signalling pathways, can simplify the data and help resolve the underlying mechanism. Direct action of electric fields and physical forces on cell migration suggest that mechanical forces and force-generating proteins like actin and myosin are centrally important in steering cells during chemotaxis.
Collapse
Affiliation(s)
- Robert Insall
- CRUK Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK.
| |
Collapse
|
240
|
Theveneau E, Mayor R. Collective cell migration of epithelial and mesenchymal cells. Cell Mol Life Sci 2013; 70:3481-92. [PMID: 23314710 PMCID: PMC11113167 DOI: 10.1007/s00018-012-1251-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/13/2012] [Accepted: 12/20/2012] [Indexed: 12/14/2022]
Abstract
Directional cell migration is required for proper embryogenesis, immunity, and healing, and its underpinning regulatory mechanisms are often hijacked during diseases such as chronic inflammations and cancer metastasis. Studies on migratory epithelial tissues have revealed that cells can move as a collective group with shared responsibilities. First thought to be restricted to proper epithelial cell types able to maintain stable cell-cell junctions, the field of collective cell migration is now widening to include cooperative behavior of mesenchymal cells. In this review, we give an overview of the mechanisms driving collective cell migration in epithelial tissues and discuss how mesenchymal cells can cooperate to behave as a collective in the absence of bona fide cell-cell adhesions.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
241
|
Desai RA, Gopal SB, Chen S, Chen CS. Contact inhibition of locomotion probabilities drive solitary versus collective cell migration. J R Soc Interface 2013; 10:20130717. [PMID: 24047876 DOI: 10.1098/rsif.2013.0717] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Contact inhibition of locomotion (CIL) is the process whereby cells collide, cease migrating in the direction of the collision, and repolarize their migration machinery away from the collision. Quantitative analysis of CIL has remained elusive because cell-to-cell collisions are infrequent in traditional cell culture. Moreover, whereas CIL predicts mutual cell repulsion and 'scattering' of cells, the same cells in vivo are observed to undergo CIL at some developmental times and collective cell migration at others. It remains unclear whether CIL is simply absent during collective cell migration, or if the two processes coexist and are perhaps even related. Here, we used micropatterned stripes of extracellular matrix to restrict cell migration to linear paths such that cells polarized in one of two directions and collisions between cells occurred frequently and consistently, permitting quantitative and unbiased analysis of CIL. Observing repolarization events in different contexts, including head-to-head collision, head-to-tail collision, collision with an inert barrier, or no collision, and describing polarization as a two-state transition indicated that CIL occurs probabilistically, and most strongly upon head-to-head collisions. In addition to strong CIL, we also observed 'trains' of cells moving collectively with high persistence that appeared to emerge from single cells. To reconcile these seemingly conflicting observations of CIL and collective cell migration, we constructed an agent-based model to simulate our experiments. Our model quantitatively predicted the emergence of collective migration, and demonstrated the sensitivity of such emergence to the probability of CIL. Thus CIL and collective migration can coexist, and in fact a shift in CIL probabilities may underlie transitions between solitary cell migration and collective cell migration. Taken together, our data demonstrate the emergence of persistently polarized, collective cell movement arising from CIL between colliding cells.
Collapse
Affiliation(s)
- Ravi A Desai
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
242
|
Affiliation(s)
- Eric R Dufresne
- Departments of Mechanical Engineering and Materials Science, Chemical and Environmental Engineering, Applied Physics, Physics, and Cell Biology, Yale University, 9 Hillhouse Avenue, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
243
|
Kim JH, Serra-Picamal X, Tambe DT, Zhou EH, Park CY, Sadati M, Park JA, Krishnan R, Gweon B, Millet E, Butler JP, Trepat X, Fredberg JJ. Propulsion and navigation within the advancing monolayer sheet. NATURE MATERIALS 2013; 12:856-63. [PMID: 23793160 PMCID: PMC3750079 DOI: 10.1038/nmat3689] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/16/2013] [Indexed: 05/03/2023]
Abstract
As a wound heals, or a body plan forms, or a tumour invades, observed cellular motions within the advancing cell swarm are thought to stem from yet to be observed physical stresses that act in some direct and causal mechanical fashion. Here we show that such a relationship between motion and stress is far from direct. Using monolayer stress microscopy, we probed migration velocities, cellular tractions and intercellular stresses in an epithelial cell sheet advancing towards an island on which cells cannot adhere. We found that cells located near the island exert tractions that pull systematically towards this island regardless of whether the cells approach the island, migrate tangentially along its edge, or paradoxically, recede from it. This unanticipated cell-patterning motif, which we call kenotaxis, represents the robust and systematic mechanical drive of the cellular collective to fill unfilled space.
Collapse
Affiliation(s)
- Jae Hun Kim
- School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Xavier Serra-Picamal
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain
- Facultat de Medicina, Universitat de Barcelona, and Ciber Enfermedades Respiratorias, Barcelona 08036, Spain
| | | | - Enhua H. Zhou
- School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Chan Young Park
- School of Public Health, Harvard University, Boston, MA 02115, USA
| | | | - Jin-Ah Park
- School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Harvard Medical School, Boston, MA 02215, USA
| | - Bomi Gweon
- School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Emil Millet
- School of Public Health, Harvard University, Boston, MA 02115, USA
| | - James P. Butler
- School of Public Health, Harvard University, Boston, MA 02115, USA
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain
- Facultat de Medicina, Universitat de Barcelona, and Ciber Enfermedades Respiratorias, Barcelona 08036, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Jeffrey J. Fredberg
- School of Public Health, Harvard University, Boston, MA 02115, USA
- To whom correspondence should be addressed.
| |
Collapse
|
244
|
Hara Y, Nagayama K, Yamamoto TS, Matsumoto T, Suzuki M, Ueno N. Directional migration of leading-edge mesoderm generates physical forces: Implication in Xenopus notochord formation during gastrulation. Dev Biol 2013; 382:482-95. [PMID: 23933171 DOI: 10.1016/j.ydbio.2013.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/15/2013] [Accepted: 07/27/2013] [Indexed: 12/17/2022]
Abstract
Gastrulation is a dynamic tissue-remodeling process occurring during early development and fundamental to the later organogenesis. It involves both chemical signals and physical factors. Although much is known about the molecular pathways involved, the roles of physical forces in regulating cellular behavior and tissue remodeling during gastrulation have just begun to be explored. Here, we characterized the force generated by the leading edge mesoderm (LEM) that migrates preceding axial mesoderm (AM), and investigated the contribution of LEM during Xenopus gastrulation. First, we constructed an assay system using micro-needle which could measure physical forces generated by the anterior migration of LEM, and estimated the absolute magnitude of the force to be 20-80nN. Second, laser ablation experiments showed that LEM could affect the force distribution in the AM (i.e. LEM adds stretch force on axial mesoderm along anterior-posterior axis). Third, migrating LEM was found to be necessary for the proper gastrulation cell movements and the establishment of organized notochord structure; a reduction of LEM migratory activity resulted in the disruption of mediolateral cell orientation and convergence in AM. Finally, we found that LEM migration cooperates with Wnt/PCP to form proper notochord. These results suggest that the force generated by the directional migration of LEM is transmitted to AM and assists the tissue organization of notochord in vivo independently of the regulation by Wnt/PCP. We propose that the LEM may have a mechanical role in aiding the AM elongation through the rearrangement of force distribution in the dorsal marginal zone.
Collapse
Affiliation(s)
- Yusuke Hara
- Division for Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
245
|
Valignat MP, Theodoly O, Gucciardi A, Hogg N, Lellouch AC. T lymphocytes orient against the direction of fluid flow during LFA-1-mediated migration. Biophys J 2013; 104:322-31. [PMID: 23442854 DOI: 10.1016/j.bpj.2012.12.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 12/01/2012] [Accepted: 12/05/2012] [Indexed: 01/13/2023] Open
Abstract
As they leave the blood stream and travel to lymph nodes or sites of inflammation, T lymphocytes are captured by the endothelium and migrate along the vascular wall to permissive sites of transmigration. These processes take place under the influence of hemodynamic shear stress; therefore, we investigated how migrational speed and directionality are influenced by variations in shear stress. We examined human effector T lymphocytes on intercellular adhesion molecule 1 (ICAM-1)-coated surfaces under the influence of shear stresses from 2 to 60 dyn.cm(-2). T lymphocytes were shown to respond to shear stress application by a rapid (30 s) and fully reversible orientation of their migration against the fluid flow without a change in migration speed. Primary T lymphocytes migrating on ICAM-1 in the presence of uniformly applied SDF-1α were also found to migrate against the direction of shear flow. In sharp contrast, neutrophils migrating in the presence of uniformly applied fMLP and leukemic HSB2 T lymphocytes migrating on ICAM-1 alone oriented their migration downstream, with the direction of fluid flow. Our findings suggest that, in addition to biochemical cues, shear stress is a contributing factor to leukocyte migration directionality.
Collapse
Affiliation(s)
- Marie-Pierre Valignat
- Laboratoire d'Adhésion Cellulaire et Inflammation, Aix Marseille Université, CNRS UMR7333, Marseille, France.
| | | | | | | | | |
Collapse
|
246
|
Nosi D, Mercatelli R, Chellini F, Soria S, Pini A, Formigli L, Quercioli F. A molecular imaging analysis of Cx43 association with Cdo during skeletal myoblast differentiation. JOURNAL OF BIOPHOTONICS 2013; 6:612-621. [PMID: 22930637 DOI: 10.1002/jbio.201200063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/12/2012] [Accepted: 07/30/2012] [Indexed: 06/01/2023]
Abstract
Cell-to-cell contacts are crucial for cell differentiation. The promyogenic cell surface protein, Cdo, functions as a component of multiprotein clusters to mediate cell adhesion signaling. Connexin 43, the main connexin forming gap junctions, also plays a key role in myogenesis. At least part of its effects is independent of the intercellular channel function, but the mechanisms underlying are unknown. Here, using multiple optical approaches, we provided the first evidence that Cx43 physically interacts with Cdo to form dynamic complexes during myoblast differentiation, offering clues for considering this interaction a structural basis of the channel-independent function of Cx43.
Collapse
Affiliation(s)
- Daniele Nosi
- Dipartimento di Anatomia, Istologia e Medicina Legale, Università di Firenze, Largo Brambilla 3 - Firenze, Italy
| | | | | | | | | | | | | |
Collapse
|
247
|
Slater B, Londono C, McGuigan AP. An algorithm to quantify correlated collective cell migration behavior. Biotechniques 2013; 54:87-92. [PMID: 23384179 DOI: 10.2144/000113990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/17/2013] [Indexed: 11/23/2022] Open
Abstract
Collective cell migration is an important process that determines cell reorganization in a number of biological events such as development and regeneration. Random cell reorganization within a confluent monolayer is a popular in vitro model system for understanding the mechanisms that underlie coordination between neighboring cells during collective motion. Here we describe a simple automated C++ algorithm to quantify the width of streams of correlated cells moving within monolayers. Our method is efficient and allows analysis of thousands of cells in under a minute; analysis of large data sets is therefore possible without limitations due to computational time, a common analysis bottleneck. Furthermore, our method allows characterization of the variability in correlated stream widths among a cell monolayer. We quantify stream width in the human retinal epithelial cell line ARPE-19 and the fibroblast cell line BJ, and find that for both cell types, stream widths within the monolayer vary in size significantly with a peak width of 40 µm, corresponding to a width of approximately two cells. Our algorithm provides a novel analytical tool to quantify and analyze correlated cell movement in confluent sheets at a population level and to assess factors that impact coordinated collective cell migration.
Collapse
Affiliation(s)
- Benjamin Slater
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
248
|
Ichikawa T, Nakazato K, Keller PJ, Kajiura-Kobayashi H, Stelzer EHK, Mochizuki A, Nonaka S. Live imaging of whole mouse embryos during gastrulation: migration analyses of epiblast and mesodermal cells. PLoS One 2013; 8:e64506. [PMID: 23861733 PMCID: PMC3704669 DOI: 10.1371/journal.pone.0064506] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/15/2013] [Indexed: 11/19/2022] Open
Abstract
During gastrulation in the mouse embryo, dynamic cell movements including epiblast invagination and mesodermal layer expansion lead to the establishment of the three-layered body plan. The precise details of these movements, however, are sometimes elusive, because of the limitations in live imaging. To overcome this problem, we developed techniques to enable observation of living mouse embryos with digital scanned light sheet microscope (DSLM). The achieved deep and high time-resolution images of GFP-expressing nuclei and following 3D tracking analysis revealed the following findings: (i) Interkinetic nuclear migration (INM) occurs in the epiblast at embryonic day (E)6 and 6.5. (ii) INM-like migration occurs in the E5.5 embryo, when the epiblast is a monolayer and not yet pseudostratified. (iii) Primary driving force for INM at E6.5 is not pressure from neighboring nuclei. (iv) Mesodermal cells migrate not as a sheet but as individual cells without coordination.
Collapse
Affiliation(s)
- Takehiko Ichikawa
- Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Okazaki Aichi, Japan
| | - Kenichi Nakazato
- Theoretical Biology Laboratory, RIKEN Advanced Science Institute, Wako-city, Saitama, Japan
| | - Philipp J. Keller
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Hiroko Kajiura-Kobayashi
- Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Okazaki Aichi, Japan
| | - Ernst H. K. Stelzer
- Physical Biology (FB 15 IZN), Buchmann Institute for Molecular Life Sciences (BMLS, CEF-MC), Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Atsushi Mochizuki
- Theoretical Biology Laboratory, RIKEN Advanced Science Institute, Wako-city, Saitama, Japan
| | - Shigenori Nonaka
- Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Okazaki Aichi, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| |
Collapse
|
249
|
Czirók A, Varga K, Méhes E, Szabó A. Collective cell streams in epithelial monolayers depend on cell adhesion. NEW JOURNAL OF PHYSICS 2013; 15:10.1088/1367-2630/15/7/075006. [PMID: 24363603 PMCID: PMC3866308 DOI: 10.1088/1367-2630/15/7/075006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We report a spontaneously emerging, randomly oriented, collective streaming behavior within a monolayer culture of a human keratinocyte cell line, and explore the effect of modulating cell adhesions by perturbing the function of calcium-dependent cell adhesion molecules. We demonstrate that decreasing cell adhesion induces narrower and more anisotropic cell streams, reminiscent of decreasing the Taylor scale of turbulent liquids. To explain our empirical findings, we propose a cell-based model that represents the dual nature of cell-cell adhesions. Spring-like connections provide mechanical stability, while a cellular Potts model formalism represents surface-tension driven attachment. By changing the relevance and persistence of mechanical links between cells, we are able to explain the experimentally observed changes in emergent flow patterns.
Collapse
Affiliation(s)
- András Czirók
- Dept. of Anatomy and Cell Biology; University of Kansas Medical Center; Kansas City, KS, USA
- Dept. of Biological Physics; Eotvos University; Budapest, Hungary
- Corresponding author:
| | - Katalin Varga
- Dept. of Biological Physics; Eotvos University; Budapest, Hungary
| | - Előd Méhes
- Dept. of Biological Physics; Eotvos University; Budapest, Hungary
| | - András Szabó
- Dept. of Biological Physics; Eotvos University; Budapest, Hungary
| |
Collapse
|
250
|
Sivasankar S. Tuning the kinetics of cadherin adhesion. J Invest Dermatol 2013; 133:2318-2323. [PMID: 23812234 PMCID: PMC3773255 DOI: 10.1038/jid.2013.229] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/19/2013] [Accepted: 04/24/2013] [Indexed: 12/17/2022]
Abstract
Cadherins are Ca(2+)-dependent cell-cell adhesion proteins that maintain the structural integrity of the epidermis; their principle function is to resist mechanical force. This review summarizes the biophysical mechanisms by which classical cadherins tune adhesion and withstand mechanical stress. We first relate the structure of classical cadherins to their equilibrium binding properties. We then review the role of mechanical perturbations in tuning the kinetics of cadherin adhesion. In particular, we highlight recent studies that show that cadherins form three types of adhesive bonds: catch bonds, which become longer lived and lock in the presence of tensile force; slip bonds, which become shorter lived when pulled; and ideal bonds, which are insensitive to tugging.
Collapse
Affiliation(s)
- Sanjeevi Sivasankar
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA; Ames Laboratory, United States Department of Energy, Ames, Iowa, USA.
| |
Collapse
|