201
|
Viaud M, Ivanov S, Vujic N, Duta-Mare M, Aira LE, Barouillet T, Garcia E, Orange F, Dugail I, Hainault I, Stehlik C, Marchetti S, Boyer L, Guinamard R, Foufelle F, Bochem A, Hovingh KG, Thorp EB, Gautier EL, Kratky D, Dasilva-Jardine P, Yvan-Charvet L. Lysosomal Cholesterol Hydrolysis Couples Efferocytosis to Anti-Inflammatory Oxysterol Production. Circ Res 2018. [PMID: 29523554 DOI: 10.1161/circresaha.117.312333] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Macrophages face a substantial amount of cholesterol after the ingestion of apoptotic cells, and the LIPA (lysosomal acid lipase) has a major role in hydrolyzing cholesteryl esters in the endocytic compartment. OBJECTIVE Here, we directly investigated the role of LIPA-mediated clearance of apoptotic cells both in vitro and in vivo. METHODS AND RESULTS We show that LIPA inhibition causes a defective efferocytic response because of impaired generation of 25-hydroxycholesterol and 27-hydroxycholesterol. Reduced synthesis of 25-hydroxycholesterol after LIPA inhibition contributed to defective mitochondria-associated membrane leading to mitochondrial oxidative stress-induced NLRP3 (NOD-like receptor family, pyrin domain containing) inflammasome activation and caspase-1-dependent Rac1 (Ras-related C3 botulinum toxin substrate 1) degradation. A secondary event consisting of failure to appropriately activate liver X receptor-mediated pathways led to mitigation of cholesterol efflux and apoptotic cell clearance. In mice, LIPA inhibition caused defective clearance of apoptotic lymphocytes and stressed erythrocytes by hepatic and splenic macrophages, culminating in splenomegaly and splenic iron accumulation under hypercholesterolemia. CONCLUSIONS Our findings position lysosomal cholesterol hydrolysis as a critical process that prevents metabolic inflammation by enabling efficient macrophage apoptotic cell clearance.
Collapse
Affiliation(s)
- Manon Viaud
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France (M.V., S.I., L.-E.A., E.G., S.M., L.B., R.G., L.Y.-C.)
| | - Stoyan Ivanov
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France (M.V., S.I., L.-E.A., E.G., S.M., L.B., R.G., L.Y.-C.)
| | - Nemanja Vujic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria (N.V., M.D.-M., D.K.)
| | - Madalina Duta-Mare
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria (N.V., M.D.-M., D.K.)
| | - Lazaro-Emilio Aira
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France (M.V., S.I., L.-E.A., E.G., S.M., L.B., R.G., L.Y.-C.)
| | | | - Elsa Garcia
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France (M.V., S.I., L.-E.A., E.G., S.M., L.B., R.G., L.Y.-C.)
| | - Francois Orange
- UFR Sciences, Faculté des Sciences de l'Université de Nice-Sophia Antipolis, France (F.O.)
| | - Isabelle Dugail
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Pierre & Marie Curie University, ICAN Institute of Cardiometabolism & Nutrition, Hôpital de la Pitié, Boulevard de l'Hôpital, Paris, France (I.D., E.L.G.)
| | - Isabelle Hainault
- Institut National de la Santé et de la Recherche Médicale (Inserm) UMRS 1138, Centre de Recherche des Cordeliers, Paris, France (I.H., F.F.)
| | - Christian Stehlik
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (C.S., E.B.T.)
| | - Sandrine Marchetti
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France (M.V., S.I., L.-E.A., E.G., S.M., L.B., R.G., L.Y.-C.)
| | - Laurent Boyer
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France (M.V., S.I., L.-E.A., E.G., S.M., L.B., R.G., L.Y.-C.)
| | - Rodolphe Guinamard
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France (M.V., S.I., L.-E.A., E.G., S.M., L.B., R.G., L.Y.-C.)
| | - Fabienne Foufelle
- Institut National de la Santé et de la Recherche Médicale (Inserm) UMRS 1138, Centre de Recherche des Cordeliers, Paris, France (I.H., F.F.)
| | | | | | - Edward B Thorp
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (C.S., E.B.T.)
| | - Emmanuel L Gautier
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Pierre & Marie Curie University, ICAN Institute of Cardiometabolism & Nutrition, Hôpital de la Pitié, Boulevard de l'Hôpital, Paris, France (I.D., E.L.G.)
| | - Dagmar Kratky
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria (N.V., M.D.-M., D.K.)
| | - Paul Dasilva-Jardine
- Academic Medical Center, Amsterdam, The Netherlands; and Staten Biotechnology, Nijmegen, The Netherlands (P.D.-J.)
| | - Laurent Yvan-Charvet
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France (M.V., S.I., L.-E.A., E.G., S.M., L.B., R.G., L.Y.-C.)
| |
Collapse
|
202
|
Manfredi AA, Ramirez GA, Rovere-Querini P, Maugeri N. The Neutrophil's Choice: Phagocytose vs Make Neutrophil Extracellular Traps. Front Immunol 2018. [PMID: 29515586 PMCID: PMC5826238 DOI: 10.3389/fimmu.2018.00288] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neutrophils recognize particulate substrates of microbial or endogenous origin and react by sequestering the cargo via phagocytosis or by releasing neutrophil extracellular traps (NETs) outside the cell, thus modifying and alerting the environment and bystander leukocytes. The signals that determine the choice between phagocytosis and the generation of NETs are still poorly characterized. Neutrophils that had phagocytosed bulky particulate substrates, such as apoptotic cells and activated platelets, appear to be “poised” in an unresponsive state. Environmental conditions, the metabolic, adhesive and activation state of the phagocyte, and the size of and signals associated with the tethered phagocytic cargo influence the choice of the neutrophils, prompting either phagocytic clearance or the generation of NETs. The choice is dichotomic and apparently irreversible. Defects in phagocytosis may foster the intravascular generation of NETs, thus promoting vascular inflammation and morbidities associated with diseases characterized by defective phagocytic clearance, such as systemic lupus erythematosus. There is a strong potential for novel treatments based on new knowledge of the events determining the inflammatory and pro-thrombotic function of inflammatory leukocytes.
Collapse
Affiliation(s)
- Angelo A Manfredi
- Università Vita-Salute San Raffaele, Milano, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Giuseppe A Ramirez
- Università Vita-Salute San Raffaele, Milano, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Patrizia Rovere-Querini
- Università Vita-Salute San Raffaele, Milano, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Norma Maugeri
- Università Vita-Salute San Raffaele, Milano, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
203
|
Rodriguez-Fernandez S, Pujol-Autonell I, Brianso F, Perna-Barrull D, Cano-Sarabia M, Garcia-Jimeno S, Villalba A, Sanchez A, Aguilera E, Vazquez F, Verdaguer J, Maspoch D, Vives-Pi M. Phosphatidylserine-Liposomes Promote Tolerogenic Features on Dendritic Cells in Human Type 1 Diabetes by Apoptotic Mimicry. Front Immunol 2018; 9:253. [PMID: 29491866 PMCID: PMC5817077 DOI: 10.3389/fimmu.2018.00253] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/29/2018] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) is a metabolic disease caused by the autoimmune destruction of insulin-producing β-cells. With its incidence increasing worldwide, to find a safe approach to permanently cease autoimmunity and allow β-cell recovery has become vital. Relying on the inherent ability of apoptotic cells to induce immunological tolerance, we demonstrated that liposomes mimicking apoptotic β-cells arrested autoimmunity to β-cells and prevented experimental T1D through tolerogenic dendritic cell (DC) generation. These liposomes contained phosphatidylserine (PS)—the main signal of the apoptotic cell membrane—and β-cell autoantigens. To move toward a clinical application, PS-liposomes with optimum size and composition for phagocytosis were loaded with human insulin peptides and tested on DCs from patients with T1D and control age-related subjects. PS accelerated phagocytosis of liposomes with a dynamic typical of apoptotic cell clearance, preserving DCs viability. After PS-liposomes phagocytosis, the expression pattern of molecules involved in efferocytosis, antigen presentation, immunoregulation, and activation in DCs concurred with a tolerogenic functionality, both in patients and control subjects. Furthermore, DCs exposed to PS-liposomes displayed decreased ability to stimulate autologous T cell proliferation. Moreover, transcriptional changes in DCs from patients with T1D after PS-liposomes phagocytosis pointed to an immunoregulatory prolife. Bioinformatics analysis showed 233 differentially expressed genes. Genes involved in antigen presentation were downregulated, whereas genes pertaining to tolerogenic/anti-inflammatory pathways were mostly upregulated. In conclusion, PS-liposomes phagocytosis mimics efferocytosis and leads to phenotypic and functional changes in human DCs, which are accountable for tolerance induction. The herein reported results reinforce the potential of this novel immunotherapy to re-establish immunological tolerance, opening the door to new therapeutic approaches in the field of autoimmunity.
Collapse
Affiliation(s)
- Silvia Rodriguez-Fernandez
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Irma Pujol-Autonell
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Ferran Brianso
- Statistics and Bioinformatics Unit, Vall d'Hebron Research Institute, Barcelona, Spain.,Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - David Perna-Barrull
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Mary Cano-Sarabia
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and The Barcelona Institute of Science and Technology, Bellaterra, Spain
| | - Sonia Garcia-Jimeno
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and The Barcelona Institute of Science and Technology, Bellaterra, Spain
| | - Adrian Villalba
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Alex Sanchez
- Statistics and Bioinformatics Unit, Vall d'Hebron Research Institute, Barcelona, Spain.,Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Eva Aguilera
- Endocrinology Section, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Federico Vazquez
- Endocrinology Section, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Joan Verdaguer
- Department of Experimental Medicine, University of Lleida & IRBLleida, Lleida, Spain.,CIBERDEM, ISCiii, Madrid, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and The Barcelona Institute of Science and Technology, Bellaterra, Spain.,ICREA, Barcelona, Spain
| | - Marta Vives-Pi
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain.,CIBERDEM, ISCiii, Madrid, Spain
| |
Collapse
|
204
|
Abstract
The human body generates 10-100 billion cells every day, and the same number of cells die to maintain homeostasis in our body. Cells infected by bacteria or viruses also die. The cell death that occurs under physiological conditions mainly proceeds by apoptosis, which is a noninflammatory, or silent, process, while pathogen infection induces necroptosis or pyroptosis, which activates the immune system and causes inflammation. Dead cells generated by apoptosis are quickly engulfed by macrophages for degradation. Caspases are a large family of cysteine proteases that act in cascades. A cascade that leads to caspase 3 activation mediates apoptosis and is responsible for killing cells, recruiting macrophages, and presenting an "eat me" signal(s). When apoptotic cells are not efficiently engulfed by macrophages, they undergo secondary necrosis and release intracellular materials that represent a damage-associated molecular pattern, which may lead to a systemic lupus-like autoimmune disease.
Collapse
Affiliation(s)
- Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan;
| |
Collapse
|
205
|
Martin-Sanchez D, Fontecha-Barriuso M, Sanchez-Niño MD, Ramos AM, Cabello R, Gonzalez-Enguita C, Linkermann A, Sanz AB, Ortiz A. Cell death-based approaches in treatment of the urinary tract-associated diseases: a fight for survival in the killing fields. Cell Death Dis 2018; 9:118. [PMID: 29371637 PMCID: PMC5833412 DOI: 10.1038/s41419-017-0043-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/26/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Urinary tract-associated diseases comprise a complex set of disorders with a variety of etiologic agents and therapeutic approaches and a huge global burden of disease, estimated at around 1 million deaths per year. These diseases include cancer (mainly prostate, renal, and bladder), urinary tract infections, and urolithiasis. Cell death plays a key role in the pathogenesis and therapy of these conditions. During urinary tract infections, invading bacteria may either promote or prevent host cell death by interfering with cell death pathways. This has been studied in detail for uropathogenic E. coli (UPEC). Inhibition of host cell death may allow intracellular persistence of live bacteria, while promoting host cell death causes tissue damage and releases the microbes. Both crystals and urinary tract obstruction lead to tubular cell death and kidney injury. Among the pathomechanisms, apoptosis, necroptosis, and autophagy represent key processes. With respect to malignant disorders, traditional therapeutic efforts have focused on directly promoting cancer cell death. This may exploit tumor-specific characteristics, such as targeting Vascular Endothelial Growth Factor (VEGF) signaling and mammalian Target of Rapamycin (mTOR) activity in renal cancer and inducing survival factor deprivation by targeting androgen signaling in prostate cancer. An area of intense research is the use of immune checkpoint inhibitors, aiming at unleashing the full potential of immune cells to kill cancer cells. In the future, this may be combined with additional approaches exploiting intrinsic sensitivities to specific modes of cell death such as necroptosis and ferroptosis. Here, we review the contribution of diverse cell death mechanisms to the pathogenesis of urinary tract-associated diseases as well as the potential for novel therapeutic approaches based on an improved molecular understanding of these mechanisms.
Collapse
Affiliation(s)
- Diego Martin-Sanchez
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Miguel Fontecha-Barriuso
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Adrian M Ramos
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Ramiro Cabello
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | | | - Andreas Linkermann
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Ana Belén Sanz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.
- IRSIN, Madrid, Spain.
- REDINREN, Madrid, Spain.
| | - Alberto Ortiz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.
- IRSIN, Madrid, Spain.
- REDINREN, Madrid, Spain.
| |
Collapse
|
206
|
Davies SP, Reynolds GM, Stamataki Z. Clearance of Apoptotic Cells by Tissue Epithelia: A Putative Role for Hepatocytes in Liver Efferocytosis. Front Immunol 2018; 9:44. [PMID: 29422896 PMCID: PMC5790054 DOI: 10.3389/fimmu.2018.00044] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022] Open
Abstract
Toxic substances and microbial or food-derived antigens continuously challenge the liver, which is tasked with their safe neutralization. This vital organ is also important for the removal of apoptotic immune cells during inflammation and has been previously described as a “graveyard” for dying lymphocytes. The clearance of apoptotic and necrotic cells is known as efferocytosis and is a critical liver function to maintain tissue homeostasis. Much of the research into this form of immunological control has focused on Kupffer cells, the liver-resident macrophages. However, hepatocytes (and other liver resident cells) are competent efferocytes and comprise 80% of the liver mass. Little is known regarding the mechanisms of apoptotic and necrotic cell capture by epithelia, which lack key receptors that mediate phagocytosis in macrophages. Herein, we discuss recent developments that increased our understanding of efferocytosis in tissues, with a special focus on the liver parenchyma. We discuss the impact of efferocytosis in health and in inflammation, highlighting the role of phagocytic epithelia.
Collapse
Affiliation(s)
- Scott P Davies
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Gary M Reynolds
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research and National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
207
|
Grossmayer GE, Keppeler H, Boeltz S, Janko C, Rech J, Herrmann M, Lauber K, Muñoz LE. Elevated Serum Lysophosphatidylcholine in Patients with Systemic Lupus Erythematosus Impairs Phagocytosis of Necrotic Cells In Vitro. Front Immunol 2018; 8:1876. [PMID: 29387051 PMCID: PMC5776078 DOI: 10.3389/fimmu.2017.01876] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/08/2017] [Indexed: 01/24/2023] Open
Abstract
Objectives Impaired clearance of dying and dead cells by professional and amateur phagocytes plays a crucial role in the etiology of systemic lupus erythematosus (SLE). While dying, cells expose and release a plethora of eat-me and find-me signals to ensure their timely removal before entering the dangerous stage of secondary necrosis. A well-described chemoattractant for macrophages is dying cell-derived lysophosphatidylcholine (LPC). However, its implications for and/or its association with SLE disease, so far, have not been examined. In the present study, we analyzed the LPC serum concentrations of patients with SLE and rheumatoid arthritis (RA). Subsequently, we examined if and to which extent the measured serum concentrations of LPC and an LPC-rich environment can impact the phagocytosis of necrotic cells. Methods Sera from patients with SLE, RA, and normal healthy donors (NHD) were characterized for several parameters, including LPC concentrations. Phagocytosis of dead cells by human macrophages in the presence of SLE and NHD sera was quantified. Additionally, the impact of exogenously added, purified LPC on phagocytosis was analyzed. Results Patients with SLE had significantly increased LPC serum levels, and high serum LPC of SLE patients correlated significantly with impaired phagocytosis of dead cells in the presence of heat-inactivated serum. Phagocytosis in the presence of sera from NHD showed no correlation to LPC levels, but exogenous addition of purified LPC in the range as measured in SLE patients’ sera led to a concentration-dependent decrease. Conclusion Our data show that high levels of LPC as observed in the sera of SLE patients have a negative impact on the clearance of dead cells by macrophages. Chemoattraction requires a concentration gradient. The higher the LPC concentration surrounding a dying or dead cell, the smaller the achievable gradient upon LPC release will be. Thus, it is feasible to assume that elevated LPC levels can interfere with the build-up of a local LPC gradient during cell death, and hence might play a role in the establishment and/or perpetuation of SLE disease.
Collapse
Affiliation(s)
- Gerhard E Grossmayer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hildegard Keppeler
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Sebastian Boeltz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christina Janko
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsklinikum Erlangen, Else Kröner-Fresenius-Stiftung Professorship, Erlangen, Germany
| | - Jürgen Rech
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology and Radiotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
208
|
Protein S and Gas6 induce efferocytosis of HIV-1-infected cells. Virology 2018; 515:176-190. [PMID: 29304470 PMCID: PMC5821270 DOI: 10.1016/j.virol.2017.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
Efferocytosis, the phagocytic clearance of apoptotic cells, can provide host protection against certain types of viruses by mediating phagocytic clearance of infected cells undergoing apoptosis. It is known that HIV-1 induces apoptosis and HIV-1-infected cells are efferocytosed by macrophages, although its molecular mechanisms are unknown. To elucidate the roles that efferocytosis of HIV-1-infected cells play in clearance of infected cells, we sought to identify molecules that mediate these processes. We found that protein S, present in human serum, and its homologue, Gas6, can mediate phagocytosis of HIV-1-infected cells by bridging receptor tyrosine kinase Mer, expressed on macrophages, to phosphatidylserine exposed on infected cells. Efferocytosis of live infected cells was less efficient than dead infected cells; however, a significant fraction of live infected cells were phagocytosed over 12 h. Our results suggest that efferocytosis not only removes dead cells, but may also contribute to macrophage removal of live virus producing cells.
Collapse
|
209
|
Vatner RE, Janssen EM. STING, DCs and the link between innate and adaptive tumor immunity. Mol Immunol 2017; 110:13-23. [PMID: 29273394 PMCID: PMC6768428 DOI: 10.1016/j.molimm.2017.12.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/30/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023]
Abstract
Cancer and the immune system are intimately related. Much of the bulk of tumors is comprised of stromal leukocytes with immune functions, which serve to both promote and inhibit tumor growth, invasion and metastasis. The T lymphocytes of the adaptive immune system are essential for tumor immunity, and these T cells are generated by cross-priming against tumor associated antigens. Dendritic cells (DCs) are essential in this process, serving as the cellular link between innate and adaptive immunity. As a prerequisite for priming of adaptive immune responses, DCs must take up tumor antigens, process them and present them in the context of the major histocompatibility complex (MHC). DCs also serve as sensors of innate activation signals from cancer that are necessary for their activation and effective priming of cancer specific T cells. Here we discuss the role of DCs in the sensing of cancer and in priming the adaptive response against tumors. Furthermore, we present the essential role of the Stimulator of Interferon Genes (STING) signaling pathway in producing type I interferons (IFNs) that are essential in this process.
Collapse
Affiliation(s)
- Ralph E Vatner
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7038, Cincinnati, OH 45229, United States; Department of Radiation Oncology, University of Cincinnati College of Medicine, 234 Goodman Street, ML 0757, Cincinnati, OH 45267, United States.
| | - Edith M Janssen
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7038, Cincinnati, OH 45229, United States
| |
Collapse
|
210
|
Ringleb J, Strack E, Angioni C, Geisslinger G, Steinhilber D, Weigert A, Brüne B. Apoptotic Cancer Cells Suppress 5-Lipoxygenase in Tumor-Associated Macrophages. THE JOURNAL OF IMMUNOLOGY 2017; 200:857-868. [PMID: 29229677 DOI: 10.4049/jimmunol.1700609] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022]
Abstract
The enzyme 5-lipoxygenase (5-LO) is key in the synthesis of leukotrienes, which are potent proinflammatory lipid mediators involved in chronic inflammatory diseases including cancer. 5-LO is expressed in immune cells but also found in cancer cells. Although the role of 5-LO in tumor cells is beginning to emerge, with the notion that tumor-promoting functions are attributed to its products, the function of 5-LO in the tumor microenvironment remains unclear. To understand the role of 5-LO and its products in the tumor microenvironment, we analyzed its expression and function in tumor-associated macrophages (TAMs). TAMs were generated by coculturing primary human macrophages (MΦ) with human MCF-7 breast carcinoma cells, which caused cell death of cancer cells followed by phagocytosis of cell debris by MΦ. Expression and activity of 5-LO in TAMs were reduced upon coculture with cancer cells. Downregulation of 5-LO in TAMs required tumor cell death and the direct contact between MΦ and dying cancer cells via Mer tyrosine kinase. Subsequently, upregulation of proto-oncogene c-Myb in TAMs induced a stable transcriptional repression of 5-LO. Reduced 5-LO expression in TAMs was mechanistically coupled to an attenuated T cell recruitment. In primary TAMs from human and murine breast tumors, 5-LO expression was absent or low when compared with monocyte-derived MΦ. Our data reveal that 5-LO, which is required for leukotriene production and subsequent T cell recruitment, is downregulated in TAMs through Mer tyrosine kinase-dependent recognition of apoptotic cancer cells. Mechanistically, we noticed transcriptional repression of 5-LO by proto-oncogene c-Myb and conclude that loss of stromal 5-LO expression favors tumor progression.
Collapse
Affiliation(s)
- Julia Ringleb
- Department of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Elisabeth Strack
- Department of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Carlo Angioni
- Department of Clinical Pharmacology, University Hospital Frankfurt, 60590 Frankfurt, Germany; and
| | - Gerd Geisslinger
- Department of Clinical Pharmacology, University Hospital Frankfurt, 60590 Frankfurt, Germany; and
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Andreas Weigert
- Department of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- Department of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany;
| |
Collapse
|
211
|
Dangi A, Luo X. Harnessing Apoptotic Cells for Transplantation Tolerance: Current Status and Future Perspectives. CURRENT TRANSPLANTATION REPORTS 2017; 4:270-279. [PMID: 29177124 PMCID: PMC5697727 DOI: 10.1007/s40472-017-0167-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW The use of donor apoptotic cells is an emerging therapy for inducing transplantation tolerance. In this review, we will discuss current understanding of mechanisms of this approach, as well as crucial aspects necessary for successful translation of this approach to clinical transplantation. RECENT FINDINGS Transplantation tolerance by donor apoptotic cells is mediated by their homeostatic interaction with recipient phagocytes, and subsequent expansion of suppressor cell populations as well as inhibition of effector T cells via deletion and anergy. To ensure their tolerogenicity, it is critical to procure non-stressed donor cells, and to induce and arrest their apoptosis at the appropriate stage prior to their administration. Equally important is the monitoring of dynamics of recipient immunological status, and its influences on tolerance efficacy and longevity. Emerging concepts and technologies may significantly streamline tolerogen manufacture and delivery of this approach, and smooth its transition to clinical application. SUMMARY Hijacking homeostatic clearance of donor apoptotic cells is a promising strategy for transplantation tolerance. Timing is now mature for concerted efforts for transitioning this strategy to clinical transplantation.
Collapse
Affiliation(s)
- Anil Dangi
- Center for Kidney Research and Therapeutics, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Xunrong Luo
- Center for Kidney Research and Therapeutics, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
212
|
Zhao L, Liu J, He C, Yan R, Zhou K, Cui Q, Meng X, Li X, Zhang Y, Nie Y, Zhang Y, Hu R, Liu Y, Zhao L, Chen M, Xiao W, Tian J, Zhao Y, Cao L, Zhou L, Lin A, Ruan C, Dai K. Protein kinase A determines platelet life span and survival by regulating apoptosis. J Clin Invest 2017; 127:4338-4351. [PMID: 29083324 DOI: 10.1172/jci95109] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/21/2017] [Indexed: 11/17/2022] Open
Abstract
Apoptosis delimits platelet life span in the circulation and leads to storage lesion, which severely limits the shelf life of stored platelets. Moreover, accumulating evidence indicates that platelet apoptosis provoked by various pathological stimuli results in thrombocytopenia in many common diseases. However, little is known about how platelet apoptosis is initiated or regulated. Here, we show that PKA activity is markedly reduced in platelets aged in vitro, stored platelets, and platelets from patients with immune thrombocytopenia (ITP), diabetes, and bacterial infections. Inhibition or genetic ablation of PKA provoked intrinsic programmed platelet apoptosis in vitro and rapid platelet clearance in vivo. PKA inhibition resulted in dephosphorylation of the proapoptotic protein BAD at Ser155, resulting in sequestration of prosurvival protein BCL-XL in mitochondria and subsequent apoptosis. Notably, PKA activation protected platelets from apoptosis induced by storage or pathological stimuli and elevated peripheral platelet levels in normal mice and in a murine model of ITP. Therefore, these findings identify PKA as a homeostatic regulator of platelet apoptosis that determines platelet life span and survival. Furthermore, these results suggest that regulation of PKA activity represents a promising strategy for extending platelet shelf life and has profound implications for the treatment of platelet number-related diseases and disorders.
Collapse
Affiliation(s)
- Lili Zhao
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Jun Liu
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Chunyan He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rong Yan
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Kangxi Zhou
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Qingya Cui
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Xingjun Meng
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Xiaodong Li
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Yang Zhang
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Yumei Nie
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Yang Zhang
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Renping Hu
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Yancai Liu
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Lian Zhao
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China.,Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Mengxing Chen
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Weiling Xiao
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Jingluan Tian
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Yunxiao Zhao
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Lijuan Cao
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Ling Zhou
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Anning Lin
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Kesheng Dai
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| |
Collapse
|
213
|
Sato M, Shibata Y, Inoue S, Igarashi A, Tokairin Y, Yamauchi K, Kimura T, Nemoto T, Sato K, Nakano H, Abe S, Nishiwaki M, Kobayashi M, Yang S, Minegishi Y, Furuyama K, Kubota I. MafB enhances efferocytosis in RAW264.7 macrophages by regulating Axl expression. Immunobiology 2017; 223:94-100. [PMID: 29030012 DOI: 10.1016/j.imbio.2017.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/21/2017] [Accepted: 10/03/2017] [Indexed: 11/30/2022]
Abstract
The transcription factor MafB is involved in cellular differentiation and phagocytosis in macrophages. Macrophages phagocytose apoptotic cells in vivo; this process, which is known as efferocytosis, requires Axl receptor tyrosine kinase (Axl) activity. However, the association between MafB and efferocytosis, as well as that between MafB and Axl, in macrophages is unknown. We hypothesized that MafB modulates macrophage efferocytosis by regulating Axl expression. Fluorescent-labeled apoptotic thymocytes were added to RAW264.7-MafB-shRNA and control cells, and the proportion of phagocytosis-positivey fluorescence microscopy and flow cytometry. In addition, Axl mRNA and protein were quantified by real-time PCR and western blotting in each group. RAW264.7-MafB-shRNA cells were transfected with a plasmid expressing green fluorescent protein (GFP)-tagged Axl or a control empty plasmid expressing only GFP. The capacity for phagocytosis of apoptotic cells was assessed in GFP-positive cells gated based on fluorescence intensity. In RAW264.7-MafB-shRNA cells, capacity for phagocytosis of apoptotic thymocytes was significantly reduced compared with that of control cells, as determined by fluorescence microscope and flow cytometry. Axl mRNA and protein expression was significantly reduced in RAW264.7-MafB-shRNA cells relative to control cells. Furthermore, the capacity of RAW264.7-MafB-shRNA cells, transfected with an Axl-expressing plasmid, for phagocytosis of apoptotic thymocytes was significantly greater than that of cells transfected with the control plasmid. Collectively, the present findings indicate that MafB enhances efferocytosis by regulating Axl expression in RAW264.7 macrophages.
Collapse
Affiliation(s)
- Masamichi Sato
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Yoko Shibata
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan.
| | - Sumito Inoue
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Akira Igarashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Yoshikane Tokairin
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Keiko Yamauchi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Tomomi Kimura
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Takako Nemoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Kento Sato
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Hiroshi Nakano
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Shuichi Abe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Michiko Nishiwaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Maki Kobayashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Sujeong Yang
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Yukihiro Minegishi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Kodai Furuyama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Isao Kubota
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|
214
|
Jung M, Weigert A, Mertens C, Rehwald C, Brüne B. Iron Handling in Tumor-Associated Macrophages-Is There a New Role for Lipocalin-2? Front Immunol 2017; 8:1171. [PMID: 28979267 PMCID: PMC5611490 DOI: 10.3389/fimmu.2017.01171] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/04/2017] [Indexed: 12/18/2022] Open
Abstract
Carcinogenesis is a multistep process. Besides somatic mutations in tumor cells, stroma-associated immunity is a major regulator of tumor growth. Tumor cells produce and secrete diverse mediators to create a local microenvironment that supports their own survival and growth. It is becoming apparent that iron acquisition, storage, and release in tumor cells is different from healthy counterparts. It is also appreciated that macrophages in the tumor microenvironment acquire a tumor-supportive, anti-inflammatory phenotype that promotes tumor cell proliferation, angiogenesis, and metastasis. Apparently, this behavior is attributed, at least in part, to the ability of macrophages to support tumor cells with iron. Polarization of macrophages by apoptotic tumor cells shifts the profile of genes involved in iron metabolism from an iron sequestering to an iron-release phenotype. Iron release from macrophages is supposed to be facilitated by ferroportin. However, lipid mediators such as sphingosine-1-phosphate, released form apoptotic tumor cells, upregulate lipocalin-2 (Lcn-2) in macrophages. This protein is known to bind siderophore-complexed iron and thus, may participate in iron transport in the tumor microenvironment. We describe how macrophages handle iron in the tumor microenvironment, discuss the relevance of an iron-release macrophage phenotype for tumor progression, and propose a new role for Lcn-2 in tumor-associated macrophages.
Collapse
Affiliation(s)
- Michaela Jung
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Christina Mertens
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany.,Faculty 15, Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Claudia Rehwald
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany.,Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, IME, Frankfurt, Germany
| |
Collapse
|
215
|
Court M, Petre G, Atifi ME, Millet A. Proteomic Signature Reveals Modulation of Human Macrophage Polarization and Functions Under Differing Environmental Oxygen Conditions. Mol Cell Proteomics 2017; 16:2153-2168. [PMID: 28887380 DOI: 10.1074/mcp.ra117.000082] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Indexed: 12/24/2022] Open
Abstract
Macrophages are innate immune cells which can react to a large number of environmental stimuli thanks to a high degree of plasticity. These cells are involved in a variety of tissue functions in homeostasis, and they play essential roles in pathological contexts. Macrophages' activation state, which determines their functional orientation, is strongly influenced by the cellular environment. A large body of macrophage literature is devoted to better defining polarizations from a molecular viewpoint. It is now accepted that a multidimensional model of polarization is needed to grasp the broad phenotype repertoire controlled by environmental signals. The study presented here aimed, among other goals, to provide a molecular signature of various polarizations in human macrophages at the protein level to better define the different macrophage activation states. To study the proteome in human monocyte-derived macrophages as a function of their polarization state, we used a label-free quantification approach on in-gel fractionated and LysC/Trypsin digested proteins. In total, 5102 proteins were identified and quantified for all polarization states. New polarization-specific markers were identified and validated. Because oxygen tension is an important environmental parameter in tissues, we explored how environmental oxygen tension, at either atmospheric composition (18.6% O2) or "tissue normoxia" (3% O2), affected our classification of macrophage polarization. The comparative results revealed new polarization-specific makers which suggest that environmental oxygen levels should be taken into account when characterizing macrophage activation states. The proteomic screen revealed various polarization-specific proteins and oxygen sensors in human macrophages. One example is arachidonate 15-lipoxygenase (ALOX15), an IL4/IL13 polarization-specific protein, which was upregulated under low oxygen conditions and is associated with an increase in the rate of phagocytosis of apoptotic cells. These results illustrate the need to consider physicochemical parameters like oxygen level when studying macrophage polarization, so as to correctly assess their functions in tissue.
Collapse
Affiliation(s)
- Magali Court
- From the ‡Inserm U1205, Grenoble, France.,§Grenoble-Alpes University, Grenoble, France
| | - Graciane Petre
- From the ‡Inserm U1205, Grenoble, France.,§Grenoble-Alpes University, Grenoble, France
| | - Michèle El Atifi
- From the ‡Inserm U1205, Grenoble, France.,§Grenoble-Alpes University, Grenoble, France
| | - Arnaud Millet
- From the ‡Inserm U1205, Grenoble, France; .,§Grenoble-Alpes University, Grenoble, France.,¶ATIP/Avenir Team Mechanobiology, Immunity and Cancer, Grenoble, France
| |
Collapse
|
216
|
Abstract
Immunotherapy is currently the most rapidly advancing area of clinical oncology, and provides the unprecedented opportunity to effectively treat, and even cure, several previously untreatable malignancies. A growing awareness exists of the fact that the success of chemotherapy and radiotherapy, in which the patient's disease can be stabilized well beyond discontinuation of treatment (and occasionally is cured), also relies on the induction of a durable anticancer immune response. Indeed, the local immune infiltrate undergoes dynamic changes that accompany a shift from a pre-existing immune response to a therapy-induced immune response. As a result, the immune contexture, which is determined by the density, composition, functional state and organization of the leukocyte infiltrate of the tumour, can yield information that is relevant to prognosis, prediction of a treatment response and various other pharmacodynamic parameters. Several complementary technologies can be used to explore the immune contexture of tumours, and to derive biomarkers that could enable the adaptation of individual treatment approaches for each patient, as well as monitoring a response to anticancer therapies.
Collapse
|
217
|
Lemke G. Phosphatidylserine Is the Signal for TAM Receptors and Their Ligands. Trends Biochem Sci 2017; 42:738-748. [PMID: 28734578 DOI: 10.1016/j.tibs.2017.06.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/04/2017] [Accepted: 06/08/2017] [Indexed: 12/20/2022]
Abstract
Nature repeatedly repurposes, in that molecules that serve as metabolites, energy depots, or polymer subunits are at the same time used to deliver signals within and between cells. The preeminent example of this repurposing is ATP, which functions as a building block for nucleic acids, an energy source for enzymatic reactions, a phosphate donor to regulate intracellular signaling, and a neurotransmitter to control the activity of neurons. A series of recent studies now consolidates the view that phosphatidylserine (PtdSer), a common phospholipid constituent of membrane bilayers, is similarly repurposed for use as a signal between cells and that the ligands and receptors of the Tyro3/Axl/Mer (TAM) family of receptor tyrosine kinases (RTKs) are prominent transducers of this signal.
Collapse
Affiliation(s)
- Greg Lemke
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Immunobiology and Microbial Pathogenesis Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
218
|
Abstract
In metazoans, removal of cells in situ is involved in larval maturation, metamorphosis, and embryonic development. In adults, such cell removal plays a role in the homeostatic maintenance of cell numbers and tissue integrity as well as in the response to cell injury and damage. This removal involves uptake of the whole or fragmented target cells into phagocytes. Depending on the organism, these latter may be near-neighbor tissue cells and/or professional phagocytes such as, in vertebrates, members of the myeloid family of cells, especially macrophages. The uptake processes appear to involve specialized and highly conserved recognition ligands and receptors, intracellular signaling in the phagocytes, and mechanisms for ingestion. The recognition of cells destined for this form of removal is critical and, significantly, is distinguished for the most part from the recognition of foreign materials and organisms by the innate and adaptive immune systems. In keeping with the key role of cell removal in maintaining tissue homeostasis, constant cell removal is normally silent, i.e., does not initiate a local tissue reaction. This article discusses these complex and wide-ranging processes in general terms as well as the implications when these processes are disrupted in inflammation, immunity, and disease.
Collapse
Affiliation(s)
- Peter M Henson
- Department of Pediatrics, National Jewish Health, and Departments of Immunology and Medicine, University of Colorado, Denver, Colorado 80206;
| |
Collapse
|
219
|
Yin C, Argintaru D, Heit B. Rab17 mediates intermixing of phagocytosed apoptotic cells with recycling endosomes. Small GTPases 2017; 10:218-226. [PMID: 28471261 DOI: 10.1080/21541248.2017.1308852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Efferocytosis-the phagocytic removal of apoptotic cells-is required for preventing the presentation of apoptotic cell-derived antigens. This process is regulated by Rab17-dependent sorting of efferocytosed cargos from the phagolysosome to recycling endosomes. In this study we demonstrate that Rab17 is rapidly recruited to efferosomes, followed by migration of the efferosome to the cell center where it intermixes with lysosomes and undergoes Rab17-dependent vesiculation. These efferosome-derived vesicles then traffic in a Rab17-dependent manner to the cell periphery, where they transfer cargo to recycling endosomes. Combined, our observations support a model wherein efferosomes migrate to the cell center to acquire degradative enzymes, followed by peripheral migration to prevent further phagolysosome maturation and to enable cargo transfer to recycling endosomes.
Collapse
Affiliation(s)
- Charles Yin
- a Department of Microbiology and Immunology and the Centre for Human Immunology , The University of Western Ontario , London , Ontario , Canada
| | - Dean Argintaru
- a Department of Microbiology and Immunology and the Centre for Human Immunology , The University of Western Ontario , London , Ontario , Canada
| | - Bryan Heit
- a Department of Microbiology and Immunology and the Centre for Human Immunology , The University of Western Ontario , London , Ontario , Canada
| |
Collapse
|
220
|
Abstract
Apoptosis is an important component of normal tissue physiology, and the prompt removal of apoptotic cells is equally essential to avoid the undesirable consequences of their accumulation and disintegration. Professional phagocytes are highly specialized for engulfing apoptotic cells. The recent ability to track cells that have undergone apoptosis in situ has revealed a division of labor among the tissue resident phagocytes that sample them. Macrophages are uniquely programmed to process internalized apoptotic cell-derived fatty acids, cholesterol and nucleotides, as a reflection of their dominant role in clearing the bulk of apoptotic cells. Dendritic cells carry apoptotic cells to lymph nodes where they signal the emergence and expansion of highly suppressive regulatory CD4 T cells. A broad suppression of inflammation is executed through distinct phagocyte-specific mechanisms. A clever induction of negative regulatory nodes is notable in dendritic cells serving to simultaneously shut down multiple pathways of inflammation. Several of the genes and pathways modulated in phagocytes in response to apoptotic cells have been linked to chronic inflammatory and autoimmune diseases such as atherosclerosis, inflammatory bowel disease and systemic lupus erythematosus. Our collective understanding of old and new phagocyte functions after apoptotic cell phagocytosis demonstrates the enormity of ways to mediate immune suppression and enforce tissue homeostasis.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
221
|
Abstract
Dying cells have an important role in the initiation of CD8+ T cell-mediated immunity. The cross-presentation of antigens derived from dying cells enables dendritic cells to present exogenous tissue-restricted or tumour-restricted proteins on MHC class I molecules. Importantly, this pathway has been implicated in multiple autoimmune diseases and accounts for the priming of tumour antigen-specific T cells. Recent data have revealed that in addition to antigen, dying cells provide inflammatory and immunogenic signals that determine the efficiency of CD8+ T cell cross-priming. The complexity of these signals has been evidenced by the multiple molecular pathways that result in cell death and that have now been shown to differentially influence antigen transfer and immunity. In this Review, we provide a detailed summary of both the passive and active signals that are generated by dying cells during their initiation of CD8+ T cell-mediated immunity. We propose that molecules generated alongside cell death pathways - inducible damage-associated molecular patterns (iDAMPs) - are upstream immunological cues that actively regulate adaptive immunity.
Collapse
|
222
|
Elliott MR, Koster KM, Murphy PS. Efferocytosis Signaling in the Regulation of Macrophage Inflammatory Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:1387-1394. [PMID: 28167649 PMCID: PMC5301545 DOI: 10.4049/jimmunol.1601520] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023]
Abstract
Since the pioneering work of Elie Metchnikoff and the discovery of cellular immunity, the phagocytic clearance of cellular debris has been considered an integral component of resolving inflammation and restoring function of damaged and infected tissues. We now know that the phagocytic clearance of dying cells (efferocytosis), particularly by macrophages and other immune phagocytes, has profound consequences on innate and adaptive immune responses in inflamed tissues. These immunomodulatory effects result from an array of molecular signaling events between macrophages, dying cells, and other tissue-resident cells. In recent years, many of these molecular pathways have been identified and studied in the context of tissue inflammation, helping us better understand the relationship between efferocytosis and inflammation. We review specific types of efferocytosis-related signals that can impact macrophage immune responses and discuss their relevance to inflammation-related diseases.
Collapse
Affiliation(s)
- Michael R Elliott
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Kyle M Koster
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Patrick S Murphy
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
223
|
Kagan VE, Bayır H, Tyurina YY, Bolevich SB, Maguire JJ, Fadeel B, Balasubramanian K. Elimination of the unnecessary: Intra- and extracellular signaling by anionic phospholipids. Biochem Biophys Res Commun 2017; 482:482-490. [PMID: 28212735 PMCID: PMC5319735 DOI: 10.1016/j.bbrc.2016.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 12/19/2022]
Abstract
High fidelity of biological systems is frequently achieved by duplication of the essential intracellular machineries or, removal of the entire cell, which becomes unnecessary or even harmful in altered physiological environments. Carefully controlled removal of these cells, without damaging normal cells, requires precise signaling, and is critical to maintaining homeostasis. This review describes how two anionic phospholipids - phosphatidylserine (PS) and cardiolipin (CL) - residing in distinct compartments of the cell, signal removal of "the unnecessary" using several uniform principles. One of these principles is realized by collapse of inherent transmembrane asymmetry and the externalization of the signal on the outer membrane surface - mitochondria for CL and the plasma membrane for PS - to trigger mitophagy and phagocytosis, respectively. Release from damaged cells of intracellular structures with externalized CL or externalized PS triggers their elimination by phagocytosis. Another of these principles is realized by oxidation of polyunsaturated species of CL and PS. Highly specific oxidation of CL by cytochrome c serves as a signal for mitochondria-dependent apoptosis, while oxidation of externalized PS improves its effectiveness to trigger phagocytosis of effete cells.
Collapse
Affiliation(s)
- Valerian E Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Hülya Bayır
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sergey B Bolevich
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - John J Maguire
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Krishnakumar Balasubramanian
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
224
|
Karaji N, Sattentau QJ. Efferocytosis of Pathogen-Infected Cells. Front Immunol 2017; 8:1863. [PMID: 29312342 PMCID: PMC5743670 DOI: 10.3389/fimmu.2017.01863] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022] Open
Abstract
The prompt and efficient clearance of unwanted and abnormal cells by phagocytes is termed efferocytosis and is crucial for organism development, maintenance of tissue homeostasis, and regulation of the immune system. Dying cells are recognized by phagocytes through pathways initiated via "find me" signals, recognition via "eat me" signals and down-modulation of regulatory "don't eat me" signals. Pathogen infection may trigger cell death that drives phagocytic clearance in an immunologically silent, or pro-inflammatory manner, depending on the mode of cell death. In many cases, efferocytosis is a mechanism for eliminating pathogens and pathogen-infected cells; however, some pathogens have subverted this process and use efferocytic mechanisms to avoid innate immune detection and assist phagocyte infection. In parallel, phagocytes can integrate signals received from infected dying cells to elicit the most appropriate effector response against the infecting pathogen. This review focuses on pathogen-induced cell death signals that drive infected cell recognition and uptake by phagocytes, and the outcomes for the infected target cell, the phagocyte, the pathogen and the host.
Collapse
Affiliation(s)
- Niloofar Karaji
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, United Kingdom
| | - Quentin J Sattentau
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, United Kingdom
| |
Collapse
|
225
|
Gamradt P, Xu Y, Gratz N, Duncan K, Kobzik L, Högler S, Kovarik P, Decker T, Jamieson AM. The Influence of Programmed Cell Death in Myeloid Cells on Host Resilience to Infection with Legionella pneumophila or Streptococcus pyogenes. PLoS Pathog 2016; 12:e1006032. [PMID: 27973535 PMCID: PMC5156374 DOI: 10.1371/journal.ppat.1006032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/29/2016] [Indexed: 12/21/2022] Open
Abstract
Pathogen clearance and host resilience/tolerance to infection are both important factors in surviving an infection. Cells of the myeloid lineage play important roles in both of these processes. Neutrophils, monocytes, macrophages, and dendritic cells all have important roles in initiation of the immune response and clearance of bacterial pathogens. If these cells are not properly regulated they can result in excessive inflammation and immunopathology leading to decreased host resilience. Programmed cell death (PCD) is one possible mechanism that myeloid cells may use to prevent excessive inflammation. Myeloid cell subsets play roles in tissue repair, immune response resolution, and maintenance of homeostasis, so excessive PCD may also influence host resilience in this way. In addition, myeloid cell death is one mechanism used to control pathogen replication and dissemination. Many of these functions for PCD have been well defined in vitro, but the role in vivo is less well understood. We created a mouse that constitutively expresses the pro-survival B-cell lymphoma (bcl)-2 protein in myeloid cells (CD68(bcl2tg), thus decreasing PCD specifically in myeloid cells. Using this mouse model we explored the impact that decreased cell death of these cells has on infection with two different bacterial pathogens, Legionella pneumophila and Streptococcus pyogenes. Both of these pathogens target multiple cell death pathways in myeloid cells, and the expression of bcl2 resulted in decreased PCD after infection. We examined both pathogen clearance and host resilience and found that myeloid cell death was crucial for host resilience. Surprisingly, the decreased myeloid PCD had minimal impact on pathogen clearance. These data indicate that the most important role of PCD during infection with these bacteria is to minimize inflammation and increase host resilience, not to aid in the clearance or prevent the spread of the pathogen.
Collapse
Affiliation(s)
- Pia Gamradt
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- Inserm U111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR 5308, Lyon, France
| | - Yun Xu
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States
| | - Nina Gratz
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Kellyanne Duncan
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States
| | - Lester Kobzik
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States
| | - Sandra Högler
- Institute of Pathology and Forensic Veterinary Medicine, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Thomas Decker
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Amanda M. Jamieson
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States
| |
Collapse
|