201
|
Haddad MB, De-la-Torre GE, Abelouah MR, Hajji S, Alla AA. Personal protective equipment (PPE) pollution associated with the COVID-19 pandemic along the coastline of Agadir, Morocco. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149282. [PMID: 34332387 PMCID: PMC8313889 DOI: 10.1016/j.scitotenv.2021.149282] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 05/19/2023]
Abstract
The increasing use of personal protective equipment (PPE) as a sanitary measure against the new coronavirus (SARS-CoV-2) has become a significant source of many environmental risks. The majority of the governments enforce the use of PPE in public areas, such as beaches. Thus, the use and disposal of PPE have compromised most solid waste management strategies, ultimately leading to the occurrence of PPE polluting the marine environment. The present study aimed to monitor the PPE pollution associated with COVID-19 along the coastline of Agadir, Morocco. In parallel, the influence of the activities carried out in each sampled beach before and after the lockdown break was reported. Overall, a total number of 689 PPE items were identified, with a mean density of 1.13 × 10-5 PPE m-2 (0-1.21 × 10-4 PPE m-2). The majority of the PPE items found were face masks (96.81%), out of which 98.4% were surgical masks and 1.6% were reusable cloth masks. The most polluted sites were the beaches with recreational activities, followed by surfing, and fishing as the main activity. Importantly, PPE density increased significantly after lockdown measures. Additionally, the discarded PPE sampled in the supralittoral zone was higher than PPE recorded in the intertidal zone. This confirms that PPE items are driven by the beachgoers during their visit. PPE items are a source of microplastic and chemical pollutants, a substrate to invasive species colonization, and a potential threat of entanglement, ingestion, and/or infection among apex predators. In the specific case of Agadir beaches, significant efforts are required to work on the lack of environmental awareness and education. It is recommended to improve beach cleaning strategies and to penalize incorrect PPE disposal. Additional alternatives may be adopted, as the involvement of biodegradable materials in PPE manufacturing, recycling through pyrolysis, and encouraging reusable and washable masks.
Collapse
Affiliation(s)
- Mohamed Ben Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Morocco
| | | | - Mohamed Rida Abelouah
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Morocco
| | - Sara Hajji
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Morocco
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Morocco
| |
Collapse
|
202
|
Guilhermino L, Martins A, Lopes C, Raimundo J, Vieira LR, Barboza LGA, Costa J, Antunes C, Caetano M, Vale C. Microplastics in fishes from an estuary (Minho River) ending into the NE Atlantic Ocean. MARINE POLLUTION BULLETIN 2021; 173:113008. [PMID: 34653887 DOI: 10.1016/j.marpolbul.2021.113008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Wild fish (Cyprinus carpio, Mugil cephalus, Platichthys flesus) from an estuary of the NE Atlantic coast were investigated for plastic contamination (N = 128). From the 1289 particles recovered from fish samples, 883 were plastics. Among these, 84% were fibres and 97% were microplastics. Thirty-six polymers were identified. The number of microplastics (mean ± SD) per individual fish (MP/fish) was 8 ± 6 in C. carpio, 10 ± 9 in M. cephalus and 2 ± 2 in P. flesus. The means of MP/fish per body site were 6 ± 7 in gastrointestinal tract, 0.5 ± 1.1 in gills, 0.3 ± 0.7 in liver and 0.6 ± 1.2 in muscle samples. A few large fibres in liver (≤ 4841 μm) and muscle (≤ 5810 μm) samples were found. The results evidence the existence of high fish contamination by microplastics and reinforce the need of further research on plastic pollution in estuaries.
Collapse
Affiliation(s)
- Lúcia Guilhermino
- ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and Ecology, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Line Global Changes and Ecosystem Services, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal.
| | - Alexandra Martins
- ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and Ecology, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Line Global Changes and Ecosystem Services, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Clara Lopes
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Line Global Changes and Ecosystem Services, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; IPMA, Portuguese Institute of Sea and Atmosphere, IP Division of Oceanography and Marine Environment (DIVOA), Av. Doutor Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal.
| | - Joana Raimundo
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Line Global Changes and Ecosystem Services, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; IPMA, Portuguese Institute of Sea and Atmosphere, IP Division of Oceanography and Marine Environment (DIVOA), Av. Doutor Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal.
| | - Luis R Vieira
- ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and Ecology, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Line Global Changes and Ecosystem Services, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - L Gabriel A Barboza
- ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and Ecology, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Line Global Changes and Ecosystem Services, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Joana Costa
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Line Global Changes and Ecosystem Services, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Carlos Antunes
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Line Global Changes and Ecosystem Services, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; Aquamuseu do Rio Minho, Parque do Castelinho, 4920-290 Vila Nova de Cerveira, Portugal.
| | - Miguel Caetano
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Line Global Changes and Ecosystem Services, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; IPMA, Portuguese Institute of Sea and Atmosphere, IP Division of Oceanography and Marine Environment (DIVOA), Av. Doutor Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal.
| | - Carlos Vale
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Line Global Changes and Ecosystem Services, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
203
|
Kaloyianni M, Bobori DC, Xanthopoulou D, Malioufa G, Sampsonidis I, Kalogiannis S, Feidantsis K, Kastrinaki G, Dimitriadi A, Koumoundouros G, Lambropoulou DA, Kyzas GZ, Bikiaris DN. Toxicity and Functional Tissue Responses of Two Freshwater Fish after Exposure to Polystyrene Microplastics. TOXICS 2021; 9:289. [PMID: 34822680 PMCID: PMC8625933 DOI: 10.3390/toxics9110289] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/21/2021] [Accepted: 10/29/2021] [Indexed: 02/04/2023]
Abstract
Microplastics (MPs)' ingestion has been demonstrated in several aquatic organisms. This process may facilitate the hydrophobic waterborne pollutants or chemical additives transfer to biota. In the present study the suitability of a battery of biomarkers on oxidative stress, physiology, tissue function and metabolic profile was investigated for the early detection of adverse effects of 21-day exposure to polystyrene microplastics (PS-MPs, sized 5-12 μm) in the liver and gills of zebrafish Danio rerio and perch, Perca fluviatilis, both of which are freshwater fish species. An optical volume map representation of the zebrafish gill by Raman spectroscopy depicted 5 μm diameter PS-MP dispersed in the gill tissue. Concentrations of PS-MPs close to the EC50 of each fish affected fish physiology in all tissues studied. Increased levels of biomarkers of oxidative damage in exposed fish in relation to controls were observed, as well as activation of apoptosis and autophagy processes. Malondialdehyde (MDA), protein carbonyls and DNA damage responses differed with regard to the sensitivity of each tissue of each fish. In the toxicity cascade gills seemed to be more liable to respond to PS-MPs than liver for the majority of the parameters measured. DNA damage was the most susceptible biomarker exhibiting greater response in the liver of both species. The interaction between MPs and cellular components provoked metabolic alterations in the tissues studied, affecting mainly amino acids, nitrogen and energy metabolism. Toxicity was species and tissue specific, with specific biomarkers responding differently in gills and in liver. The fish species that seemed to be more susceptible to MPs at the conditions studied, was P. fluviatilis compared to D. rerio. The current findings add to a holistic approach for the identification of small sized PS-MPs' biological effects in fish, thus aiming to provide evidence regarding PS-MPs' environmental impact on wild fish populations and food safety and adequacy.
Collapse
Affiliation(s)
- Martha Kaloyianni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.K.); (D.X.); (G.M.); (K.F.)
| | - Dimitra C. Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Xanthopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.K.); (D.X.); (G.M.); (K.F.)
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Glykeria Malioufa
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.K.); (D.X.); (G.M.); (K.F.)
| | - Ioannis Sampsonidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57001 Thessaloniki, Greece; (I.S.); (S.K.)
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57001 Thessaloniki, Greece; (I.S.); (S.K.)
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.K.); (D.X.); (G.M.); (K.F.)
| | - Georgia Kastrinaki
- Laboratory of Inorganic Materials, CERTH/CPERI, 57001 Thessaloniki, Greece;
| | - Anastasia Dimitriadi
- Biology Department, University of Crete, 70013 Herakleion, Greece; (A.D.); (G.K.)
| | - George Koumoundouros
- Biology Department, University of Crete, 70013 Herakleion, Greece; (A.D.); (G.K.)
| | - Dimitra A. Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
204
|
Uurasjärvi E, Sainio E, Setälä O, Lehtiniemi M, Koistinen A. Validation of an imaging FTIR spectroscopic method for analyzing microplastics ingestion by Finnish lake fish (Perca fluviatilis and Coregonus albula). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117780. [PMID: 34329046 DOI: 10.1016/j.envpol.2021.117780] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Despite the ubiquitousness of microplastics, knowledge on the exposure of freshwater fish to microplastics is still limited. Moreover, no standard methods are available for analyzing microplastics, and the quality of methods used for the quantification of ingested microplastics in fish should be improved. In this study, we studied microplastic ingestion of common wild freshwater fish species, perch (Perca fluviatilis) and vendace (Coregonus albula). Further, our aim was to develop and validate imaging Fourier-transform infrared spectroscopic method for the quantification of ingested microplastics. For this purpose, enzymatically digested samples were measured with focal plane array (FPA) based infrared microscope. Data was analyzed with siMPle software, which provides counts, mass estimations, sizes, and materials for the measured particles. Method validation was conducted with ten procedural blanks and recovery tests, resulting in 75% and 77% recovery rates for pretreatment and infrared imaging, respectively. Pretreatment caused contamination principally by small <100 μm microplastics. The results showed that 17% of perch and 25% of vendace had ingested plastic. Most of the fish contained little or no plastics, while some individuals contained high numbers of small particles or alternatively few large particles. Perch from one sampling site out of five had ingested microplastics, but vendace from all sampling sites had ingested microplastics. The microplastics found from fish were mostly small: 81% had particle size between 20 and 100 μm, and most of them were polyethylene, polypropylene, and polyethylene terephthalate. In conclusion, the implemented method revealed low numbers of ingested microplastics on average but needs further development for routine monitoring of small microplastics.
Collapse
Affiliation(s)
- Emilia Uurasjärvi
- SIB Labs, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Erika Sainio
- Marine Research Centre, Finnish Environment Institute, Latokartanonkaari 11, 00790, Helsinki, Finland
| | - Outi Setälä
- Marine Research Centre, Finnish Environment Institute, Latokartanonkaari 11, 00790, Helsinki, Finland.
| | - Maiju Lehtiniemi
- Marine Research Centre, Finnish Environment Institute, Latokartanonkaari 11, 00790, Helsinki, Finland.
| | - Arto Koistinen
- SIB Labs, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
205
|
Galafassi S, Sighicelli M, Pusceddu A, Bettinetti R, Cau A, Temperini ME, Gillibert R, Ortolani M, Pietrelli L, Zaupa S, Volta P. Microplastic pollution in perch (Perca fluviatilis, Linnaeus 1758) from Italian south-alpine lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117782. [PMID: 34280746 DOI: 10.1016/j.envpol.2021.117782] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Microplastic particles (MPs) contamination of aquatic environments has raised a growing concern in recent decades because of their numerous potential toxicological effects. Although fish are among the most studied aquatic organisms, reports on MPs ingestion in freshwater environments are still scarce. Thus, there is still much to study to understand the uptake mechanisms, their potential accumulation among the food webs and their ecotoxicological effects. Here, MPs presence in the digestive system of one of the most widespread and commercially exploited freshwater fish, the perch (Perca fluviatilis, Linnaeus 1758), was investigated in four different south-alpine lakes, to assess the extent of ingestion and evaluate its relation to the body health condition. A total of 80 perch specimen have been sampled from the Italian lakes Como, Garda, Maggiore and Orta. Microplastic particles occurred in 86% of the analysed specimens, with average values ranging from 1.24 ± 1.04 MPs fish-1 in L. Como to 5.59 ± 2.61 MPs fish-1 in L. Garda. The isolated particles were mainly fragments, except in L. Como where films were more abundant. The most common polymers were polyethylene, polyethylene terephthalate, polyamide, and polycarbonate, although a high degree of degradation was found in 43% of synthetic particles, not allowing their recognition up to a single polymer. Despite the high number of ingested MPs, fish health (evaluated by means of Fulton's body condition and hepatosomatic index) was not affected. Instead, fullness index showed an inverse linear relationship with the number of ingested particles, which suggests that also in perch MPs presence could interfere with feeding activity, as already described for other taxa.
Collapse
Affiliation(s)
- Silvia Galafassi
- CNR Water Research Institute, L.go Tonolli 50, 28922, Verbania, Pallanza, Italy.
| | - Maria Sighicelli
- ENEA, Department for Sustainability (SSPT), C.R. Casaccia-Via Anguillarese 301, 00123, Rome, Italy
| | - Antonio Pusceddu
- University of Cagliari, Department of Life and Environmental Sciences, Via T. Fiorelli 1, 09126, Cagliari, Italy
| | - Roberta Bettinetti
- University of Insubria, Department of Human and Innovation for the Territory, Via Valleggio 11, 22100, Como, Italy
| | - Alessandro Cau
- University of Cagliari, Department of Life and Environmental Sciences, Via T. Fiorelli 1, 09126, Cagliari, Italy
| | | | - Raymond Gillibert
- Sapienza University of Rome, Department of Physics, P.le A. Moro 5, 00185, Rome, Italy
| | - Michele Ortolani
- Sapienza University of Rome, Department of Physics, P.le A. Moro 5, 00185, Rome, Italy
| | - Loris Pietrelli
- Sapienza University of Rome, Department of Chemistry, P.le A. Moro, 5, 00185, Rome, Italy
| | - Silvia Zaupa
- CNR Water Research Institute, L.go Tonolli 50, 28922, Verbania, Pallanza, Italy
| | - Pietro Volta
- CNR Water Research Institute, L.go Tonolli 50, 28922, Verbania, Pallanza, Italy
| |
Collapse
|
206
|
Araújo APDC, Rocha TL, E Silva DDM, Malafaia G. Micro(nano)plastics as an emerging risk factor to the health of amphibian: A scientometric and systematic review. CHEMOSPHERE 2021; 283:131090. [PMID: 34153909 DOI: 10.1016/j.chemosphere.2021.131090] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Although the toxicity of microplastics (MPs) and nanoplastics (NPs) is recognized at different trophic levels, our know-how about their effects on amphibians is limited. Thus, we present and discuss the current state on studies involving amphibians and plastic particles, based on a broad approach to studies published in the last 5 years. To search for the articles, the ISI Web of Science, ScienceDirect, and Scopus databases were consulted, using different descriptors related to the topic of study. After the systematic search, we identified 848 publications. Of these, 12 studies addressed the relationship "plastic particles and amphibians" (7 studies developed in the laboratory and 5 field studies). The scientometric analysis points to geographic concentration of studies in Brazil and China; low investment in research in the area, and limited participation of international authors in the studies carried out. In the systematic approach, we confirm the scarcity of available data on the toxicity of plastic particles in amphibians; we observed a concentration of studies in the Anura order, only one study explored the toxicological effects of NPs and polystyrene and polyethylene are the most studied plastic types. Moreover, the laboratory tested concentrations are distant from those of the environmentally relevant; and little is known about the mechanisms of action of NPs/MPs involved in the identified (eco)toxicological effects. Thus, we strongly recommend more investments in this area, given the ubiquitous nature of NPs/MPs in aquatic environments and their possible consequences on the dynamics, reproduction, and survival of species in the natural environment.
Collapse
Affiliation(s)
- Amanda Pereira da Costa Araújo
- Biological Research Laboratory, Goiano Federal Institute, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Environmental Sciences, Federal University of Goiás, Goiânia, GO, Brazil.
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Daniela de Melo E Silva
- Post-Graduation Program in Environmental Sciences, Federal University of Goiás, Goiânia, GO, Brazil; Laboratory of Environmental Mutagenesis, Federal University of Goiás, Goiânia, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Goiano Federal Institute, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| |
Collapse
|
207
|
First evidence of microplastics in the Marine Protected Area Namuncurá at Burdwood Bank, Argentina: a study on Henricia obesa and Odontaster penicillatus (Echinodermata: Asteroidea). Polar Biol 2021. [DOI: 10.1007/s00300-021-02959-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
208
|
Watkins L, Sullivan PJ, Walter MT. What You Net Depends on if You Grab: A Meta-analysis of Sampling Method's Impact on Measured Aquatic Microplastic Concentration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12930-12942. [PMID: 34550691 DOI: 10.1021/acs.est.1c03019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microplastic pollution is measured with a variety of sampling methods. Field experiments indicate that commonly used sampling methods, including net, pump, and grab samples, do not always result in equivalent measured concentration. We investigate the comparability of these methods through a meta-analysis of 121 surface water microplastic studies. We find systematic relationships between measured concentration and sampled volume, method of collection, mesh size used for filtration, and waterbody sampled. Most significantly, a strong log-linear relationship exists between sample volume and measured concentration, with small-volume grab samples measuring up to 104 particles/L higher concentrations than larger volume net samples, even when sampled concurrently. Potential biasing factors explored included filtration size (±102 particles/L), net volume overestimation (±101 particles/L), fiber loss through net mesh (unknown magnitude), intersample variability (±101 particles/L), and contamination, the potential factor with an effect large enough (±103 particles/L) to explain the observed differences. On the basis of these results, we caution against comparing concentrations across multiple studies or combining multiple study results to identify regional patterns. Additionally, we emphasize the importance of contamination reduction and quantification strategies, namely that blank samples from all stages of field sampling be collected and reported as a matter of course for all studies.
Collapse
Affiliation(s)
- Lisa Watkins
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Patrick J Sullivan
- Department of Natural Resources and the Environment, Cornell University, Ithaca, New York 14853, United States
| | - M Todd Walter
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
209
|
Zhang Y, Wang H, Xu J, Su X, Lu M, Wang Z, Zhang Y. Occurrence and Characteristics of Microplastics in a Wastewater Treatment Plant. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:677-683. [PMID: 33616703 DOI: 10.1007/s00128-021-03142-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Large quantities of microplastics (MPs) are discharged into the hydrosphere via the municipal wastewater treatment plant (WWTP) as an important route. Herein, we sampled the influent, effluent and sludge of WWTP in order to investigate the abundance, size, type, and shape of MPs. The detected MPs were primarily in the shape of fiber with the abundance up to 44 particles per liter. Polyethylene terephthalate, polypropylene, and polyethylene were found to be the three largest types of MPs. MPs in the influent was effectively eliminated with a removal efficiency of ~ 96%. However, a large quantity of MPs was still discharged in the effluent and the excess sludge, approximately 2.87 × 108 particles per day, indicating that some specific control facilities should be installed at WWTP to minimize the environmental impacts of MPs.
Collapse
Affiliation(s)
- Yunhai Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing, 211816, China
| | - Hao Wang
- School of Environmental Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing, 211816, China
| | - Jimin Xu
- School of Environmental Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing, 211816, China
| | - Xin Su
- School of Environmental Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing, 211816, China
| | - Meichi Lu
- School of Environmental Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing, 211816, China
| | - Zhiyuan Wang
- School of Environmental Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing, 211816, China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing, 211816, China.
| |
Collapse
|
210
|
Umamaheswari S, Priyadarshinee S, Bhattacharjee M, Kadirvelu K, Ramesh M. Exposure to polystyrene microplastics induced gene modulated biological responses in zebrafish (Danio rerio). CHEMOSPHERE 2021; 281:128592. [PMID: 33077188 DOI: 10.1016/j.chemosphere.2020.128592] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/20/2020] [Accepted: 10/07/2020] [Indexed: 05/12/2023]
Abstract
The substantial increase in the occurrence of microplastics (MPs) in the aquatic ecosystem has been recognized as an emerging concern today. Studies have revealed the toxicity of microplastics on behavior, physiology, and reproduction of fishes. Despite several reports, there are inadequate literature reports on the impact of microplastics on aquatic forms at the molecular level. The present study was aimed to investigate the adverse effects of polystyrene microplastics (PS-MPs) in adult zebrafish model system. Healthy fishes were exposed to different concentrations (10 and 100 μg L-1) of PS-MPs for 35 d. The results revealed that PS-MPs exposure induced ROS (Reactive oxygen species) generation disrupting the antioxidant defense system, hepatic enzymology, and neurotransmission. Correspondingly, the histological studies showed PS-MPs induced histopathological lesions, including inflammation, degeneration, necrosis, and hemorrhage, in the brain and liver tissues of zebrafish. Furthermore, PS-MPs exposure significantly upregulated the expressions of gstp1, hsp70l, and ptgs2a gene along with the downregulation of cat, sod1, gpx1a, and ache genes. Therefore, the present study illustrates the potential of PS-MPs to induce different grades of toxic impacts in fishes by altering its metabolic mechanism, histological architecture, and gene regulation pattern through ROS induced oxidative stress.
Collapse
Affiliation(s)
| | - Sheela Priyadarshinee
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641046, India
| | - Monojit Bhattacharjee
- DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, India
| | - Krishna Kadirvelu
- DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641046, India.
| |
Collapse
|
211
|
Ji Z, Huang Y, Feng Y, Johansen A, Xue J, Tremblay LA, Li Z. Effects of pristine microplastics and nanoplastics on soil invertebrates: A systematic review and meta-analysis of available data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147784. [PMID: 34029821 DOI: 10.1016/j.scitotenv.2021.147784] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
In laboratory studies, microplastics and/or nanoplastics (MPs/NPs) have been shown to cause a variety of ecotoxicological effects on soil invertebrates. Existing data on the effects of these plastic debris on biological functions and physiological systems, showed a great variability among studies. Thus, how soil invertebrates respond to different types, shapes, sizes and concentrations of pristine MPs/NPs remains to be further characterized. The present work is an up-to-date review on quantitative and qualitative data on the effects of pristine MPs/NPs on soil invertebrates in laboratory conditions. Research priorities are also discussed. Out of a total of 1061 biological endpoints investigated in 56 studies, 49% were significantly affected after exposed to pristine MPs/NPs. The polymers with chloro and phenyl groups had more negative impacts on soil invertebrates than other polymers. Most studies used earthworm and nematode species as model organisms. For nematodes, the impact of MPs/NPs seemed to be concentration-dependent and higher concentrations of pristine MPs/NPs appeared to have more adverse impacts on biological functions and physiological systems, but this trend was not confirmed in earthworms. Meta-analysis revealed that pristine MP/NP concentrations higher than 1 g kg-1 (in soil) may decrease growth and survival of earthworms, while a concentration higher than 1 μg L-1 (in water) may affect nematode reproductive fitness.
Collapse
Affiliation(s)
- Zhengyu Ji
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yin Huang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Resources and Environment, Hunan Agricultural University, Hunan 410128, China
| | - Yao Feng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Anders Johansen
- Department of Environmental Science, Faculty of Technical Sciences, Aarhus University, Roskilde 4000, Denmark
| | - Jianming Xue
- Scion, Private Bag 29237, Christchurch, New Zealand
| | - Louis A Tremblay
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; School of Biological Sciences, University of Auckland, PO Box 92019, Auckland 1142, New Zealand
| | - Zhaojun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
212
|
Rubin AE, Sarkar AK, Zucker I. Questioning the suitability of available microplastics models for risk assessment - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147670. [PMID: 34029818 DOI: 10.1016/j.scitotenv.2021.147670] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The rise of microplastic (MP) pollution in the environment has been bolstering concerns regarding MPs' unknown environmental fate, transport, and potential toxicity toward living forms. However, the use of real environmental plastics for risk assessment is often hindered due to technical and practical challenges such as plastics' heterogeneity and their wide size distribution in the environment. To overcome this issue, most available data in the field is generated using plastic models as surrogates for environmental samples. In this critical review, we describe the gaps in risk assessments drawn from these plastic models. Specifically, we compare physicochemical properties of real environmental plastic particles to synthesized polymeric micro-beads, one of the most commonly used plastic models in current literature. Several surface and bulk characteristics including size, surface chemistry, polymer type, and morphology are shown to not only be inherently different between environmental MP's and synthesized micro-beads, but also drive behavior in fate, transport, and toxicity assays. We highlight the importance of expressing real-world physicochemical characteristics in representative MP models and outline how current state-of-the-art models are limited in this regard. To address this issue, we suggest future areas of research such as combinations of mechanical, photochemical, and thermal degradation processes to simulate real-world weathering, all in an effort to increase realism of plastic modeling and allow more robust and reliable environmental MP risk assessment in the future.
Collapse
Affiliation(s)
- Andrey Ethan Rubin
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amit Kumar Sarkar
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel; School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ines Zucker
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel; School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
213
|
Matthews S, Mai L, Jeong CB, Lee JS, Zeng EY, Xu EG. Key mechanisms of micro- and nanoplastic (MNP) toxicity across taxonomic groups. Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109056. [PMID: 33894368 DOI: 10.1016/j.cbpc.2021.109056] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/27/2021] [Accepted: 04/11/2021] [Indexed: 12/17/2022]
Abstract
Micro- and nanoplastics (MNPs) are ubiquitous in aquatic and terrestrial environments, and detrimental biological effects have been observed on a variety of organisms, from bacteria and alga to plants and animals. A fast-growing number of toxicological studies report diverse responses and wide species-dependent sensitivity upon MNP exposure. While studies are dominated by in vivo animal tests, our understanding of cellular toxicity and the corresponding toxicity mechanisms is still limited. This challenges the proper assessment of environmental hazards and health risks of MNPs. In this review, we gathered and analyzed the up-to-date studies on humans, animals, plants, alga, and bacteria, and identified the similarities and differences in key toxicity mechanisms of MNPs across different taxonomic groups. Particularly, human cell-based studies at the cellular level provide fundamental and valuable information on the key toxicity mechanisms, which are essential to answer the question of whether and how MNPs pose health threats. In general, toxicity mechanisms of MNPs depend on their size, surface characteristics, polymer type, as well as cell type. Plausible toxicity mechanisms mainly include membrane disruption, extracellular polymeric substance disruption, reactive oxygen species generation, DNA damage, cell pore blockage, lysosome destabilization, and mitochondrial depolarization. A deeper understanding of these key mechanisms in different taxonomic groups can also improve both in vivo and in vitro models useful for predictive impact assessments of plastic pollution on the environment and human health.
Collapse
Affiliation(s)
- Sara Matthews
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Lei Mai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Chang-Bum Jeong
- Department of Marine Science, College of Nature Science, Incheon National University, Incheon 22012, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark.
| |
Collapse
|
214
|
Shore EA, deMayo JA, Pespeni MH. Microplastics reduce net population growth and fecal pellet sinking rates for the marine copepod, Acartia tonsa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117379. [PMID: 34091258 DOI: 10.1016/j.envpol.2021.117379] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/27/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (<5 mm) are ubiquitous in the global environment and are increasingly recognized as a biological hazard, particularly in the oceans. Zooplankton, at the base of the marine food web, have been known to consume microplastics. However, we know little about the impacts of microplastics across life history stages and on carbon settling. Here, we investigated the effects of ingestion of neutrally buoyant polystyrene beads (6.68 μm) by the copepod Acartia tonsa on (1) growth and survival across life history stages, (2) fecundity and egg quality, (3) and fecal characteristics. We found that microplastic exposure reduced body length and survival for nauplii and resulted in smaller eggs when copepods were exposed during oogenesis. Combining these life history impacts, our models estimate a 15% decrease in population growth leading to a projected 30-fold decrease in abundance over 1 year or 20 generations with microplastic exposure. In addition, microplastic-contaminated fecal pellets were 2.29-fold smaller and sinking rates were calculated to be 1.76-fold slower, resulting in an estimated 4.03-fold reduction in fecal volume settling to the benthos per day. Taken together, declines in population sizes and fecal sinking rates suggest that microplastic consumption by zooplankton could have cascading ecosystem impacts via reduced trophic energy transfer and slower carbon settling.
Collapse
Affiliation(s)
- Emily A Shore
- Department of Biology, University of Vermont, Burlington, VT, 05456, USA.
| | - James A deMayo
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA
| | - Melissa H Pespeni
- Department of Biology, University of Vermont, Burlington, VT, 05456, USA
| |
Collapse
|
215
|
Filice M, Cerra MC, Imbrogno S. The goldfish Carassius auratus: an emerging animal model for comparative cardiac research. J Comp Physiol B 2021; 192:27-48. [PMID: 34455483 PMCID: PMC8816371 DOI: 10.1007/s00360-021-01402-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
The use of unconventional model organisms is significantly increasing in different fields of research, widely contributing to advance life sciences understanding. Among fishes, the cyprinid Carassius auratus (goldfish) is largely used for studies on comparative and evolutionary endocrinology, neurobiology, adaptive and conservation physiology, as well as for translational research aimed to explore mechanisms that may be useful in an applicative biomedical context. More recently, the research possibilities offered by the goldfish are further expanded to cardiac studies. A growing literature is available to illustrate the complex networks involved in the modulation of the goldfish cardiac performance, also in relation to the influence of environmental signals. However, an overview on the existing current knowledge is not yet available. By discussing the mechanisms that in C. auratus finely regulate the cardiac function under basal conditions and under environmental challenges, this review highlights the remarkable flexibility of the goldfish heart in relation not only to the basic morpho-functional design and complex neuro-humoral traits, but also to its extraordinary biochemical-metabolic plasticity and its adaptive potential. The purpose of this review is also to emphasize the power of the heart of C. auratus as an experimental tool useful to investigate mechanisms that could be difficult to explore using more conventional animal models and complex cardiac designs.
Collapse
Affiliation(s)
- Mariacristina Filice
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy.
| | - Maria Carmela Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy
| |
Collapse
|
216
|
Sun T, Zhan J, Li F, Ji C, Wu H. Evidence-based meta-analysis of the genotoxicity induced by microplastics in aquatic organisms at environmentally relevant concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147076. [PMID: 34088154 DOI: 10.1016/j.scitotenv.2021.147076] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) attract global concern due to their ubiquitous existence in aquatic environments. However, the genotoxic effect of MPs on aquatic organisms in the natural environment remains controversial. Therefore, this meta-analysis was conducted by recompiling 44 individual studies from 12 publications to determine whether MPs could induce genotoxicity in aquatic organisms at environmentally relevant concentrations (≤1 mg/L, median = 0.5 mg/L). Multiple genotoxic endpoints were involved, including the percentage of DNA in tail (TDNA%), tail length (TL), olive tail moment (OTM), and the number of micronuclei (NM), and their increases represented the biologically adverse effects (i.e. genotoxicity). The results showed that all included endpoints tended to increase after exposure to MPs, among which TDNA%, TL and NM were significantly increased by 20%, 32% and 81% compared with the control group, respectively. The overall estimate of all endpoints in the MPs-treated groups was remarkably increased by 24%, with high statistical power and no obvious publication bias, suggesting the evident genotoxicity caused by MPs. In addition, the magnitudes of MPs-induced genotoxicity were independent of selected endpoint, MP composition, morphology, exposure concentration and duration, but closely correlated with particle size, living habitat and tested species. Overall, this work provided a reference for the health risk assessment of MPs in the natural environment, contributing to our understanding the action mode of MPs at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Junfei Zhan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| |
Collapse
|
217
|
Malafaia G, Nascimento ÍF, Estrela FN, Guimarães ATB, Ribeiro F, Luz TMD, Rodrigues ASDL. Green toxicology approach involving polylactic acid biomicroplastics and neotropical tadpoles: (Eco)toxicological safety or environmental hazard? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146994. [PMID: 33865141 DOI: 10.1016/j.scitotenv.2021.146994] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/03/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Different and alternative renewable-source materials, commonly called bioplastics, have been proposed due to the high production and consumption of petroleum-derived plastics and to their high toxicity in the biota. However, their toxicological safety has not yet been assessed in a comprehensive way; therefore, their effects on several animal groups remain completely unknown. Thus, we aimed at testing the following hypothesis: the exposure of Physalaemus cuvieri tadpoles to polylaic acid biomicroplastic (PLA BioMP) at environmentally relevant concentrations (760 and 15,020 μg/L) induces physiological changes in them. Based on the collected data, biopolymer uptake changed tadpoles' growth and development features, reduced their lipid reserves (it was inferred by decreased triglyceride levels), as well as increased reactive oxygen and nitric oxide species production after 14-day exposure. The proportional increase in total glutathione levels, and in superoxide dismutase and catalase activity, was not enough to counterbalance the production of reactive species. In addition, the two tested concentrations caused cholinesterase effect, which was marked by increased acetylcholinesterase and butyrylcholinesterase. This finding is indicative of the neurotoxic action of PLA BioMP. To the best of our knowledge, this is the first report on the harmful consequences of exposing amphibian representatives to the herein tested biopolymers. Therefore, this finding encourages further studies and contributes to demystify the idea that bioplastics are "harmless" to the aquatic biota in freshwater environments.
Collapse
Affiliation(s)
- Guilherme Malafaia
- Biological Research Laboratory, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduate Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduate Program in Biodiversity and Biotechnology, Federal University of Goiás, Goiânia, Brazil; Post-Graduate Program in Ecology and Conservation of Natural Resources, Federal University of Uberlândia, MG, Brazil.
| | | | - Fernanda Neves Estrela
- Biological Research Laboratory, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduate Program in Biodiversity and Biotechnology, Federal University of Goiás, Goiânia, Brazil
| | - Abraão Tiago Batista Guimarães
- Biological Research Laboratory, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduate Program in Biodiversity and Biotechnology, Federal University of Goiás, Goiânia, Brazil
| | - Fabianne Ribeiro
- Department of Biology & CESAM - Center for Environmental and Marine Studies, University of Aveiro, Portugal
| | | | - Aline Sueli de Lima Rodrigues
- Post-Graduate Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduate Program in Biodiversity and Biotechnology, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
218
|
Do Freshwater Fish Eat Microplastics? A Review with A Focus on Effects on Fish Health and Predictive Traits of MPs Ingestion. WATER 2021. [DOI: 10.3390/w13162214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microplastics (MPs) have received increasing attention in the last decade and are now considered among the most concerning emerging pollutants in natural environments. Here, the current knowledge on microplastic ingestion by wild freshwater fish is reviewed with a focus on the identification of possible factors leading to the ingestion of MPs and the consequences on fish health. Within the literature, 257 species of freshwater fishes from 32 countries have been documented to ingest MPs. MPs ingestion was found to increase with rising level of urbanization, although a direct correlation with MPs concentration in the surrounding water has not been identified. MPs ingestion was detected in all the published articles, with MPs presence in more than 50% of the specimens analyzed in one study out of two. Together with the digestive tract, MPs were also found in the gills, and there is evidence that MPs can translocate to different tissues of the organism. Strong evidence, therefore, exists that MPs may represent a serious risk for ecosystems, and are a direct danger for human health. Moreover, toxicological effects have also been highlighted in wild catches, demonstrating the importance of this problem and suggesting the need for laboratory experiments more representative of the environmental situation.
Collapse
|
219
|
Abarghouei S, Hedayati A, Raeisi M, Hadavand BS, Rezaei H, Abed-Elmdoust A. Size-dependent effects of microplastic on uptake, immune system, related gene expression and histopathology of goldfish (Carassius auratus). CHEMOSPHERE 2021; 276:129977. [PMID: 33684862 DOI: 10.1016/j.chemosphere.2021.129977] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 05/20/2023]
Abstract
Todays, with the industrialization of human societies, pollution of aquatic ecosystems with plastics derivatives are a serious concern, affecting the life of their organisms. The present study was conducted to investigate the size effects of micro-plastic, polystyrene on some physiological lesions of the goldfish, Carassius auratus. Fish were exposed to two sizes (0.25 and 8 μm) polystyrene at different environmentally relevant concentrations. The exposure trial was done in two steps. First, fish exposed to a stable concentration of 300 mg/L polystyrene for 168 h. Gill, intestine, and liver tissues were sampled every 24 h to investigate the accumulation of polystyrene. Then, fish were exposed in three replicates to 0 (control), 0.05, 0.5, and 5 mg/L polystyrene in two sizes of 0.25 and 8 μm for 28 days. After the exposure period, gill, liver, and intestine tissues were sampled for histological study, also, serum samples were collected for biochemical assays. Fluorescent microscope observations confirmed the accumulation of polystyrene in tissue samples with time. In addition, histological lesions were found in the liver, intestine, and gill of the exposed fish. The severity of lesions showed a size and dose-dependent pattern. Polystyrene induced the antioxidant system of exposed fish through elevating the levels of SOD and CAT activity and significant difference in expression of antioxidant related genes (CAT, SOD and HSP70). In conclusion, the results of the present study confirmed the toxic effects of microplastic, polystyrene on goldfish.
Collapse
Affiliation(s)
- Safoura Abarghouei
- Department of Fisheries and Aquatic Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Aliakbar Hedayati
- Department of Fisheries and Aquatic Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Mojtaba Raeisi
- Environmental Health Research Centre, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Hasan Rezaei
- Department of Environmental Sciences, Faculty of Fishery and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Amirreza Abed-Elmdoust
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
220
|
Shaikh IV, Shaikh VAE. A comprehensive review on assessment of plastic debris in aquatic environment and its prevalence in fishes and other aquatic animals in India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146421. [PMID: 33744569 DOI: 10.1016/j.scitotenv.2021.146421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
The presence of meso, macro, and microplastics (MPs) in aquatic environments has raised concerns due to their potential risks to aquatic as well as human life. Though plastics are considered to be inert in nature, MPs with toxic additives and accumulated contaminants have harmful ecological effects. Reports of absorption of MPs by internal tissues and toxicity in vital organs such as lung cells, liver, and brain cells have proved its serious health hazards. The study of plastic debris in the aquatic environment deserves special attention due to its ecotoxicological impact. This review presents a detailed account of the assessment of plastic debris in marine as well as freshwater environments. The formation of MPs and their sources, sampling, isolation, identification and characterization methods adopted, and the prevalence of MPs in aquatic life are discussed. To the best of our knowledge, the present article is a first-ever comprehensive review covering the entire of India. Our review finds that, so far, very few studies have been carried out, and there is a paucity of information, especially on the prevalence of plastic debris in the freshwater environment, fish, and other aquatic animals in India. While major studies have been done at various coastal locations in the southern part of India and a few studies in the rest of India, south-eastern states remain neglected. Toxicological studies on various life forms, including humans, are lacking. The present review also fills the gap in our knowledge of the various locations studied across India and can guide future research.
Collapse
Affiliation(s)
- Ishrat Vasi Shaikh
- Department of Zoology, Abeda Inamdar Senior College, Azam Campus, Camp, Pune 411001, India.
| | - Vasi Ahmed Ebrahim Shaikh
- Polymer Chemistry Research Laboratory, School of Chemistry, MIT World Peace University, Pune 411038, India
| |
Collapse
|
221
|
Prokić MD, Gavrilović BR, Radovanović TB, Gavrić JP, Petrović TG, Despotović SG, Faggio C. Studying microplastics: Lessons from evaluated literature on animal model organisms and experimental approaches. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125476. [PMID: 33647615 DOI: 10.1016/j.jhazmat.2021.125476] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 05/24/2023]
Abstract
Although we are witnesses of an increase in the number of studies examining the exposure/effects of microplastics (MPs) on different organisms, there are many unknowns. This review aims to: (i) analyze current studies devoted to investigating the exposure/effects of MPs on animals; (ii) provide some basic knowledge about different model organisms and experimental approaches used in studying MPs; and to (iii) convey directions for future studies. We have summarized data from 500 studies published from January 2011 to May 2020, about different aspects of model organisms (taxonomic group of organisms, type of ecosystem they inhabit, life-stage, sex, tissue and/or organ) and experimental design (laboratory/field, ingestion/bioaccumulation/effect). We also discuss and try to encourage investigation of some less studied organisms (terrestrial and freshwater species, among groups including Annelida, Nematoda, Echinodermata, Cnidaria, Rotifera, birds, amphibians, reptiles), and aspects of MP pollution (long-term field studies, comparative studies examining life stages, sexes, laboratory and field work). We hope that the information presented in this review will serve as a good starting point and will provide useful guidelines for researchers during the process of deciding on the model organism and study designs for investigating MPs.
Collapse
Affiliation(s)
- Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Branka R Gavrilović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tijana B Radovanović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Jelena P Gavrić
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Svetlana G Despotović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 3198166 Santa Agata-Messina, Italy.
| |
Collapse
|
222
|
Affiliation(s)
- Tohru Saitoh
- School of Earth, Energy and Environmental Engineering, Kitami Institute of Technology
| |
Collapse
|
223
|
Kim JH, Yu YB, Choi JH. Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and neurotoxicity in fish exposed to microplastics: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125423. [PMID: 33930961 DOI: 10.1016/j.jhazmat.2021.125423] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 05/05/2023]
Abstract
Exposure to microplastics (MP) in aquatic environment leads to bioaccumulation in fish, with MP size being a major factor in determining the accumulation profile. MPs absorbed into the fish body enter the circulatory system and affect hematological properties, changing the blood physiology. MPs also induce an imbalance in reactive oxygen species (ROS) production and antioxidant capacity, causing oxidative damage. In addition, MPs impact immune responses due to physical and chemical toxicity, and cause neurotoxicity, altering AchE activity. Here, the toxic effects of MPs in fish through various indicators were examined, including bioaccumulation, hematological parameters, antioxidant responses, immune responses, and neurotoxicity in relation to MP exposure, facilitating the identification of biomarkers of MP toxicity following exposure of fish.
Collapse
Affiliation(s)
- Jun-Hwan Kim
- Fisheries Research & Development Institute, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Taean, South Korea; Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si, South Korea.
| | - Young-Bin Yu
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Jae-Ho Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| |
Collapse
|
224
|
Fu L, Li J, Wang G, Luan Y, Dai W. Adsorption behavior of organic pollutants on microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112207. [PMID: 33866287 DOI: 10.1016/j.ecoenv.2021.112207] [Citation(s) in RCA: 295] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/26/2021] [Accepted: 03/28/2021] [Indexed: 05/19/2023]
Abstract
Microplastics (MPs) are emerging pollutants that act as a carrier of toxic pollutants, release toxic substances, and aggregate in biota. The adsorption behavior of MPs has recently become a research hot spot. The objective of this study was to summarize the main mechanisms by which MPs adsorb organic pollutants, introduce some mathematical models commonly used to study the adsorption behavior of MPs, and discuss the factors affecting the adsorption capacity from three perspectives, i.e., the properties of MPs and organic pollutants, and environmental factors. Adsorption kinetics and isothermal adsorption models are commonly used to study the adsorption of organic pollutants on MPs. We observed that hydrophobic interaction is the most common mechanism by which MPs adsorb organic pollutants, and also reportedly controls the portion of organic pollutants. Additionally, electrostatic interaction and other non-covalent forces, such as hydrogen bonds, halogen bonds, and π-π interactions, are also mechanisms of organic pollutant adsorption on MPs. The particle size, specific surface area, aging degree, crystallinity, and polarity of MPs, and organic pollutant properties (hydrophobicity and dissociated forms) are key factors affecting adsorption capacity. Changes in the pH, temperature, and ionic strength also affect the adsorption capacity. Current research on the adsorption behavior of MPs has mainly been conducted in laboratories, and in-depth studies on the adsorption mechanism and influencing factors are limited. Therefore, studies on the adsorption behavior of MPs in the environment are required, and this study will contribute to a better understanding of this topic.
Collapse
Affiliation(s)
- Lina Fu
- College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Jing Li
- College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Guoyu Wang
- China Urban Construction Design & Research Institute CO. LTD., Beijing 100120, China
| | - Yaning Luan
- College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Wei Dai
- College of Forestry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
225
|
Wu M, Jiang Y, Kwong RWM, Brar SK, Zhong H, Ji R. How do humans recognize and face challenges of microplastic pollution in marine environments? A bibliometric analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116959. [PMID: 33780841 DOI: 10.1016/j.envpol.2021.116959] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) are abundant in marine environments, drawing global attention from scientists and rendering it significant to review the research progress and predict future trends of this field. To achieve that, we collected 1898 publications on marine MPs from Web of Science and performed a bibliometric analysis by CiteSpace and VOSviewer. Additionally, we utilized an unrestricted retrieval of literature from ScienceDirect to supplement our major findings. Trends in publication numbers show the growth in study from the initial stage ( 2012 and before), when microplastic (MP) occurrence, abundance, and distribution were primarily investigated. Throughout the ascent stage (between 2013-2016), when diverse sampling and analytical methods were applied to capture and identify MPs from the ocean, baseline data have been gleaned on physiochemical properties of MPs. The research focus then shifted to the bioaccumulation and ecotoxicological effects of MPs on marine biota, further highlighting their potential deleterious impacts on human health via dietary exposure, and this period was defined as the exploration stage (2017 and onwards). Nevertheless, key challenges including the lack of standard procedures for MP sampling, technical limitations in MP detecting and identification, and controversy about the underlying effects on the marine ecosystems and humans have also been arisen in the last decade. The present study elucidates how we gradually recognize MP pollution in marine environments and what challenges we face, suggesting future avenues for MP research.
Collapse
Affiliation(s)
- Mengjie Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yuelu Jiang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, M3J 1P3, Ontario, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, M3J 1P3, Ontario, Canada
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, Ontario, Canada.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
226
|
Umamaheswari S, Priyadarshinee S, Kadirvelu K, Ramesh M. Polystyrene microplastics induce apoptosis via ROS-mediated p53 signaling pathway in zebrafish. Chem Biol Interact 2021; 345:109550. [PMID: 34126101 DOI: 10.1016/j.cbi.2021.109550] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/19/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022]
Abstract
Microplastic (MP) pollution is ubiquitous and has become an emerging threat to aquatic biota. Recent scientific reports have recorded their toxic impacts at the cellular and organism levels, but the underlying molecular mechanism of their toxicity remains unclear. The present study elucidates an array of molecular events underlying apoptosis in the gills of polystyrene microplastics (PS-MPs) exposed zebrafish (Danio rerio). PS-MPs at different concentrations (10 and 100 μg L-1) induced the reactive oxygen species (ROS) generation, in turn affecting the oxidative and immune defense mechanism. The expression profile of antioxidant genes cat, sod1, gpx1a and gstp1 were altered significantly. PS-MPs also significantly inhibited the neurotransmission in zebrafish. In addition, the PS-MPs exposure upregulated the expression of p53, gadd45ba, and casp3b resulting in apoptosis. We demonstrate that PS-MPs significantly upregulate the transcriptional pattern of tnfa and ptgs2a which are essential gene markers in inflammatory mechanism. Further, the oxidative damage induced by PS-MPs exposure could lead to cytological damage resulting in altered lamellar structures, capillary dilation, and necrosis in gill histomaps. In conclusion, the findings of this work strongly suggest that PS-MPs induce dose-and time-dependent ROS mediated apoptotic responses in zebrafish. Furthermore, the physiological responses observed in the gills correlate with the above observations and helps in unravelling the potential molecular mechanism underpinning the PS-MPs toxicity in zebrafish.
Collapse
Affiliation(s)
- Sathisaran Umamaheswari
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641 046, India
| | - Sheela Priyadarshinee
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641 046, India
| | - Krishna Kadirvelu
- DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641 046, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641 046, India.
| |
Collapse
|
227
|
van Mourik LM, Crum S, Martinez-Frances E, van Bavel B, Leslie HA, de Boer J, Cofino WP. Results of WEPAL-QUASIMEME/NORMANs first global interlaboratory study on microplastics reveal urgent need for harmonization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145071. [PMID: 33770896 DOI: 10.1016/j.scitotenv.2021.145071] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
To survey the conformity and quality of results among laboratories for microplastics determination worldwide, an international laboratory intercomparison and development exercise was organized. The 34 participants were requested to determine the polymer type and number or mass of polymer particles in 12 samples, i.e. six samples containing of pre-production pellets, five dissolvable soda tablets containing different (smaller) polymer particles and one blank soda tablet. A novel method for providing the test materials in aluminium strips was used. Thirty laboratories (88%) submitted data using their own method of choice, resulting in a variety of identification and quantification methods (n = 7). The majority of the labs (53-100%) correctly identified the type of polymer in all samples but one. The performance of the laboratories in quantifying and weighing the pellets was very good. The analysis of the number of the particles in the soda tablets varied considerably between laboratories (29-91%). The results of this study highlight the complexity of microplastics analysis and the need for harmonization of both reporting format and methods. Continued development and assessment of the comparability among analytical methods and laboratories are urgently needed to support monitoring programmes, research and decision-making.
Collapse
Affiliation(s)
- L M van Mourik
- Department of Environment and Health (E&H), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
| | - S Crum
- WEPAL-QUASIMEME Laboratory Performance Studies, Wageningen University and Research Centre, PO Box 8005, NL-6700 EC Wageningen, the Netherlands
| | - E Martinez-Frances
- Norwegian Institute for Water Research (NIVA) Section Environmental Chemistry and Technology, Gaustadalléen 21, NO-0349 Oslo, Norway
| | - B van Bavel
- Norwegian Institute for Water Research (NIVA) Section Environmental Chemistry and Technology, Gaustadalléen 21, NO-0349 Oslo, Norway
| | - H A Leslie
- Department of Environment and Health (E&H), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - J de Boer
- Department of Environment and Health (E&H), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - W P Cofino
- WEPAL-QUASIMEME Laboratory Performance Studies, Wageningen University and Research Centre, PO Box 8005, NL-6700 EC Wageningen, the Netherlands
| |
Collapse
|
228
|
Xiao B, Li D, Liao B, Zheng H, Yang X, Xie Y, Xie Z, Li C. Effects of Microplastics Exposure on the Acropora sp. Antioxidant, Immunization and Energy Metabolism Enzyme Activities. Front Microbiol 2021; 12:666100. [PMID: 34149652 PMCID: PMC8213336 DOI: 10.3389/fmicb.2021.666100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/15/2021] [Indexed: 11/13/2022] Open
Abstract
Microplastic pollution in marine environments has increased rapidly in recent years, with negative influences on the health of marine organisms. Scleractinian coral, one of the most important species in the coral ecosystems, is highly sensitive to microplastic. However, whether microplastic causes physiological disruption of the coral, via oxidative stress, immunity, and energy metabolism, is unclear. In the present study, the physiological responses of the coral Acropora sp. were determined after exposure to polyethylene terephthalate (PET), polyamide 66 (PA66), and polyethylene (PE) microplastic for 96 h. The results showed that there were approximately 4-22 items/nubbin on the surface of the coral skeleton and 2-10 items/nubbin on the inside of the skeleton in the MPs exposure groups. The density of endosymbiont decreased (1.12 × 105-1.24 × 105 cell/cm2) in MPs exposure groups compared with the control group. Meanwhile, the chlorophyll content was reduced (0.11-0.76 μg/cm2) after MPs exposure. Further analysis revealed that the antioxidant enzymes in coral tissues were up-regulated (Total antioxidant capacity T-AOC 2.35 × 10-3-1.05 × 10-2 mmol/mg prot, Total superoxide dismutase T-SOD 3.71-28.67 U/mg prot, glutathione GSH 10.21-10.51 U/mg prot). The alkaline phosphatase (AKP) was inhibited (1.44-4.29 U/mg prot), while nitric oxide (NO) increased (0.69-2.26 μmol/g prot) for cell signal. Moreover, lactate dehydrogenase (LDH) was down-regulated in the whole experiment period (0.19-0.22 U/mg prot), and Glucose-6-phosphate dehydrogenase (G6PDH) for cell the phosphate pentoses pathway was also reduced (0.01-0.04 U/mg port). Results showed that the endosymbiont was released and chlorophyll was decreased. In addition, a disruption could occur under MPs exposure, which was related to anti-oxidant, immune, and energy metabolism.
Collapse
Affiliation(s)
- Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Dongdong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Baolin Liao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Huina Zheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Xiaodong Yang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Yongqi Xie
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Ziqiang Xie
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Chengyong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
229
|
Incidence of Watershed Land Use on the Consumption of Meso and Microplastics by Fish Communities in Uruguayan Lowland Streams. WATER 2021. [DOI: 10.3390/w13111575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Physical-chemical and biologicaldiversity of streams are influenced by the land use in their watersheds. Plastics currently make up the most important waste asset, representing an important part of the transported and accumulated material in water courses. This work analyzes the consumption of plastics debris by the fish communities in streams with two contrasting types of land use. We worked with threestreams impacted by urbanization and threeby extensive ranching. The stomach and intestinal contents of 309 individuals of 29 species were analyzed, by a modified alkaline digestion, and observed under a stereo microscope with polarized light. A total of 373 plastic itemswere found, of which the majority corresponded to fibers (318). A significant difference was found between the percentage of individuals that consumed plastic debrisbetween both systems (51.6% in ranchers and 76.6% in urban, p = 0.014 Mood’s Median), but no difference was found in the average ingested per individual. This study establishes the first baseline on plastic debris consumption by fish in Uruguayan streams, showing the extent of the plastic and microplastic pollution problem. Although there are differences between the analyzed sites, we also observed significant contamination in streams far from urbanization.
Collapse
|
230
|
Sankoda K, Yamada Y. Occurrence, distribution, and possible sources of microplastics in the surface river water in the Arakawa River watershed. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27474-27480. [PMID: 33506415 DOI: 10.1007/s11356-021-12459-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/10/2021] [Indexed: 05/26/2023]
Abstract
Nowadays, efforts for complementing data concerning microplastics (MPs) in freshwater systems are required as MPs exist in many populated areas. The goal of this study is to investigate the distribution and profiles of riverine MPs along the Arakawa River watershed, which runs through the Tokyo Metropolitan area. The MPs were found in 10 of the 12 sampling sites in the watershed with the mean of 1.8 pieces/m3. Also, the spatial distribution of the MPs displayed the accumulation in the downstream and in the tributary areas with high populations, reflecting the levels of the local anthropogenic activities. In contrast to the heterogeneity of the floating concentrations, polymer type compositions were consistent with the predominance of polyethylene compared with polypropylene and polystyrene. Moreover, the size distributions of the particles were consistent among samples with the predominance of the relatively smaller size fractions. These results suggest that the sources of fragmented plastic debris are likely spread over terrestrial areas and that reducing burden from these land-based MPs is necessary for mitigating MPs pollution in urban aquatic environments.
Collapse
Affiliation(s)
- Kenshi Sankoda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama, 939-0398, Japan.
| | - Yojiro Yamada
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, 338-8570, Japan
| |
Collapse
|
231
|
Tarafdar A, Lee JU, Jeong JE, Lee H, Jung Y, Oh HB, Woo HY, Kwon JH. Biofilm development of Bacillus siamensis ATKU1 on pristine short chain low-density polyethylene: A case study on microbe-microplastics interaction. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124516. [PMID: 33243655 DOI: 10.1016/j.jhazmat.2020.124516] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/21/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
A low-density polyethylene (LDPE) degrading bacterial strain (ATKU1) was isolated (99.86% similar with Bacillus siamensis KCTC 13613T) from a plastic dumping site to study interactions between microplastics (< 5 mm) and microorganisms. The strain was found (by scanning electron microscopy) to form biofilm on the microplastic surface after its interaction with LDPE (avg. Mw~4,000 Da and avg. Mn~1,700 Da) as a sole carbon source. Atomic force microscopy (AFM) showed the biofilm's 3-D developmental patterns and significantly increased Young's modulus of the LDPE surface after microbial treatment. Most of the viable bacteria attached to biofilms rather than media, which suggested their ability to utilize LDPE. Absorption bands of carbonyl, alkenyl, acyl, ester, primary-secondary alcohol, alkene groups and nitric oxides were found on the treated LDPE particles using Fourier-transform infrared spectroscopy. Fourier transform-ion cyclotron resonance mass spectrometry of the media indicated compositional shifts of the compounds after treatment (i.e., increase in the degree of unsaturation and increment in oxygen-to-carbon ratio) and presence of unsaturated hydrocarbons, polyketides, terpenoids, aliphatic/peptides, dicarboxylic acids, lipid-like compounds were hinted. The plastic degrading abilities of Bacillus siamensis ATKU1 suggest its probable application for large scale plastic bioremediation facility.
Collapse
Affiliation(s)
- Abhrajyoti Tarafdar
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| | - Jae-Ung Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, South Korea.
| | - Ji-Eun Jeong
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| | - Hanbyul Lee
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| | - Yerin Jung
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| | - Han Bin Oh
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, South Korea.
| | - Han Young Woo
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
232
|
Adamovsky O, Bisesi JH, Martyniuk CJ. Plastics in our water: Fish microbiomes at risk? COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100834. [PMID: 33930774 DOI: 10.1016/j.cbd.2021.100834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022]
Abstract
Water contaminated with plastic debris and leached plasticizers can be ingested or taken up by aquatic invertebrates and vertebrates alike, exerting adverse effects on multiple tissues including the gastrointestinal tract. As such, gut microbiomes of aquatic animals are susceptible targets for toxicity. Recent studies conducted in teleost fishes report that microplastics and plasticizers (e.g., phthalates, bisphenol A) induce gastrointestinal dysbiosis and alter microbial diversity in the gastrointestinal system. Here we synthesize the current state of the science regarding plastics, plasticizers, and their effects on microbiomes of fish. Literature suggests that microplastics and plasticizers increase the abundance of opportunistic pathogenic microorganisms (e.g. Actinobacillus, Mycoplasma and Stenotrophomonas) in fish and reveal that gamma-proteobacteria are sensitive to microplastics. Recommendations moving forward for the research field include (1) environmentally relevant exposures to improve understanding of the long-term impacts of microplastic and plasticizer contamination on the fish gastrointestinal microbiome; (2) investigation into the potential impacts of understudied polymers such as polypropylene, polyamide and polyester, and (3) studies with elastomers such as rubbers that are components of tire materials, as these chemicals often dominate plastic debris. Focus on both microplastics and the gut microbiota is intensifying in environmental toxicology, and herein lies an opportunity to improve evaluation of global ecological impacts associated with plastic contamination. This is important as the microbiota is intimately tied to an individual's health and fragmentation of microbial community networks and gut dysbiosis can result in disease susceptibility and early mortality events.
Collapse
Affiliation(s)
- Ondrej Adamovsky
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Joseph H Bisesi
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
233
|
Guimarães ATB, Charlie-Silva I, Malafaia G. Toxic effects of naturally-aged microplastics on zebrafish juveniles: A more realistic approach to plastic pollution in freshwater ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124833. [PMID: 33352420 DOI: 10.1016/j.jhazmat.2020.124833] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 05/26/2023]
Abstract
We aim at evaluating the toxicity of naturally-aged polystyrene microplastics (MPs) in Danio rerio at intermediate development stage. Animal models were stactically exposed to 4 × 104 and 4 × 106 microparticles/m3 for five days - this concentration is environmentally relevant. We evaluated MP's impact on animals' nutritional status and REDOX balance, as well as its potential neuro- and cytotoxic action on them. Initially, MPs did not induce any change in total carbohydrates, triglycerides and total cholesterol levels. MP accumulation was associated with oxidative stress induction, which was inferred by the nitrite and thiobarbituric acid reactive substances levels. Furthermore, we observed that such stress was not counterbalanced by increase in the assessed enzymatic (total glutathione, catalase and superoxide dismutase) and non-enzymatic (total thiols, reduced glutathione and DPPH radical scavenging activity) antioxidants. The association between high acetylcholinesterase activity and numerical changes in neuroblasts distributed on animals' body surface confirmed MP's neurotoxic potential. MP's ability to induce apoptosis and necrosis processes in animals' erythrocytes suggested its cytotoxic action; therefore, the present study is pioneer in providing insight on how MPs can affect young freshwater fish at environmental concentrations. It is essential knowing the magnitude of these pollutants' impact on the ichthyofauna.
Collapse
Affiliation(s)
- Abraão Tiago Batista Guimarães
- Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, Goiás, Brazil; Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urata Campus, Goiás, Brazil
| | - Ives Charlie-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Goiás, Brazil
| | - Guilherme Malafaia
- Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, Goiás, Brazil; Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urata Campus, Goiás, Brazil.
| |
Collapse
|
234
|
Koyuncuoğlu P, Erden G. Sampling, pre-treatment, and identification methods of microplastics in sewage sludge and their effects in agricultural soils: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:175. [PMID: 33751247 DOI: 10.1007/s10661-021-08943-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Microplastics are widely detected in wastewater treatment plants. They can remove microplastics from wastewaters with a high yield, but it means that microplastics are transferred and accumulated to sewage sludge. Lately, increasing attention has been paid to microplastics in raw and treated wastewaters. However, studies about quantification and identification of microplastics in sewage sludge are very scarce and need to be further investigated. Since the sludge-based microplastics are newly studied and are a challenging matrix due to high organic content, there is limited knowledge of sampling, pre-treatment methods, identification techniques, and expression units. Besides, treated sewage sludge is mostly used for soil amendment to improve soil fertility and it gives economic advantages. This situation creates a pathway for microplastics entering the soil environment with unknown consequences. To the best of our knowledge, microplastics have a large specific surface area, small size, and hydrophobicity which makes it a good adsorbent for other pollutants. Therefore, the combined effect of microplastics with adsorbed pollutants such as heavy metals, antibiotics, and persistent organic pollutants could give serious harm to soil safety and soil organisms. Herein, new developments in the methods for sampling, pre-treatment, and identification techniques of microplastics in sewage sludge were reviewed. Then, the abundance of microplastics, major polymer types, and shapes in sewage sludge were examined. Finally, the effects and ecological risks of microplastic pollution as a result of agricultural usage of sewage sludge in the soil environment have been summarized. Also, the main points for future research were highlighted.
Collapse
Affiliation(s)
- Pelin Koyuncuoğlu
- Engineering Faculty, Environmental Engineering Department, Pamukkale University, Kınıklı Campus, 20160, Denizli, Turkey.
| | - Gülbin Erden
- Engineering Faculty, Environmental Engineering Department, Pamukkale University, Kınıklı Campus, 20160, Denizli, Turkey
| |
Collapse
|
235
|
He J, Yang X, Liu H. Enhanced toxicity of triphenyl phosphate to zebrafish in the presence of micro- and nano-plastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143986. [PMID: 33307501 DOI: 10.1016/j.scitotenv.2020.143986] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/16/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Co-occurrence of microplastics and chemicals was a complex environmental issue, whereas little concerned on the effect of microplastics on the toxicity of chemicals. In this study, we studied the changes of toxicity of triphenyl phosphate (TPhP) to zebrafish, in the presence of micro-polystyrene (MPS, 5.8 μm) and nano-polystyrene (NPS, 46 nm). Results indicated that separate MPS and NPS had no acute toxicity and little reproductive toxicity on zebrafish. TPhP alone was a highly toxic substance with a median lethal concentration (LC50) of 976 μg/L, the presence of MPS and NPS did not have significant effect on the acute toxicity of TPhP. TPhP alone stimulated the enlargement of liver and gonad of fish (except the testis) by 1.25-2.12 fold, and the presence of NPS further aggravated this stimulation by 1.23-2.84 fold, while MPS did not. The gonadal histology indicated that comparing with TPhP alone, the addition of MPS and NPS further inhibited the process of spermatogenesis and oogenesis, even causing obvious lacunas in testis and atretic follicles oocytes in ovary. Meanwhile, TPhP did not significantly disturb the hormone homeostasis (E2/T) and vitellogenin (Vtg) content in fish, but the presence of NPS increased the E2/T ratio and Vtg content in male fish, while slightly decreased those in female fish, which implying that effects of PS was sex-dependent. As a result, the egg production, the fertilization rate and hatchability of eggs significantly reduced after combined TPhP+PS exposure, demonstrating that co-occurrence of TPhP and PS, especially NPS, could greatly impaired the reproductive performance of zebrafish.
Collapse
Affiliation(s)
- Junyi He
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China.
| |
Collapse
|
236
|
Schmidt R, Nachtnebel M, Dienstleder M, Mertschnigg S, Schroettner H, Zankel A, Poteser M, Hutter HP, Eppel W, Fitzek H. Correlative SEM-Raman microscopy to reveal nanoplastics in complex environments. Micron 2021; 144:103034. [PMID: 33621743 DOI: 10.1016/j.micron.2021.103034] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 11/19/2022]
Abstract
Nowadays "microplastics" (MPs) is an already well-known term and results of micro-sized particles found in consumer products or environments are regularly reported. However, studies of native MPs smaller than 1 μm, often referred to as nanoplastics (NPs), in analytically challenging environments are rare. In this study, a correlative approach between scanning electron microscopy and Raman microscopy is tested to meet the challenges of finding and identifying NPs in the 100 nm range in various environments, ranging from ideal (distilled water) to challenging (sea salt, human amniotic fluid). To test the viability of this approach in principle, standardized polystyrene beads (Ø 200 nm) are mixed into the various environments in different concentrations. Promising detection limits of 2 10-3 μg/L (distilled water), 20 μg/L (sea salt) and 200 μg/L (human amniotic fluid) are found. To test the approach in practices both sea salt and amniotic fluid are analysed for native NPs as well. Interestingly a nylon-NP was found in the amniotic fluid, maybe originating from the sampling device. However, the practical test reveals limitations, especially with regard to the reliable identification of unknown NPs by Raman microscopy, due to strong background signals from the environments. We conclude from this in combination with the excellent performance in distilled water that a combination of this approach with an advanced sample preparation technique would yield a powerful tool for the analysis of NPs in various environments.
Collapse
Affiliation(s)
- Ruth Schmidt
- Institute of Electron Microscopy and Nanoanalysis, NAWI Graz, Graz University of Technology, Steyrergasse 17, Austria; Graz Centre for Electron Microscopy, Steyrergasse 17, Austria.
| | | | | | - Sabrina Mertschnigg
- Institute of Electron Microscopy and Nanoanalysis, NAWI Graz, Graz University of Technology, Steyrergasse 17, Austria; Graz Centre for Electron Microscopy, Steyrergasse 17, Austria.
| | - Hartmuth Schroettner
- Institute of Electron Microscopy and Nanoanalysis, NAWI Graz, Graz University of Technology, Steyrergasse 17, Austria; Graz Centre for Electron Microscopy, Steyrergasse 17, Austria.
| | - Armin Zankel
- Institute of Electron Microscopy and Nanoanalysis, NAWI Graz, Graz University of Technology, Steyrergasse 17, Austria; Graz Centre for Electron Microscopy, Steyrergasse 17, Austria.
| | - Michael Poteser
- Centre for Public Health, Medical University Vienna, Abteilung für Umwelthygiene Und Umweltmedizin, Kinderspitalgasse 15, 1090, Wien, Austria.
| | - Hans-Peter Hutter
- Centre for Public Health, Medical University Vienna, Abteilung für Umwelthygiene Und Umweltmedizin, Kinderspitalgasse 15, 1090, Wien, Austria.
| | - Wolfgang Eppel
- Department of Obstetrics and Gynecology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Harald Fitzek
- Graz Centre for Electron Microscopy, Steyrergasse 17, Austria.
| |
Collapse
|
237
|
Tang J, Wu Z, Wan L, Cai W, Chen S, Wang X, Luo J, Zhou Z, Zhao J, Lin S. Differential enrichment and physiological impacts of ingested microplastics in scleractinian corals in situ. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124205. [PMID: 33086184 DOI: 10.1016/j.jhazmat.2020.124205] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 05/26/2023]
Abstract
Microplastics are emerging contaminants and widespread in the ocean, but their impacts on coral reef ecosystems are poorly understood, and in situ study is still lacking. In the present study, the distribution patterns of microplastics in the environment and inhabiting organisms were investigated along the east coast of Hainan Island, South China Sea, and the physiological impacts of the microplastics on scleractinian corals were analyzed. We documented average microplastic concentrations of 14.90 particlesL-1 in seawater, 343.04 particleskg-1 in sediment, 4.97 particlescm-2 in corals, and 0.67-3.12 particlescm-1 in Tridacnidae, Trochidae and fish intestines. Further analysis revealed that the characteristics of microplastics in the organisms were different from those in the environment, indicating preferential enrichment in the organisms. Furthermore, there was an obvious correlation between microplastic concentration and symbiotic density in corals. Furthermore, caspase3 activity was significantly positively correlated with the microplastic content in the small-polyp coral Pocillopora damicornis, but the large-polyp coral Galaxea fascicularis showed higher tolerance to microplastics. Taken together, our results suggest that microplastics are selectively enriched in corals and other reef-dwellers, in which they exact differential stress (apoptotic) effects, with the potential to impact the coral-Symbiodiniaceae symbiosis and alter the coral community structure.
Collapse
Affiliation(s)
- Jia Tang
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhongjie Wu
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, China
| | - Lu Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, Hainan, China
| | - Wenqi Cai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, Hainan, China
| | - Shiquan Chen
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, China
| | - Xingjuan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, Hainan, China
| | - Jian Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, Hainan, China
| | - Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, Hainan, China.
| | - Jianmin Zhao
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| |
Collapse
|
238
|
Zhang L, Xie Y, Zhong S, Liu J, Qin Y, Gao P. Microplastics in freshwater and wild fishes from Lijiang River in Guangxi, Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142428. [PMID: 33032132 DOI: 10.1016/j.scitotenv.2020.142428] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) are ubiquitous contaminants of emerging concern that have gained great attention recently due to their widespread appearance in the environment and potential adverse effects on living biota. Lijiang in Guangxi in China is a world-famous place of tourist attraction and attracted thousands of visitors every year. However, little is known regarding occurrence and distribution of MPs in freshwater and wild fishes in the Lijiang River. In this study, we used stereoscopy and micro Fourier transform infrared spectrometry (μ-FTIR) methods to investigate the abundance, morphotype, size distribution, and polymer type of MPs in freshwater collected by plankton nets and bulk sampling by pumping and filtration. Results showed that abundance of MPs in freshwater with bulk sampling by pumping (67.5 ± 65.6 items/m3) was significantly higher than those using plankton nets (0.67 ± 0.41 items/m3 and 0.15 ± 0.15 items/m3 for mesh sizes of 75 μm and 300 μm, respectively). An average abundance of MPs detected in wild fishes was 0.6 ± 0.6 items/individual, of which, a majority was found in the gastrointestinal tracts. Large-sized (>0.3 mm) and colored MPs in morphotypes of flakes and fibers dominated in both freshwater and wild fishes. Polypropylene-polyethylene copolymer and polyethylene were the top two abundant polymer types of MPs in freshwater, while polyethylene terephthalate dominated in wild fishes. This study provides evidences for our better understanding of pollution status of MPs in the Lijiang River.
Collapse
Affiliation(s)
- Lishan Zhang
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, China
| | - Yuanshan Xie
- College of Environment and Resources, Guangxi Normal University, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, China
| | - Shan Zhong
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, China
| | - Junyong Liu
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Yan Qin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
239
|
Guimarães ATB, de Lima Rodrigues AS, Pereira PS, Silva FG, Malafaia G. Toxicity of polystyrene nanoplastics in dragonfly larvae: An insight on how these pollutants can affect bentonic macroinvertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141936. [PMID: 32889289 DOI: 10.1016/j.scitotenv.2020.141936] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Although nanoplastics (NPs) are known to be toxic to several groups of animals, the effects of such a toxicity on freshwater benthic macroinvertebrate communities remain unknown. Thus, the aim of the current study is to test the hypothesis that polystyrene nanoplastics (PS NPs) (34 μg/L - 48 h of exposure) lead to biochemical damage in Aphylla williamsoni larvae. Data have evidenced high bioaccumulation factor in the analyzed individuals; this finding indicates that, similar to sediments, water is also part of aquatic systems and favors PS NPs retention in dragonfly larvae. Despite the lack of evidence about the interference of these pollutants in the nutritional status of the analyzed animals, their bioaccumulation was associated with REDOX imbalance featured by concomitant increase in the number of evaluated oxidative stress biomarkers (nitric oxide and lipid peroxidation) and antioxidants (antioxidant activity against the DPPH radical and the superoxide dismutase enzyme). On the other hand, the reduced acetylcholinesterase activity observed in larvae exposed to PS NPs has suggested the neurotoxic effect of these pollutants, with potential impact on their nerve and neuromuscular functions. Therefore, the current study is pioneer in showing that PS NPs can affect the health of the investigated larvae, even at small concentrations, for short exposure-time; this outcome reinforces the ecotoxicological risk of these pollutants for freshwater benthic macroinvertebrates.
Collapse
Affiliation(s)
- Abraão Tiago Batista Guimarães
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil; Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil
| | - Paulo Sérgio Pereira
- Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil
| | - Fabiano Guimarães Silva
- Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil; Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil.
| |
Collapse
|
240
|
Lê QT, Ly NH, Kim MK, Lim SH, Son SJ, Zoh KD, Joo SW. Nanostructured Raman substrates for the sensitive detection of submicrometer-sized plastic pollutants in water. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123499. [PMID: 32739725 DOI: 10.1016/j.jhazmat.2020.123499] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 05/24/2023]
Abstract
We prepared novel Raman substrates for the sensitive detection of submicron-sized plastic spheres in water. Anisotropic nanostar dimer-embedded nanopore substrates were prepared for the efficient identification of submicron-sized plastic spheres by providing internal hot spots of electromagnetic field enhancements at the tips of nanoparticles. Silver-coated gold nanostars (AuNSs@Ag) were inserted into anodized aluminum oxide (AAO) nanopores for enhanced microplastic (MP) detection. We found that surface-enhanced Raman scattering (SERS) substrates of AuNSs@Ag@AAO yielded stronger signals at the same weight percentages for polystyrene MP particles with diameters as small as 0.4 μm, whereas such behaviors could not be observed for larger MPs (diameters of 0.8 μm, 2.3 μm, and 4.8 μm). The detection limit of the submicrometer-sized 0.4 μm in our Raman measurements were estimated to be 0.005% (∼0.05 mg/g =50 ppm) along with a fast detection time of only a few min without any sample pretreatments. Our nano-sized dimensional matching substrates may provide a useful tool for the application of SERS substrates for submicrometer MP pollutants in water.
Collapse
Affiliation(s)
- Quang Trung Lê
- Department of Information Communication Convergence Technology, Soongsil University, Seoul, 06978, Republic of Korea
| | - Nguyễn Hoàng Ly
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea
| | - Moon-Kyung Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soon Hyuk Lim
- Department of Chemistry, Gachon University, Seongnam, 13120, Republic of Korea
| | - Sang Jun Son
- Department of Chemistry, Gachon University, Seongnam, 13120, Republic of Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Woo Joo
- Department of Information Communication Convergence Technology, Soongsil University, Seoul, 06978, Republic of Korea; Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea.
| |
Collapse
|
241
|
Dąbrowska J, Sobota M, Świąder M, Borowski P, Moryl A, Stodolak R, Kucharczak E, Zięba Z, Kazak JK. Marine Waste-Sources, Fate, Risks, Challenges and Research Needs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E433. [PMID: 33430467 PMCID: PMC7827083 DOI: 10.3390/ijerph18020433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 01/01/2023]
Abstract
The article presents a comprehensive and cross-cutting review of key marine waste issues, taking into account: sources, fate, risks, transport pathways, threats, legislation, current challenges, and knowledge gaps. The growing amount of both human-created waste in seas and oceans and waste reaching marine ecosystems from land is one of today's challenges for the global economy and the European Union. It is predicted that if no decisive steps are taken to limit the amount of this type of waste, there may be more plastic waste than fish in the oceans after 2050. The influence of microplastics and nanoplastics on living organisms remains undiagnosed. Within the international and EU law, solutions are being developed to properly manage waste on board ships and to reduce the impact of processes related to the recycling of the vessels on the environment. Currently, over 80% of ships are dismantled in the countries of South Asia, in conditions that threaten the environment and the safety of workers. After World War 2, large quantities of chemical weapons were deposited in the seas. Steel containers with dangerous substances residing in the sea for over 70 years have begun leaking, thus polluting water. For many years, radioactive waste had also been dumped into marine ecosystems, although since 1993 there has been a total ban on such disposal of radionuclides. The impact of the COVID-19 pandemic on marine waste generation has also been presented as a significant factor influencing marine waste generation and management.
Collapse
Affiliation(s)
- Jolanta Dąbrowska
- Institute of Building Engineering, Wrocław University of Environmental and Life Sciences, 50-363 Wrocław, Poland;
| | - Marcin Sobota
- Institute of Landscape Architecture, Wrocław University of Environmental and Life Sciences, 50-357 Wrocław, Poland;
| | - Małgorzata Świąder
- Institute of Spatial Management, Wrocław University of Environmental and Life Sciences, 50-357 Wrocław, Poland; (M.Ś.); (J.K.K.)
| | - Paweł Borowski
- Faculty of Marine Engineering, Maritime University of Szczecin, 71-650 Szczecin, Poland;
| | - Andrzej Moryl
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363 Wrocław, Poland; (A.M.); (R.S.)
| | - Radosław Stodolak
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363 Wrocław, Poland; (A.M.); (R.S.)
| | - Ewa Kucharczak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Zofia Zięba
- Institute of Building Engineering, Wrocław University of Environmental and Life Sciences, 50-363 Wrocław, Poland;
| | - Jan K. Kazak
- Institute of Spatial Management, Wrocław University of Environmental and Life Sciences, 50-357 Wrocław, Poland; (M.Ś.); (J.K.K.)
| |
Collapse
|
242
|
Are Microplastics Impairing Marine Fish Larviculture?—Preliminary Results with Argyrosomus regius. WATER 2021. [DOI: 10.3390/w13010104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The presence of small-sized (<300 µm) microplastics (MPs) in aquaculture facilities may threaten finfish hatchery, as their (in)voluntary ingestion by fish larvae may compromise nutritional requirements during early ontogeny, and consequently larval health and performance. Thus, we addressed the short-term effects (7 h) of polyethylene microplastics (0.1, 1.0, 10 mg/L, PE-MPs) in meagre larvae Argyrosomus regius (15 dph) in the presence/absence of food. Larval feeding behavior, oxidative stress status, neurotoxicity, and metabolic requirements were evaluated. Results showed that meagre larvae ingested PE-MPs regardless of their concentration, decreasing in the presence of food (Artemia metanauplii). The presence of PE-MPs compromised larval feeding activity at the highest concentration. Under starvation, exposed larvae activated the antioxidant defenses by increasing the total glutathione levels and inhibiting catalase activity, which seemed efficient to prevent oxidative damage. Such larvae also presented increased energy consumption potentially related to oxidative damage prevention and decreased neurotransmission. Biochemical responses of fed larvae showed a similar trend, except for LPO, which remained unaffected, except at 0.1 mg/PE-MPs/L. Our results suggest that small-sized MPs in finfish hatcheries may compromise larvae nutritional requirements, but at considerably higher levels than those reported in marine environments. Nevertheless, cumulative adverse effects due to lower MPs concentrations may occur.
Collapse
|
243
|
Schmid C, Cozzarini L, Zambello E. Microplastic's story. MARINE POLLUTION BULLETIN 2021; 162:111820. [PMID: 33203604 DOI: 10.1016/j.marpolbul.2020.111820] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
The problem of microplastic pollution is now the order of the day in front of everyone's eyes affecting the environment and the health of leaving creature. This work aims to retrace the history of microplastics in a critical way through a substantial bibliographic collection, defining the points still unresolved and those that can be resolved. Presence of marine litter in different environments is reviewed on a global scale, focusing in particular on micro and macro plastics definition, classification and characterization techniques.
Collapse
Affiliation(s)
- Chiara Schmid
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6A, 34127 Trieste, Italy
| | - Luca Cozzarini
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6A, 34127 Trieste, Italy.
| | - Elena Zambello
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6A, 34127 Trieste, Italy
| |
Collapse
|
244
|
Anagnosti L, Varvaresou A, Pavlou P, Protopapa E, Carayanni V. Worldwide actions against plastic pollution from microbeads and microplastics in cosmetics focusing on European policies. Has the issue been handled effectively? MARINE POLLUTION BULLETIN 2021; 162:111883. [PMID: 33310543 DOI: 10.1016/j.marpolbul.2020.111883] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 05/18/2023]
Abstract
Microbeads are solid primary microplastics < 5 mm in diameter that are added to cosmetic products for cleansing and/or exfoliation of the skin. After use, they are discharged into the drain and end up in Wastewater Treatment Plants (WWTPs), from which they can escape into waters. Once disposed, there is no efficient method of recovery and the environmental conditions do not allow full biodegradation. Focusing mainly on the possible effect of microbeads on the environment and the human health, and taking into account that there have always been alternatives with similar cost, scientists suggested banning microbeads from cosmetic products. Despite the increasing knowledge on the microplastics' effects, the pressure from non-governmental organizations (NGO's) and the increasing public concern, few European and other countries worldwide have taken legislative steps against microbeads, and even fewer against other microplastics used in cosmetic products, mainly because it is a common belief that cosmetic industries responded massively to the call for a phase-out. Although EU acted soon after scientists focused on microbeads' effects by restricting cosmetics with microbeads to bare the EU Ecolabel in 2014, there is still no European-wide ban, which will probably take place as of 2022. Present study offers a thorough literature review on the presence of microbeads in cosmetics up to date, focusing primarily on the actions against their use, and questioning whether future pollution from microbeads or/and microplastics in cosmetics has been successfully handled.
Collapse
Affiliation(s)
- Lamprini Anagnosti
- Medical School, University of Athens, 75 Mikras Asias Str., Goudi, Athens, Greece
| | - Athanasia Varvaresou
- Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, University of West Attica, 28 Ag. Spyridonos Str., Egaleo, Greece; Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, University of West Attica, 28 Ag. Spyridonos Str., Egaleo, Greece.
| | - Panagoula Pavlou
- Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, University of West Attica, 28 Ag. Spyridonos Str., Egaleo, Greece.
| | - Evangelia Protopapa
- Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, University of West Attica, 28 Ag. Spyridonos Str., Egaleo, Greece; Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, University of West Attica, 28 Ag. Spyridonos Str., Egaleo, Greece
| | - Vilelmine Carayanni
- Director of the Laboratory of Statistical Modeling and Educational Technology in Public and Environmental Health, School of Public and Community Health, University of West Attica, 28 Ag. Spyridonos Str., Egaleo, Greece
| |
Collapse
|
245
|
Suman KH, Haque MN, Uddin MJ, Begum MS, Sikder MH. Toxicity and biomarkers of micro-plastic in aquatic environment: a review. Biomarkers 2020; 26:13-25. [PMID: 33305964 DOI: 10.1080/1354750x.2020.1863470] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Microplastics (MPs; <5 mm) are found in all aquatic environments. Due to harmful impacts, MPs pose a great threat to the aquatic ecology. Therefore, this review aims to provide an overview of the risk, bioavailability, and toxicity of MPs in aquatic organisms. Various factors affecting MPs bioavailability and level of risks at cellular and molecular level on aquatic organisms are comprehensively discussed. More specifically biomarkers for antioxidant response (superoxide dismutase, catalase, glutathione peroxidase, reductase, and glutathione S-transferase), neurotoxic impairment (acetylcholinesterase), lysosomal activity alteration, and genotoxicity have been discussed in detail. Biomarkers are powerful tool in the monitoring programme, but the collection of literature on biomarkers for MPs is limited. Thus, here we demonstrate how to evaluate MPs impact, in monitoring programme, on organisms using biomarkers in aquatic environment. This review would broaden the existing knowledge on the toxic effect and biomarkers of MPs and offer research priorities for future studies.
Collapse
Affiliation(s)
- Kamrul Hassan Suman
- ABEx Bio-Research Center, Dhaka, Bangladesh.,Department of Fisheries Biology and Aquatic Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Niamul Haque
- ABEx Bio-Research Center, Dhaka, Bangladesh.,Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Md Jamal Uddin
- ABEx Bio-Research Center, Dhaka, Bangladesh.,Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Most Shirina Begum
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
246
|
da Costa Araújo AP, de Andrade Vieira JE, Malafaia G. Toxicity and trophic transfer of polyethylene microplastics from Poecilia reticulata to Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140217. [PMID: 32623154 DOI: 10.1016/j.scitotenv.2020.140217] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The potential transfer of microplastics (MPs) between vertebrates belonging to the same taxonomic group, and the impact of such a transfer on higher trophic levels remains little explored. An experimental food chain with two fish species was installed to test the hypothesis that polyethylene MPs (PE MPs) can accumulate in animals and cause behavioral, mutagenic and cytotoxic changes at upper trophic levels. Poecilia reticulata fry were exposed to MPs for 48 h and, subsequently, offered (as food) to Danio rerio adults for 10 days to simulate an upper level food chain. PE MPs quantification in fry and in different Danio rerio tissues evidenced their accumulation at the two assessed trophic levels. This finding suggested their absorption, adherence and translocation from one organism to another. The accumulation seen in D. rerio directly exposed to MPs was associated with behavioral disorders at upper trophic level. These animals presented behavior suggestive of anti-predatory response deficit when they were confronted with a potential aquatic predator (Geophagus brasiliensis). This finding was inferred through lower school cohesion, shallower school depth and shorter distance from the potential predator. In addition, animals exposed to MPs recorded higher nuclear abnormality rates and changes in the size and shape of erythrocytes and in their nuclei; this outcome has suggested mutagenic and cytotoxic effects, respectively. Based on the current results, MPs are transferred through a food chain that only involves two vertebrates. MPs enter the vertebrates' organs, change their behavior and induce mutagenic and cytotoxic processes in animals, which can cause significant ecological consequences in freshwater ecosystems.
Collapse
Affiliation(s)
- Amanda Pereira da Costa Araújo
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Julya Emmanuela de Andrade Vieira
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil.
| |
Collapse
|
247
|
Sequeira IF, Prata JC, da Costa JP, Duarte AC, Rocha-Santos T. Worldwide contamination of fish with microplastics: A brief global overview. MARINE POLLUTION BULLETIN 2020; 160:111681. [PMID: 33181954 DOI: 10.1016/j.marpolbul.2020.111681] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Widespread contamination of microplastics may lead to internalization in fish. This literature review from March 2019 to March 2020 details that a median of 60% of fish, belonging to 198 species captured in 24 countries, contain microplastics in their organs. Carnivores species ingested more microplastics than omnivores. Only 14% of fish were from aquaculture. Most studies focused on digestive systems, with presence in other organs currently being insufficiently assessed. Based on this assessment, knowledge gaps that should be addressed in future studies were identified.
Collapse
Affiliation(s)
- Inês F Sequeira
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Joana C Prata
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João P da Costa
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
248
|
Daniel DB, Ashraf PM, Thomas SN. Microplastics in the edible and inedible tissues of pelagic fishes sold for human consumption in Kerala, India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115365. [PMID: 32814179 DOI: 10.1016/j.envpol.2020.115365] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/20/2020] [Accepted: 08/02/2020] [Indexed: 05/26/2023]
Abstract
Microplastics in commercially important seafood species is an emerging area of food safety concern. While there have been reports of plastic particles in the gastrointestinal tract of several species, presence of microplastics in edible fish tissues has not yet been reported from India. This study examined the presence of microplastics in the edible (muscle and skin) and inedible (gill and viscera) tissues of nine commercially important pelagic fish species from Kerala, India. A total of 163 particles consisting mainly of fragments (58%) were isolated. Out of 270 fishes analysed (n = 30 per species), 41.1% of the fishes had microplastics in their inedible tissues while only 7% of fishes had microplastics in their edible tissues. The quantity of microplastics in inedible tissue was significantly larger in filter feeders than, that in visual predators (p < 0.05). The average abundance of microplastics in edible tissues was 0.07 ± 0.26 items/fish (i.e., 0.005 ± 0.02 items/g) and was 0.53 ± 0.77 items/fish (i.e., 0.054 ± 0.098 items/g) in inedible tissues. The results suggest the possibility of human intake of microplastics by the consumption of pelagic fishes from this region, albeit in small quantities.
Collapse
Affiliation(s)
- Damaris Benny Daniel
- School of Industrial Fisheries, Cochin University of Science and Technology, Lake Side Campus, India.
| | - P Muhamed Ashraf
- ICAR - Central Institute of Fisheries Technology, Matsyapuri P.O, Cochin, India
| | - Saly N Thomas
- ICAR - Central Institute of Fisheries Technology, Matsyapuri P.O, Cochin, India
| |
Collapse
|
249
|
Pagter E, Frias J, Kavanagh F, Nash R. Differences in microplastic abundances within demersal communities highlight the importance of an ecosystem-based approach to microplastic monitoring. MARINE POLLUTION BULLETIN 2020; 160:111644. [PMID: 32920253 DOI: 10.1016/j.marpolbul.2020.111644] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 05/24/2023]
Abstract
Plastic pollution is prevalent in all habitats and microplastic ingestion has been recorded in several different species examined to date. However, most studies have focused solely on commercial species. This study investigates microplastics (MPs) by assessing the levels present in a mixed demersal trawl at two sites in a coastal embayment. MPs were recovered from species' gastrointestinal tracts and polymers identified with μFTIR spectroscopic analysis. Particles recovered comprised 20% natural fibres. The majority of MPs were identified as PE, PVDF, and PETE. Results show an average MP range of 0.11-4.67 MPs individual-1. Fluctuating trendlines for MPs within species suggest that their bioavailability is influenced by several factors. Individual species show significant differences in ingested MP between trawls; however, when the entire trawl community is assessed there is no significant difference between sites. These results suggest that future studies should follow an ecosystem-based approach to monitor MPs.
Collapse
Affiliation(s)
- Elena Pagter
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Old Dublin Rd., Galway H91 T8NW, Ireland.
| | - João Frias
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Old Dublin Rd., Galway H91 T8NW, Ireland
| | - Fiona Kavanagh
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Old Dublin Rd., Galway H91 T8NW, Ireland
| | - Róisín Nash
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Old Dublin Rd., Galway H91 T8NW, Ireland
| |
Collapse
|
250
|
Wang T, Hu M, Song L, Yu J, Liu R, Wang S, Wang Z, Sokolova IM, Huang W, Wang Y. Coastal zone use influences the spatial distribution of microplastics in Hangzhou Bay, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115137. [PMID: 32650204 DOI: 10.1016/j.envpol.2020.115137] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/19/2020] [Accepted: 06/27/2020] [Indexed: 05/23/2023]
Abstract
Microplastic pollution in estuarine and coastal environments has recently been characterised in several countries but few researchers have addressed the influence of different forms of coastal zone use on the distribution of microplastic. Here, microplastic particles were sampled in Hangzhou Bay, which is heavily influenced by a range of human activities, and their abundance, size, and polymer type characterised. The abundance of microplastics was 0.14 ± 0.12 items/m3 in water, 84.3 ± 56.6 items/kg dry weight of sediment, and between 0.25 ± 0.14 and 1.4 ± 0.37 items/individual in biota. These results show that Hangzhou Bay has a low level of microplastic contamination compared to other coastal systems in China, although abundance was spatially variable within the bay; relatively higher microplastic abundances were found in the southern area of the bay, which has adjacent industrial and urban land-use zones, while lower abundances were observed in the central and northern bay areas where mariculture, fisheries, and mineral and energy industries are most common. The relatively low microplastic abundance observed in the biota samples is consistent with the generally low values for the seawater and sediment samples. Pellets were the most common of four particle-shape classes (fibres, fragments, films, and pellets) in surface seawater, while fibres were most abundant in sediment and biota. Smaller-sized microplastics (<1.0 mm) were dominant in all samples. Microplastics in the surface seawater were dominated by low-density polypropylene and polyethylene particles, while rayon was dominant in the sediment and biota samples. Our results demonstrate that regional variability in anthropogenic activity and land-use are important controls on the spatial pattern of microplastic pollution in Hangzhou Bay.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Marine Ecosystem Dynamics and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
| | - Lili Song
- Zhejiang Ocean Monitoring and Forecasting Center, Hangzhou, 310007, China
| | - Jun Yu
- Zhejiang Ocean Monitoring and Forecasting Center, Hangzhou, 310007, China
| | - Ruijuan Liu
- Zhejiang Ocean Monitoring and Forecasting Center, Hangzhou, 310007, China
| | - Shixiu Wang
- Key Laboratory of Marine Ecosystem Dynamics and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
| | - Zhifu Wang
- Key Laboratory of Engineering Oceanography, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, 18051, Germany
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China.
| | - Youji Wang
- Key Laboratory of Marine Ecosystem Dynamics and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
| |
Collapse
|