201
|
Wang M, Fu Y, Chen G, Shi Y, Li X, Zhang H, Shen Y. Fabrication and characterization of carboxymethyl chitosan and tea polyphenols coating on zein nanoparticles to encapsulate β-carotene by anti-solvent precipitation method. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.10.036] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
202
|
|
203
|
Pascoli M, de Lima R, Fraceto LF. Zein Nanoparticles and Strategies to Improve Colloidal Stability: A Mini-Review. Front Chem 2018; 6:6. [PMID: 29473032 PMCID: PMC5810256 DOI: 10.3389/fchem.2018.00006] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/10/2018] [Indexed: 11/28/2022] Open
Abstract
Zein, a protein extracted from maize, can be employed to easily produce nanoscale particles suitable for use as carrier systems. This review investigates the main methods for obtaining zein nanoparticles, as well as the problems and options available in the development of stable colloidal suspensions. Considerable gaps were identified in the literature concerning this topic, with studies being unclear about the factors that affect the stability of zein particles. In the vast majority of cases, no data are presented in relation to the stability of the formulations over time. It could be concluded that in order to produce a high quality system, detailed evaluation is required, considering factors including the zein concentration, pH, ionic strength, thermal treatment of the protein prior to preparation of the nanoparticles, strategies employing other materials as coatings, and the storage conditions. It is extremely important that these aspects should be considered during product development, prior to commercial-scale manufacture.
Collapse
Affiliation(s)
- Mônica Pascoli
- Environmental Chemistry, Institute of Science and Technology, São Paulo State University (UNESP), Sorocaba, Brazil
| | - Renata de Lima
- Department of Biotechnology, University of Sorocaba, Sorocaba, Brazil
| | - Leonardo F Fraceto
- Environmental Chemistry, Institute of Science and Technology, São Paulo State University (UNESP), Sorocaba, Brazil
| |
Collapse
|
204
|
Chitosan-Starch Films with Natural Extracts: Physical, Chemical, Morphological and Thermal Properties. MATERIALS 2018; 11:ma11010120. [PMID: 29329275 PMCID: PMC5793618 DOI: 10.3390/ma11010120] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
Abstract
The aim of this study is to analyze the properties of a series of polysaccharide composite films, such as apparent density, color, the presence of functional groups, morphology, and thermal stability, as well as the correlation between them and their antimicrobial and optical properties. Natural antioxidants such as anthocyanins (from cranberry; blueberry and pomegranate); betalains (from beetroot and pitaya); resveratrol (from grape); and thymol and carvacrol (from oregano) were added to the films. Few changes in the position and intensity of the FTIR spectra bands were observed despite the low content of extract added to the films. Due to this fact, the antioxidants were extracted and identified by spectroscopic analysis; and they were also quantified using the Folin-Denis method and a gallic acid calibration curve, which confirmed the presence of natural antioxidants in the films. According to the SEM analysis, the presence of natural antioxidants has no influence on the film morphology because the stretch marks and white points that were observed were related to starch presence. On the other hand, the TGA analysis showed that the type of extract influences the total weight loss. The overall interpretation of the results suggests that the use of natural antioxidants as additives for chitosan-starch film preparation has a prominent impact on most of the critical properties that are decisive in making them suitable for food-packing applications.
Collapse
|
205
|
Xiong W, Ren C, Li J, Li B. Enhancing the photostability and bioaccessibility of resveratrol using ovalbumin–carboxymethylcellulose nanocomplexes and nanoparticles. Food Funct 2018; 9:3788-3797. [DOI: 10.1039/c8fo00300a] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The objective of this study was to investigate the impact of encapsulating resveratrol in ovalbumin (OVA)–carboxymethylcellulose (CMC) nanocomplexes or nanoparticles on its photostability and bioaccessibility.
Collapse
Affiliation(s)
- Wenfei Xiong
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
| | - Cong Ren
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
| | - Jing Li
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
| | - Bin Li
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
| |
Collapse
|
206
|
Raei M, Shahidi F, Farhoodi M, Jafari SM, Rafe A. Application of whey protein-pectin nano-complex carriers for loading of lactoferrin. Int J Biol Macromol 2017; 105:281-291. [DOI: 10.1016/j.ijbiomac.2017.07.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 11/17/2022]
|
207
|
Co-encapsulation of curcumin and resveratrol into novel nutraceutical hyalurosomes nano-food delivery system based on oligo-hyaluronic acid-curcumin polymer. Carbohydr Polym 2017; 181:1033-1037. [PMID: 29253929 DOI: 10.1016/j.carbpol.2017.11.046] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 01/25/2023]
Abstract
In this work, in order to enhance the stability, bioavailability and antioxidant activity of insoluble antioxidants used into juice, yoghourt and nutritional supplements, the oligo-hyalurosomes nano-delivery system (CRHs) based on oligo-hyaluronic acid -curcumin (oHC) polymer loaded curcumin(Cur) and resveratrol (Res) was fabricated with new nanotechnolgy. The rosy biodegradable amphiphilic oHC polymer was successfully synthesized and used to fabricate the hyalurosomes containing both Cur and Res, called CRHs. The CRHs can spontaneously self-assemble into nano-sized spherical shape of average particle size 134.5±5.1nm and Zeta potential -29.4±1.2 at pH 7.4 PBS conditions. In vitro gastrointestinal release test showed a perfect stability and outstanding sustained release character. Moreover, compared to the single formulations and liposomes, CRHs showed a dose-dependent manner with a higher radical scavenging activity. Therefore, the novel CRHs nano-food manifested the hopeful properties for the new effective gastrointestinal formulation and promising new nano-food delivery system in the use of juice, yoghourt and nutritional supplements.
Collapse
|
208
|
Salgado M, Rodríguez-Rojo S, Cocero MJ. Barley and yeast β-glucans as new emulsifier agents for the development of aqueous natural antifungal formulations. Carbohydr Polym 2017; 174:1114-1120. [DOI: 10.1016/j.carbpol.2017.07.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023]
|
209
|
Dvorakova M, Landa P. Anti-inflammatory activity of natural stilbenoids: A review. Pharmacol Res 2017; 124:126-145. [DOI: 10.1016/j.phrs.2017.08.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 01/20/2023]
|
210
|
Gu L, Su Y, Zhang Z, Zheng B, Zhang R, McClements DJ, Yang Y. Modulation of Lipid Digestion Profiles Using Filled Egg White Protein Microgels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6919-6928. [PMID: 28742332 DOI: 10.1021/acs.jafc.7b02674] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Colloidal delivery systems are required to encapsulate, protect, and release active food ingredients, such as vitamins, nutraceuticals, and minerals. In this study, lipid droplets were encapsulated within biopolymer microgels fabricated from egg white proteins using an injection-gelation process. Confocal fluorescence microscopy indicated that lipid droplets were dispersed within a network of cross-linked proteins within the microgels. The properties of the lipid-loaded microgels were compared to those of simple oil-in-water emulsions stabilized by egg white proteins. Light scattering and microscopy measurements indicated that both delivery systems exhibited good stability under acid conditions (pH 3-5) but aggregated at higher pH values as a result of a reduction in electrostatic repulsion. Simulated gastrointestinal tract studies indicated that lipid droplets encapsulated within protein microgels were digested more slowly than free lipid droplets. Our results therefore suggest that egg white protein microgels may be useful for encapsulation and controlled release of hydrophobic bioactive agents.
Collapse
Affiliation(s)
- Luping Gu
- Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Yujie Su
- Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Zipei Zhang
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Bingjing Zheng
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Ruojie Zhang
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - David Julian McClements
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Yanjun Yang
- Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
211
|
Qiu C, Wang B, Wang Y, Teng Y. Effects of colloidal complexes formation between resveratrol and deamidated gliadin on the bioaccessibility and lipid oxidative stability. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.02.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
212
|
Russo Krauss I, Imperatore R, De Santis A, Luchini A, Paduano L, D'Errico G. Structure and dynamics of cetyltrimethylammonium chloride-sodium dodecylsulfate (CTAC-SDS) catanionic vesicles: High-value nano-vehicles from low-cost surfactants. J Colloid Interface Sci 2017; 501:112-122. [PMID: 28437699 DOI: 10.1016/j.jcis.2017.04.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022]
Abstract
HYPOTHESIS Catanionic vesicles based on large-scale produced surfactants represent a promising platform for the design of innovative, effective and relatively inexpensive nano-vehicles for a variety of actives. Structural, dynamic and functional behavior of these aggregates is finely tuned by the molecular features of their components and can be opportunely tailored for their applications as drug carriers. EXPERIMENTS Here we investigate the aggregates formed by CTAC and SDS, two of the most diffused surfactants, by means of Dynamic Light Scattering, Small Angle Neutron Scattering and Electron Paramagnetic Resonance spectroscopy (EPR). The exploitation of these aggregates as nano-vehicles is explored using the poorly water-soluble antioxidant trans-resveratrol (t-RESV), testing t-RESV solubility and antioxidant activity by means of UV, fluorescence spectroscopy and EPR. FINDINGS The presence of a large stability region of catanionic vesicles on the CTAC-rich side of the phase diagram is highlighted and interpreted in terms of the mismatch between the lengths of the surfactant tails and of first reported effects of the chloride counterions. CTAC-SDS vesicles massively solubilize t-RESV, which in catanionic vesicles exerts a potent antioxidant and radical-scavenging activity. This behavior arises from the positioning of the active at the surface of the vesicular aggregates thus being sufficiently exposed to the external medium.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department of Chemical Sciences, University of Naples ''Federico II'', Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy; CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), via della Lastruccia 3, I-50019 Florence, Italy
| | - Riccardo Imperatore
- Department of Chemical Sciences, University of Naples ''Federico II'', Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy; CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), via della Lastruccia 3, I-50019 Florence, Italy
| | - Augusta De Santis
- Department of Chemical Sciences, University of Naples ''Federico II'', Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy; CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), via della Lastruccia 3, I-50019 Florence, Italy
| | - Alessandra Luchini
- Department of Chemical Sciences, University of Naples ''Federico II'', Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy; CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), via della Lastruccia 3, I-50019 Florence, Italy; Institut Laue-Langevin, BP 156, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples ''Federico II'', Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy; CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), via della Lastruccia 3, I-50019 Florence, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples ''Federico II'', Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy; CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), via della Lastruccia 3, I-50019 Florence, Italy.
| |
Collapse
|
213
|
Wu J, Zhou P, Zhang X, Dong M. Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli. J Ind Microbiol Biotechnol 2017; 44:1083-1095. [PMID: 28324236 DOI: 10.1007/s10295-017-1937-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/12/2017] [Indexed: 12/18/2022]
Abstract
Resveratrol has been the subject of numerous scientific investigations due to its health-promoting activities against a variety of diseases. However, developing feasible and efficient microbial processes remains challenging owing to the requirement of supplementing expensive phenylpropanoic precursors. Here, various metabolic engineering strategies were developed for efficient de novo biosynthesis of resveratrol. A recombinant malonate assimilation pathway from Rhizobium trifolii was introduced to increase the supply of the key precursor malonyl-CoA and simultaneously, the clustered regularly interspaced short palindromic repeats interference system was explored to down-regulate fatty acid biosynthesis pathway to inactivate the malonyl-CoA consumption pathway. Down-regulation of fabD, fabH, fabB, fabF, fabI increased resveratrol production by 80.2, 195.6, 170.3, 216.5 and 123.7%, respectively. Furthermore, the combined effect of these genetic perturbations was investigated, which increased the resveratrol titer to 188.1 mg/L. Moreover, the efficiency of this synthetic pathway was improved by optimizing the expression level of the rate-limiting enzyme TAL based on reducing mRNA structure of 5' region. This further increased the final resveratrol titer to 304.5 mg/L. The study described here paves the way to the development of a simple and economical process for microbial production of resveratrol.
Collapse
Affiliation(s)
- Junjun Wu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu, People's Republic of China.,Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Peng Zhou
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu, People's Republic of China.,Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xia Zhang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu, People's Republic of China.,Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu, People's Republic of China. .,Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|