201
|
Borgonovi TF, Casarotti SN, Penna ALB. Lacticaseibacillus casei SJRP38 and buriti pulp increased bioactive compounds and probiotic potential of fermented milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
202
|
Guo CE, Cui Q, Cheng J, Chen J, Zhao Z, Guo R, Dai X, Wei Z, Li W. Probiotic-fermented Chinese dwarf cherry [Cerasus humilis (Bge.) Sok.] juice modulates the intestinal mucosal barrier and increases the abundance of Akkermansia in the gut in association with polyphenols. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
203
|
Shahbazi R, Sharifzad F, Bagheri R, Alsadi N, Yasavoli-Sharahi H, Matar C. Anti-Inflammatory and Immunomodulatory Properties of Fermented Plant Foods. Nutrients 2021; 13:1516. [PMID: 33946303 PMCID: PMC8147091 DOI: 10.3390/nu13051516] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Fermented plant foods are gaining wide interest worldwide as healthy foods due to their unique sensory features and their health-promoting potentials, such as antiobesity, antidiabetic, antihypertensive, and anticarcinogenic activities. Many fermented foods are a rich source of nutrients, phytochemicals, bioactive compounds, and probiotic microbes. The excellent biological activities of these functional foods, such as anti-inflammatory and immunomodulatory functions, are widely attributable to their high antioxidant content and lactic acid-producing bacteria (LAB). LAB contribute to the maintenance of a healthy gut microbiota composition and improvement of local and systemic immunity. Besides, antioxidant compounds are involved in several functional properties of fermented plant products by neutralizing free radicals, regulating antioxidant enzyme activities, reducing oxidative stress, ameliorating inflammatory responses, and enhancing immune system performance. Therefore, these products may protect against chronic inflammatory diseases, which are known as the leading cause of mortality worldwide. Given that a large body of evidence supports the role of fermented plant foods in health promotion and disease prevention, we aim to discuss the potential anti-inflammatory and immunomodulatory properties of selected fermented plant foods, including berries, cabbage, and soybean products, and their effects on gut microbiota.
Collapse
Affiliation(s)
- Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Farzaneh Sharifzad
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Rana Bagheri
- College of Liberal Art and Sciences, Portland State University, Portland, OR 97201, USA;
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
204
|
Wang Z, Dou R, Yang R, Cai K, Li C, Li W. Changes in Phenols, Polysaccharides and Volatile Profiles of Noni ( Morinda citrifolia L.) Juice during Fermentation. Molecules 2021; 26:molecules26092604. [PMID: 33946973 PMCID: PMC8125466 DOI: 10.3390/molecules26092604] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/26/2023] Open
Abstract
The change in phenols, polysaccharides and volatile profiles of noni juice from laboratory- and factory-scale fermentation was analyzed during a 63-day fermentation process. The phenol and polysaccharide contents and aroma characteristics clearly changed according to fermentation scale and time conditions. The flavonoid content in noni juice gradually increased with fermentation. Seventy-three volatile compounds were identified by solid-phase microextraction coupled with gas chromatography–mass spectrometry (SPME-GC-MS). Methyl hexanoate, 3-methyl-3-buten-1-ol, octanoic acid, hexanoic acid and 2-heptanone were found to be the main aroma components of fresh and fermented noni juice. A decrease in octanoic acid and hexanoic acid contents resulted in the less pungent aroma in noni juice from factory-scale fermentation. The results of principal component analysis of the electronic nose suggested that the difference in nitrogen oxide, alkanes, alcohols, and aromatic and sulfur compounds, contributed to the discrimination of noni juice from different fermentation times and scales.
Collapse
Affiliation(s)
- Zhulin Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (R.D.); (K.C.); (C.L.)
| | - Rong Dou
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (R.D.); (K.C.); (C.L.)
| | - Ruili Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Kun Cai
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (R.D.); (K.C.); (C.L.)
| | - Congfa Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (R.D.); (K.C.); (C.L.)
| | - Wu Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (R.D.); (K.C.); (C.L.)
- Correspondence: ; Tel.: +86-898-6619-8861; Fax: +86-898-6619-3581
| |
Collapse
|
205
|
Zhang J, Li M, Cheng J, Zhang X, Li K, Li B, Wang C, Liu X. Viscozyme L hydrolysis and Lactobacillus fermentation increase the phenolic compound content and antioxidant properties of aqueous solutions of quinoa pretreated by steaming with α-amylase. J Food Sci 2021; 86:1726-1736. [PMID: 33844283 DOI: 10.1111/1750-3841.15680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 11/30/2022]
Abstract
In this work, red quinoa was successively subjected to α-amylase steaming, complex enzyme Viscozyme (R) L hydrolysis, and lactic acid bacteria (LAB) fermentation. The total phenolic compound content (TPC), flavonoid content (TFC), and antioxidant capacities of the solvent-extractable (free) and bound fractions and the individual phenolic compounds released were determined. Compared to steaming with α-amylase, enzymatic hydrolysis and fermentation of quinoa resulted in approximately 82.6, 26.9, 36.3, and 45.2% increases in the TPC (the sum of free and bound fractions), TFC, DPPH, and ORAC values, respectively. HPLC-QqQ-MS/MS analysis showed that enzymolysis and fermentation increased the content of protocatechuic acid, catechin, procyanidin B2 , and quercetin by 126.3, 101.9, 524, and 296.3%, respectively. Moreover, a major proportion of individual phenolic compounds existed as bound form. The results indicated that complex enzymatic hydrolysis and LAB fermentation were practical and useful to release promising polyphenols. This research provides a basis for the processing of quinoa beverages rich in phenolic compounds. PRACTICAL APPLICATION: In this work, liquefying with α-amylase, hydrolyzing with cellulolytic enzyme mixture, and fermenting with Lactic acid bacteria (LAB), successively, were exploited to process quinoa. This is an innovative method of quinoa processing to produce beverage products. Complex enzymatic hydrolysis and fermentation with LAB can significantly enhance phenolic compound, especially protocatechuic acid, catechin, procyanidin B2 , and quercetin. In additional, LAB fermentation is very beneficial to improve the antioxidant activity of quinoa. We also found that a major proportion of phenolic compounds existed as bound forms in quinoa.
Collapse
Affiliation(s)
- Jigang Zhang
- Research Center of Agricultural Products Deep Processing, Department of Biological Food and Environmental Engineering, Hefei University, Hefei, P. R. China
| | - Maoye Li
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of PlantProtection, Anhui Agricultural University, Hefei, P. R. China
| | - Jianghua Cheng
- Agro-products Processing Research Institute, Anhui Academy of Agricultural Sciences, Hefei, P. R. China
| | - Xinhong Zhang
- Research Center of Agricultural Products Deep Processing, Department of Biological Food and Environmental Engineering, Hefei University, Hefei, P. R. China
| | - Kexin Li
- Research Center of Agricultural Products Deep Processing, Department of Biological Food and Environmental Engineering, Hefei University, Hefei, P. R. China
| | - Bin Li
- China National Tobacco Corporation Sichuan Branch, Chengdu, P. R. China
| | - Chuyan Wang
- Research Center of Agricultural Products Deep Processing, Department of Biological Food and Environmental Engineering, Hefei University, Hefei, P. R. China
| | - Xinmin Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, P. R. China
| |
Collapse
|
206
|
Managa MG, Akinola SA, Remize F, Garcia C, Sivakumar D. Physicochemical Parameters and Bioaccessibility of Lactic Acid Bacteria Fermented Chayote Leaf ( Sechium edule) and Pineapple ( Ananas comosus) Smoothies. Front Nutr 2021; 8:649189. [PMID: 33898502 PMCID: PMC8058202 DOI: 10.3389/fnut.2021.649189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
In this study, popularly consumed traditional chayote leaves and locally produced pineapple fruit were used to develop a fermented smoothie using lactic acid bacteria (LAB) strains: Lactobacillus plantarum (L75), Weissella cibaria (W64), and their combination (LW64 + 75). The physicochemical parameters [pH, total soluble solids (TSS), and color], total phenols, and carotenoid contents of the smoothies fermented for 48 h and stored for 7 days at 4°C were compared with the unfermented (control) smoothies. Results indicated that LAB fermentation reduced the pH from 3.56 to 2.50 after 48 h (day 2) compared with the non-fermented smoothie at day 2 (pH 3.37). LAB strain L75 significantly reduced the TSS content of the smoothies to 13.06°Bx after 2 days of fermentation. Smoothies fermented by L75 showed overall acceptability after 7 days of storage compared with the non-fermented puree on day 0. The LW64 + 75 significantly reduced the color change (ΔE), which was similar to the control. L75 increased the phenolic content, and W64 enhanced the total carotenoid content of the smoothies after 2 days of fermentation compared with other treatments. The use of an in vitro model simulating gastrointestinal (GI) digestion showed that fermentation with L75 improved the total phenol recovery by 65.96% during the intestinal phase compared with the control. The dialysis phase mimicked an epithelial barrier, and 53.58% of the recovered free soluble are bioavailable from the L75 fermented smoothies compared with the control. The antioxidant capacity of dialyzable fraction of the L75 fermented smoothie was significantly higher than that of the control and smoothies fermented with W64 or LW64 + 75.
Collapse
Affiliation(s)
- Millicent G Managa
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Stephen A Akinola
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Fabienne Remize
- QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d'Avignon, Sainte Clotilde, France
| | - Cyrielle Garcia
- QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d'Avignon, Sainte Clotilde, France
| | - Dharini Sivakumar
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
207
|
Shahidi F, Pan Y. Influence of food matrix and food processing on the chemical interaction and bioaccessibility of dietary phytochemicals: A review. Crit Rev Food Sci Nutr 2021; 62:6421-6445. [PMID: 33787422 DOI: 10.1080/10408398.2021.1901650] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Consumption of phytochemicals-rich foods shows the health effect on some chronic diseases. However, the bioaccessibility of these phytochemicals is extremely low, and they are often consumed in the diet along with the food matrix. The food matrix can be described as a complex assembly of various physical and chemical interactions that take place between the compounds present in the food. Some studies indicated that the physiological response and the health benefits of phytochemicals are resultant in these interactions. Some food substrates inhibit the absorption of phytochemicals via this interaction. Moreover, processing technologies have been developed to facilitate the release and/or to increase the accessibility of phytochemicals in plants or breakdown of the food matrix. Food processing processes may disrupt the activity of phytochemicals or reduce bioaccessibility. Enhancement of functional and sensorial attributes of phytochemicals in the daily diet may be achieved by modifying the food matrix and food processing in appropriate ways. Therefore, this review concisely elaborated on the mechanism and the influence of food matrix in different parts of the digestive tract in the human body, the chemical interaction between phytochemicals and other compounds in a food matrix, and the various food processing technologies on the bioaccessibility and chemical interaction of dietary phytochemicals. Moreover, the enhancing of phytochemical bioaccessibility through food matrix design and the positive/negative of food processing for dietary phytochemicals was also discussed in this study.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Yao Pan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, Jiangxi, China
| |
Collapse
|
208
|
Uncovering Prospective Role and Applications of Existing and New Nutraceuticals from Bacterial, Fungal, Algal and Cyanobacterial, and Plant Sources. SUSTAINABILITY 2021. [DOI: 10.3390/su13073671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nutraceuticals are a category of products more often associated with food but having pharmaceuticals property and characteristics. However, there is still no internationally accepted concept of these food-pharmaceutical properties, and their interpretation can differ from country to country. Nutraceuticals are used as part of dietary supplements in most countries. They can be phytochemicals which are biologically active and have health benefits. These can be supplied as a supplement and/or as a functional food to the customer. For human health and longevity, these materials are likely to play a vital role. Consumption of these items is typical without a therapeutic prescription and/or supervision by the vast majority of the public. The development of nutraceuticals can be achieved through many bioresources and organisms. This review article will discuss the current research on nutraceuticals from different biological sources and their potential use as an agent for improving human health and well-being, as well as the gaps and future perspective of research related to nutraceutical development.
Collapse
|
209
|
Comparative antioxidant and antimicrobial activities of the peels, rind, pulp and seeds of watermelon (Citrullus lanatus) fruit. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2020.e00582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
210
|
Marco ML, Sanders ME, Gänzle M, Arrieta MC, Cotter PD, De Vuyst L, Hill C, Holzapfel W, Lebeer S, Merenstein D, Reid G, Wolfe BE, Hutkins R. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat Rev Gastroenterol Hepatol 2021; 18:196-208. [PMID: 33398112 PMCID: PMC7925329 DOI: 10.1038/s41575-020-00390-5] [Citation(s) in RCA: 312] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2020] [Indexed: 02/07/2023]
Abstract
An expert panel was convened in September 2019 by The International Scientific Association for Probiotics and Prebiotics (ISAPP) to develop a definition for fermented foods and to describe their role in the human diet. Although these foods have been consumed for thousands of years, they are receiving increased attention among biologists, nutritionists, technologists, clinicians and consumers. Despite this interest, inconsistencies related to the use of the term 'fermented' led the panel to define fermented foods and beverages as "foods made through desired microbial growth and enzymatic conversions of food components". This definition, encompassing the many varieties of fermented foods, is intended to clarify what is (and is not) a fermented food. The distinction between fermented foods and probiotics is further clarified. The panel also addressed the current state of knowledge on the safety, risks and health benefits, including an assessment of the nutritional attributes and a mechanistic rationale for how fermented foods could improve gastrointestinal and general health. The latest advancements in our understanding of the microbial ecology and systems biology of these foods were discussed. Finally, the panel reviewed how fermented foods are regulated and discussed efforts to include them as a separate category in national dietary guidelines.
Collapse
Affiliation(s)
- Maria L Marco
- Department of Food Science and Technology, University of California-Davis, Davis, CA, USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO, USA
| | - Michael Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Marie Claire Arrieta
- Department of Physiology and Pharmacology, International Microbiome Center, University of Calgary, Calgary, Canada
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk, Cork, Ireland
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Colin Hill
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | - Wilhelm Holzapfel
- Advanced Green Energy and Environment Institute, Handong Global University, Pohang, Gyeongbuk, South Korea
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Dan Merenstein
- Department of Family Medicine, Georgetown University, Washington, DC, USA
| | - Gregor Reid
- Lawson Health Research Institute, and Departments of Microbiology & Immunology and Surgery, University of Western Ontario, London, Ontario, Canada
| | | | - Robert Hutkins
- Department of Food Science and Technology, University of Nebraska - Lincoln, Lincoln, NE, USA.
| |
Collapse
|
211
|
Zhang Y, Liu W, Wei Z, Yin B, Man C, Jiang Y. Enhancement of functional characteristics of blueberry juice fermented by Lactobacillus plantarum. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
212
|
Hampton J, Tang C, Jayasree Subhash A, Serventi L. Assessment of pear juice and puree as a fermentation matrix for water kefir. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jessica Hampton
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Lincoln New Zealand
| | - Cindy Tang
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Lincoln New Zealand
| | - Athira Jayasree Subhash
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Lincoln New Zealand
- Department of Food Technology K S Rangasamy College of Technology Tiruchengode India
| | - Luca Serventi
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Lincoln New Zealand
| |
Collapse
|
213
|
Bousquet J, Anto JM, Czarlewski W, Haahtela T, Fonseca SC, Iaccarino G, Blain H, Vidal A, Sheikh A, Akdis CA, Zuberbier T. Cabbage and fermented vegetables: From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19. Allergy 2021; 76:735-750. [PMID: 32762135 PMCID: PMC7436771 DOI: 10.1111/all.14549] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT1 R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT1 R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.
Collapse
Affiliation(s)
- Jean Bousquet
- CharitéUniversitätsmedizin BerlinHumboldt‐Universität zu BerlinBerlinGermany
- Department of Dermatology and AllergyBerlin Institute of HealthComprehensive Allergy CenterBerlinGermany
- MACVIA‐France and CHUMontpellierFrance
| | - Josep M. Anto
- Centre for Research in Environmental Epidemiology (CREAL)ISGlobALBarcelonaSpain
- IMIM (Hospital del Mar Research Institute)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)BarcelonaSpain
| | | | - Tari Haahtela
- Skin and Allergy HospitalHelsinki University HospitalUniversity of HelsinkiFinland
| | - Susana C. Fonseca
- Faculty of SciencesGreenUPorto ‐ Sustainable Agrifood Production Research CentreDGAOTUniversity of PortoPortoPortugal
| | - Guido Iaccarino
- Department of Advanced Biomedical SciencesFederico II UniversityNapoliItaly
| | - Hubert Blain
- Department of GeriatricsMontpellier University hospital and MUSEMontpellierFrance
| | - Alain Vidal
- World Business Council for Sustainable Development (WBCSD)GenevaSwitzerland
- AgroParisTech ‐ Paris Institute of Technology for Life, Food and Environmental SciencesParisFrance
| | - Aziz Sheikh
- Usher InstituteUniversity of EdinburghScotland, UK
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Torsten Zuberbier
- CharitéUniversitätsmedizin BerlinHumboldt‐Universität zu BerlinBerlinGermany
- Department of Dermatology and AllergyBerlin Institute of HealthComprehensive Allergy CenterBerlinGermany
| |
Collapse
|
214
|
Freitas HV, Dos Santos Filho AL, Rodrigues S, Abreu VKG, Narain N, Lemos TDO, Gomes WF, Pereira ALF. Synbiotic açaí juice (Euterpe oleracea) containing sucralose as noncaloric sweetener: Processing optimization, bioactive compounds, and acceptance during storage. J Food Sci 2021; 86:730-739. [PMID: 33534924 DOI: 10.1111/1750-3841.15617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 01/02/2023]
Abstract
This study aimed to evaluate the fermentation process of Lacticaseibacillus casei in the açaí juice, and to evaluate the addition of fructooligosaccharides and sucrose. The organic acids, anthocyanins, polyphenolic compounds, and antioxidant activity were also investigated during fermentation. Moreover, the impact of sucrose and sucralose on microbial viability and sensory acceptance of synbiotic products was evaluated during 42 days storage at refrigerated conditions. The conditions for synbiotic juice production were the initial pH of 6.1 and fermentation undertaken at 28 °C for 22 hr. During fermentation, the higher viability was obtained when a combination of 40 g/L of FOS+10 g/L of sucrose was used (9.70 ± 0.01 log CFU/mL). The lactic acid increased from 0.82 to 1.29 g/L during the fermentation while citric acid decreased from 1.05 to 0.75 g/L. The cyanidin-3-O-rutinoside, polyphenolic compounds, and antioxidant activity increased. Thus, fermentation improved the functional value of the beverage. The L. casei viability reduced from 9.71 ± 0.04 to 8.90 ± 0.06 log CFU/ mL in the juice with sucrose, and from 9.71 ± 0.04 to 8.71 ± 0.14 log CFU/ mL in the juice with sucralose. Thus, the açaí juice is a viable matrix for the synbiotic food, which allows the viability maintenance during the storage. Regarding sensory acceptance, the internal preference mapping indicated an increase in the color preference with the storage of synbiotic juices. However, the flavor and overall acceptance reduced with storage. Nevertheless, the flavor and overall acceptance of juice with sucralose were better than the juice with sucrose. After 42 days of storage, penalty analysis revealed that beverage with sucrose showed a lack of sweet taste and excess of sour taste. Thus, a high-quality açaí product with viable probiotic microorganism, high anthocyanins, and polyphenolic compounds contents could be obtained, which can be exploited for commercial use. PRACTICAL APPLICATION: Synbiotic açaí juice is a healthier alternative to consuming products containing this fruit. The inclusion of probiotic microorganisms and prebiotic fructooligosaccharides increased bioactive compounds contents during the shelf life of the juice. The sensory evaluation using the internal preference mapping revealed that the juice flavor with sucralose was better accepted than the juice formulated with addition of sucrose.
Collapse
Affiliation(s)
- Hildeane Veloso Freitas
- department Food Engineering Course Social Sciences, Health, and Technology Center, Federal University of Maranhão, Imperatriz, Maranhão, 65.900-410, Brazil
| | - Antonio Luiz Dos Santos Filho
- department Food Engineering Course Social Sciences, Health, and Technology Center, Federal University of Maranhão, Imperatriz, Maranhão, 65.900-410, Brazil
| | - Sueli Rodrigues
- Food Technology Department, Federal University of Ceará, Agrarian Sciences, Campus do Pici, 851, Fortaleza, Ceará, 60455-760, Brazil
| | - Virgínia Kelly Gonçalves Abreu
- department Food Engineering Course Social Sciences, Health, and Technology Center, Federal University of Maranhão, Imperatriz, Maranhão, 65.900-410, Brazil
| | - Narendra Narain
- Food Engineering Course, Federal University of Sergipe, Cidade Universitaria, Jardim Rosa Elze, 49100-000 - São Cristovão - Sergipe, Brazil
| | - Tatiana De Oliveira Lemos
- department Food Engineering Course Social Sciences, Health, and Technology Center, Federal University of Maranhão, Imperatriz, Maranhão, 65.900-410, Brazil
| | - Wesley Faria Gomes
- Food Engineering Course, Federal University of Sergipe, Cidade Universitaria, Jardim Rosa Elze, 49100-000 - São Cristovão - Sergipe, Brazil
| | - Ana Lúcia Fernandes Pereira
- department Food Engineering Course Social Sciences, Health, and Technology Center, Federal University of Maranhão, Imperatriz, Maranhão, 65.900-410, Brazil
| |
Collapse
|
215
|
Continuous-flow manothermosonication treatment of apple-carrot juice blend: Effects on juice quality during storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
216
|
Yi J, Li M, Yang M, Cai S, Zhao T, Cao J, Cheng G. Characterisation and
in vitro
cytotoxicity of toxic and degradation compounds in bamboo shoots (
Dendrocalamus Sinicus
) during traditional fermentation. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junjie Yi
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming650500China
- Yunnan Institute of Food Safety Kunming University of Science and Technology Kunming650500China
| | - Meiqi Li
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming650500China
- Yunnan Institute of Food Safety Kunming University of Science and Technology Kunming650500China
| | - Meilian Yang
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming650500China
- Yunnan Institute of Food Safety Kunming University of Science and Technology Kunming650500China
| | - Shengbao Cai
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming650500China
- Yunnan Institute of Food Safety Kunming University of Science and Technology Kunming650500China
| | - Tianrui Zhao
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming650500China
- Yunnan Institute of Food Safety Kunming University of Science and Technology Kunming650500China
| | - Jianxin Cao
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming650500China
- Yunnan Institute of Food Safety Kunming University of Science and Technology Kunming650500China
| | - Guiguang Cheng
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming650500China
- Yunnan Institute of Food Safety Kunming University of Science and Technology Kunming650500China
| |
Collapse
|
217
|
Children's Fruit and Vegetable Preferences Are Associated with Their Mothers' and Fathers' Preferences. Foods 2021; 10:foods10020261. [PMID: 33513828 PMCID: PMC7911424 DOI: 10.3390/foods10020261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/11/2022] Open
Abstract
Children’s preference for fruit and vegetables must emerge during childhood. At children’s homes, mothers and fathers influence children’s developing food preferences with their own preferences and actions. The purpose of the study was to reveal the association parents have with their children’s fruit and vegetable preferences. The study was conducted in a sample of Finnish mothers and fathers of 3–5-year-old children. The participants were recruited, and questionnaires distributed through early childhood education and care centers in 2014 and 2015. The results showed considerable variance in the children’s preferences, and were more similar with their father’s, than their mother’s preference. There was an association between mother’s and children’s preference for “strong-tasting vegetables and berries“ (p = 0.005), “sweet-tasting fruit“ (p < 0.001) and “common vegetables“ (p = 0.037). Fathers preferences associated with children’s preferences for “strong-tasting vegetables and berries“ (p = 0.003). Food neophobia decreased children’s “strong-tasting vegetables and berries“ (p < 0.001) and “sweet-tasting fruit“ (p < 0.001) preferences. The father’s more relaxed attitude towards eating decreased children’s preferences for “strong-tasting vegetables and berries“ (p = 0.031) and “sweet-tasting fruit“ (p = 0.003). These findings indicate a need for more targeted strategies for increasing children’s preferences for fruit and vegetables and highlight the importance of taking both parents equally into account.
Collapse
|
218
|
Influence of guabiroba pulp (campomanesia xanthocarpa o. berg) added to fermented milk on probiotic survival under in vitro simulated gastrointestinal conditions. Food Res Int 2021; 141:110135. [PMID: 33642002 DOI: 10.1016/j.foodres.2021.110135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
In fermented milks inoculated with two thermophilic strains (Lactobacillus bulgaricus and Streptococcus thermophilus), guabiroba pulp (Campomanesia xanthocarpa O. Berg) was added in different concentrations: 5% (I5 sample) and 10% (I10 sample), compared to a control sample, with no pulp addition. In these fermented milks, Bifidobacterium BB-12 was added and the samples were submitted to a progressive gastrointestinal simulation in vitro. The cells count was performed, including the survival rates for all the progressive steps of the simulated digestion. Total phenolic content (TPC) and antioxidant activity analysis by FRAP (Ferric Reducing Antioxidant Power) and DPPH (2,2-diphenyl-1-picrylhydrazyl) were performed in all the gastrointestinal steps. Before and during the entire gastrointestinal tract, the Bifidobacterium BB-12 count was 8-9 log CFU g-1, above the recommended for a probiotic product, with a highlight in intestinal colon steps. The I10 sample showed the highest viable cell count, the highest total phenolic content and antioxidant activity throughout the entire gastric steps (p < 0.05). The fermented milk proved to be an effective matrix for the probiotic stability and incorporation of guabiroba components. Bioactive compounds present in the guabiroba pulp may have occasioned a prebiotic and protective effect on Bifidobacterium BB-12 after gastric conditions. The possible bioconversion of these compounds in more active forms can contribute to the absorption in epithelial cells, enhancing fermented milks with guabiroba pulp as important sources of dietary accessible bioactive compounds.
Collapse
|
219
|
Jideani AIO, Silungwe H, Takalani T, Omolola AO, Udeh HO, Anyasi TA. Antioxidant-rich natural fruit and vegetable products and human health. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2020.1866597] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Afam I. O. Jideani
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa
- Postharvest-Handling Group, ISEKI-Food Association, Vienna, Austria
| | - Henry Silungwe
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Thakhani Takalani
- Univen Centre for Continuing Education, University of Venda, Thohoyandou 0950, South Africa
| | - Adewale O Omolola
- Department of Agricultural Engineering, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Henry O Udeh
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Tonna A Anyasi
- Department of Food Science and Technology, Cape Peninsula University of Technology, Bellville 7535, South Africa
| |
Collapse
|
220
|
Darvishzadeh P, Orsat V, Martinez JL. Process Optimization for Development of a Novel Water Kefir Drink with High Antioxidant Activity and Potential Probiotic Properties from Russian Olive Fruit (Elaeagnus angustifolia). FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-020-02563-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
221
|
Đorđević BS, Todorović ZB, Troter DZ, Stanojević LP, Stojanović GS, Đalović IG, Mitrović PM, Veljković VB. Extraction of phenolic compounds from black mustard (Brassica nigra L.) seed by deep eutectic solvents. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00772-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
222
|
Popel S, Epifanov P, Yushan L. Factors affecting the quality of apple juice. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213406011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study reflects the research of technological factors of production that affect the quality of apple juice: temperature and time of sterilization, the influence of the type of used wort: gravity or a mixture of gravity and press fraction; the waiting time of the wort before the first heat treatment; as well as the presence of preheating. Regression equations have been developed that link the studied parameters and indicators of juice quality. The quantitative values of the characteristics of apple juice in the stated ranges, depending on the studied parameters, can be calculated by substituting the corresponding values in natural units into the developed regression equations.
Collapse
|
223
|
Zhang S, Hu C, Guo Y, Wang X, Meng Y. Polyphenols in fermented apple juice: Beneficial effects on human health. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104294] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
224
|
EKSI KARAAGAC H, CAVUS F, KADIOGLU B, UGUR N, TOKAT E, SAHAN Y. Evaluation of nutritional, color and volatiles properties of currant (Ribes spp.) cultivars in Turkey. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.29119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hacer EKSI KARAAGAC
- Central Research Institute of Food and Feed Control, Turkey; Uludag University, Turkey
| | - Filiz CAVUS
- Central Research Institute of Food and Feed Control, Turkey
| | - Burcu KADIOGLU
- Central Research Institute of Food and Feed Control, Turkey
| | - Nagihan UGUR
- Central Research Institute of Food and Feed Control, Turkey
| | - Emre TOKAT
- Central Research Institute of Food and Feed Control, Turkey
| | | |
Collapse
|
225
|
Oke E, Okolo B, Adeyi O, Agbede O, Nnaji P, Adeyi J, Osoh K, Ude C. Black-box modelling, bi-objective optimization and ASPEN batch simulation of phenolic compound extraction from Nauclea latifolia root. Heliyon 2020; 7:e05856. [PMID: 33437887 PMCID: PMC7788104 DOI: 10.1016/j.heliyon.2020.e05856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/05/2020] [Accepted: 12/23/2020] [Indexed: 01/25/2023] Open
Abstract
Nauclea latifolia root (NLR) extract is one of phytochemicals used to treat various ailments in most of developing countries. This investigation focuses on modelling, optimization and computer-aided simulation of phenolic solid-liquid extraction from NLR. The extraction experiments were conducted at extraction temperature (ET: 33.79–76.21 °C), process time (PT: 2.79–4.21 h) and solid-liquid ratio (SLC: 0.007929–0.018355 g/ml). Regression models (RM) were developed, using Response Surface Methodology (RSM) in Design Expert software, for predicting and optimizing total phenolic content (TPC) and total flavonoid content (TFC) and also compared with adaptive neuro-fuzzy inference system (ANFIS) modelling in Matlab environment. Aspen Batch Process Developer (ABPD) V10 was used to simulate phenolic extract production and perform material balance of the process. Both Coefficients of determination (R2) of RSM (TFC: 0.9996, TPC: 0.9932) and ANFIS models (TFC: 0.99998, TPC: 0.9982) were compared and predicted satisfactorily. Optimization results show: ET (2.79 h), PT (38.8 °C), SLC (0.0198 g/ml), TFC (25.92 25.92 μg RE/g) and TPC (8.47 mg GAE/g). The phenolic extraction base case simulation results gave batch throughput, annual throughput, number of batches per year 0.0089 g/batch, 0.139 g/year and 1019 batches, respectively. The ABPD predicted TPC and experimental TPC results were compared and gave mean relative deviation error of 3.75%. Thus, ABPD simulation model is reasonably reliable for the scale-up design engineering of the phenolic extract production from NLR.
Collapse
Affiliation(s)
- E.O. Oke
- Chemical Engineering Department, Michael Okpara University of Agriculture, Nigeria
- Corresponding author.
| | - B.I. Okolo
- Chemical Engineering Department, Michael Okpara University of Agriculture, Nigeria
| | - O. Adeyi
- Chemical Engineering Department, Michael Okpara University of Agriculture, Nigeria
| | - O.O. Agbede
- Chemical Engineering Department, Ladoke Akintola University of Technology, Nigeria
| | - P.C. Nnaji
- Chemical Engineering Department, Michael Okpara University of Agriculture, Nigeria
| | - J.A. Adeyi
- Mechanical Engineering Department, Ladoke Akintola University of Technology, Nigeria
| | - K.A. Osoh
- Department of Chemistry, Akwa Ibom State College of Science and Technology, Nigeria
| | - C.J. Ude
- Chemical Engineering Department, Michael Okpara University of Agriculture, Nigeria
| |
Collapse
|
226
|
Ferdaus MJ, Ferdous Z, Sara RJ, Mahin MG, Faruque MO. Total Antioxidants Activity and Proximate Analysis of Selected Fruits and Vegetables in Jashore Region, Bangladesh. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2020. [DOI: 10.12944/crnfsj.8.3.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Antioxidant plays essential roles in the maintaining of good health. Fruits and vegetables are the primary sources of antioxidants. Antioxidant contents in fruits and vegetables could vary in geographical distribution and also in the same soil for different time intervals. Therefore, the present study aimed to analyze the total antioxidant status and proximate analysis of some selected locally available fruits and vegetables and they were Mangiferaindica, Musa acuminate, Psidium guajava, Carcia papaya, Lagenariasiceraria, Trichosanthesdioica, Momordica charantia, Basella alba, and Amaranthus gangeticus from three villages. In this analysis, total antioxidant status was determined by DPPH free radical scavenging assay, and proximate analysis of moisture, ash, fat (Soxhlet extraction method), and protein (Kjeldahl method with N × 6.25) were determined as the method outlined in AOAC (2005). Among the four fruits sample, Papaya hadthe highest moisture content (88.08%)but was lower in ash, protein, fat, and carbohydrate contents. Among the vegetables, Bottle gourd had the highest moisture content (94.14%).Regarding all samples, Red amaranth showed the highest ash (1.59%) and protein (4.32%) content. However, both Mango and Papaya showed the lowest protein content (0.70%). Fat content was low in Papaya and Bottle gourdwith 0.10% and 0.15% respectively. For the carbohydrates, Banana was the greatest source with 22.62%. Furthermore, among the fruits Guava had the highest total antioxidants activity of 70.90% and among vegetables, Bitter gourd had 45.47% which was the highest compared to other studiedvegetables. Whereas, Indian spinachhad the lowest antioxidants activity and the value was 28.60%. The above results indicate that the selected fruits contents higher levels of antioxidant activity compared to selected vegetables samples.
Collapse
Affiliation(s)
- Md. Jannatul Ferdaus
- Department of Nutrition and Food Technology, Faculty of Applied Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Zannatul Ferdous
- Department of Nutrition and Food Technology, Faculty of Applied Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Rubyat Jahan Sara
- Department of Chemistry, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Golam Mahin
- Department of Nutrition and Food Technology, Faculty of Applied Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Omar Faruque
- Department of Nutrition and Food Technology, Faculty of Applied Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
227
|
Fermentation by Probiotic Lactobacillus gasseri Strains Enhances the Carotenoid and Fibre Contents of Carrot Juice. Foods 2020; 9:foods9121803. [PMID: 33291830 PMCID: PMC7762057 DOI: 10.3390/foods9121803] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Carrot juice (straight, 8.5 Brix and concentrated, 15.2 Brix) was fermented by lactic acid bacteria (Lactobacillus gasseri strain DSM 20604 or DSM 20077). Fermentation enhanced the nutritional profile of carrot juice. There was a greater sugar reduction (27%) in fermented straight carrot juices than in the fermented concentrated juices (15%). The sugar reduction was independent of the strain used for fermentation. The two L. gasseri strains synthesised fructosyltransferase enzymes during fermentation of carrot juice samples that enabled conversion of simple sugars primarily into polysaccharides. The level of conversion to polysaccharides was dependent on the L. gasseri strain and juice concentration. Fermentation of carrot juice by L. gasseri enables the production of a nutritionally-enhanced beverage with reduced calorie and prebiotic potential. An additional benefit is the increased carotenoid content observed in straight and concentrated juices fermented by Lactobacillus gasseri DSM 20077 and the concentrated juice fermented by Lactobacillus gasseri DSM 20604.
Collapse
|
228
|
de Oliveira SD, Araújo CM, Borges GDSC, Lima MDS, Viera VB, Garcia EF, de Souza EL, de Oliveira MEG. Improvement in physicochemical characteristics, bioactive compounds and antioxidant activity of acerola (Malpighia emarginata D.C.) and guava (Psidium guajava L.) fruit by-products fermented with potentially probiotic lactobacilli. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
229
|
Chemical Compound Chemical Treatment in Animal Husbandry. J CHEM-NY 2020. [DOI: 10.1155/2020/4263124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The acidulant is widely used in the production of animal husbandry, and its use is affected by many factors, including environmental factors, dosage, diet composition, and animal’s own factors, so only the correct use of the acidulant can bring good results in animal production and financial income. This article takes acidifier as an example to study the application of compound chemical treatment in livestock farms. In this paper, the effect of using acidulant in the first 1 to 3 weeks after early weaning of piglets is obvious through this experimental study. The effect gradually decreases after 3 weeks and basically has no effect after 4 weeks. Experimental studies have found that the combination of organic acids, antibiotics, and high copper is the most effective. These three have different functions and have complementary or additive effects. Under harsh feeding conditions, especially when the environmental sanitation and environmental conditions are relatively poor, the effect of acidulants is better than good feeding conditions. Experimental data show that fulvic acid depletes milk’s somatic cells in a short period of time and then quickly activates immune function, which is indicated by the increase in lymphocytes in the blood. When a large number of somatic cells migrate to the breast, the somatic cells in milk will also increase, thereby improving the immunity mediated by human cells. The experimental results show that the BFA formula added 1% to the cattle feed. After the research control of this experiment, the milk output increased by 9–17%, and the quality milk output increased by 19.12%, so the use of acidulant increased feed compensation and reduces gastrointestinal diseases and the reproduction of microorganisms in the rumen of dairy cows.
Collapse
|
230
|
Evaluation of fermentation assisted by Lactobacillus brevis POM, and Lactobacillus plantarum (TR-7, TR-71, TR-14) on antioxidant compounds and organic acids of an orange juice-milk based beverage. Food Chem 2020; 343:128414. [PMID: 33131951 DOI: 10.1016/j.foodchem.2020.128414] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/06/2020] [Accepted: 10/14/2020] [Indexed: 11/20/2022]
Abstract
The impact of fermentation assisted by four different lactic acid bacteria (LAB) on polyphenols, carotenoids, organic acids, and antioxidant capacity of orange-juice milk based beverages was evaluated. Lactobacillus brevis POM, and Lactobacillus plantarum (TR-7, TR-71, TR-14) were used to promote the fermentation of the beverages for 72 h at 37 °C. The bacteria population increased with the elapse of fermentation period, except for beverages inoculated with L. plantarum TR-7. After fermentation period, total polyphenols, total carotenoids and total antioxidant capacity were increased compared to the control ones (non-fermented). Two phenolic acids (DL-3-phenylactic acid and 3-4-dihydroxyhydrocinnamic acid) and lactic acid were identified after 72 h fermentation. Overall, it is possible to conclude that orange-juice milk beverages are a good medium for the growth of L. brevis POM, and L. plantarum (TR-71, TR-14), observing higher antioxidant properties in the fermented beverages compared to the control ones.
Collapse
|
231
|
Salazar-López NJ, Domínguez-Avila JA, Yahia EM, Belmonte-Herrera BH, Wall-Medrano A, Montalvo-González E, González-Aguilar GA. Avocado fruit and by-products as potential sources of bioactive compounds. Food Res Int 2020; 138:109774. [PMID: 33292952 DOI: 10.1016/j.foodres.2020.109774] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/22/2022]
Abstract
The increased demand for avocado, and therefore production and consumption, generate large quantities of by-products such as seeds, peel, and defatted pulp, which account for approximately 30% of fruit weight, and which are commonly discarded and wasted. The present review focuses on various compounds present in avocado fruit and its by-products, with particular interest to those that can be potentially used in different industrial forms, such as nutraceuticals, to add to or to formulate functional foods, among other uses. Main molecular families of bioactive compounds present in avocado include phenolic compounds (such as hydroxycinnamic acids, hydroxybenzoic acids, flavonoids and proanthocyanins), acetogenins, phytosterols, carotenoids and alkaloids. Types, contents, and possible functions of these bioactive compounds are described from a chemical, biological, and functional approach. The use of avocado and its by-products requires using processing methods that allow highest yield with the least amount of unusable residues, while also preserving the integrity of bioactive compounds of interest. Avocado cultivar, fruit development, ripening stage, and processing methods are some of the main factors that influence the type and amount of extractable molecules. The phytochemical diversity of avocado fruit and its by-products make them potential sources of nutraceutical compounds, from which functional foods can be obtained, as well as other applications in food, health, pigment, and material sectors, among others.
Collapse
Affiliation(s)
- Norma Julieta Salazar-López
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - J Abraham Domínguez-Avila
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Elhadi M Yahia
- Laboratorio de Fitoquímicos y Nutrición, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias, Juriquilla, Querétaro, 76230 Qro., Mexico.
| | - Beatriz Haydee Belmonte-Herrera
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Abraham Wall-Medrano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chihuahua 32310, Mexico.
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México-Instituto Tecnológico de Tepic, Av. Tecnológico 255 Fracc. Lagos del Country, Tepic, Nayarit 63175, Mexico.
| | - G A González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
232
|
de Oliveira Schmidt H, Rockett FC, Klen AVB, Schmidt L, Rodrigues E, Tischer B, Augusti PR, de Oliveira VR, da Silva VL, Flôres SH, de O. Rios A. New insights into the phenolic compounds and antioxidant capacity of feijoa and cherry fruits cultivated in Brazil. Food Res Int 2020; 136:109564. [DOI: 10.1016/j.foodres.2020.109564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 02/03/2023]
|
233
|
Maintaining Physicochemical, Microbiological, and Sensory Quality of Pineapple Juice (Ananas comosus, Var. ‘Queen Victoria’) through Mild Heat Treatment. Processes (Basel) 2020. [DOI: 10.3390/pr8091186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Shelf life of freshly prepared pineapple juice is short and requires refrigerated conditions of storage. Mild heat treatment remains the easiest way to prolong juice shelf life for small companies. This study was constructed to assess pineapple cv. Queen Victoria juice shelf life from a broad examination of its quality and to propose the most appropriate thermal treatment to increase shelf life without any perceptible decrease in quality. From 25 independent batches of pineapple, collected in different areas and seasons from Reunion Island, the variability of juice physicochemical and microbiological quality was determined. Juice pH values were the highest for fruit harvested in summer, but the juice acidity remained low enough to prevent pathogen spore-forming bacteria growth. During storage at 4 °C, color was modified, and yeasts and molds were the main microbial group exhibiting growth. Assessment of sensory quality resulted in the proposal of a shelf life comprising between three and seven days. Compared to higher temperatures, heat treatment at 60 °C was enough to ensure a good microbiological quality for 30 days, but sensory characteristics and color changes led to the proposal of a shelf life of seven days for pineapple juice treated at 60 °C.
Collapse
|
234
|
Jeong JY, Bae SM, Yoon J, Jeong DH, Gwak SH. Effect of Using Vegetable Powders as Nitrite/Nitrate Sources on the Physicochemical Characteristics of Cooked Pork Products. Food Sci Anim Resour 2020; 40:831-843. [PMID: 32968733 PMCID: PMC7492172 DOI: 10.5851/kosfa.2020.e63] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 11/15/2022] Open
Abstract
This study investigated the potential for using vegetable powders as a natural
replacement for sodium nitrite and their effects on the physicochemical
characteristics of alternatively cured pork products. We analyzed pork products
subjected to four treatments: control (0.015% sodium nitrite), Chinese
cabbabe powder (CCP) treatment (0.4% Chinese cabbage powder), radish
powder (RP) treatment (0.4% radish powder), and spinach powder (SP)
treatment (0.4% spinach powder). Among the vegetable powders prepared in
this study, SP had the highest (p<0.05) nitrate content, while CCP had
the lowest (p<0.05). The cooking yields from these treatments were not
significantly different from each other. However, the products with vegetable
powders had higher (p<0.05) pH and thiobarbituric acid reactive
substances values than the control. Pork products with vegetable powders also
showed lower CIE L* values and higher CIE b* values than the nitrite-added
control. RP treatment had similar (p>0.05) CIE a* values to the control,
while SP treatment had the lowest (p<0.05) CIE a* values. The residual
nitrite content was lower (p<0.05) in the vegetable powder added pork
products than in the control, although nitrosyl hemochrome and total pigment
contents in the CCP and RP treatments were similar (p>0.05) to those in
the control. The control, CCP, and RP treatments showed curing efficiencies
greater than 80%, indicating that CCP and RP would be promising potential
replacements for sodium nitrite. The results of this study suggest that RP may
be a suitable natural replacement for sodium nitrite to produce alternatively
cured meat products, compared to other leafy vegetable powders.
Collapse
Affiliation(s)
- Jong Youn Jeong
- School of Food Biotechnology & Nutrition, Kyungsung University, Busan 48434, Korea
| | - Su Min Bae
- School of Food Biotechnology & Nutrition, Kyungsung University, Busan 48434, Korea
| | - Jiye Yoon
- School of Food Biotechnology & Nutrition, Kyungsung University, Busan 48434, Korea
| | - Da Hun Jeong
- School of Food Biotechnology & Nutrition, Kyungsung University, Busan 48434, Korea
| | - Seung Hwa Gwak
- School of Food Biotechnology & Nutrition, Kyungsung University, Busan 48434, Korea
| |
Collapse
|
235
|
Degrain A, Manhivi V, Remize F, Garcia C, Sivakumar D. Effect of Lactic Acid Fermentation on Color, Phenolic Compounds and Antioxidant Activity in African Nightshade. Microorganisms 2020; 8:microorganisms8091324. [PMID: 32872680 PMCID: PMC7564239 DOI: 10.3390/microorganisms8091324] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023] Open
Abstract
This study aimed to investigate the influences of fermentation at 37 °C for 3 days by different lactic acid bacterium strains, Lactobacillus plantarum (17a), Weissella cibaria (21), Leuconostoc pseudomesenteroides (56), W. cibaria (64) or L. plantarum (75), on color, pH, total soluble solids (TSS), phenolic compounds and antioxidant activity of African nightshade (leaves). Results indicated fermentation with L. plantarum 75 strain significantly decreased the pH and total soluble solids, and increased the concentration of ascorbic acid after 3 days. L. plantarum 75 strain limited the color modification in fermented nightshade leaves and increased the total polyphenol content and the antioxidant activity compared to the raw nightshade leaves. Overall, L. plantarum75 enhanced the functional potential of nightshade leaves and improved the bioavailability of gallic, vanillic acid, coumaric, ferulic ellagic acids, flavonoids (catechin, quercetin and luteolin) and ascorbic acid compared to the other lactic acid bacterium strains. Correlation analysis indicated that vanillic acid and p-coumaric acid were responsible for the increased antioxidant activity. Proximate analysis of the fermented nightshade leaves showed reduced carbohydrate content and low calculated energy.
Collapse
Affiliation(s)
- Alexandre Degrain
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West 0001, South Africa; (A.D.); (V.M.); (D.S.)
- QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d’Avignon, 97490 Sainte Clotilde, France;
| | - Vimbainashe Manhivi
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West 0001, South Africa; (A.D.); (V.M.); (D.S.)
| | - Fabienne Remize
- QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d’Avignon, 97490 Sainte Clotilde, France;
- Correspondence: ; Tel.: +27-012-382-5303
| | - Cyrielle Garcia
- QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d’Avignon, 97490 Sainte Clotilde, France;
| | - Dharini Sivakumar
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West 0001, South Africa; (A.D.); (V.M.); (D.S.)
| |
Collapse
|
236
|
Lu Y, Mu K, McClements DJ, Liang X, Liu X, Liu F. Fermentation of tomato juice improves in vitro bioaccessibility of lycopene. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
237
|
Cuvas-Limon RB, Nobre C, Cruz M, Rodriguez-Jasso RM, Ruíz HA, Loredo-Treviño A, Texeira JA, Belmares R. Spontaneously fermented traditional beverages as a source of bioactive compounds: an overview. Crit Rev Food Sci Nutr 2020; 61:2984-3006. [PMID: 32662286 DOI: 10.1080/10408398.2020.1791050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fermented food has been present throughout history, since fermentation not only helps preserving food, but also provides specific organoleptic characteristics typically associated to these foods. Most of the traditional fermented foods and artisanal beverages are produced by spontaneous generation, meaning no control of the microbiota, or the substrate used. Nevertheless, even not being standardized, they are an important source of bioactive compounds, such as antioxidant compounds, bioactive beeps, short chain fatty acids, amino acids, vitamins, and minerals. This review compiles a list of relevant traditional fermented beverages around the world, aiming to detail the fermentation process itself-including source of microorganisms, substrates, produced metabolites and the operational conditions involved. As well as to list the bioactive compounds present in each fermented food, together with their impact in the human health. Traditional fermented beverages from Mexico will be highlighted. These compounds are of high interest for the food, pharmaceutical and cosmetics industry. To scale-up the home fermentation processes, it is necessary to fully understand the microbiology and biochemistry behind these traditional products. The use of good quality raw materials with standardized methodologies and defined microorganisms, may improve and increase the production of the desirable bioactive compounds and open a market for novel functional products.
Collapse
Affiliation(s)
- R B Cuvas-Limon
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico.,Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Clarisse Nobre
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Mario Cruz
- Department of Food Science and Technology, Antonio Narro Autonomous Agricultural University, Saltillo, Coahuila, Mexico
| | - Rosa M Rodriguez-Jasso
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| | - Héctor A Ruíz
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| | - Araceli Loredo-Treviño
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| | - J A Texeira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ruth Belmares
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| |
Collapse
|
238
|
Qualitative Research in Phoenix, AZ, Exploring Support for Public-Private Partnerships to Expand the Reach of the Fresh Fruit and Vegetable Program. J Acad Nutr Diet 2020; 120:1834-1846. [PMID: 32631671 DOI: 10.1016/j.jand.2020.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Fruit and vegetable (F/V) consumption among school-aged children falls short of current recommendations. The development of public-private partnerships (PPPs) has been suggested as an effective approach to address a number of public health concerns, including inadequate F/V consumption. The US Department of Agriculture's Fresh Fruit and Vegetable Program (FFVP) provides F/V as snacks at least twice per week in low-income elementary schools. In addition to increasing F/V consumption behaviors at school, children participating in the FFVP make more requests for F/V in grocery stores and at home, suggesting the impact of the program extends beyond school settings. OBJECTIVE This study explored the potential for establishing successful PPPs between schools and food retailers to promote the sales of F/V in low-income communities. DESIGN Semi-structured interviews and focus groups were conducted with participants from 4 groups of stakeholders. PARTICIPANTS/SETTING Grocery store and produce managers from 10 grocery stores, FFVP personnel from 5 school districts and 12 schools, and parents of children attending 3 different FFVP-participating schools, all in the Phoenix, AZ, metropolitan area participated in interviews and focus groups. STATISTICAL ANALYSES PERFORMED Data were analyzed using a directed content analysis approach to examine benefits, barriers, and strategies for developing a PPP. RESULTS Key perceived benefits of creating a PPP included the potential to increase store sales, to enhance public relations with the community, and to extend the impact of the FFVP to settings outside of schools. Barriers included offering expensive produce through the FFVP and the potential lack of communication among partners. Strategies for developing a PPP included using seasonal produce and having clear instructions for teachers and staff. Parents reported their children requesting more F/V as a result of FFVP participation. CONCLUSIONS Stakeholders support forming PPPs. Partnerships between FFVP schools and retailers can be mutually beneficial and have a positive impact on children and their families.
Collapse
|
239
|
Lizardo RCM, Cho H, Lee J, Won Y, Seo K. Extracts of
Elaeagnus multiflora
Thunb. fruit fermented by lactic acid bacteria inhibit SW480 human colon adenocarcinoma via induction of cell cycle arrest and suppression of metastatic potential. J Food Sci 2020. [DOI: 10.1111/1750-3841.15300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Rona Camille M. Lizardo
- Institute of Food Science and Technology University of the Philippines Los Baños Laguna 4031 Philippines
- Department of Biotechnology Dong‐A University Busan 49315 Republic of Korea
| | - Hyun‐Dong Cho
- Division of Agriculture, Department of Food Science University of Arkansas Fayetteville AR 72704 U.S.A
| | - Jin‐Hwan Lee
- Department of Life Resources Industry Dong‐A University Busan 49315 Republic of Korea
| | - Yeong‐Seon Won
- Department of Biotechnology Dong‐A University Busan 49315 Republic of Korea
| | - Kwon‐Il Seo
- Department of Biotechnology Dong‐A University Busan 49315 Republic of Korea
| |
Collapse
|
240
|
Hegazi NM, Radwan RA, Bakry SM, Saad HH. Molecular networking aided metabolomic profiling of beet leaves using three extraction solvents and in relation to its anti-obesity effects. J Adv Res 2020; 24:545-555. [PMID: 32637174 PMCID: PMC7327829 DOI: 10.1016/j.jare.2020.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/01/2020] [Indexed: 01/18/2023] Open
Abstract
In the present study, the efficiency of three different solvents (H2O, acidified H2O, and 70% Methanol) for metabolites extraction from the leaves of sugar beet (Beta vulgaris subsp. vulgaris var. rubra) was investigated along with their inhibitory activity on pancreatic α-amylase and lipase for obesity management. The metabolic profile of the three extracts was analyzed by ultra-performance liquid chromatography (UPLC) coupled with electrospray ionization high-resolution mass spectrometric (ESI-HRMS-MS). Mass spectrometry-based molecular networking was employed to aid in metabolites annotation and for the visual investigation of the known metabolites and their analogues. The study led to the tentative identification of 45 metabolites including amino acids, purine derivatives, phenolic acids, flavonoids, fatty acids, and an alkaloid, articulating 24 compounds as a first time report from beet leaves along with 2 new putatively identified compounds: a flavone feruloyl conjugate (39) and a malonylated acacetin diglycoside (40). The three extracting systems exhibited comparable efficiency for pulling out the secondary metabolites from the beet leaves. The in vitro study supported this finding and demonstrated that the three extracts inhibited the activity of both pancreatic α-amylase and lipase enzymes with no significant difference observed regarding the percentage of the inhibition of the enzymes. Conclusively, the extraction protocol has a minimal effect on the anti-obesity properties of beet leaves.
Collapse
Affiliation(s)
- Nesrine M. Hegazi
- Phytochemistry and Plant Systematics Department, Division of Pharmaceutical Industries, National Research Centre, PO Box 12622, Cairo, Egypt
| | - Rasha A. Radwan
- Biochemistry Department, Faculty of Pharmacy, Sinai University-Kantara Branch, El Ismailia, 41611, Egypt
| | - Sherein M. Bakry
- Phytochemistry and Plant Systematics Department, Division of Pharmaceutical Industries, National Research Centre, PO Box 12622, Cairo, Egypt
| | - Hamada H. Saad
- Phytochemistry and Plant Systematics Department, Division of Pharmaceutical Industries, National Research Centre, PO Box 12622, Cairo, Egypt
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls University of Tübingen, PO Box 72074, Tübingen, Germany
| |
Collapse
|
241
|
Agriopoulou S, Stamatelopoulou E, Sachadyn-Król M, Varzakas T. Lactic Acid Bacteria as Antibacterial Agents to Extend the Shelf Life of Fresh and Minimally Processed Fruits and Vegetables: Quality and Safety Aspects. Microorganisms 2020; 8:E952. [PMID: 32599824 PMCID: PMC7356186 DOI: 10.3390/microorganisms8060952] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Eating fresh fruits and vegetables is, undoubtedly, a healthy habit that should be adopted by everyone (particularly due to the nutrients and functional properties of fruits and vegetables). However, at the same time, due to their production in the external environment, there is an increased risk of their being infected with various pathogenic microorganisms, some of which cause serious foodborne illnesses. In order to preserve and distribute safe, raw, and minimally processed fruits and vegetables, many strategies have been proposed, including bioprotection. The use of lactic acid bacteria in raw and minimally processed fruits and vegetables helps to better maintain their quality by extending their shelf life, causing a significant reduction and inhibition of the action of important foodborne pathogens. The antibacterial effect of lactic acid bacteria is attributed to its ability to produce antimicrobial compounds, including bacteriocins, with strong competitive action against many microorganisms. The use of bacteriocins, both separately and in combination with edible coatings, is considered a very promising approach for microbiological quality, and safety for postharvest storage of raw and minimally processed fruits and vegetables. Therefore, the purpose of the review is to discuss the biopreservation of fresh fruits and vegetables through the use of lactic acid bacteria as a green and safe technique.
Collapse
Affiliation(s)
- Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| | - Eygenia Stamatelopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| | - Monika Sachadyn-Król
- Department of Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, 20950 Lublin, Poland;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| |
Collapse
|
242
|
The Impact of Polyphenol on General Nutrient Metabolism in the Monogastric Gastrointestinal Tract. J FOOD QUALITY 2020. [DOI: 10.1155/2020/5952834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Polyphenols are bioactive compounds occurring in plant foods, which are considered significant owing to their contribution to human health and the prevention of chronic diseases. Phenolic compounds mainly depend on plant food structure and the interaction with other food constituents, mostly proteins, lipids, and carbohydrates. The interaction with the food matrices can obstruct or enhance nutrient accessibility and availability and even impair others. Food digestion is a complex process where ingested foods are converted to nutrients via mechanical and enzymatic alterations. The absorption of nutrients predominantly occurs in the small and large intestine, respectively. The metabolised product, however, is the main bioactive component due to their ability to enter the systemic circulation and reach the targeted organs. There is limited knowledge on the cellular uptake, phenolic metabolite, and polyphenolic effect in the gastrointestinal ecosystem. Therefore, improved understanding of the biological properties and stages of dietary phenols is essential for the effective utilization of their therapeutic potentials. This review will explore, summarise, and collate current information on how polyphenols influence nutrient metabolism, bioavailability, and the biotransformation stages.
Collapse
|
243
|
Changes in the content of minerals, B-group vitamins and tocopherols in processed kale leaves. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
244
|
Torres S, Verón H, Contreras L, Isla MI. An overview of plant-autochthonous microorganisms and fermented vegetable foods. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
245
|
Zhou Y, Wang R, Zhang Y, Yang Y, Sun X, Zhang Q, Yang N. Biotransformation of phenolics and metabolites and the change in antioxidant activity in kiwifruit induced by Lactobacillus plantarum fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3283-3290. [PMID: 31960435 DOI: 10.1002/jsfa.10272] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/01/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Changes in antioxidant activity of fruit during fermentation are related to changes in the composition of phenolic acids and flavonoids. In this study, we investigated the effects of Lactobacillus plantarum on the phenolic profile, antioxidant activities, and metabolites of kiwifruit pulp. RESULTS Lactobacillus plantarum fermentation increased scavenging activity of 1-diphenyl-2-picrylhydrazyl (DPPH) and 2,20-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radicals. The content of phenolics and flavonoids was increased after fermentation. Correlation analysis demonstrated that the phenolic and flavonoid content was responsible for increasing the scavenging activities of DPPH and ABTS. Lactobacillus plantarum influenced the phenolic profile of the pulp. Protocatechuic and chlorogenic acids were the predominant phenolic acids in fermented kiwifruit pulp. Gallic acid, chlorogenic acid, epicatechin, and catechins were degraded by L. plantarum. The content of 6,7-dihydroxy coumarin and p-coumaric acid, and especially protocatechuic acid, was increased by fermentation. Metabolic differences in lactic acid, fructose, phosphoric acid, gluconolactone, and sugar were evident between non-fermented and fermented kiwifruit. CONCLUSION Lactobacillus plantarum fermentation increased antioxidant compounds and antioxidant activity in kiwifruit pulp. These results provide the foundation to target the functional benefits of L. plantarum-fermented kiwifruit pulp for further human, animal, and plant health applications. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan Zhou
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- School of Food Science, Guizhou Medical University, Guiyang, China
| | - Ruimin Wang
- School of Food Science, Guizhou Medical University, Guiyang, China
| | - Yefang Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yuhui Yang
- College of Grain and Food Science, Henan University of Technology, Zhengzhou, China
| | - Xiaohong Sun
- School of Food Science, Guizhou Medical University, Guiyang, China
| | - Qinghai Zhang
- School of Food Science, Guizhou Medical University, Guiyang, China
| | - Na Yang
- School of Food Science, Guizhou Medical University, Guiyang, China
| |
Collapse
|
246
|
Microbial Contamination, an Increasing Threat to the Consumption of Fresh Fruits and Vegetables in Today's World. Int J Microbiol 2020; 2020:3029295. [PMID: 32565813 PMCID: PMC7269610 DOI: 10.1155/2020/3029295] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/09/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
Microbes are found all over the globe with some few exceptions, including sterilized surfaces. They include normal flora that is nonpathogenic, which contribute to the larger percentage, and pathogenic species which are few. Hence, the activities of humans cannot be completely separated from microbes. Thus, many pathogenic microbes have found their way into fresh fruits and vegetables which are a great source of a healthy diet for humans. The growing demand for fresh fruits and vegetables has necessitated larger production. The larger production of vegetables within the shortest possible time to meet the growing demand has placed them at a higher risk of contamination with the pathogenic microbes, making the safety of consumers uncertain. Study of sources of contamination and type of pathogenic etiological agents isolated from fresh fruits and vegetables includes Bacillus cereus, Campylobacter jejuni, Clostridium botulinum, E. coli O157: H7, Listeria monocytogenes, Salmonella spp., Shigella, Staphylococcus, and Vibrio cholera. Several measures have proven to be effective in controlling contamination of microbes and they include the establishment of surveillance systems to monitor the production chain and thoroughly washing vegetables with vinegar water. Saltwater and other washing techniques are effective but caution should be taken to make sure one does not use one cycle of water for washing all vegetables. The consumption of fresh fruits and vegetables is still encouraged by this review but significant measures must be taken to check the safety of these products before consumption.
Collapse
|
247
|
Holkem AT, Robichaud V, Favaro-Trindade CS, Lacroix M. Chemopreventive Properties of Extracts Obtained from Blueberry ( Vaccinium myrtillus L.) and Jabuticaba ( Myrciaria cauliflora Berg.) in Combination with Probiotics. Nutr Cancer 2020; 73:671-685. [PMID: 32412316 DOI: 10.1080/01635581.2020.1761986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The association of probiotics and fruit extracts may influence the chemopreventive effect of colorectal cancer. In this context, antiproliferative activity was evaluated to select the best extracts that would be added probiotics, after addition of Bifidobacterium or Lactobacillus in the extracts the antiradical and antioxidant activity, quinone reductase (QR) assay and apoptosis assay were evaluated. Four extracts were isolated: E1: rich in total phenolic compounds; E2: rich in water-soluble phenolic compounds; E3: rich in most apolar phenolic compounds and E4: rich in anthocyanins. The antiproliferative results showed that the best extracts for blueberry and jabuticaba were, respectively the extract E4 and E2. After addition of the probiotic bacteria in these best extracts, it was observed that E2 from jabuticaba presented significantly higher antiradical and antioxidant activity values compared to E4 from blueberry before and after addition of probiotics. There was also a 9-fold increase in activity of QR by the E2 from jabuticaba with Lactobacillus (JL). Likewise, this same extract showed a significant increase both in apoptotic and necrotic cells for both cells. In conclusion, extract rich in water-soluble phenolic compounds (E2) from jabuticaba presented a greater chemopreventive effect compared to the others.
Collapse
Affiliation(s)
- Augusto Tasch Holkem
- Research Laboratory in Sciences, Applied to Food, INRS Armand-Frappier Health and Biotechnology Centre, Canadian Irradiation Centre, Institute of Nutrition and Functional Foods (INAF), Laval, Quebec, Canada.,Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Pirassununga, SP, Brazil
| | - Valérie Robichaud
- Research Laboratory in Sciences, Applied to Food, INRS Armand-Frappier Health and Biotechnology Centre, Canadian Irradiation Centre, Institute of Nutrition and Functional Foods (INAF), Laval, Quebec, Canada
| | - Carmen Silvia Favaro-Trindade
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Pirassununga, SP, Brazil
| | - Monique Lacroix
- Research Laboratory in Sciences, Applied to Food, INRS Armand-Frappier Health and Biotechnology Centre, Canadian Irradiation Centre, Institute of Nutrition and Functional Foods (INAF), Laval, Quebec, Canada
| |
Collapse
|
248
|
Multari S, Carafa I, Barp L, Caruso M, Licciardello C, Larcher R, Tuohy K, Martens S. Effects of Lactobacillus spp. on the phytochemical composition of juices from two varieties of Citrus sinensis L. Osbeck: ‘Tarocco’ and ‘Washington navel’. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
249
|
Interactions of probiotics and prebiotics with the gut microbiota. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:265-300. [PMID: 32475525 DOI: 10.1016/bs.pmbts.2020.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The gut microbiota (GM) composition varies among individuals and is influenced by intrinsic (genetics, age) and extrinsic (environment, diet, lifestyle) factors. An imbalance or dysbiosis is directly associated with the development of several illnesses, due to the potential increase in intestinal permeability leading to a systemic inflammation triggered by higher levels of circulating lipopolysaccharides and changes in the immune response caused by an overgrowth of a specific genus or of pathogens. These mechanisms may increase symptoms in gastrointestinal disorders or reduce glucose tolerance in metabolic diseases. Diet also has a significant impact on GM, and functional foods, namely prebiotics and probiotics, are a novel approach to reestablish the indigenous microbiota. Prebiotics, like inulin and polyphenols, are selectively utilized by GM, releasing short-chain fatty acids (SCFA) and other metabolites which may reduce the intestinal lumen pH, inhibit growth of pathogens, and enhance mineral and vitamin bioavailability. Probiotic microorganism may increase the microbial diversity of GM and improve the integrity of the intestinal barrier, leading to an improvement of baseline and pathologic inflammation. In this chapter, we will discuss the potential roles of prebiotics and probiotics in health and diseases throughout an individual's lifetime and proposed mechanisms of action.
Collapse
|
250
|
Uuh Narvaez JJ, Segura Campos MR. Foods from Mayan Communities of Yucatán as Nutritional Alternative for Diabetes Prevention. J Med Food 2020; 23:349-357. [DOI: 10.1089/jmf.2019.0125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|